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IMPACT OF DIFFERENT COORDINATE SETS ON THE
PERFORMANCE OF CONVEX LOW-THRUST TRAJECTORY

OPTIMIZATION

Christian Hofmann *, Andrea C. Morelli †, and Francesco Topputo‡

The choice of the coordinate representation of the state vector has a considerable
impact on the performance of low-thrust trajectory optimization methods. This
is especially true for sequential convex programming techniques due to the suc-
cessive linearization of nonlinear dynamics. In this work, various coordinate rep-
resentations are assessed for the low-thrust trajectory optimization problem. In
particular, standard coordinate sets are considered (i.e. Cartesian, spherical, and
modified equinoctial elements), and non-standard coordinates (two sets based on
Kustaanheimo-Stiefel and modified orbital elements) are introduced that result in
linear dynamics in the unperturbed case. In addition, two nonlinearity indices
tailored to convex optimization are proposed to assess the nonlinearity of the dy-
namical system.

INTRODUCTION

The equations of motion form a fundamental part in astrodynamics. Before solving an optimal
control problem, the equations that govern the motion of the spacecraft (or any other object) are
to be derived. Cartesian coordinates are probably the most common and popular representation of
the dynamics. Yet, several different sets of coordinates have been developed in the past decades.
The reason is that the choice of the coordinates can have a considerable impact on the performance
of numerical methods to solve problems related to astrodynamics.1 Spherical coordinates (or polar
coordinates in the planar case) seem to be a natural choice to describe the translational motion of
a spacecraft around a body. Several works use these coordinates to solve the low-thrust trajectory
optimization problem.2–4 Cylindrical coordinates are often used in shape-based methods where
the trajectory is approximated with certain functions.5 Canonical elements such as Delaunay6 and
Poincaré7 elements are advantageous for perturbation problems due to the simplifications that can
be made when the perturbing acceleration is considered small. Equinoctial elements were devel-
oped to overcome the singularities of classical orbital elements.8 They are a popular choice for
many-revolution transfers in indirect methods because five out of six elements are constant for the
unperturbed motion.9–11 Alternative representations such as quaternion-like elements for the ini-
tial value problem12 or coordinates that use the angular momentum and eccentricity vectors13 for
high-inclination orbital transfers were developed only recently.
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The choice of the coordinates becomes even more crucial for nonlinear optimization methods
where linearization is involved. An example is sequential convex programming (SCP), where the
nonlinear dynamics are successively linearized to obtain an approximate solution of the nonlinear
optimal control problem. Even though many constraints can be relaxed and convexified, dynam-
ics are usually approximated using a first-order Taylor series. Understanding the impact of the
coordinate set on the performance of SCP is therefore of utmost practical interest. Yet, previous
research activities lack a thorough assessment and comparison of relevant state vector choices for
convex low-thrust trajectory optimization. In other works,1 an indirect method is used to investi-
gate the performance of several minimal coordinate sets for the low-thrust fuel-optimal trajectory
optimization problem, but the results cannot be applied directly to the SCP approach due to the
fundamentally different characteristics of both methods.

Besides an explicit comparison of the performance of different representations of the dynamics,
a nonlinearity index was introduced in previous work14 to compare the nonlinearity of dynamical
systems. This metric is intended to measure how nonlinear a dynamical system is for unperturbed
initial value problems. This approach was later extended to include control terms.15 More recently,
an augmented nonlinearity index was introduced to account for state-costate dynamics in indirect
methods.16 This was applied to the spacecraft attitude control problem.

The contribution of this work is threefold. First, we introduce a set of modified orbital elements
(MOE) and two variants of the Kustaanheimo-Stiefel (KS) coordinates for convex low-thrust tra-
jectory optimization. These sets express the unperturbed two-body dynamics in linear (or weakly
nonlinear) form, which is advantageous when solving optimal control problems via SCP as the non-
linear dynamics are usually linearized. Secondly, we introduce two nonlinearity indices to assess
the level of nonlinearity of the proposed coordinate sets. Finally, we perform a thorough assessment
of the convergence and performance properties of the classical (Cartesian, spherical, cylindrical,
modified equinoctial elements) and the non-standard coordinate sets when poor initial guesses are
provided.

The paper is structured as follows. Section II describes the convexified optimal control problem
and the discretization method. The nonlinearity indices are introduced in Section III, and Section
IV addresses the coordinate sets. The results are presented in Section V, and Section VI concludes
this paper.

PROBLEM STATEMENT

We consider the problem of finding the interplanetary minimum-fuel trajectory of a spacecraft
subject to the gravitational attraction of the Sun and the thrust provided by a low-thrust engine.
Such a problem has nonlinear and nonconvex dynamics regardless of the set of coordinates. We
write the dynamics in the form

f(x,u) = g(x) +B(x)u (1)

where g(x) and B(x) are generic functions of the state variables x, and u are the controls. The
convex form of the low-thrust trajectory optimization then reads17

minimize
u(t)

− w(tf ) + λ ∥ν(t)∥1 + λ max(0, ψ(t)) (2a)

subject to: ẋ(t) = f̄ +∇x̄f (x(t)− x̄(t)) +∇ūf (u(t)− ū(t)) + ν(t) (2b)

Γ(t) ≤ Tmax e−w̄(t) [1− w(t) + w̄(t)] + ψ(t) (2c)
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∥τ (t)∥2 ≤ Γ(t) (2d)

∥x(t)− x̄(t)∥1 ≤ R (2e)

xpv(t0) = x0, w(t0) = w0 (2f)

xpv(tf ) = xf (2g)

xl ≤ x(t) ≤ xu, ul ≤ u(t) ≤ uu (2h)

where the bar denotes the reference value of the quantity, and

f̄ ..= f (x̄(t), ū(t)) (3)

The objective function of the problem is given by Eq. (2a), where w(tf ) is the modified spacecraft
mass at the final time tf , λ a penalty factor, and ν and ψ are slack variables to avoid artificial infea-
sibility. Equation (2b) describes the linearized dynamics, Eqs. (2c) and (2d) the control constraints.
The trust-region constraint in Eq. (2e) with radius R is imposed to keep the linearization close to
the reference. Equations (2f) and (2g) express the initial and final boundary conditions, and the
subscript (·)pv refers to the states that describe the position and the velocity of the spacecraft. Equa-
tion (2h) represents the upper (subscript u) and lower bounds (subscript l) on the state and control
variables, respectively. The control variables u ∈ R4 are defined as u ..= [τ⊤,Γ]⊤ where τ ∈ R3

and Γ ∈ R.

The convexified optimal control problem is discretized using the first-order-hold method (FOH)
where the dynamical constraints take the following form:17

xk+1 = Ak xk +B−
k uk +B+

k uk+1 + qk + νk (4)

with certain matrices Ak, B−
k , B+

k , and the vector qk, k = 1, . . . , n − 1 being the kth discretiza-
tion point. The obtained convex optimization problem is solved using a trust-region based SCP
algorithm.18

NONLINEARITY INDEX

We are interested in assessing different state vector representations for the low-thrust trajectory
optimization problem using SCP where the nonlinear dynamics are successively linearized about a
reference. We therefore expect to benefit from coordinates where this first-order Taylor approxi-
mation is as accurate as possible. We propose the nonlinearity index Ξf that evaluates the original
nonlinear dynamics function fnonlin

k and its first-order Taylor series f lin
k at each node k = 1, . . . , n:

Ξf
k

..=
∥fnonlin

k − f lin
k ∥

∥fnonlin
k ∥

, k = 1, . . . , n (5)

where
f lin = f (x̄, ū) +∇xf (x̄, ū) (x− x̄) +∇uf (x̄, ū) (u− ū) (6)

The division by the norm is added as a normalization to account for the different domains of the vari-
ables in each set. Equation (5) essentially compares the function values of the nonlinear functions
with the values of the first-order Taylor series evaluated at a reference point (x̄, ū). Our rationale is
that the linearization error E(x) becomes zero when ∆x→ 0:

lim
∆x→0

E(x) = lim
∆x→0

f(x̄+∆x)−
[
f(x̄) + f ′(x̄)∆x

]
= 0 (7)
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Therefore, the index indicates how well the linearization is able to represent the original nonlin-
ear function. Smaller values suggest better approximations, and a value of zero means that the
linearization is exact.

As the index depends on the deviation from a reference point, we select a sufficiently large number
N of perturbed trajectories that lie in the neighborhood of the reference. The nonlinearity index Ξf

k

at each node is then given by the average over N samples:

Ξf
k

..=
1

N

N∑
i=1

Ξf
k,i, k = 1, . . . , n, i = 1, . . . , N (8)

Remark: It is also possible to use the maximum instead of the mean value for computing the index.
Our simulations suggest that there is no significant difference.

In FOH, the state transition matrix is used to discretize the problem. The dynamics are integrated,
and the state at tk+1 is obtained by evaluating Eq. (4). The violations of the nonlinear dynamical
constraints cnonlink are computed by comparing the states at the end of a segment k:

cnonlink =
∥∥∥xk+1 − xnonlin

k+1

∥∥∥, k = 1, . . . , n− 1 (9)

where xk+1 denotes the state at tk+1 obtained from the optimization, and xnonlin
k+1 is computed using

the nonlinear dynamics:

xnonlin
k+1 = xk +

∫ tk+1

tk

fnonlin(x(ζ),u(ζ)) dζ, k = 1, . . . , n− 1 (10)

where xk ≡ x(tk) is also the optimized state. As xk+1 is obtained using Eq. (4), the state transition
matrix is required, and hence, the integration of the Jacobian matrices. Therefore, even if two
coordinate sets yield a similar nonlinearity index Ξf , the constraint violation can be large as the
error accumulates during the integration. We thus propose a second nonlinearity index Ξx that is
defined as follows:

Ξx
k

..=
∥xnonlin

k+1 − xlin
k+1∥

∥xnonlin
k+1 ∥

, k = 1, . . . , n− 1 (11)

It evaluates the difference of the integrated states obtained using the nonlinear dynamics and the
state transition matrix, respectively.

Generation of Perturbed Trajectories

Given a reference trajectory x̄(t) and its corresponding initial condition x̄(t0), we define a set of
N worst-case initial condition variations δxi(t0), i = 1, . . . , N with ∥δxi(t0)∥ = δxmax, similar to
what has been defined in previous work.14 In particular, we use Cartesian coordinates to define

δxmax =

∥∥∥∥[δrmax

δvmax

]∥∥∥∥ (12)

where δrmax ∈ R3 and δvmax ∈ R3 are arbitrary entries that define the position and velocity
variations, respectively. The worst-case initial conditions therefore lie on a N -dimensional sphere
of radius δxmax. The perturbed initial condition xi(t0) is then

xi(t0) = x̄(t0) + δxi(t0), i = 1, . . . , N (13)
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Similarly, worst-case control variations δui(tk) with ∥δui(tk)∥ = ∥δumax∥ = δumax are defined at
each time instant tk, k = 1, . . . , n, i = 1, . . . , N , The perturbed control profiles ui(tk) read

ui(tk) = ū(tk) + δui(tk), i = 1, . . . , N, i = 1, . . . , n (14)

In our case, δui(tk) ≡ δτi(tk), i.e. we only perturb the components τ ∈ R3 and then compute the
magnitude using Γi(tk) = ∥τi(tk)∥.

The nonlinear dynamics are then integrated using the perturbed control profiles ui(t) obtained
from Eq. (14) and the perturbed initial conditions xi(t0). The resulting N state trajectories xi(t)
deviate from the reference by δxi(t):

xi(t) = x̄(t) + δxi(t), i = 1, . . . , N (15)

These trajectories are then transformed into the other coordinate sets to determine the nonlinearity
indices.

COORDINATE SETS

Even though there are many different coordinate choices, previous works suggest that any set of
orbital elements often performs similar or worse compared to modified equinoctial elements (MEE).
Therefore, we select MEE as the only standard set of orbital elements. In addition to the most
popular state representations, i.e. Cartesian, cylindrical, and spherical coordinates, we consider a
recently-developed set of modified orbital elements (MOE).19 The main difference compared with
other sets in the literature is that the dynamics are linear in the unperturbed case due to a time
regularization. Moreover, we also take into account the non-minimal Kustaanheimo-Stiefel (KS)
coordinates.20 The main benefit of both representations is that the dynamics are (weakly) nonlinear
in the unperturbed case. This is expected to be beneficial for the successive linearization approach
in SCP.

We define the unperturbed g(x) and perturbed B(x) terms in Eq. (1) to be either linear, weakly
nonlinear, or nonlinear. Table 1 characterizes the proposed coordinate systems in terms of the
level of nonlinearity, the number of state variables (without considering the mass), and the number
of slow and fast variables, slow meaning that the element is constant when no perturbations are
present. The selected coordinates cover a wide variety of combinations. The linear terms of each
coordinate system are advantageous because no approximations are introduced when building the
convex subproblems in Eqs. (2). However, as highlighted in Table 1, no state vector representation
has only linear terms. It is therefore not straightforward to indicate a certain set of coordinates as
the most suitable.

In the following subsections, the expressions for g(x) and B(x) of the different coordinate sets
are presented. For the sake of conciseness, the length of the subsections for the well-known Carte-
sian, cylindrical, and spherical coordinates as well as MEE are kept as short as possible. The
modified orbital elements and KS coordinates are explained in more detail as most readers may not
be familiar with them. If not stated otherwise, the control components are defined using the unit
vectors of the corresponding coordinate frame.
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Table 1: Overview of the considered coordinate sets.

Coordinates Unpert. dynamics g(x) Pert. dynamics B(x) # states Slow / fast variables

Cartesian Nonlinear Constant 6 0 / 6
Cylindrical Nonlinear Constant 6 0 / 6
Spherical Nonlinear Constant 6 0 / 6
MEE Weakly nonlinear Nonlinear 6 5 / 1
MOE Linear* Nonlinear 6† 2 / 4†

KSξ Weakly nonlinear* Nonlinear 9† 1 / 8†

KSE Linear* Nonlinear 9† 1 / 8†

* The dynamics become nonlinear if time is added as a state variable.
† The number increases by one if time is added as a state variable.

Cartesian

The state x ∈ R7 and control u ∈ R4 vectors are

xcart =
[
r⊤,v⊤, w

]⊤
= [x, y, z, vx, vy, vz, w]

⊤ (16)

ucart =
[
τ⊤,Γ

]⊤
(17)

The quantities gcart(x) and Bcart(x) are

gcart(x) =



vx
vy
vz

− µx

(x2+y2+z2)3/2

− µ y

(x2+y2+z2)3/2

− µ z

(x2+y2+z2)3/2

0


, Bcart(x) =


03×4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

g0 Isp

 (18)

Spherical Coordinates

The state x ∈ R7 and control u ∈ R4 vectors are

xsph = [r, θ, ϕ, vr, vθ, vϕ, w]
⊤ (19)

usph =
[
τ⊤,Γ

]⊤
(20)
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Figure 1: Spherical coordinates and rotating
coordinate system.
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Figure 2: Cylindrical coordinates and rotat-
ing coordinate system.

where r, θ, and ϕ denote the radial distance, azimuthal, and polar angle, respectively (see Fig. 1).
The quantities gsph(x) and Bsph(x) are

gsph(x) =



vr
vθ
rvϕ

r sin(θ)
v2θ
r +

v2ϕ
r − µ

r2

−vrvθ
r +

v2ϕ cos(θ)

r sin(θ)

−vrvϕ
r − vθvϕ cos(θ)

r sin(θ)

0


, Bsph(x) =


03×4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

g0 Isp

 (21)

Cylindrical Coordinates

The state x ∈ R7 and control u ∈ R4 vectors are

xcyl = [ρ, θ, z, vρ, vθ, vz, w]
⊤ (22)

ucyl =
[
τ⊤,Γ

]⊤
(23)

where ρ, θ, and z denote the radial distance from the z-axis, azimuthal angle, and the distance from
the reference plane, respectively (see Fig. 2). The quantities gcyl(x) and Bcyl(x) are

gcyl(x) =



vρ
vθ
ρ

vz
v2θ
ρ − µρ

(ρ2+z2)3/2

−vρvθ
ρ

− µ z

(ρ2+z2)3/2

0


, Bcyl(x) =


03×4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

g0 Isp

 (24)
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Modified Equinoctial Elements

The state x ∈ R7 and control u ∈ R4 vectors are

xMEE = [p, ex, ey, hx, hy, l, w]
⊤ (25)

uMEE =
[
τ⊤,Γ

]⊤
(26)

The relationship between modified equinoctial and classical orbital elements is given by

p = a
(
1− e2

)
(27)

ex = e cos (ω +Ω) (28)

ey = e sin (ω +Ω) (29)

hx = tan (i/2) cosΩ (30)

hy = tan (i/2) sinΩ (31)

l = ω +Ω+ ϑ (32)

where p denotes the semilatus rectum, a the semi-major axis, e the eccentricity, ω the argument of
periapsis, Ω the longitude of the ascending node, i the inclination, l the true longitude, and ϑ the
true anomaly. The quantities gMEE(x) and BMEE(x) are9

gMEE(x) =

[
0, 0, 0, 0, 0,

√
µ p

(
σ

p

)2
]⊤

(33)

BMEE(x) =



0 2 p
σ

√
p
µ 0 0√

p
µ sin l

√
p
µ

1
σ [(σ + 1) cos l + ex] −

√
p
µ

ey
σ (hx sin l − hy cos l) 0

−
√

p
µ cos l

√
p
µ

1
σ [(σ + 1) sin l + ey]

√
p
µ

ex
σ (hx sin l − hy cos l) 0

0 0
√

p
µ

b2

2σ cos l 0

0 0
√

p
µ

b2

2σ sin l 0

0 0
√

p
µ

1
σ (hx sin l − hy cos l) 0

0 0 0 − 1
g0 Isp


(34)

where
σ = 1 + ex cos l + ey sin l, b2 = 1 + h2y + h2y (35)

Note that the control components are expressed in the standard local-vertical local-horizontal rotat-
ing frame the where the first axis is the radial unit vector ir = r/r that points along the position
vector. The normal unit vector points in the orbit normal direction, and the transversal unit vector is
found with the right-hand rule.

Modified Orbital Elements

We make use of another set of orbital elements that results in a linear representation in the un-
perturbed case. These modified orbital elements [Λ, η, s, γ, κ,Ω] can be derived from spherical
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coordinates using21

Λ =
ph
r

− µ

ph

√
C

µ
(36)

η = pr

√
C

µ
(37)

s = sin(ϕ) (38)

γ =
pϕ
ph

cos(ϕ) (39)

κ =
1

ph

√
µC (40)

where pr, pθ, and pϕ are the conjugate momenta of the corresponding Hamiltonian,

pr = ṙ (41)

pθ = r2 θ̇ cos2 (ϕ) (42)

pϕ = r2 ϕ̇ (43)

and ph is the angular momentum:

ph =

√
p2ϕ +

p2θ
cos2(ϕ)

(44)

r denotes the radial distance, θ and ϕ the azimuthal and polar angle, respectively. The standard
gravitational parameter µ and some length unit C are included to make the quantities dimensionless.
Ω is identical to the classical longitude of the ascending node. Note that a time regularization was
performed that is defined as follows:

dt =
r2

ph
dζ (45)

The time can thus be obtained by integrating the following differential equation:

dt

dζ
=

1

κ(κ+ Λ)2

√
C3

µ
(46)

As we are interested in fixed final time problems, the time t is included as an additional state.
Therefore, the states are defined as

x = [Λ, η, s, γ, κ,Ω, w, t]⊤ (47)

Clearly, the unperturbed dynamics become nonlinear if the time is added as a state variable. With
regard to the implementation, all quantities (including the perturbing accelerations, gravitational
acceleration, and the specific impulse) are normalized before solving the optimization problem nu-
merically. Therefore, the scaling factors C2/µ and

√
C3/µ are dropped in the remainder of this
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work as they are already implicitly included. The quantities gMOE(x) and BMOE(x) in the ζ do-
main are then

gMOE(x) =



−η
Λ
−s
γ
0
0
0
1

κ (κ+Λ)2


, BMOE(x) =



0 2κ+Λ
κ (κ+Λ)3

0 0
1

κ (κ+Λ)2
0 0 0

0 0

√
1−s2−γ2

κ (κ+Λ)3
0

0 0 0 0
0 − 1

(κ+Λ)3
0 0

0 0 s
(s2+γ2)κ (κ+Λ)3

0

0 0 0 − 1
g0 Isp

1
κ(κ+Λ)2

0 0 0 0


(48)

The control components are defined in the local-vertical local-horizontal rotating frame as in MEE.

Remark: As Ω is not defined for equatorial orbits, this coordinate set has a singularity when
the inclination is close to zero. Yet, in the context of this paper, only problems where i ̸= 0 are
considered.

Kustaanheimo-Stiefel Coordinates

The Kustaanheimo-Stiefel transformation is based on Levi-Civita’s regularization in three di-
mensions. The idea is to describe the equations of motion using complex numbers and quater-
nion algebra. The transformation between Cartesian r ∈ R3 and non-minimal KS coordinates
p = [p1, p2, p3, p4] ∈ R4 is given by20

r = L(p)p (49)

r′ = 2L(p)p′ (50)

with

L(p) =


p1 −p2 −p3 p4
p2 p1 −p4 −p3
p3 p4 p1 p2
p4 −p3 p2 −p1

 (51)

The inverse transformation can be obtained using the relation

[L(p)]−1 =
1

r
[L(p)]⊤ (52)

(·)′ ..= d
dξ denotes a time regularization in the fictitious time domain ξ defined by

dt = r dξ (53)

where r = ∥r∥2 = ∥p∥22. This results in the following equation of a harmonic oscillator:

2p′′ + hp = ∥p∥2 [L(p)]⊤
[
τ
0

]
(54)

where h denotes the negative of the specific orbital energy:

h ..=
µ

r
− 1

2
∥v∥2 (55)
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The equations of motion then read:

dp

dξ
= p′ (56a)

dp′

dξ
= −h

2
p+

1

2
∥p∥22 [L(p)]⊤

[
τ
0

]
(56b)

dh

dξ
= −2 [p′]⊤ [L(p)]⊤

[
τ
0

]
(56c)

dt

dξ
= ∥p∥22 (56d)

The time regularization in Eq. (53) results in weakly nonlinear dynamics for the unperturbed case.
Even though it is expected that this is already advantageous compared to coordinates that yield
highly nonlinear equations of motion for the unperturbed case, it would be desirable to obtain linear
dynamics when no perturbation is present. Therefore, we define another time regularization

d

dt
=

√
2h

r

d

dE
(57)

that results in linear unperturbed dynamics, E being the eccentric anomaly. As we want to compute
fuel-optimal trajectories with fixed final time, the time t is included as an additional state. The state
x ∈ R11 and control u ∈ R4 vectors then read

xξ
KS =

[
p⊤,p′⊤, h, w, t

]⊤
, xE

KS =
[
p⊤,

◦
p⊤, h, w, t

]⊤
(58)

uKS =
[
τ⊤,Γ

]⊤
(59)

where the superscripts ξ and E refer to the independent variables, and

◦
(·) ..=

d

dE
(60)

If ξ is the independent variable, the quantities gξ
KS(x) and Bξ

KS(x) are

gξ
KS(x) =


p′

−h
2 p
0
0

∥p∥2

 , Bξ
KS(x) =



04×4
p1
2 ∥p∥2 p2

2 ∥p∥2 p3
2 ∥p∥2 0

−p2
2 ∥p∥2 p1

2 ∥p∥2 p4
2 ∥p∥2 0

−p3
2 ∥p∥2 −p4

2 ∥p∥2 p1
2 ∥p∥2 0

p4
2 ∥p∥2 −p3

2 ∥p∥2 p2
2 ∥p∥2 0

Bξ
KS,91 Bξ

KS,92 Bξ
KS,93 0

0 0 0 − ∥p∥2
g0 Isp

0 0 0 0


(61)

where

Bξ
KS,91 = 2(−p1p′1 + p2p

′
2 + p3p

′
3 − p4p

′
4) (62a)

Bξ
KS,92 = 2(−p1p′2 − p2p

′
1 + p3p

′
4 + p4p

′
3) (62b)
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Bξ
KS,93 = 2(−p1p′3 − p2p

′
4 − p3p

′
1 − p4p

′
2) (62c)

If E is the independent variable, the quantities gE
KS(x) and BE

KS(x) are given by

gE
KS(x) =


◦
p

−1
4 p
0
0

∥p∥2√
2h

 , BE
KS(x) =



04×4

BE
KS,51 BE

KS,52 BE
KS,53 0

BE
KS,61 BE

KS,62 BE
KS,63 0

BE
KS,71 BE

KS,72 BE
KS,73 0

BE
KS,81 BE

KS,82 BE
KS,83 0

BE
KS,91 BE

KS,92 BE
KS,93 0

0 0 0 − ∥p∥2√
2h g0 Isp

0 0 0 0


(63)

The expressions for the elements of BE
KS(x) are given in the appendix. Similar to MOE, the unper-

turbed dynamics become nonlinear if the time is added as a state variable.

In the planar case, the inverse KS transformation is unique, and the final boundary condition is
simply a linear equality constraint. In the spatial case, however, there is an additional degree of
freedom. Therefore, one element of p can be chosen arbitrarily. This means that the fixed final state
pf depends on the initial condition p0, and its value is to be obtained by integrating the dynamics.
As a consequence, the final boundary condition is not a linear equality constraint anymore, but a
nonlinear function of the initial condition. In discretized form, the final state [p(tf )]

⊤, [p′(tf )]
⊤

can be mapped from KS to Cartesian coordinates, and the target state can be imposed in Cartesian
coordinates: [

rf
vf

]
= Mξ[p(tf ),p

′(tf )] (64)

where Mξ denotes the nonlinear mapping from KS to Cartesian coordinates according to Eqs. (49),
(50) and (52), respectively. The new final boundary conditions then read

rf = L[p(tf )]p(tf ), vf =
2

∥p(tf )∥2
L[p(tf )]p

′(tf ) (65)

They are linearized about the reference and added in the optimization. The final boundary conditions
for the independent variable E are defined accordingly. The controls are expressed in the Cartesian
coordinate frame.

NUMERICAL SIMULATIONS

The impact of the coordinate sets is assessed in two analyses:

1. Nonlinearity index: the two indices Ξf and Ξx are determined and compared for all coordinate
sets.

2. Reliability: using initial guesses of different quality, we compute hundreds of optimal trajec-
tories using each set to compare the success rate, number of iterations, final mass, and CPU
time.
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Table 2: Simulation values for the transfers to the asteroids 2000 SG34422 and Dionysus.23

Parameter SEL2 to 2000 SG344 Earth to Dionysus

Initial epoch 04-Feb-2024 12:00:00 UTC 23-Dec-2012 00:00:00 UTC

Initial position r0, AU
[−0.701 860 65, 0.647 969 56,

0.280 890 92]⊤
[−0.023 729 65, 0.902 196 12,

0.391 115 96]⊤

Initial velocity v0, VU
[−0.732 969 49, −0.656 847 37,

−0.284 730 20]⊤
[−1.015 931 25, −0.025 848 08,

−0.011 168 60]⊤

Initial mass m0, kg 22.6 4000

Final position rf , AU
[0.418 067 95, 0.761 136 49,

0.328 430 28]⊤
[−2.040 620 09, 1.661 992 01,

1.324 703 65]⊤

Final velocity vf , VU
[−0.969 903 32, 0.400 790 22,

0.172 419 04]⊤
[−0.142 318 14, −0.421 402 69,

−0.162 049 85]⊤

Final mass m(tf ), kg free free
Max. thrust Tmax, N 2.2519× 10−3 0.32
Sp. impulse Isp, s 3067 3000
Time of flight tf , days 700 3534

We consider fuel-optimal transfers from the Sun-Earth Lagrange Point L2 (SEL2) to asteroid 2000
SG344, and from Earth to asteroid Dionysus. The J2000 reference frame is used where the xy-
plane lies in the equatorial plane. The maximum thrust Tmax and specific impulse Isp are assumed
constant. Relevant parameters are given in Table 2. All simulations are performed in MATLAB
version 2018b on an Intel Core i5-6300 2.30 GHz Laptop with four cores and 8 GB of RAM.

Using the procedure explained in Section III, N = 500 perturbed state and control trajectories
are generated. The following variations are considered in this work:

2000 SG344: δrmax =
[
105, 105, 105

]⊤
km, δvmax =

[
10−2, 10−2, 10−2

]⊤
km s−1,

δτmax = [1.2, 1.2, 1.2]⊤ × 10−6 km s−2
(66)

Dionysus: δrmax =
[
106, 106, 106

]⊤
km, δvmax =

[
10−1, 10−1, 10−1

]⊤
km s−1,

δτmax = [8.9, 8.9, 8.9]⊤ × 10−8 km s−2
(67)

Typical reference and perturbed trajectories are shown in Figs. 3 and 4. The obtained trajectories
are used to determine the nonlinearity indices and serve as the initial guesses for the reliability
analysis. Throughout this section, we use Cart, Sph, Cyl, MEE, MOE, KSξ, and KSE to refer to the
coordinate sets described in Section IV.

Remark: For the 2000 SG344 transfer, the control variations are several times larger than the
maximum control magnitude of the reference trajectory. The reason is that smaller values would
result in success rates of 100% for all sets, which is not desirable for assessing the reliability.

Nonlinearity Index

The nonlinearity indices Ξf and Ξx are computed according to Eqs. (5) and (11). Their evolution
for the transfers to asteroids 2000 SG344 and Dionysus are shown in Figs. 5 and 6, respectively.
The values of Ξf and Ξx take different orders of magnitude over time, and Cartesian coordinates

13



Table 3: Parameters of the SCP algorithm.

Parameter Value

Feasibility tol. εc 10−6

Optimality tol. εϕ 10−4

Max. iterations 150
λ 10.0
ρ0, ρ1, ρ2 0.01, 0.25, 0.85
α, β 1.5, 1.5

Table 4: Physical constants in all simulations.

Parameter Value

Gravitational const. µ 1.327 124 4× 1011 km3 s−2

Gravitational accel. g0 9.806 65× 10−3 km s−2

Length unit AU 1.495 978 707× 108 km

Velocity unit VU
√
µ/AU

Time unit TU AU/VU
Acceleration unit ACU VU/TU
Mass unit MU m0
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Figure 3: Typical reference and perturbed state and control trajectories for 2000 SG344.
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Figure 4: Typical reference and perturbed state and control trajectories for Dionysus.
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result in considerably larger values than the other coordinate sets. These, instead, yield relatively
similar values (especially in the case of asteroid 2000 SG344). With regard to Ξx, the discrepancy
between Cartesian and the other coordinates is even more significant. As the acceleration due to
thrust is small with respect to the unperturbed two-body dynamics, it is reasonable that coordinate
sets with highly nonlinear unperturbed dynamics (such as Cartesian) reach larger values. In general,
it appears that MOE and cylindrical elements result in the smallest indices, directly followed by
spherical and MEE. Surprisingly, KSξ and KSE take rather large values despite their (quasi-)linear
dynamics. This may be due to the complex and highly nonlinear expressions for the B(x) matrices
in combination with the larger number of states, including time.
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Figure 5: Nonlinearity indices for 2000 SG344.
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Figure 6: Nonlinearity indices for Dionysus.

Reliability Analysis

The convexified optimization problem is solved using the open-source Embedded Conic Solver
(ECOS).24 Parameters of the SCP algorithm are given in Table 3, physical constants for the normal-
ization in Table 4. The algorithm converges if the maximum constraint violation and the change of
the objective function are smaller than the thresholds εc and εϕ, respectively. ρi (i = 0, 1, 2) and α,
β are trust-region parameters.25, 26
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of the independent variable for MOE and KS).

With regard to the transfer to asteroid 2000 SG344, the comparison of the success rate, number of
iterations, and final mass for the 500 simulations is shown in Fig. 7. Median values are presented,
and the error bars refer to the 90% percentile of the respective quantity. Note that we assume the
final value of the independent variable for MOE and KS to be fixed and known, e.g. from a previous
optimization. All methods despite Cartesian coordinates (success rate of only 80%) converge in
almost all cases, KS yielding slightly fewer optimal solutions compared to Sph, Cyl, MEE, and
MOE. Cartesian elements require significantly more iterations than all other sets. The final mass is
instead similar.

For Dionysus, Sph, Cyl, MEE, and MOE outperform the other state representations in terms of
success rate. Remarkably, all simulations converged successfully for MOE. Interestingly, Cart, Sph,
Cyl, MEE, and KSξ require a similar amount of iterations (around 30), whereas MOE and KSE

need only approximately five iterations. All methods yield a similar final mass.

The success rates seem to be in accordance with the nonlinearity index, because the highest suc-
cess rates are obtained with MOE, Cyl, Sph, and MEE, which also yield the smallest indices. Even
though both KS sets result in similar indices compared to Sph, Cyl, and MEE, the additional non-
linear final boundary constraint is probably the reason for the fewer converged cases. Moreover,
MOE and KSE represent the only coordinate sets with linear unperturbed dynamics (except for the
differential equation of the time) according to Table 1. Since the SCP process is based on lineariza-
tion, it is reasonable that they are able to solve the considered problems in fewer iterations. This
is particularly true for MOE, which has fewer state variables than KSE and linear final boundary
conditions, thus resulting in a higher success rate. As the independent variables of MOE and KS
are anomaly-like quantities, their final values may not be known in advance. Instead of keeping the
final value of the independent variable fixed, the problem can be transformed into a free indepen-
dent variable problem (keeping in mind that the independent variable is not time, and that the actual
time of flight does not change). This way, the final value of the independent variable is free, and
therefore, an additional degree of freedom is added that might be beneficial for the solver. Figure 9
shows the results for the Dionysus transfer. It is evident that the success rates increase from 80%
to 98% (KSξ) and from 79% to 91% (KSE). As a consequence, the variations in the number of
iterations and final mass rise considerably as different solutions are found that are not close to the
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Figure 9: Comparison of success rate, iterations, and final mass for Dionysus (free final value of

the independent variable for MOE and KS).

reference. Still, keeping the final value of the independent variable free can be an effective means
to increase convergence for KS. The results for the 2000 SG344 transfer do not change significantly
compared to the fixed independent variable case.

As expected, the median CPU time per simulation in Fig. 10a follows the same trend as the
number of iterations. Yet, the CPU time per SCP iteration in Fig. 10b differs: KSξ and KSE require
more time per iteration due to the larger number of states, and hence larger matrices. KSE is the
worst state representation in terms of CPU time per iteration due to the more complex control matrix
B(x) compared to KSξ. Remarkably, MOE requires a similar amount of time compared to standard
sets despite the additional state.
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CONCLUSION

In this work, several coordinate sets are assessed for the convex low-thrust trajectory optimization
problem. The most popular standard coordinates, and three non-standard state vector representa-
tions that result in (quasi-)linear unperturbed dynamics are considered. This thorough comparison
can serve as a reference for other researchers as convex programming techniques are becoming
more and more important in the aerospace community. Our simulations suggest that MOE, MEE,
spherical, and cylindrical coordinates outperform Cartesian coordinates in terms of success rate.
Sets with an independent variable different from time that have linear unperturbed dynamics such
as MOE and KSE require significantly fewer iterations. Moreover, the findings obtained in our
extensive simulations are consistent with the indications provided by the proposed nonlinearity in-
dices. These can be an effective indicator of the nonlinearity of a set of differential equations, and
therefore of the performance of SCP when considering different state vector representations.
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APPENDIX: ADDITIONAL EQUATIONS FOR COORDINATES

The entries of the BE
KS(x) matrix in Eq. (63) are as follows:

BE
KS,51 =

1

4h

(
−4p2

◦
p1

◦
p2 − 4p3

◦
p1

◦
p3 + 4p4

◦
p1

◦
p4 + 4p1

◦
p21 + p1∥p∥2

)
(68a)

BE
KS,52 =

1

4h

(
4p2

◦
p21 + 4p1

◦
p1

◦
p2 − 4p4

◦
p1

◦
p3 − 4p3

◦
p1

◦
p4 + p2∥p∥2

)
(68b)

BE
KS,53 =

1

4h

(
4p3

◦
p21 + 4p1

◦
p1

◦
p3 + 4p4

◦
p1

◦
p2 + 4p2

◦
p1

◦
p4 + p3∥p∥2

)
(68c)
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BE
KS,61 =

1

4h

(
4p1

◦
p1

◦
p2 − 4p3

◦
p2

◦
p3 + 4p4

◦
p2

◦
p4 − 4p2

◦
p22 − p2∥p∥2

)
(68d)

BE
KS,62 =

1

4h

(
4p2

◦
p1

◦
p2 − 4p4

◦
p2

◦
p3 − 4p3

◦
p2

◦
p4 + 4p1

◦
p22 + p1∥p∥2

)
(68e)

BE
KS,63 =

1

4h

(
4p3

◦
p1

◦
p2 + 4p1

◦
p2

◦
p3 + 4p4

◦
p22 + 4p2

◦
p2

◦
p4 + p4∥p∥2

)
(68f)

BE
KS,71 =

1

4h

(
4p1

◦
p1

◦
p3 − 4p2

◦
p2

◦
p3 − 4p3

◦
p23 + 4p4

◦
p3

◦
p4 − p3∥p∥2

)
(68g)

BE
KS,72 =

1

4h

(
4p2

◦
p1

◦
p3 + 4p1

◦
p2

◦
p3 − 4p4

◦
p23 − 4p3

◦
p3

◦
p4 − p4∥p∥2

)
(68h)

BE
KS,73 =

1

4h

(
4p3

◦
p1

◦
p3 + 4p1

◦
p23 + 4p4

◦
p2

◦
p3 + 4p2

◦
p3

◦
p4 + p1∥p∥2

)
(68i)

BE
KS,81 =

1

4h

(
4p1

◦
p1

◦
p4 − 4p2

◦
p2

◦
p4 − 4p3

◦
p3

◦
p4 + 4p4

◦
p24 + p4∥p∥2

)
(68j)

BE
KS,82 =

1

4h

(
4p2

◦
p1

◦
p4 + 4p1

◦
p2

◦
p4 − 4p4

◦
p3

◦
p4 − 4p3

◦
p24 − p3∥p∥2

)
(68k)

BE
KS,83 =

1

4h

(
4p3

◦
p1

◦
p4 + 4p1

◦
p3

◦
p4 + 4p4

◦
p2

◦
p4 + 4p2

◦
p24 + p2∥p∥2

)
(68l)

BE
KS,91 = −2 (p1

◦
p1 − p2

◦
p2 − p3

◦
p3 + p4

◦
p4) (68m)

BE
KS,92 = −2 (p2

◦
p1 + p1

◦
p2 − p4

◦
p3 − p3

◦
p4) (68n)

BE
KS,93 = −2 (p3

◦
p1 + p1

◦
p3 + p4

◦
p2 + p2

◦
p4) (68o)
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