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Abstract

The present study is focused on determining the most promising set of dimensionless features and

the optimal machine learning algorithm that can be employed for data-driven frictional pressure drop

estimation of water (single-phase) and air-water mixture (two-phase) flow in micro-finned horizontal

tubes. Accordingly, an experimental activity is first conducted, in which the frictional pressure drop

of both water and air-water flows, at various flow conditions, is measured. Next, machine learning

based pipelines are developed, in which dimensionless parameters are provided as features and the

friction factor (for the single-phase case) and the two-phase flow multipliers (for the two-phase case)

are considered as the targets. Next, the feature selection procedure is performed, in which the most

promising set of features, while employing a benchmark algorithm, is determined. An algorithm

optimization procedure is then performed in order to choose the most suitable algorithm (and the

corresponding tuning parameters) that lead to the highest possible accuracy. Moreover, the state-of-

the-art physical models are implemented and the corresponding accuracy, while being applied to the

experimentally obtained dataset, is determined.

It is demonstrated that only 5 dimensionless features are selected (among 23 provided features) in

the obtained pipeline developed for the estimation of the two-phase gas multiplier (in the extraction

procedure of which, the single-phase friction factors are determined only using the Reynolds number

and two geometrical parameters). Therefore, the latter procedures notably reduce the complexity of

the model, while providing a higher accuracy (MARD of 6.72 % and 7.05 % on the training and test

sets respectively) compared to the one achieved using the most promising available physical model
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(MARD of 15.21 %). Finally, through implementing the forward feature combination strategy on the

optimal pipeline, the contribution of each feature to the achieved accuracy is shown and the trade-off

between the model’s complexity (number of features) and the obtained accuracy is presented. Thus, the

latter step provides the possibility of utilizing an even inferior number of features, while achieving an

acceptable accuracy. Moreover, since these pipelines will be made publicly accessible, the implemented

models also offer a higher reproducibility and ease of use.

Keywords: Machine Learning, Pressure Drop Estimation, Two-Phase Flow, Feature Selection,

Relative Feature Importance

1. Introduction

Modelling the behavior of multi-phase flows has become increasingly important in a wide variety of

engineering applications as it facilitates system design and operation optimization of the units that

include this type of flow [1]. The frictional pressure drop is one of the major characteristics of two-

phase flows, the estimation of which is considered to be a complex problem as it depends on several

parameters such as flow conditions, fluid properties, and geometry. The latter complexity is increased

even further while utilizing micro-finned tubes (considering the influence of the number of employed

fins and the corresponding geometrical properties). Although using micro-fins increases the frictional

pressure drop, it enhances the heat transfer in tubes, through augmenting the heat exchange surface

and accelerating the transition to a turbulent flow. Therefore, micro-finned tubes are widely employed,

specifically in the air-conditioning and refrigeration industries [2].

Since the beginnings of the 20th century, many studies have been carried out in this area and several

models have been accordingly proposed in the literature for various applications [3]. In order to

determine the frictional pressure gradient of two-phase flows in pipes, two distinct approaches are

commonly employed. The first one is the so-called homogeneous methodology, in which the two-phase

flow is considered as a single-phase one with physical properties that are defined by assigning suitable

weights to the properties of individual phases. The pioneering models based on this approach were

proposed by McAdams et al. [4], Beattie and Whalley [5], Awad and Muzychka [6], and Shannak [7].

The separated flow model is another approach, in which it is assumed that the two-phase pressure

gradient is related to the pressure gradient corresponding to each phase that are taken into account

separately. The pioneering work utilizing the separated flow model was proposed by Lockhart and
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Nomenclature

∆p Pressure drop [Pa]

∆p

∆z
Pressure gradient [

Pa

m
]

Nl

h
Normal litter per hour

AI Artificial intelligence

ANN Artificial neural network

CV Cross-Validation

Dint pipe internal diameter [m]

e Mean fin height [m]

f Friction factor [−]

Fr Froude number [−]

G Mass flux [
kg

m2 s
]

g Gravitational acceleration [
m

s2
]

G∗ Apparent mass flux [
kg

m2 s
]

J Superficial velocity
m

s
La Laplace constant [−]

MARD Mean absolute relative deviation [%]

ML Machine learning

MRD Mean relative deviation [%]

n Number of fins [−]

p Pressure [Pa]

Q Volume flow rate [
m3

s
]

Re Reynolds number [−]

RF Random Forest algorithm

S Internal wetted perimeter [m]

SVM Support Vector Machines

U Phase velocity
m

s
We Weber number [−]

X Lockhart-Martinelli parameter [−]

x Average mass quality [−]

xv Average volume quality [−]

Y Chisholm parameter [−]

Greek symbols

α Void fraction [−]

β Helix angle

Γ Mass flow rate [
kg

s
], non-dimensional parame-

ter (Eq. 37)

µ Dynamic viscosity [Pa s]

Ω Cross section [m2]

Φ2 Two-phase flow friction multiplier [−]

ρ Density [
kg

m3
]

σ Surface tension [
N

m
]

τw Shear stress [Pa]

Subscripts

a Accelerative

av Average

b Bulk

exp Experimental value

f Frictional

g Gas, gravitational (Eq. 12)

go Gas only

l Liquid

lo Liquid only

m Micro-finned

ms Manufacturer’s specifications

pred Predicted value

s Smooth

tp Two-phase

tt Turbulent liquid, turbulent gas flow

tv Turbulent liquid, laminar gas flow

vt Laminar liquid, turbulent gas flow

vv Laminar liquid, Laminar gas flow

Martinelli [8], based on an experimental analysis conducted on a circular pipe while utilizing two-phase

mixtures of air with water, organic fluids, and various types of oils. The latter work was then extended

in a study conducted by Chisholm [9], in which a simple model based on Lockhart-Martinelli charts,

was introduced. Further improvement on the model proposed by Chisholm[9] was then carried out by

Mishima and Hibiki [10] for viscous liquid and gas flows. Chisholm’s Model was also extended by Sun
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and Mishima [11], for air, water, CO2, and refrigerant flows. Lockhart and Martinelli’s methodology

has also been utilized for estimating the pressure drop in non-straight pipes. In this context, Colombo

et al. [12] proposed and implemented modifications to take into account the effect of centrifugal forces

in steam-water flow passing through helical tubes, in which the model proposed in a previous study

[13] was employed to estimate the single-phase laminar flow pressure drop. Another model based on

this approach was proposed by Chisholm [14], which included the transformation of the Baroczy [15]

plots. Muller-Steinhagen and Heck [16] also proposed a purely empirical model, obtained using a large

dataset. Friedel [17] instead carried out an investigation, utilizing the separated flow model, while

employing a large dataset and taking into account the effects of gravity and surface tension. For the

specific case of refrigerant flows, other studies were conducted by Souza and Pimenta [18], Cavallini et

al. [19] (condensation process), and Tran et al. [20].

Although empirical models have been widely employed for estimating the frictional pressure gradient

in two-phase flows, owing to the non-linear behavior of the corresponding phenomena and its depen-

dence upon several parameters, utilizing them does not necessarily result in achieving an acceptable

accuracy. Accordingly, following the progress in the area of artificial intelligence, several data-driven

methodologies and specifically machine learning (ML) based have been proposed for simulating the

behavior of multi-phase flows. In this context, Artificial Neural Network (ANN) is one of the most

commonly utilized methodologies for pressure drop estimation. ANN was employed for estimating the

pressure drop of the oil-water-air mixture flowing through the horizontal and vertical tubes [21, 22].

This algorithm has also been employed for prediction of the pressure drop in R407C flow while un-

dergoing evaporation inside horizontal smooth tubes [23], and non-Newtonian fluid passing through

the piping components [24]. It has also been utilized in more recent studies for pressure drop estima-

tion in CuO/(Ethylene glycol-water) nanofluid flows in car radiators [25] and non-azeotropic mixtures

that are undergoing cryogenic forced boiling [26]. The group method data handling was integrated

with an ANN to predict the frictional pressure drop occurring within mini-channel multi-port tubes

while considering five different refrigerant fluids [27]. Different machine learning methods were utilized

for predicting the pressure drop associated with R407C flow that is going through evaporation [28]

and several fluids that are undergoing condensation in inclined smooth tubes [29]. Furthermore, em-

ploying the data obtained from an experimental study of horizontal gas-liquid two-phase flow in two

medium-diameter pipes, back propagation neural networks based models were developed aiming at es-

timating the liquid holdup and pressure drop [30]. Genetic Algorithms were instead utilized in another
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study [31] in order to optimize the artificial neural network models that were developed for predicting

the steady-state two-phase pressure drop in pipes. Similar approaches have also been utilized in the

area of chemical and petroleum industries such as predicting the bottom hole pressure in multi-phase

flow in vertical oil production wells [32], estimating dew point pressure in retrograded condensate gas

reservoirs [33], and monitoring the O2/CO/CO2 composition in oil production wells to evaluate the

combustion quality through porous media [34]. In other investigations conducted in this area, least

square support vector machine was employed for predicting CO2 solubility in brines [35], estimating

the permeability and porosity of petroleum reservoirs [36], determining dew point pressure through

condensate gas reservoirs [37], predicting the amount of dissolved calcium carbonate concentration

throughout oil field brines [38], and determining condensate-to-gas ratio in retrograded condensate gas

reservoirs [39]. Support Vector Machine (SVM) was also utilized for predicting the pressure drop of

the air-water mixture, which is passing through the concentric annuli, and the corresponding perfor-

mance was compared with the mechanistic models [40]. However, none of the previously conducted

machine learning based studies that were aimed at estimating the pressure drop of two-phase flows, has

been focused on optimizing the corresponding pipeline, including the selection of the most promising

features and the optimal algorithm (among a large set of available algorithms and tuning parameters).

Motivated by the latter research gap, the aim of the present study is developing optimal machine

learning based pipelines for estimating the pressure drop in two-phase adiabatic flows, which are

passing through micro-finned tubes. An experimental activity is accordingly conducted, in which

the frictional pressure drop of both water and air-water flows, passing through this type of tubes at

various flow conditions, is measured. Next, the physical models that are available in the literature,

are implemented and the corresponding accuracy, while being applied to the experimentally obtained

dataset, is determined. In the next step, machine learning based pipelines are implemented, in which

dimensionless parameters are provided as features and the friction factor and two-phase flow multiplier

(for the single-phase and two-phase case, respectively) are considered as targets.

The obtained dataset is then divided into training and testing sets, where the training set (employing

the cross-validation method) is utilized in the feature selection and algorithm optimization steps,

aiming at determining the most promising pipeline. The test set is instead utilized for determining the

generalizability of the obtained pipeline. In the feature selection procedure, the most promising set

of features, while employing a benchmark algorithm, are determined. The implemented pipelines are

next optimized aiming at determining the machine learning algorithm and the corresponding tuning
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parameters that lead to the highest possible accuracy.

The test set is then employed in order to assess the accuracy of the proposed pipeline while estimating

the pressure drop in operating conditions for which it has not been trained or optimized. Finally,

considering the trade-off between the model’s complexity (in terms of the number of the employed

features) and the obtained prediction precision, the accuracy of the optimized pipelines with lower

number of features is progressively determined and presented. Accordingly, compared to the previously

conducted studies focused on machine learning/artificial intelligence based estimation of pressure drop

in two-phase flows, the present study offers the following contributions

• Conducting the feature selection step, while considering a large set of dimensionless parameters

(using which enhances the generalisability of the pipelines), which permits reducing the number

of features (thus, notably decreasing the computational cost), increasing the achieved accuracy,

and improving the physical interpretability of the results.

• Conducting the algorithm optimization step, in which a large set of algorithms and wide range of

corresponding tuning parameters are considered, aiming at maximizing the obtained accuracy.

• Demonstrating the trade-off between the number of utilized features and the achieved accuracy

(employing the obtained optimal pipeline), which permits the user to utilize less complex models

while achieving an acceptable accuracy.

• Providing the dataset and the optimized pipeline (in python programming language) as a publicly

accessible tool, which enhances the reproducibility and ease of use of the proposed method.

2. Experimental activity and employed dataset

The frictional pressure drop measurement procedure was conducted on adiabatic streams of water

(single-phase) and air-water mixture (two-phase) with various flow rates [41], while passing through

horizontal micro-finned copper tubes. The characteristics of the utilized tubes are provided in the

supplementary material.

2.1. Description of the laboratory set up

Fig. 1 shows the simplified layout of the employed laboratory setup. Water collected in the storage

tank is pumped to the mixing section and passes through the temperature, pressure, and volumetric
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flow rate measurement sections before streaming to the test section and being re-circulated through

the loop. Three parallel rotameters, each of which is suitable for a different range of flow rates, are

employed to measure the volumetric flow rate of water.

Air is compressed and injected into the flow loop using the building’s auxiliary supply system and the

corresponding temperature, pressure, and volumetric flow rate are measured and controlled. Similarly,

the volumetric flow rate of the air is measured by a set of three parallel rotameters.

Figure 1: A schematic representation of the laboratory set-up utilized for conducting the experiments

In the test section, two types of copper micro-finned tubes are used. Two pressure taps are installed

at the inlet and the outlet of the test section, which are connected to a differential pressure transducer

(DPT). Two nylon tubes, filled with water, are utilized to create a connection between each pressure

tap and the pressure transducer in order to hydraulically transmit the pressure variation. Utilizing a

by-pass valve provides the possibility of measuring either the pressure drop between the two taps or the

pressure difference between each tap and the environment, which helps to reduce the signal-to-noise

ratio in some operating conditions. The DPT sends the electrical signals to a data acquisition unit

(DAU), which works at a sampling frequency of 1 kHz with an acquisition time of 15 s.

Rotameters with flow rate ranges of 4-190, 85-850, and 400-4000 Nl
h are utilized for air, while the

rotameters employed for measuring the flow rate of water have ranges of 10-100 and 40-400 Nl
h . The

uncertainty of all of the utilized rotameters is 3% on the observed value. The measurement range

of the differential pressure transducer is instead 0-70 [kPa] (with the uncertainty of 1.5% on the full

scale). The measurement range of the manometer is 0-6 bar g with an uncertainty of 0.2 bar. The
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measurement range of the thermometer is 5 to 120 [◦C] with an uncertainty of 1 degree. It is worth

mentioning that, as the considered flow in the present study is adiabatic, the temperature measurement

is only employed in the data processing procedure; therefore, the uncertainty of the thermometer has

a negligible impact on the final results.

2.2. Measurement and data processing procedures for the single-phase case

2.2.1. Measurement procedure

The experiments were conducted at various volumetric flow rates by increasing it step-by-step in the

range of 50 to 400 [Nl
h ] with the step of 25 [Nl

h ]. For each operating condition, the inlet and the outlet

pressures along with the inlet temperature were measured. This procedure was repeated 10 times

(averaged as a single point), resulting in 15 experimental data points for each of the micro-finned

tubes.

2.2.2. Data processing procedure

In the data processing step, all of the fluid properties were determined at the arithmetic average of

pressure (between the inlet and the outlet) and the inlet temperature. The difference between the

measured pressures at the inlet and outlet was then utilized to determine the pressure drop across the

test section. The pressure gradient was determined as the ratio of the pressure drop to the distance

between the pressure taps (as the flow is fully developed).

Considering the employed volumetric flow rates, the ranges of mass flux for micro-finned tube 1 is

determined to be 224.3 to 1794.5, which corresponds to Reynolds number between 2300 to 18396.

For micro-finned tube 2 instead, the mass flux range is demonstrated to be 335.5 to 1779.1 [ kg
(m2 s) ]

corresponding to the Reynolds number range of 3673 to 19592. The range of measured pressure

gradient is 183.1 to 7050.9 [Pa
m ] and 168.2 to 7852.3 [Pa

m ] for micro-finned tubes 1 and 2 respectively.

It is worth noting that, while analyzing the results of the experiment on micro-finned tube 2 with the

lowest volume flow rate, it was observed that the fluctuations were excessive, because of which the

corresponding 10 data-points were discarded.

2.3. Measurement and data processing procedures for the two-phase case

2.3.1. Measurement procedure

The experiments on the water-air mixture were conducted using different combinations of water and

air volumetric flow rates. In this context, the flow rates in the range of 10 to 100 [Nl
h ] with a step
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of 10 [Nl
h ] were considered for water, while flow rates of 500 to 4000 [Nl

h ] with a step of 500 [Nl
h ]

were employed for the air flow. Starting from the lowest water flow rate, the flow rate of air was

progressively changed (following the above-mentioned values). The same procedure was performed for

the next planned values of water’s flow rate in order to explore the whole range. In each step, the

steady-state was reached after iterative adjustment of the volumetric flow rates (using the regulation

valves) in order to keep the pressure (in the measurement section) constant. Measurements in each

step were repeated 5 to 10 times (depending on the observed fluctuations) and averaged as single data-

points, which results in 74 measured data points for micro-finned tube 1 and 75 ones for micro-finned

tube 2. Throughout the experiment, the pressure of air and water streams (both in the measurement

section) was kept constant at 3 [bar] and 2.2 [bar] respectively. The temperature was measured and

recorded at the beginning of each test, which was insignificantly variable between 19 to 21 ◦C for air

and 22 and 25 ◦C for water.

2.3.2. Data processing procedure

The observed value using air flow meters corresponds to the normal conditions defined as T0 = 20

◦C and P0 = 101325Pa. According to the manufacturer’s specifications, through considering the

temperature (Tms) and pressure (pms) at the measurement section and the average pipe pressure

(pav), the actual volume flow rate is determined as:

Q = Q0

√
pms p0

p2
av

Tms

T0
(1)

Considering the utilized volumetric flow rates, the air mass flux is determined to be in the range of 5.3

to 42.8 [ kg
(m2 s) ], the water mass flux is between 44.4 and 444.8 [ kg

(m2 s) ], while the mass quality range is

0.012 to 0.49 [−]. The measured pressure gradient is between 297.4 to 19720.9 [Pa
m ] for micro-finned

tube 1 and 154.5 to 22979.3 [Pa
m ] for micro-finned tube 2.

3. Gas-liquid flow fundamentals

3.1. Characteristic quantities

The essential quantities that are needed in order to provide a complete description of two-phase (gas-

liquid) flows are reported in Table 1.
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Characteristic quantity Symbol and equation Description Unit Eq. No

Total mass flow rate Γ = Γg + Γl Sum of the mass flow rates of the gas and liquid phases [
kg

s
] (2)

Total volumetric flow rate Q = Qg +Ql Sum of the volume flow rates of both phases [
m3

s
] (3)

Mass quality x =
Γg

Γ

The ratio between the mass flow rate of the gas phase

to the total mass flow rate
[−] (4)

Volume quality xv =
Qg

Q

The ratio between the mass flow rate of the gas phase

to the total mass flow rate
[−] (5)

Void fraction α =
Ωg

Ω

The ratio of the cross section area occupied by the gas phase

to the total cross section area of the pipe
[−] (6)

Phase velocity Ui =
Qi

Ωi

The ratio of the phase volume flow rate

to the cross section area occupied by the phase
[
m

s
] (7)

Superficial velocity Ji =
Qi

Ω

The ratio of the phase volume flow rate

to the total cross section area
[
m

s
] (8)

Mass flux Gi =
Γi

Ωi

The ratio of the phase mass flow rate

to the cross section area occupied by the phase
[
kg

m2 s
] (9)

Apparent mass flux G∗
i =

Γi

Ω

The ratio of the phase mass flow rate

to the total cross section area
[
kg

m2 s
] (10)

Bulk density
ρb = ρgxv + ρl(1− xv)

= (
x

ρg
+

1− x
ρl

)−1 Mixture density based on volume quality weighted average [
kg

m3
] (11)

Table 1: Utilized characteristic quantities and the corresponding descriptions

3.2. Pressure gradient models

Based on the above-mentioned parameters, considering a flow element, one-dimensional momentum

balance for a constant cross-section pipe can be employed to express the total pressure gradient (Eq.

12) in which the subscripts a, f , and g indicate accelerative, frictional, and gravitational components

respectively. Additionally, τw is the shear stress, S is the wetted perimeter, g is the gravitational

acceleration, and θ represents the duct inclination.

−dp
dz

= −(
dp

dz
)a − (

dp

dz
)f − (

dp

dz
)g = G2 d

dz
(
x2

ρgα
+

(1− x)2

ρl(1− α)
) + τw

S

Ω
+ [ρgα+ ρl(1− α)]gsinθ (12)

As the considered flow is adiabatic and horizontal and the mass quality is constant, gravitational and

accelerative pressure gradients are absent [42]. The total pressure gradient is therefore only due to the

friction; thus, Eq. 12 can be re-written as:

−dp
dz

= τw
S

Ω
(13)
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3.2.1. Frictional pressure gradient for the single-phase flow

For the single-phase flow, frictional pressure gradient is obtained from the momentum balance, in

which the wall shear stress τw is the only unknown that can be expressed in a dimensionless form

using Fanning friction factor:

f =
τw

1

2
ρU2

=
2τwρ

G2
(14)

By integrating along the pipe axis and and replacing the latter in Eq. 13, the following correlation

can be obtained.
∆pf
∆z

=
2fG2

ρD
(15)

Where G represents the mass flux, U is the cross section average velocity of the flow, and ∆pf is

the frictional pressure drop across a pipe length denoted as ∆z. Thus, the friction factor can be

experimentally obtained through the measurement of the frictional pressure drop using the following

equation:

fexp =
∆pf,exp

∆z
.(

2G2

ρD
)−1 (16)

which in turn is a function of the Reynolds number:

Re =
GD

µ
(17)

For the particular case of laminar flow in smooth pipes (Re < 2300):

f =
16

Re
(18)

For turbulent flow (Re > 2300) in smooth tubes instead, several models have been proposed in the

literature aiming at extending the corresponding range of validity and improving prediction accuracy.

Some of the most popular models in this area are reported below.

Blasius [43]:
f = 0.079 Re−0.25 for 2300 < Re < 20000

f = 0.046Re−0.2 for Re > 20000
(19)

Filonenko [44]: f = (1.58 lnRe− 3.28)−2 for Re > 2300 (20)
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Nikuradse [45]:
1√
f

= 4 log
(
2Re
√
f
)
− 1.6 for Re > 2300 (21)

Fang et al. [46]: f = 0.0625[log

(
150.39

Re0.98865

)
− 152.66

Re
]−2 for Re > 2300 (22)

For the case of finned tubes, correlations for friction factor prediction have been proposed by Jensen

and Vlakancic [47] and Haaland [48]. The correlation proposed by Jensen and Vlakancic [47] is as

follows:

f

fFilonenko
= (

lc
D

)−1.25(
Ωs

Ωm
)1.75 − (

0.0151

fFilonenko
)[(
lc
D

)−1.25(
Ωs

Ωm
)1.75 − 1] exp

(
− Re

6780

)

lc
D

= 1− 1.577(
nsinβ

π
)0.64(

2e

D
)0.53(

π

n
− s

D
)] for Re > 2300 (23)

Where n is the number of fins, β is the fin helix angle, e is height of the fin, D is the internal diameter

at the roots of the fins, s isthe mean fin thickness, lc is the characteristic length and Ωs

Ωm
is the ratio

between the cross sections of the smooth and micro-finned tube with the same internal diameter. The

model proposed by Haaland [48] is instead as follows:

f =
0.3086

{log[
6.9

Re
+ (

e

3.7D
)1.11]}2

for Re > 2300 (24)

Where e is height of the fin and D is internal diameter at the roots of the fins.
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3.2.2. Two-phase frictional pressure gradient

Prediction of the frictional pressure drop for two-phase flow is more complicated than the single-

phase, which is attributed to the corresponding higher complexity of motion. The phases that are

flowing together demonstrate different arrangements (flow patterns), which strongly affect their mutual

interaction and the interaction between each phase and the pipe. For engineering purposes, the so-

called flow pattern independent models have been introduced in the literature aiming at simplifying

the description of the above-mentioned behavior, in spite of their high degree of approximation. In

this framework, two different approaches can be utilized:

1. Homogeneous flow model: The two-phase mixture is assumed as a single-phase fluid while

considering averaged properties. This approach is suitable only if the slip ratio is equal to one

(homogeneous flow, s = 1). The latter is approximately achieved if the velocity of the mixture

is very high resulting in almost flat velocity and concentration profiles.

2. Separated flow model: The two-phase mixture is considered to be consisting of two inde-

pendent single-phase streams, each of which is flowing separately. In this approach, the overall

pressure gradient is determined by a suitable combination of the pressure gradients of single-phase

streams. It is employed if the slip ratio is notably different from unity.

Details of the latter approaches are provided in the following section.

3.2.3. Homogeneous approach

In the homogeneous approach, two-phase flow frictional pressure gradient is determined as:

−dpf
dz

=
2ftpG

2
tp

ρbD
(25)

in which ftp is commonly evaluated as a function of a two-phase Reynolds number which involves the

definition of an average two-phase dynamic viscosity µtp. Some of the most promising models [4–7],

which have employed the homogeneous approach are listed below.

McAdams et al. [4]:
1

µtp
=

x

µg
+

1− x
µl

(26)
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Beattie and Whalley [5]:
µtp = µl(1− β)(1 + 2.5β) + µgβ

β =
x

x+ (1− x)
ρg
ρl

(27)

Awad and Muzychka [6]: µtp = µg
2µg + µl − 2(µg − µl)(1− x)

2µg + µl + (µg − µl)(1− x)
(28)

Shannak [7]: µtp =

µg x+ µl (1− x)
ρg
ρl

x2 + (1− x)2
ρg
ρl

(29)

3.2.4. Separated flow approach

It is convenient to employ a dimensionless factor, which correlates the two-phase frictional pressure

gradient to the single-phase one. These defined factors are called two-phase multipliers as (for gas-

liquid flows) the two-phase frictional pressure gradient is higher than the single-phase one. In this

context, four different two-phase multipliers that can be utilized are listed below.

1. The single-phase flow is the liquid flowing alone, i.e. at the liquid superficial velocity (l –liquid

alone).

2. The single-phase flow is the liquid flowing with the total flow rate, i.e. at the mixture velocity

(lo – liquid only).

3. The single-phase flow is the gas flowing alone, i.e. at the gas superficial velocity (g – gas alone)

4. The single-phase flow is the gas flowing with the total flow rate, i.e. at the mixture velocity (go

– gas only)

Accordingly, the four different, but equivalent, factors are expressed as follows:

Φ2
l =

dpf
dz

(
dpf
dz

)l

, Φ2
lo =

dpf
dz

(
dpf
dz

)lo

, Φ2
g =

dpf
dz

(
dpf
dz

)g

, Φ2
go =

dpf
dz

(
dpf
dz

)go

(30)

Similar to the previous part, some of the most promising predicting models, available in the literature

[9–11, 14, 16–20, 49–51], in which the separated flow approach is utilized, are listed in Table 2.
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Author/s and the corresponding reference Equation Eq. No

Chisholm [9]

Φ2
l = 1 +

C

X
+

1

X2

X2 =
(
∆p

∆z
)l

(
∆p

∆z
)g

C = 5 for vv, C = 10 for tv

C = 12 for vt, C = 20 for tt

(31)

Mishima and Hibiki [10] C = 21[1− exp(−0.319Dint)] (32)

Zhang et al. [49]

C = 21[1− exp
(
−
a

La

)
]

La =

√
σ

g(ρl−ρg)

Dint
For gas and liquid a = 0.647

For vapor and liquid a = 0.142

(33)

Sun and Mishima [11]

For viscous flow:

C = 26(1 +
Rel

1000
)[1− exp

(
−0.153

0.8 + 0.27La

)
]

For turbulent flow:

Φ2
l = 1 +

C

X1.19
+

1

X2

C = 1.79(
Reg

Rel
)0.4

√
1− x
x

where Reg =
Gtp xDint

µg
,

Rel =
Gtp(1− x)Dint

µl

(34)

Continue on the next page
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Author/s and the corresponding reference Equation Eq. No

Chisholm [14]

Φ2
lo = 1 + (Y 2 − 1){B[x(1− x)]0.875 + x1.75}

Y 2 =
(
∆p

∆z
)go

(
∆p

∆z
)lo

if 0 < Y < 9.5, B =


4.8 Gtp ≤ 500

2400 500 < Gtp < 1900

55

G0.5
tp

Gtp ≥ 1900

if 9.5 < Y < 28, B =


520

Y G0.5
tp

Gtp ≤ 600

21

Y
Gtp > 600

if Y > 28, B =
15000

Y 2G0.5
tp

(35)

Muller-Steinhagen and Heck [16] Φ2
lo = Y 2x3 + (1− x)0.333[1 + 2x(Y 2 − 1)] (36)

Souza and Pimenta [18]
Φ2
lo = 1 + (Γ2 − 1)x1.75(1 + 0.9524 ΓX0.4126

tt )

Γ = (
ρl

ρg
)0.5 (

µg

µl
)0.125, Xtt =

1

Γ
(
1− x
x

)0.875
(37)

Friedel [17]

Φ2
lo = (1− x)2 + x2

ρl fgo

ρg flo
+

3.24x0.78(1− x)0.224H

Fr0.045tp We0.035tp

H = (
ρl

ρg
)0.91 (

µg

µl
)0.19 (1−

µg

µl
)0.7

Wetp =
G2
tpDint

σ ρtp
, F rtp =

G2
tp

g Dint ρ2tp
,

1

ρtp
=

x

ρg
+

1− x
ρl

(38)

Cavallini et al. [19]

Φ2
lo = (1− x)2 + x2

ρl fgo

ρg flo
+

1.262x0.6987H

We0.1458go

H = (
ρl

ρg
)0.3278 (

µg

µl
)−1.181 (1−

µg

µl
)3.477

Wego =
G2
tpDint

σ ρg
,

(39)

Tran et al. [20] Φ2
lo = 1 + (4.3Y 2 − 1){[x (1− x)]0.875 La+ x1.75} (40)

Continue on the next page
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Author/s and the corresponding reference Equation Eq. No

Haraguchi et al. [50]

Φ2
g = [1.1 + 1.3(

XttGtp√
g De ρg (ρl − ρg)

)0.35]2

De =

√
4Ω

π

Xtt = (
1− x
x

)0.9 (
ρg

ρl
)0.5 (

µl

µg
)0.1

(41)

Goto et al. [51] Φ2
g = [1 + 1.64X0.79]2 (42)

Table 2: Selected models that have utilized the separated flow approach

4. Methodology and implemented pipelines

Machine learning teaches the computer to solve problems by looking at hundreds or thousands of

examples, learning from them, and then using that experience to solve the same problem in new

situations. Two key machine learning settings are supervised learning and unsupervised learning [52].

The ultimate goal of supervised learning is to identify a function f that produces accurate predictions.

Two classic supervised learning tasks are classification and regression. In classification, the output

domain is a finite discrete set of categories, whereas in regression the output domain is a continuous

value [52]. The most prominent example of unsupervised learning is data clustering. In clustering, the

goal is to construct a function f that partitions an unlabeled dataset into different clusters.

In the present study, several supervised (regression) [52] machine learning based pipelines are imple-

mented in order to determine the most promising one, which leads to the most accurate prediction

of the pressure drop. In the first step, the dataset is divided into a training set (that is also used

for validation through cross-validation) and a test set. The training set is employed for determining

the optimal pipeline. The test set is instead utilized for assessing the accuracy of the model while

being applied to a dataset for which it has not been tuned. At first, all of the possible features are

provided to the random forest algorithm (described in section 4.3) and the resulting accuracy metrics

are obtained for both the training set (through cross-validation) and the test set (after training the

model on the training set).

In the second step, while employing random forest algorithm, a feature selection procedure is imple-

mented (using the training set) in order to determine the most promising combination of features that
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lead to the highest possible accuracy [53]. In this methodology, the features are progressively added,

after being ordered based on their correlation (Pearson’s correlation coefficient [54]) to the target, and

the obtained accuracy is monitored. The set of features that results in the highest possible accuracy

(lowest error) is then chosen as the initial most promising combination. Next, among the remaining

features, the ones that increase the overall obtained error are discarded, while the remaining ones

are sorted in a descending order based on the overall error obtained while adding them. The latter

set of features is then placed before (at the beginning of) the previously determined initial promising

combination. In the last step, features are progressively eliminated and the final set of features, using

which results in the lowest error, is obtained.

Next, while providing the selected features as inputs, employing a pipeline optimization tool [55], a

genetic algorithm [56–58] based optimization procedure is carried out (using the training set) to deter-

mine the most promising machine learning algorithm along with the corresponding tuning parameters

based on the training set. Finally, in order to assess the generalizability of the optimal pipeline (that is

obtained using the feature selection and algorithm optimization steps) its accuracy while being applied

to the test set is evaluated. The Mean Relative Deviation (MRD) (Eq. 43), and the Mean Absolute

Relative Deviation (MARD) (Eq. 44) are utilized for representing the error, among which MARD is

considered as the key accuracy metric in order to choose the most promising models.

MRD =
1

N

N∑
i=1

yi,pred − yi,exp
yi,exp

[%] (43)

MARD =
1

N

N∑
i=1

| yi,pred − yi,exp |
yi,exp

[%] (44)

It is noteworthy to mention that the cross-validation strategy is employed for obtaining the latter

accuracy metrics for feature selection and pipeline optimization on the training set. In the implemented

cross-validation strategy, the training set is divided into 10 subsets (k = 10) and each unique subset

once plays the validation set while the remaining subsets play the training set. The latter procedure

provides more accurate estimate of out-of-sample accuracy.

Considering the fact that random forest is utilized as the benchmark algorithm, a brief description of

this algorithm, and its underlying methodologies (decision trees and ensemble methods) is provided in

the following sub-sections. Furthermore, a brief description of other algorithms, which are utilized in

the determined optimal pipelines is also provided.
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4.1. Decision trees

In decision trees, the value of target is estimated by learning simple decision based rules inferred from

the features [59, 60].

4.2. Ensemble methods

In ensemble methods, the estimations of several estimators (each of which is developed using an

algorithm) are put together. This approach helps to improve the generalizability of the model compared

to single estimators. Two main families of ensemble methods, including averaging and boosting, are

commonly utilized.

In the averaging approach (e.g. random forest and bagging), several independent estimators are created

and the average of their prediction is provided as the output. The provided average prediction, owing

to its lower variance, commonly has a better performance than any of the individual estimators.

In boosting methods (e.g. the gradient boosting), the estimators are created in a sequential manner

with the objective of decreasing the bias in the final estimator. Thus, a powerful ensemble is created

from several weak models [59]. High bias (the difference between the average prediction of the model

and the correct value) oversimplifies the model which leads to a high error on training and test data.

The model with high variance (variability of model prediction for a given data point) instead pays a

lot of attention to training data and does not generalize on the data which it has not seen before. As

a result, such models perform very well on training data but have high error rates on test data. There

is a trade-off between a model’s ability to minimize both bias and variance.

4.3. Random forest

In this algorithm, a set of decision tree-based estimators are built through introducing randomness in

the corresponding creation procedure [59]. Each estimator (which is a tree [61]) is built using a sample

that is extracted from the training set and a random portion of the features. The latter randomness

results in a slight increment in the bias (in comparison with a single tree). However, owing to the

employed averaging, the resulting reduction in the variance is dominant over the effect of the observed

increase in the bias. Therefore, the overall performance of the model, compared to that of a single

tree, is improved [59].
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4.4. Gradient tree boosting

The key concept of boosting is to fit a sequence of weak learners on a dataset that is repeatedly

modified. Each weak learner is a model that is marginally better than random guessing (as an example

a small decision tree). In order to generate the final prediction, the predictions of all weak learners

are combined through a weighted majority vote or summing. The modification that is conducted on

the dataset is applying weights to each sample of the training dataset. These weights, which were all

initialized as 1
N (N is the number of samples), are individually modified in the next iterations and

the learning algorithm is applied to the modified data. At each iteration, the training samples that

were incorrectly predicted, have their weights increased while the weights of those that were predicted

correctly are reduced. Accordingly, samples that are difficult to predict are given a higher weight and

thus a higher influence. Thus, each weak learner is enforced to focus on the samples which could not be

correctly predicted by the previous weak learner in the sequence [59, 62, 63]. Gradient tree boosting,

which is also called gradient boosted regression trees (GBRT), is a generalization of boosting to loss

functions that are arbitrarily differentiable. In this ensemble method, the employed weak learners

are decision trees of fixed sizes. Through implementing the abovementioned procedure, the learning

process becomes a minimization problem, which is solved numerically [59, 64].

4.5. K nearest neighbors

In the k nearest neighbors algorithm, the average (weighted or uniform) of the values of k (a chosen

value) neighbors is provided as the estimated output. The distance based method (in which each neigh-

bor’s weight is assigned based on the inverse of the corresponding distance (Manhattan or Euclidian)

from the query point [65]) is the most commonly utilized method in this algorithm for determining

the weighted average.

4.6. SGD regressor

Stochastic gradient descent is an optimization method in which the estimation of the gradient of the

loss is performed each sample at a time and the model is accordingly updated along the way based on

a schedule with decreasing strength. SGD regressor is a linear model that is fitted by attempting to

minimize a regularized empirical loss using SGD [59]. The loss function can be written as:

E(w, b) =
1

n

n∑
i=0

L(yi, f(xi)) + αR(w) (45)
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where L is a loss function that measures model (mis)fit and R is a regularization term that penalizes

model complexity; α is a non-negative hyperparameter that controls the regularization stength. The

regularizer is a penalty added to the loss function that shrinks the model parameters towards the zero

vector using either the squared euclidean norm L2 or the absolute norm L1 [66] or a combination of

both (Elastic Net [59, 67]), which are represented in Eq. 46.

R(w) =


1

2

∑m
j=1 w

2
j L2 norm∑m

j=1 |wj | L1 norm
α

2

∑m
j=1 w

2
j + (1− α)

∑m
j=1 |wj | Elastic Net

(46)

Where n is the number of data points and m is the number of input features.

4.7. Linear Support Vector Regressor

Support Vector Regressor (SVR) utilizes the Support Vector Machine (SVM) algorithm in order to

predict a continuous variable. This algorithm’s fundamental concept is to nonlinearly map the original

data into a higher dimensional feature space [68]. Linear Support Vector Regression is similar to SVR

with the difference that it has higher flexibility regarding the penalties and loss functions’ choice and

scales better to elevated numbers of samples [59].

4.8. Forward feature combination

By implementing the previously mentioned steps, the highest possible accuracy with the minimum

number of features corresponding to the optimized pipeline is obtained. Further reduction in the num-

ber of features, although leads to a decrement in accuracy, can help to reduce the models’ complexity

and the computational cost. Therefore, there is a trade-off between the simplicity and accuracy of the

model. Accordingly, for the case of two-phase flow, an additional procedure (called forward feature

combination) is implemented in order to obtain optimized pipelines with lower number of features

(even if resulting in a lower accuracy). The main benefit of providing the latter sub-optimal pipelines

is that the user can select the most promising model based on the requirements and constraints of the

case study including the available measurement devices and the allowable range of computational cost.

In the forward feature combination procedure, the optimized pipeline (considering the training dataset)

is first fitted with each of the individual selected features (as a single input) and the one which results

in the lowest MARD is selected as the first feature. Then the model is trained using only two variables
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(the first one is already chosen), where each of the remained features is provided as the second feature.

Similarly, the one which leads to the lowest MARD is selected as the second feature. This procedure

is continued until all of the selected features are added. Clearly, the result obtained in the last step

is the same as the optimal pipeline provided with selected features. The obtained order of features

is then provided to the algorithm in order to monitor the corresponding accuracy of the optimized

pipeline on the test set.

5. Results and Discussions

5.1. Single-phase case

5.1.1. Accuracy of the standard physical models available in the literature

The empirical models, introduced in section 3.2.1, are first utilized in order to estimate the water flow’s

friction factor in the considered flow conditions and the obtained results are reported in the Table 3.

As can be observed, the most accurate model (lowest MARD) is the one proposed by Haaland [48] (Eq.

24) resulting in an MARD of 11.91 %. Fig. 2 demonstrates the comparison between the experimentally

obtained friction factor and the values estimated by the model proposed by Haaland [48].

Author/s and the corresponding reference MRD [%] MARD [%]

Blasius [43] -19.36 24.29

Filonenko [44] -18.82 24.61

Nikuradse [45] -19.05 24.46

Fang et al. [46] -20.61 25.52

Jensen and Vlakancic [47] 9.48 14.12

Haaland [48] 3.47 11.91

Table 3: Results of the standard physical models (the error between the predicted friction factor f [−] and the experi-
mentally obtained values) for the single-phase case

5.1.2. Implemented machine learning based pipelines

For single-phase flow, the friction factor is taken into account as the target, while the non-dimensional

parameters (Re, 1
Re , e

Dint
, and n) are provided as inputs. As was previously pointed out, the accuracy

achieved using a random forest algorithm being provided with all features is first determined and the
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feature selection based on the training set using this algorithm as the benchmark is implemented.

Since, based on the obtained results, all of the features have been selected in the feature selection

procedure, the latter two pipelines are identical and result in an MRD of 0.94 % and MARD of 3.59 %

on the training set and an MRD of 6.47 % and an MARD of 18.20 % on the test set. Next, the pipeline

optimization procedure is implemented in which the most promising algorithm and the corresponding

optimal tuning parameters are optimized. K-nearest neighbors algorithm (with 2 neighbors and em-

ploying euclidean distance) is chosen as the optimal pipeline, while MinMaxScaler1, Normalizer2, and

gradient boosting regressor as stacking estimator are utilized as three pre-processing steps. Expectedly,

this optimal pipeline provide a higher accuracy as it results in an MRD of -1.26 % and an MARD of

2.15% on the training set and an MRD of 5.49 % and an MARD of 5.89 % on the test set.

Fig. 2 compares the friction factors estimated by the optimal pipeline with the experimental data and

the predictions of the most accurate physical model (Haaland [48]). It can be observed that predictions

of the optimal pipeline are notably more accurate than that of the mentioned most promising physical

model.

(a) Training set (CV) (b) Test set

Figure 2: Experimentally obtained friction factors compared to the values estimated by Haaland [48] and the estimations
of the optimal pipeline

1A pre-processing step that scales and translates each feature individually such that it is in the given range on the
training set, e.g. between zero and one.

2A pre-processing step that scales input vectors individually to unit norm
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5.2. Two-phase case

5.2.1. Accuracy of the standard physical models available in the literature

Table 4 presents the results corresponding to the (pressure gradient) prediction accuracy of different

models for the two-phase dataset. As can be observed in this table, the model proposed by Chisholm

[9], with an MARD of 15.21 %, is determined to be the most accurate correlation. Employing the

obtained Φ2
l and utilizing Eq. 30, the pressure gradient values are determined and are compared to

the experimental data (Fig. 3).

Author/s and the corresponding reference MRD [%] MARD [%]

McAdams et al. [4] -19.97 31.77

Bettiel & Whalley [5] -36.70 41.15

Awad & Muzychka [6] -6.01 25.90

Shannak [7] 43.22 43.50

Chisholm [9] -3.44 15.21

Mishima & Hibiki [10] 2.08 18.10

Zhang et al. [49] -2.56 19.37

Sun & Mishima [11] -31.91 36.88

Chisholm [14] 135.77 135.77

Muller-Steinhagen & Heck [16] 97.97 97.97

Souza & Pimenta [18] 31.59 49.27

Friedel [17] 43.35 44.37

Cavallini et al. [19] -83.90 83.90

Tran et al. [20] -39.22 40.90

Haraguchi et al. [50] 48.99 50.72

Goto et al. [51] -61.59 62.47

Table 4: Results of the standard physical models (the difference between the estimated pressure gradient (
dp

dz
[
Pa

m
]) and

the experimentally obtained values) for the two-phase case
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5.2.2. Implemented machine learning based pipelines

For the two-phase flow case, two-phase multipliers (liquid, liquid only, gas, and gas-only) are taken

into account as the targets, while dimensionless parameters are provided as inputs. Accordingly,

four machine learning based pipelines were defined. For each target, the previously obtained optimal

pipeline, defined in section 5.1.2, is utilized in order to calculate the single-phase friction factors.

Similar to the single-phase case, for each target, all of the features are first provided to random

forest algorithm. Next, for each pipeline, while utilizing random forest (RF) as the algorithm, feature

selection procedure is implemented and the most promising set of features and the corresponding

accuracy are obtained. Finally, while utilizing selected features, the optimal pipeline is determined

for each case and the corresponding obtained accuracies for both the training set and the test set are

compared. As demonstrated in Table 5, the most accurate pipeline is determined to be the optimal

pipeline with the (Φ2
g) as the target, which leads to an MARD of 6.72 % and 7.05 % on training set

and test set, respectively.

Pipeline No.
Two-phase flow

multiplier (Φ2
i [−])

Pipeline
Training set (CV) Test set

MRD % MARD % MRD % MARD %

A

Φ2
l

All features- Random Forest Regressor (RF) 4.08 12.07 7.62 14.84

B Selected features– RF 4.68 12.04 8.67 15.47

C Selected features– Optimal Pipeline 3.41 8.95 3.58 11.42

D

Φ2
lo

All features- RF 3.28 10.85 6.55 13.23

E Selected features– RF 3.33 10.68 6.82 13.46

F Selected features– Optimal Pipeline -0.24 6.78 -1.03 7.18

G

Φ2
g

All features- RF 4.15 10.79 11.62 16.56

H Selected features– RF 4.31 10.54 10.18 15.69

I Selected features– Optimal Pipeline 1.26 6.72 -0.27 7.05

J

Φ2
go

All features- RF 3.61 10.24 7.84 11.85

K Selected features– RF 3.11 9.50 5.69 10.94

L Selected features– Optimal Pipeline 1.83 8.44 3.32 10.88

Table 5: Employed machine learning based pipelines for the two-phase case and the corresponding obtained results

Table 6 lists all of the provided dimensionless features along with the ones which have been selected for

the latter pipeline. It can be observed that only 5 features have been chosen as inputs, which notably

reduces the complexity of the model. However, it should be noted that in the process of extracting

the defined dimensionless target of the optimal pipeline (Φ2
g), as expressed in Eq. 30, the single-phase
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friction factors are first determined utilizing the corresponding features (Re, 1
Re , e

Dint
, and n). Thus,

the reason behind the absence of geometrical parameters (relative height of fins (
e

Dint
) and number

of fins (n)) among the selected features is that their influence is already accounted for in the obtained

optimal pipeline for determination of single-phase friction factor (which is then utilized to extract Φ2
g).

Furthermore, it is also noteworthy that, although other features can have a correlation with the target,

due to their physical correlation with the selected features, their influence is already represented by

these (selected) features; thus, adding them does not improve the achieved accuracy, because of which

these additional parameters are not chosen in the implemented feature selection procedure.

All features

Rel
1

Rel
Relo

1

Relo
Reg

1

Reg
Rego

1

Rego
X Y

fl flo fg fgo x 1− x
1− x
x

xv 1− xv
1− xv
xv

G∗
l

G∗
g

n
e

Dint

Selected features xv
1− x
x

1

Reg
Rel Rego

Table 6: All of the provided features and the selected ones for the two-phase case

Table 7 represents the properties of the obtained optimal pipeline, which includes further feature

processing along with the chosen estimators and the corresponding tuning parameters.
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Optimal Pipeline Steps Arguments Definitions Values

Step 1: StackingEstimator:
estimator= GradientBoostingRegressor

alpha The alpha-quantile of the huber loss function 0.75
learning-rate Tuning parameter for algorithm optimization 0.1

loss loss function to be optimized ls
max-depth maximum depth of the individual regression estimators 4

max-features
The number of features to consider
when looking for the best split

0.8

min-samples-leaf
The minimum number of samples
required to be at a leaf node

3

min-samples-split
The minimum number of samples
required to split an internal node

3

n-estimators The number of boosting stages to perform 100

subsample
The fraction of samples to be used for
fitting the individual base learners

0.45

Step 2: StackingEstimator:
estimator= SGDRegressor

alpha Constant that multiplies the regularization term 0.0
eta0 The exponent for inverse scaling learning rate 1

fit-intercept Intercept should be estimated True
l1-ratio The Elastic Net mixing parameter 0.5

learning-rate Tuning parameter for algorithm optimization invscaling
loss The loss function to be used epsilon-insensitive

penalty The penalty to be used elasticnet
power-t The exponent for inverse scaling learning rate 0.0

Step 3: StackingEstimator:
estimator= RandomForestRegressor

bootstrap
Whether bootstrap samples are used
when building trees

True

max-features
The number of features to consider
when looking for the best split

0.2

min-samples-leaf
The minimum number of samples
required to be at a leaf node

17

min-samples-split
The minimum number of samples
required to split an internal node

14

n-estimators The number of trees in the forest 100

Step 4: MinMaxScaler - - -

Step 5: LinearSVR

C Regularization parameter 20.0

dual
Select the algorithm to either solve
the dual or primal optimization problem

False

epsilon Epsilon parameter in the epsilon-insensitive loss function 0.001
loss The loss function to be used squared-epsilon-insensitive
tol Tolerance for stopping criteria 1e-05

Table 7: Characteristics of determined optimal pipeline (pipeline I) for the two-phase case and the definition of each
argument (provided by scikit-learn guidelines [59])

Fig. 3 compares the experimentally obtained pressure gradient values with the corresponding values

estimated by the obtained optimal pipeline along with the estimations provided by the model proposed

by Chisholm [9]. As can be observed, the optimal pipeline estimates the two-phase pressure drop with

a notably higher accuracy compared to the most accurate empirical model available in the literature.

Regarding the comparison with previously conducted studies focused on machine-learning based esti-

mation of two-phase flow pressure drop, the studies conducted by Osgouei et al. [40], Qinghua et al.

[30], and Chaari et al. [31] have only been identified to have similar objectives to those of the present

work. The model proposed in the study carried out by Osgouei et al. [40], which was focused on
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air-water flows’ pressure drop estimation in horizontal annuli, was reported to result in an MARD of

7.462 % which is higher than the accuracy obtained in the present work (both for validation and tests

sets), while the present study covers a wider range of pressure drop values. In the study performed

by Qinghua et al. [30], that was dedicated to predicting the pressure drop of gas-liquid two-phase

flow in two medium-diameter pipes, the utilized accuracy metrics differ from the ones employed in the

present study (while the experimental values and the model predictions are neither available), because

of which it is not possible to compare the results obtained in the present study and the results of the

latter study. Finally, the investigation conducted by Chaari et al. [31], which was performed employing

a large database containing experimental measurements spanning a wide range of flow conditions and

pipe characteristics, has reported an MARD of 20.43 %. Considering the different range of operating

conditions and characteristics of the dataset utilized in the latter study and that of the present work,

in order to have a more reliable comparison, the authors have developed a neural network model with

the same configuration as the one proposed in the latter study. Through applying the latter developed

model on the dataset obtained in the present study, an MARD of 11.66 % on the validation set (train-

ing set evaluated through cross-validation) and 10.83 % on the test set, are obtained, which are both

higher than the ones achieved using the optimal pipeline proposed in the present study. Moreover,

since the obtained optimal pipeline is provided as a publicly accessible tool, the proposed approach

can also offer a higher reproducibility and ease of use.

(a) Training set (CV) (b) Test set

Figure 3: Experimentally obtained pressure gradient compared the estimations of the optimal pipeline (pipeline I) and
the values estimated by Chisholm [9] model
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Fig. 4 shows the accuracies achieved by the optimal pipeline (reported in Table 7), while implementing

the forward feature combination procedure. The results demonstrate the contribution of each feature to

the prediction accuracy of the model on the test set. It can be observed that, by utilizing only the first

three parameters, an elevated accuracy can already be obtained. By adding more features, although

the MARD is reduced, it results in an increment in the dimensionality of the model. Considering the

latter trade-off, the results of the forward feature combination procedure provides the user with the

possibility of choosing the most promising model considering the requirements and constraints of the

project. As an instance, the latter results demonstrate that, although utilizing all the selected features

leads to obtaining the lowest possible MARD, (considering the dataset’s range of operating conditions)

by employing only the first three features (xv, Rel,
1

Reg
) an elevated accuracy (MARD of less than

11%) can already be achieved.

Figure 4: The accuracy achieved by the optimal pipeline on test set while being provided with lower number of features
(results of forward feature combination)

Fig. 5a shows the experimental two-phase multiplier values of the test set along with the estimation

of the optimal pipeline trained with only first feature (xv [−]) as input. Fig. 5b instead demonstrates

the comparison between the test set’s experimental data and the two-phase multiplier values estimated

by the optimal pipeline that is trained with the all selected features, with respect to volume quality
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xv [−] and Reynolds number of the liquid phase (Rel [−]). It can be graphically observed that the

accuracy of the optimal pipeline trained with all of the selected features is increased as it can estimate

the real values better with respect to the estimations presented in Fig. 5a (using the model trained

with only the first feature), specifically for those with higher values of Φ2
g.

(a) Optimal Pipeline trained with first feature
(b) Optimal Pipeline trained with all selected feature

Figure 5: Experimentally obtained two-phase flow multiplier of test set compared to the estimations of the optimal
pipeline, with respect to the selected features

6. Conclusion

In the present paper, the most promising set of dimensionless features (along with the contribution

of each feature to the achieved accuracy) and the most suitable machine learning algorithm that can

be employed for data-driven frictional pressure drop estimation of water (single-phase) and water-

air mixture (two-phase) flow, in micro-finned horizontal tubes, were investigated. Accordingly, after

implementing the corresponding machine learning based pipelines, in which a pool of dimensionless

features was provided as inputs, a feature selection procedure was implemented in order to determine

the set of features utilizing which results in the highest achieved accuracy. Next, an algorithm opti-

mization procedure was utilized in order to determine the optimal machine learning algorithm and the

corresponding tuning parameters. Furthermore, the state-of-the-art physical models, proposed in the

literature, were implemented and the accuracy achieved utilizing the obtained optimal pipeline (for

both single-phase and two-phase cases) was compared with the one obtained employing the determined

most promising physical model.

For the single-phase case, it was demonstrated that by utilizing the obtained optimal pipeline (which

employs all of the provided dimensionless features) an elevated accuracy (MARD of 2.15 [%] on the
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training set and MARD of 5.89 % on the test set) can be obtained, which is notably lower than the

one achieved using the most accurate available physical model (Haaland [48] with an MARD of 11.91

%). For the case of two-phase flow, the optimal pipeline was determined to be the one in which

the gas two-phase multiplier is chosen as the target and 5 dimensionless parameters (xv , Rel ,
1

Reg
,

Rego,
1− x
x

that are selected among 23 provided features) are utilized as input features. However,

it should be noted that in the process of extracting the defined dimensionless target of the optimal

pipeline (Φ2
g), as expressed in Eq. 30, the single-phase friction factors are first determined utilizing

the corresponding features (Re, 1
Re , e

Dint
, and n). Thus, the reason behind the absence of geometrical

parameters (relative height of fins (
e

Dint
) and number of fins (n)) among the selected features is that

their influence is already accounted for in the obtained optimal pipeline for determination of single-

phase friction factor. Employing the latter pipeline an MARD of 6.72 % and 7.05 % on the training

set and test set respectively, can be achieved that is notably more accurate than the most promising

physical model (Chisholm [9] leading to an MARD of 15.21 %).

Finally, through implementing the forward feature combination strategy on the optimal pipeline, the

contribution of each feature to the achieved accuracy was demonstrated and the trade-off between

the complexity of the model (in terms of the number of features) and the obtained accuracy was

presented. The obtained results demonstrated (considering the dataset’s range of operating conditions)

that employing only the first three features (xv, Rel,
1

Reg
) an MARD of less than 11% can be achieved.

The latter results enable the user to choose the most promising model considering the requirements of

the project and the corresponding constraints. Since the dataset and the obtained optimal pipelines

along with the models trained with the reduced number of features will be made publicly accessible,

the models that are proposed and implemented in the present work provide a higher reproducibility

and ease of use compared to the state-of-the-art physical models, while providing a notably higher

accuracy.

Appendix A. Online repository of the obtained optimal pipelines

The utilized processed dataset and the obtained optimal pipelines (including the most promising sets

of features and the most suitable algorithm) are provided in an online repository (Link).
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