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Abstract— Measuring current and voltage harmonics has
paramount importance for improving the power quality of distri-
bution grids. However, the achieved accuracy strongly depends on
the adopted instrument transformer (IT). This article proposes
an adaptive technique that enables an effective compensation
of both the filtering behavior and the harmonic distortion
(HD) introduced by current and voltage transformers (VTs),
namely the strongest nonlinear effect at low-order harmonics.
The approach is based on a flexible, linear in the parameters
polynomial modeling of HD in the frequency domain. Model
complexity can be different from one harmonic to the other,
and it is selected through an automatic iterative process to suit
the nonlinear behavior at each specific harmonic order, while
avoiding overfitting. In particular, the number of parameters
is increased by progressively updating the QR factorization
of the regressor matrix trough Householder reflections until a
convergence condition is reached. Experimental tests performed
on an inductive VT and current transformer (CT) highlight the
effectiveness of the approach.

Index Terms— Adaptive algorithms, current transformers
(CTs), error compensation, harmonic distortion (HD), instrument
transformers (ITs), nonlinear systems, power system harmonics,
voltage transformers (VTs).

I. INTRODUCTION

MODERN distribution grids (DGs) are characterized by a
large penetration of nonlinear loads and generators, typ-

ically based on power electronics. This has noticeably raised
the harmonic content of current and voltage waveforms [1],
which increases heating, wear and stress of dielectric mate-
rials, it reduces overall efficiency, as well as it may trigger
resonant modes.

Monitoring current and voltage harmonics [2] enables ana-
lyzing their propagation on the network, thus recognizing
critical situations. In conjunction with proper signal processing
techniques [3], [4], [5], [6], it would be possible to identify
the users that are the most responsible for harmonic pollution.
Moreover, in principle the large-scale availability of harmonic
measurements would enable reconstructing the harmonic state
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of the grid [7], which helps planning actions aimed at improv-
ing power quality.

Obtained results are strongly related to the quality of the
measurement data, expressed in terms of uncertainty. When
estimating harmonics, two different uncertainty sources can
be identified [8]. The first is the signal processing algorithm
adopted to extract the harmonic components; the second is
related to the hardware used to acquire those waveforms.
In this respect, the most significant contribution comes from
the instrument transformers (ITs) [9]. Among them, inductive
voltage transformers (VTs) [10] and current transformers
(CTs) [11] are still widely used, thanks to their favorable
blend of ruggedness, metrological performance, and long-term
stability.

Conventional inductive ITs are often employed for harmonic
measurements [12], [13], [14], albeit their metrological per-
formances are not guaranteed. They are typically regarded
as affected by severe bandwidth limitations [15], [16], but
the iron core makes that VTs [17], [18] and CTs also suffer
from a nonlinear input–output relationship. In particular, the
saturation of CTs produced by the dc transient component
have been widely studied, and techniques aimed at mitigating
its effect can be found in the literature [19]. However, the
impact of core nonlinearity on harmonic measurements have
been investigated only recently [20], [21], [22].

Several frequency-domain methods have been developed
with the aim of reconstructing primary harmonics from
the secondary side of an IT, while mitigating nonlinear
effects [23], [24]. To reduce complexity, they exploit the
typical spectral content of voltage and current waveforms,
which consists of a strong fundamental and superimposed
harmonics having significantly smaller amplitudes. It is worth
noting that low-order harmonic measurements are the most
heavily affected by nonlinearity. More specifically, in this
case, the strongest nonlinear phenomenon is the harmonic
distortion (HD) produced by the prevailing fundamental
tone. For this reason, simplified methods that enable com-
pensating only the HD (thus neglecting the intermodu-
lation between different primary components) have been
proposed [25], [26], [27].

In this respect, the authors of this article have developed a
method for reconstructing primary harmonics through polyno-
mial modeling and compensation of HD. It has been applied to
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inductive VTs [25], [26] and CTs [28], but the method, based
on behavioral modeling, is general and thus it abstracts from
the physical operating principle. One of the main advantages is
that identifying the parameters of the compensation formulas
does not require a calibrator, capable of injecting a specific
set of training waveforms with high accuracy. On the other
hand, the underlying model of HD has a stiff structure, based
on fixed-degree polynomials, the same for all the harmonics.
The main contribution of [29] is overcoming this limitation:
one may select, for each component, a different number of
terms to compensate for HD. The improved method has been
applied to a VT and CT through numerical simulations.

This article represents the technical extension of [29], thus
the starting point is the same flexible structure for the HD
compensation formulas. However, the number of terms at each
harmonic order is not selected by the user, but it is the result
of an adaptive identification procedure looking for the best
tradeoff between accuracy of the reconstruction and complex-
ity, while avoiding overfitting. This has key importance for a
large-scale, automated implementation of HD compensation.
Moreover, identification requires solving a least squares (LS)
problem whose condition number becomes worse as complex-
ity is increased; QR factorization is adopted to guarantee high
numerical stability. In addition, the adaptive algorithm pro-
gressively updates the QR factorization through Householder
reflections, thus improving computational efficiency since the
identification problem is not solved from scratch at every iter-
ation. Finally, the proposed technique has been experimentally
applied to an inductive VT and CT. Obtained results show how
the adaptive HD compensation approach provides an effective
mitigation of nonlinearities by selecting the number of terms of
the polynomial so that it reflects the impact of HD at each spe-
cific harmonic. In comparison, the former HD compensation
method based on fixed-degree polynomials may result in lower
accuracy, overparametrization, or numerical problems during
identification.

II. FROM FREQUENCY-DOMAIN VOLTERRA SYSTEMS TO
HD COMPENSATION

A. Volterra Systems and ITs

ITs installed in ac power systems can be considered as
(weakly) nonlinear time-invariant systems, where input and
output are represented by the primary and secondary side
quantities, x1(t) and x2(t). Furthermore, let us suppose that
x1(t) is a periodic waveform at rated frequency f0, thus
fully defined by the fundamental and the set of harmonics.
Neglecting complex, chaotic nonlinearities, the corresponding
steady-state response x2(t) is periodic with the same period.
In this case, the IT behavior can be more effectively studied
in the frequency domain, where it corresponds to a mapping
rule between primary and secondary side spectral compo-
nents. Under mild conditions, this mapping can be expressed
using a frequency-domain Volterra [30] (or polynomial [31])
model. Adopting this approach, the mth order secondary-side

harmonic (m ≥ 1) is

X2(m) =

∞∑
d=1

X2(d)(m)

=

∞∑
d=1

∑
d∑

h=1
nh = m

n1, . . . , nd ∈ Z

H(d)(n1, . . . , nd)

d∏
k=1

X1(nk)

(1)

where X1(n) is the nth-order component in the two-sided
primary spectrum. Since x1(t) is real-valued, X1(n) is the
complex conjugate of X1(−n). According to (1), X2(m) is
the sum of infinite contributions X2(d)(m), each produced by a
dth degree homogeneous subsystem; in particular, that having
d = 1 represents the underlying linear system. In turn, the
output of each dth degree subsystem is a linear combination
of all the products between sets of d input components (with
repetition) whose sum of the harmonic indexes equals m. The
input–output behavior is defined by the set of coefficients H(d),
which corresponds to the dth degree generalized frequency
response function (GFRF) evaluated on a harmonic grid.

The target is measuring primary harmonics, namely recon-
structing their values from the secondary side of the IT: this
requires somehow obtaining the post-inverse of (1). It can
be proven that both the pre- and post-inverses of a Volterra
system are still Volterra systems [32]. Therefore, separating
the contribution produced by the underlying linear system

X1(m) = K(1)(m)X2(m)

+

∞∑
d=2

∑
d∑

h=1
nh = m

n1, . . . , nd ∈ Z

K(d)(n1, . . . , nd)

d∏
k=1

X2(nk)

(2)

where the coefficients K(d) are somehow related to H(d) in
(1). Under the previous assumption, knowing the post-inverse
would enable retrieving power systems harmonics from the IT
secondary spectrum, thus compensating both its filtering and
nonlinear behavior.

B. Polynomial HD Compensation

Unfortunately, (2) cannot be implemented, being it defined
by an infinite number of coefficients K(d). Therefore, it is
necessary to introduce simplifications that allow obtaining an
expression having manageable complexity, but still providing
an acceptable reconstruction of harmonics. The trivial idea is
upper bounding to D the maximum degree of the nonlinear
contributions, obtaining a truncated Volterra system. However,
this is an ineffective approach: choosing small values of D
undermines the capability to compensate for nonlinearities, but
it still leads to a huge number of coefficients.

In addition, it is possible to exploit the typical spectral
content of waveforms in power systems, which are quasi sinu-
soidal, namely made of a strong fundamental and significantly
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smaller harmonics, usually by at least an order of magnitude.
Thanks to the weakly nonlinear behavior of ITs, this feature
applies also to the secondary-side spectrum. Starting from this
observation, one may neglect the contributions from products
containing more than a harmonic component [23]. To further
reduce complexity, it is possible to consider in (2) only the
nonlinear contributions involving exclusively the fundamental
and its image. In this case

X1(m) ≈ K(1)(m)X2(m)

+

D∑
d=2

∑
l+ − l− = m
l+ + l− = d

K(d)(l+, l−)X l+
2 (1)X l−

2 (−1)

(3)

that is the input–output relationship of a subclass of pruned
Volterra systems. As a result, (3) allows compensating the fil-
tering behavior and the HD produced by the large fundamental
tone that, under the aforementioned assumptions, represents
the strongest nonlinear effect in ITs. On the contrary, (3) is
not able to address other nonlinear phenomena, in particular
the interaction (intermodulation) between different primary
components. Equation (3) can be rewritten in a more compact
form, which is

X1(m) ≈ K(1)(m)X2(m)

+

⌊ D−m
2 ⌋∑

l=max(0,2−m)

K(d)(m)|X2(1)|de jmϕ2(1) (4)

having introduced ϕ2(1) = ̸ X2(1), while d = m + 2l.
Looking at (4) it is worth noting that considering the mth order
harmonic, HD is compensated through a univariate polynomial
function in the fundamental magnitude; the degree of each
monomial is d , which is the degree of the corresponding
nonlinear contribution. When considering an even order har-
monic, the polynomial function just contains even powers
greater or equal than m, up to D. Conversely, only odd powers
between m and D appear in the polynomial functions that
enable compensating HD at odd order harmonics. Equation
(4) applies also for m = 1, thus mitigating the (typically
very small) nonlinearity affecting the fundamental component
measurement.

III. ADAPTIVE POLYNOMIAL HD COMPENSATION

A. Improved Polynomial HD Compensation

According to Section II-B, (4) enables reconstructing the
primary side harmonics in an IT. Both its filtering behavior and
the strongest nonlinear effect are mitigated through univariate
polynomial functions having degree D. The number of terms
(powers of the fundamental magnitude) that are combined to
compensate for HD affecting the mth order harmonic is

max
(⌊

D − m
2

⌋
+ 1, 0

)
. (5)

Therefore, it reduces with the harmonic order, becoming
zero if m > D. The first consequence is that mitigating non-
linearity at a given harmonic order demands a minimum value

of D. From the opposite point of view, distortion at lower-
order harmonics is tackled with a progressively increasing
number of terms, but some of them may be not significant.
For example, this occurs when a predetermined accuracy target
at that harmonic is reached also with a lower value of D.
It may also happen that, for some harmonic orders, increasing
D does not enable improving the quality of the reconstruction.
The reason could be that HD has been reduced so that its
impact has become negligible with respect to other uncertainty
sources, such as noise or intermodulation between different
spectral components in the primary waveform.

In order to increase the flexibility of HD compensation, it is
possible to individually select L(m) [29], namely the number
of monomials that allow modeling HD at each specific har-
monic order. According to this approach, primary harmonics
are obtained as

X1(m) ≈ Km X2(m)

+

L(m)∑
l=1

Bm(l)|X2(1)|m+2(l+max(1−m,−1))e jmϕ2(1) (6)

where Km = K(1)(m) and Bm(l) = K(m+ 2l)(m). Before using
(6) to retrieve a generic mth order primary harmonic, two
passages are required. The first one, discussed in Section III-B,
is presenting a numerically stable method for identifying
the coefficients Km and Bm for a predetermined number of
terms L(m) (sometimes denoted as L for the sake of a
lighter notation). Estimates are obtained by solving an LS
problem through the QR factorization of the regressor matrix.
The second one, covered by Section III-D, is defining an
adaptive procedure to choose the value of L ensuring a proper
compensation of HD. It is based on the computation of the QR
factorization through Householder reflections, as explained in
Section III-C.

B. Robust Identification

The compensation formula (6) is linear in the unknowns.
Therefore, feeding the IT with a set of S quasi-sinusoidal peri-
odic waveforms while measuring the corresponding steady-
state response, permits writing a system of S linear equations
in the form

x1(m) = Y(L)
m p(L)

m + ε(L)(m) (7)

where ε(L)(m) is the column vector of the residuals, namely
the deviations between the mth order harmonics in the applied
signals (components of vector x1(m)) and their reconstructions
from the secondary side using the parameters in the vector

p(L)
m =

[
Km Bm(1) · · · Bm(L)

]T
. (8)

Finally, Y(L)
m is an S × (L + 1) matrix that can be derived

from the structure of (6) and the considered set of signals.
Assuming S > L + 1, if Y(L)

m has full column rank, an estimate
p̂(L)

m of p(L)
m is obtained in closed form by solving the ordinary

LS problem

p̂(L)
m = arg min

p(L)
m

∥∥Y(L)
m p(L)

m − x1(m)
∥∥ (9)
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with || · || denoting the Euclidean norm. It is worth noting
that the more the set of the identification signals forms a
statistically significant sample of those found during regular
operation, the more solving (9) corresponds to minimizing the
second-order moment of the distance in the complex plane
between the reconstructed and the actual primary side mth
order harmonic phasor.

The features of the LS problem depend on the regressor
matrix, which can be partitioned as

Y(L)
m =

[
x2(m) FmU(L)

m

]
(10)

where x2(m) is the column vector of the secondary side mth
order harmonics in the identification signals, Fm is an S × S
diagonal matrix whose sth entry is(

X [s]
2 (1)

)m∣∣∣X [s]
2 (1)

∣∣∣2 max(2−m,0)

(11)

with X [s]
2 (m) being the mth order secondary component in

the sth identification signal. Introducing ◦ as the Hadamard
(element-wise) power operator, U(L)

m reads as

U(L)
m =



1
∣∣∣X [1]

2 (1)

∣∣∣ · · ·

∣∣∣X [1]
2 (1)

∣∣∣L−1

1
∣∣∣X [2]

2 (1)

∣∣∣ · · ·

∣∣∣X [2]
2 (1)

∣∣∣L−1

...
...

. . .
...

1
∣∣∣X [S]

2 (1)

∣∣∣ · · ·

∣∣∣X [S]
2 (1)

∣∣∣L−1



◦2

(12)

that is the Hadamard square of a rectangular Vandermonde
matrix. This is somehow expected, since estimating p(L)

m
involves polynomial fitting [33]. Unfortunately, because of the
peculiar structure, the condition number rapidly increases with
L . As a consequence, numerical instability may occur if (9) is
solved through explicit inversion of the corresponding Gram
matrix. A first expedient to mitigate this problem is adopting
per unit values, so that the magnitude of the fundamental is
not much larger than unity. Numerical robustness is highly
enhanced if estimates are obtained via QR factorization, thus
decomposing Y(L)

m into the product between a unitary S × S
matrix Q(L)

m and an upper triangular S × (L + 1) matrix R(L)
m .

The reduced (or thin) QR factorization [34] is often adopted,
thus leading to

Y(L)
m = Q(L)

m,1R(L)
m,1 (13)

where Q(L)
m,1 is made of the first L + 1 columns of Q(L)

m , while
R(L)

m,1 consists of the first L + 1 rows of R(L)
m . This enables

writing

R(L)
m,1p̂(L)

m =

(
Q(L)

m,1

)H
x1(m) (14)

and p̂(L)
m is obtained through back-substitution (avoiding matrix

inversion) thanks to the upper-triangular structure of R(L)
m,1.

C. QR Factorization Through Householder Reflections

Several methods can be adopted to compute the QR fac-
torization of matrix Y(L)

m , but Householder reflections (or
transformations) [35] are often employed thanks to the high

numerical stability. A Householder transformation is defined
by a column vector u (Householder vector), and it represents
a (complex-valued) reflection in the hyperplane normal to this
vector. It can be written as a premultiplication by the unitary
matrix I−uuH (namely a rank-1 update of the identity I) that
does not need to be explicitly computed or stored. Thanks to
a proper choice of u, a Householder transformation applied to
a vector v having the same size as u enables zeroing all the
components but the first, which becomes equal to ν. Exploiting
this property, R(L)

m is obtained through L + 1 modifications
of Y(L)

m ; the kth consists in applying a Householder reflection
to the last S − k + 1 rows and L − k + 2 columns, so that
all the entries in the kth column below the main diagonal
are zeroed. The ordered set of the associated Householder
vectors {uk}k∈{1,...,L+1} is a factored representation of (Q(L)

m )H ,
which thus corresponds to a cascade of Householder reflec-
tions. Moreover, premultiplication by Q(L)

m means applying
the Householder reflections identified by the same vectors
{uk}k∈{1,...,L+1} but in reversed order.

D. Adaptive Procedure

The next problem to be faced is selecting L(m) so that
it enables reaching a satisfactory accuracy, without running
into overfitting. In this respect, the overall accuracy in recon-
structing the mth order harmonic can be quantified in terms
of normalized root mean square error (NRMSE)

NRMSE(L)(m) =

∥∥∥x̂(L)
1 (m) − x1(m)

∥∥∥
∥x1(m)∥

(15)

where x̂(L)
1 (m) = Y(L)

m p̂(L)
1 (m) is the vector of the reconstructed

mth order primary harmonics of the S identification signals.
A straightforward idea to choose L(m) is progressively

increasing its value starting from 0 (linear reconstruction),
estimating the parameters of the corresponding compensation
formula through (14) while computing the NRMSE from (15).
The iterative process is stopped when one of the following
conditions occurs.

1) NRMSE(L)(m) falls below a threshold NRMSEt (m). Its
value should be set according to the optimal accuracy
target, so that further improving the reconstruction of
primary harmonics does not produce practical benefits.

2) The number of nonlinear terms reaches the maximum
value Lmax(m), which bounds the complexity of the
reconstruction formula.

3) The drop of NRMSE due to the added nonlinear term
is below a predetermined threshold 1NRMSEt (m). Its
value represents the minimum accuracy improvement
that is considered as significant. The target of this stop
condition is avoiding overfitting; when triggered, L(m)

should be decreased by one.
Considering the procedure summarized in Section III-C to

perform the QR decomposition required by (14), it is possible
to derive a computationally effective adaptive process for
selecting the optimal value of L . Let us suppose that L̂ is the
number of terms currently used to consider HD, thus corre-
sponding to the L̂ + 1th iteration step. From (10)–(12), Y(L̂)

m is
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obtained by adding a new column y(L̂)
m to Y(L̂−1)

m , the regressor
matrix at the previous iteration. Thanks to this feature, Q(L̂)

m
and R(L̂)

m can be derived as updates of the QR decomposition
of Y(L̂−1)

m . Conceptually, R(L̂)
m is computed by appending z =

(Q(L̂−1)
m )H y(L̂)

m after the last column of R(L̂−1)
m and applying a

further Householder reflection defined by vector uL̂+1 to zero
its last S − L̂ − 1 rows. It can be easily shown that (Q(L̂)

m )H

is obtained by applying the Householder reflection defined by
uL̂+1 to the last S−L̂ rows of (Q(L̂−1)

m )H . Therefore, computing
all the QR decompositions needed by the L̂ + 1 iterative steps
as progressive rank-1 updates basically requires performing
the same number of Householder transformations that allows
obtaining the QR decomposition of Y(L̂)

m from scratch. Using
(13) and (14) into (15), the NRMSE at the L̂ + 1-th iteration
step is

NRMSE(L̂)(m) =

∥∥∥∥(
Q(L̂)

m,1

(
Q(L̂)

m,1

)H
− IS×S

)
x1(m)

∥∥∥∥
∥x1(m)∥

(16)

where IS×S is the S × S identity matrix. Equation (16)
avoids a direct estimate of the parameters, which indeed must
be performed at the end of the iterative procedure. Finally,
if the process stops because the drop of NRMSE(L)(m) is
below 1NRMSEt (m), L(m) must be decreased by one, and
the update of the QR decomposition undone. However, this
operation is straightforward: Q(L)

m,1 corresponds to the first
L + 1 rows and columns of Q(L+1)

m , which are not affected
by the last Householder reflection.

Algorithm 1 Adaptive Polynomial HD Compensation
Input: x1, x2, m, Lmax, NRMSEt, 1NRMSEt
Output: p̂(L)

m
L = 0
[u, Rm,1] = house_vect(x2)

Qm = IS×S−uuH

NRMSE = compute_NRMSE(x1(m), Qm(:, 1))
1NRMSE = Inf
while NRMSE>NRMSEt, 1NRMSE>1NRMSEt, L < Lmax

L = L + 1
NRMSE_old = NRMSE
z = QH

m ·build_y(x1, m, L)

Rm,1 = [Rm,1; 01×L ]
Rm,1 = [Rm,1, z(1:L + 1)]
[u, Rm,1(L+1, L + 1)]= house_vect(Rm,1(L+1:S, L + 1))
Qm(:, L + 1:S) = (house_refl((Qm(:, L + 1:S))H , u))H

NRMSE = compute_NRMSE(x1(m), Qm(:, 1:L + 1))
1NRMSE = NRMSE_old − NRMSE

end
if 1NRMSE≤ 1NRMSEt

L = L − 1
end
p̂(L)

m = backward(Rm,1, (Qm(1:L + 1, 1:L + 1))H x1(m))

In conclusion, the adaptive procedure to find the optimal
value of L(m) for each harmonic order is summarized by the
pseudocode reported in Algorithm 1. Function build_y(x1, m,
L) builds the last column of Y(L)

m , house_vect(x) computes the

Fig. 1. Experimental setup for testing the proposed adaptive polynomial HD
compensation when applied to a VT.

Householder vector u that allows zeroing all the components
in x but the first, which becomes equal to ν, also returned
as output. house_refl(A, u) applies to A the Householder
reflection defined by u, while compute_NRMSE(x1(m), Q(L)

m,1)

implements (16). Finally, function backward(A, b) solves a
linear system of equations in the form Ax = b (with A upper
triangular) via back substitution and 0k×l denotes the k × l
null matrix.

IV. APPLICATION TO INDUCTIVE VTS

The proposed adaptive polynomial HD compensation algo-
rithm has been first tested for the reconstruction of primary
voltage harmonics from the secondary side of an inductive VT.
The first step is defining the class EV of primary voltage mul-
tisine waveforms to be adopted, which should resemble those
found in distribution grids, characterized by quasi-sinusoidal
spectral content. The fundamental frequency is assumed to be
equal to its rated value, while spectral components have been
treated as random variables. Fundamental magnitude has been
assumed to be uniformly distributed between 80% and 120%
of the rated primary voltage, corresponding to the measuring
range of VTs [10]. As far as relative harmonic magnitudes
(orders up to 25), independent rectangular probability density
functions (pdfs) between 0.2% and 2% have been considered.
All the phases have been supposed to be independent and
uniformly distributed between −π and π .

A. Experimental Setup

The developed method has been applied to a class 0.5 VT
having ratio Kn = 200 V/100 V, rated frequency fn = 50 Hz
and 20 VA burden. This requires an experimental setup capable
of supplying the VT under test with waveforms that belongs
to the previously defined class, while measuring its secondary
spectrum; the architecture reported in Fig. 1 (resembling that
presented in [36]) has been adopted.

The secondary side of the VT under test has been connected
to the rated burden, while its primary winding has been
supplied by an AETechron 7548 power amplifier through a
100 V/400 V boost transformer to increase its output voltage
capability. The input signal of the power amplifier has been
provided by a National Instruments NI USB 6356 BNC board,
featuring synchronous generation and acquisition. Primary
and secondary voltages v1 and v2 have been acquired using
calibrated resistive dividers connected to two input channels
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Fig. 2. rms (bars) and 95th percentile values (error bars) of the TVE achieved by reconstructing the primary voltage harmonics using nominal ratio, polynomial
HD compensation (L from 0 to 5), and the proposed adaptive compensation. Arrows highlight the values of L selected by the adaptive method.

of the data acquisition board (sampling rate fs = 100 kHz)
through Analog Devices AD215BY isolation amplifiers in
voltage follower configuration; their frequency responses have
been measured and calibrated. It is worth noting that v1 is not
just a scaled-up replica of the signal vg applied to the input of
the amplifier, mostly because of the voltage boost transformer.
For a better accuracy in voltage generation, the small-signal
frequency response between vg and v1 has been measured and
used to pre-compensate the reference waveforms to be applied
to the VT under test.

B. Experimental Results

The first step to be performed is collecting the data required
for identifying the parameters of the compensation formulas.
For this purpose, a set of S = 100 identification signals
belonging to class EV has been obtained by sampling the
corresponding pdfs. They have been applied to the VT under
test using the previously described setup; for each identifi-
cation signal, once steady state operation has been reached,
P = 100 periods of the primary and secondary voltages
have been acquired. Thanks to synchronized sampling and
generation, since fs / fn is an integer and high enough to avoid
aliasing, it is possible to extract the harmonics in each period
through discrete Fourier transform. Their values have been
averaged over the P periods to mitigate the effect of noise
and disturbances.

The measured primary and secondary voltage harmonics
have been used, together with (13) and (14), to estimate the
parameters of the HD compensation formulas, with L ranging
from 0 (corresponding to the best linear approximation, BLA)
to 5 and for harmonic orders up to the 11th. The proposed
adaptive technique introduced in Section III-D has been imple-
mented in MATLAB and executed with Lmax = 5, NRMSEt =

2·10−4, 1NRMSEt = 3·10−5, identical for all the harmonic
orders. As a rough quantification of the computational burden,
the adaptive process runs in about 40 ms on a core of a high-
end PC.

For evaluating performance, an independent set of 500
validation signals belonging to class EV have been synthesized
and applied to the VT under test. Considering the sth signal,
the resulting steady-state primary and secondary side harmon-
ics V [s]

1 (m) and V [s]
2 (m) have been measured with the same

method previously adopted for the identification signals. Accu-
racy in harmonic measurements is often quantified in terms of

ratio and phase errors. However, their distributions over the
validation signals are expected to be extremely similar, as a
result of the combination of the nonlinear behavior of the IT
and the independent rectangular pdfs (between −π and π) of
the harmonic phases, as discussed in [13] and highlighted by
the results reported in [25] and [28]. Therefore, the total vector
error (TVE) can be adopted as a concise indicator, capable of
taking into account both ratio and phase errors simultaneously.
Considering the sth validation waveform and the mth order
harmonic it is

TVE[s](m) =

∣∣∣V̂ [s]
1 (m) − V [s]

1 (m)

∣∣∣∣∣∣V [s]
1 (m)

∣∣∣ (17)

where V̂ [s]
1 (m) is the reconstructed primary harmonic obtained

with (6) and the previously estimated parameters for different
values of L , or using the nominal ratio Kn .

Obtained results are summarized in Fig. 2. For each har-
monic order and reconstruction method, it reports both the
rms (TVErms, solid bar) and the 95th percentile value (TVE95,
error bar) of the TVE computed over the set validation signals;
arrows highlight the number L of terms selected by the
adaptive procedure.

When considering the fundamental, using the nominal ratio
produces a TVE95 value of about 0.5%, with the corresponding
rms value being just slightly smaller. As aforementioned,
polynomial HD compensation with L = 0 corresponds to
the BLA, namely to the complex-valued ratio ensuring the
best reconstruction of a spectral component (in the LS sense)
for a given class of signals. In this case, the 95th percentile
value of the TVE drops below 0.03%. Adding nonlinear terms,
thus L ≥ 1, produces a further accuracy improvement (TVE95

becomes smaller than 5·10−3%), albeit not significant in most
of the practical applications. As from Fig. 2, the adaptive
identification procedure selects L = 0: the iterative process
stops because the NRMSE (strongly related to the accuracy)
is already below the threshold value.

As far as the second-order harmonic, using the BLA pro-
duces a minor accuracy improvement with respect to the nomi-
nal ratio. This means that nonlinearity is the main performance
bottleneck in this case. Including up to two nonlinear terms
leads to a progressive decrease of TVE95, from 1.5% to about
0.2%. Further increasing the complexity of the reconstruction
formula does not improve performance. On the contrary,
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a small increase of TVE is noticeable. This is clearly due to
overfitting: the compensation formulas include non-significant
terms that lead to unnecessary complexity. Even worse, they
may also reduce performance when moving outside the set
of identification signals. During adaptive identification, the
iterative procedure stops after trying L = 3: the reduction
of the NRMSE is below the threshold, therefore L = 2 is
selected, which represents the optimal choice.

It is well-known that an inductive VT mainly introduces
odd nonlinearity: considering its Volterra representation (1),
the most significant output contributions come from odd-
degree homogeneous subsystems. The consequence is that the
impact of HD is substantially weaker at even-order harmonics.
This is clearly noticeable from the results: at the fourth-order
harmonic, HD compensation allows a small error reduction
with respect to the BLA, while being virtually negligible for
higher order, odd harmonics. The adaptive method selects L =

1 for the fourth and sixth-order harmonics, L = 0 for the
eighth and the tenth.

The third-order harmonic is typically the most heavily
affected by nonlinearity. In this case, adopting Kn leads to
TVE95 above 13%, but almost the same value is obtained
by using the BLA. Representing HD with just one term
reduces TVE95 by an order of magnitude. With L = 4, the
95th percentile TVE drops to 0.25%, while L = 5 produces
basically the same result: HD has been already made negligible
with respect to other nonlinear phenomena, such as intermod-
ulation. Also in this case, the adaptive method selects the best
value L = 4, the iterative identification procedure is terminated
because the decrease of NRMSE is below the corresponding
threshold.

Considering the fifth, seventh, and ninth-order harmonics,
using nonlinear reconstruction formulas produces significant
error reductions; however, accuracy improvement decreases
with the harmonic order, since also the impact of HD becomes
progressively weaker. In all the cases, TVE stops decreasing
before L reaches 5. Nevertheless, TVE95 is reduced by more
than a factor 10, 3 and 2. The adaptive procedure selects L =

3, 2 and 3, respectively, always exiting the iterative process
for the small decrease of NRMSE.

At the 11th-order harmonic, polynomial HD compensation
still enables a better performance: TVE95 passes from 0.85%
(Kn) to 0.35% (L = 5), while 0.5% is obtained with the BLA.
The adaptive method selects L = 3 (TVE95

= 0.37%) in
this case; including this contribution with the conventional
HD compensation approach would have resulted in a 15th
degree model, thus leading to many unnecessary nonlinear
terms in the compensation formulas, especially at even-order
harmonics. This highlights the benefits of the new flexi-
ble structure of the compensation formula (6), in particular
when combined with the adaptive identification: it enables
automatically finding the best tradeoff between accuracy
and complexity, without stepping into overparametrization.
Finally, it is worth highlighting that choosing the thresholds
NRMSEt and 1NRMSEt does not represent a critical task.
Having selected reasonable values, small variations may just
slightly change the number of terms selected by the adaptive
procedure.

Fig. 3. Experimental setup for testing the proposed adaptive polynomial HD
compensation when applied to a CT.

V. APPLICATION TO INDUCTIVE CTS

The effectiveness of the presented adaptive polynomial
HD compensation technique has been assessed also when
employed for reconstructing the primary current harmonics
from the secondary of a CT. The steps resemble those followed
during the application to the VT, but there are some important
differences. A new class EI of periodic multisine primary
current waveforms has been introduced: it should reflect both
the wider measurement range of CTs with respect to VTs,
as well as the stronger harmonic content of currents. Therefore,
a uniform distribution between 20% and 120% of the nominal
value has been assumed for the fundamental magnitude. Rel-
ative harmonic amplitudes (orders up to 25 also in this case)
have independent and identical rectangular pdfs ranging from
0.5% to 5%. It is worth noting that according to the relevant
standards, some current components absorbed by loads may
exceed 5%; on the other hand, measuring stronger harmonics
is notably easier. Finally, phases are characterized by indepen-
dent and uniform distributions in the range [−π , π).

A. Experimental Setup

The developed technique has been applied to a class 0.5 CT
with 10 VA burden, 50 Hz rated frequency, and nominal ratio
Kn = 100 A/5 A. An experimental setup conceptually similar
to that described in Section IV-A has been adopted to apply the
periodic multisine current waveforms to the CT under test [37];
its diagram is shown in Fig. 3.

In this case, the AETechron 7548 power amplifier feeds
the primary of the CT under test (loaded with rated burden)
through a 5 A/200 A current boost transformer. Primary
and secondary currents (i1 and i2) have been measured with
calibrated class 0.2 coaxial shunts having 20 kHz bandwidth
and rated currents of 100 and 10 A, respectively. Their
outputs have been acquired using calibrated Analog Devices
AD215BY isolation amplifiers in noninverting configuration
(100 nominal gain) connected to two input channels of the
NI USB 6356 BNC board, operating with fs = 100 kHz
sampling rate. The small-signal frequency response between
vg and i1 has been measured and employed to pre-compensate
the reference waveforms to be applied to the CT under test.

B. Experimental Results

In order to identify the reconstruction formulas, S = 100
random current waveforms belonging to class EI have been
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Fig. 4. rms (bars) and 95th percentile values (error bars) of the TVE achieved by reconstructing the primary current harmonics using nominal ratio, polynomial
HD compensation (L from 0 to 15), and the proposed adaptive compensation. Arrows highlight the values of L selected by the adaptive method.

applied to the CT under test. For each signal, P = 100 periods
of the primary and secondary currents (i1 and i2) have been
acquired under steady-state conditions. Primary and secondary
harmonics have been computed using the procedure described
in Section IV-B. Starting from these data, the parameters of
the compensation formulas (L from 0 to 15, harmonics up to
the 11th order) have been estimated. It is worth highlighting
that such large values of L could be selected thanks to the
robust procedure based on QR decomposition. The proposed
adaptive identification method has been executed with Lmax =

15, NRMSEt = 1·10−4, 1NRMSEt = 8·10−6 for all the
considered harmonics.

Validation data have been gathered by applying another set
of 500 current waveforms to the CT under test (belonging
to class EI ), while measuring the corresponding primary and
secondary harmonics, also in this case extracted by averag-
ing over the P acquired periods. Accuracy in reconstructing
primary current components has been evaluated in terms of
TVE, defined by (17) with the straightforward substitution
of voltage phasors with current phasors. Its rms and 95th
percentile values have been computed over the set of validation
signals; results are summarized in Fig. 4.

Starting from the fundamental, using the nominal ratio
TVE95 exceeds 0.5%, but it drops below 0.3% thanks to the
BLA. This value is substantially larger if compared with that
obtained with the VT: the reason is related to the wider vari-
ability of the current amplitude, which magnifies the impact
of nonlinearity at the fundamental. When adding nonlinear
terms to the reconstruction formula, the TVE progressively
decreases, until L = 8 is reached. This behavior, caused by
the large measuring range of CTs, is different with respect to
that observed with the VT, where passing to L = 1 results in a
huge decrease of the TVE, but adding more than two nonlinear
terms does not improve accuracy. As far as the CT, the adaptive
algorithm selects L = 3 (TVE95

= 0.05%), exiting the iterative
process because the NRMSE is below the threshold value.

When reconstructing the second-order harmonic using Kn ,
TVE95 is around 1%, and it does not reduce noticeably when
adopting the BLA, thus confirming that nonlinearity is the
major uncertainty source in this case. Accuracy in terms of
TVErms improves noticeably up to L = 5 (the corresponding
TVE95 is about 0.4%), while further increasing complexity

produces negligible benefits; moreover, L ≥ 11 results in
slightly higher errors, which is an indication that overfitting
has occurred. The adaptive identification method correctly
selects L = 5, the optimal choice in this case. The iterative
process ends because adding another nonlinear term produces
a drop of NRMSE below the threshold, thus detecting possible
overparametrization.

As typical for inductive ITs, the strongest nonlinearity
occurs at the third-order harmonic. Reconstruction with the
nominal ratio produces TVE95 above 3%, not mitigated by
the BLA. On the contrary, adding more and more nonlinear
terms leads to a slow decrease of the error, with L =

12 corresponding to TVE95 below 0.4%; adding further terms,
does not improve the estimates. The behavior differs from
that observed with the VT, where L = 1 produces an abrupt
decrease of the TVE; the reason is once again related to the
wider variability of the fundamental current with respect to
the voltage. The adaptive identification algorithm selects L =

12. It is important to highlight that including all these terms
at the third-order harmonic requires at least a 25th degree
compensation model (L = 15 would have required a 31st
degree model) with the old truncation approach. Its inherently
stiff structure would have resulted in many useless nonlinear
terms at the other harmonics, thus producing overfitting.

To better understand how L affects performance, the range
of variation of the fundamental magnitude has been divided
into ten uniform intervals. The validation signals have been
categorized accordingly, the rms and 95th percentile values of
the TVE have been computed for each class. Fig. 5 reports the
obtained values for the third-order harmonic. It is evident that
introducing up to five terms to model HD enables a consistent
accuracy improvement when the fundamental magnitude is
above 40% of its rated value; errors are significantly larger
at smaller fundamental amplitudes. A further increase of L
enables improving performance in this range, while accuracy
at larger fundamental magnitudes is barely affected. However,
going beyond L = 12 increases errors in the largest magnitude
class.

When considering higher-order, even harmonics,
as expected HD is rather small and decreases with the
harmonic order. For example, at the eighth- and tenth-order
components, error is mitigated by passing from Kn to the
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Fig. 5. rms (bars) and 95th percentile values (error bars) of the TVE achieved by reconstructing the 3rd order harmonic current using nominal ratio,
polynomial HD compensation (L from 0 to 15), and the proposed adaptive compensation. Results are classified according to the corresponding fundamental
magnitude.

BLA, but adding nonlinear terms does not significantly refine
the estimates. It is worth noting that for high values of L ,
TVErms may increase noticeably: it is the clear indication that
the compensation formulas suffer from overparametrization.
The adaptive method selects a progressively smaller number
of terms to model and compensate HD: L = 3 at the
fourth-order harmonic, 2 at the sixth, 1 at the eighth, and 0 at
the tenth, thus corresponding to a linear reconstruction. In all
cases, the iterative procedure stops because the decrease of
the NRMSE is smaller than 1NRMSEt .

As expected, HD is much more significant at odd-order
components, and it reduces as the harmonic order increases.
Estimates of the seventh, ninth, and 11th order harmonics may
be jeopardized by overfitting if too large values of L are
selected. In agreement with the previous considerations, the
number of nonlinear terms in the compensation formulas cho-
sen by adaptive identification becomes progressively smaller
when increasing the harmonic order. In particular, it selects
11 terms at the fifth-order harmonic (not far from Lmax), 3 at
the seventh, 1 at the ninth, and 0 at the 11th, thus meaning
that HD has become negligible.

VI. CONCLUSION

Nonlinearity, and in particular, HD introduced by ITs has
a detrimental effect on the accuracy of low-order harmonic
measurements. However, its impact could be very different
according to the harmonic order. This article proposes a flexi-
ble, adaptive method aimed at compensating HD using polyno-
mials in the frequency domain. The number of terms appearing
in the reconstruction formula for a specific harmonic is tailored
by an iterative, LS-based identification procedure, so that it
reflects the nonlinear behavior of the IT at that harmonic.
Computational efficiency and robustness are achieved by pro-
gressively updating the QR decomposition of the regressor
matrix. The method has been experimentally validated on both
a VT and CT. Results show that the number of terms required
for a proper compensation of HD at different components
may be very different. In this respect, the new technique
can effectively cope with the wide measurement range of
CTs and it allows reaching unprecedented performance in
terms of tradeoff between accuracy and complexity, while

avoiding overfitting. In fact, including non-significant terms
in the compensation formulas may also degrade performance.

Future developments may be addressed by investigating
(and possibly improving) accuracy under more complex oper-
ating conditions, for example, considering a significant off-
nominal frequency. Moreover, it would be interesting to scout
the possibility of adopting the same compensation coefficients
to different, nominally identical ITs.
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