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Lévy Normal Tempered Stable processes (e.g. NIG and VG) with time-dependent parame-
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We introduce the model via its characteristic function. This allows using classical Fourier
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Additive normal tempered stable processes

for equity derivatives and power law scaling

1 Introduction

Following the seminal work of Madan and Seneta (1990), Lévy processes have become a powerful
modeling solution that provides parsimonious models consistent with option prices and with un-
derlying asset prices. There are several advantages of this modeling approach: this model class
admits a simple closed formula (Carr and Madan 1999, Lewis 2001) and it is a parsimonious de-
scription of some key features of the market volatility surface. In particular, the class of Lévy
normal tempered stable processes (LTS) appears to be rather flexible and it involves very few
parameters. LTS are pure jump1 processes, obtained via the well-established Lévy subordination
technique (see, e.g. Cont and Tankov 2003, Schoutens 2003). Specifically, most of these applica-
tions involve two processes in the LTS family: Normal Inverse Gaussian (NIG) (Barndorff-Nielsen
1997) and Variance Gamma (VG) (Madan et al. 1998), which are obtained via two different Lévy
subordinators. Both NIG and VG are characterized by three parameters: σ, which controls the
average level of the volatility surface; k, which is related to the convexity of the implied volatility
surface; and η, which is linked to the volatility skew (for a definition see, e.g. Gatheral 2011, Ch.3,
p.35).

Unfortunately, the recent literature has shown that these models do not reproduce the implied
volatilities that are observed in the market data at different time horizons with sufficient precision
(see, e.g. Cont and Tankov 2003, Ch.14). Lévy normal tempered stable processes are pure jump
models with independent and stationary increments. The key question is as follows: is it reasonable
to consider stationary increments when modeling implied volatility? Jump stationarity is a feature
that significantly simplifies the model’s characteristics but it is rather difficult to justify a priori
from a financial point of view. For example, a market maker in the option market does not consider
the consequences of a jump to be equivalent on options with different maturities. He cares about
the amount of trading in the underlying required to replicate the option after a jump arrival. The
impact of such a jump on the hedging policy is inhomogeneous with option maturity.2 Hence, a
priori, it is not probable that a stationary model can adequately describe implied volatilities.

Additive processes have been proposed to overcome this problem. Additive processes are an
extension of Lévy processes that consider independent but not stationary increments. Given an
additive process, for every fixed time t, it is always possible to define a Lévy process that at time
t has the same law as the additive process. This feature allows us to maintain several properties
(both analytical and numerical) of the Lévy processes.
The probability description of additive processes is well-established (Sato 1999) but the applica-
tions in quantitative finance are relatively few. A first application of additive processes to option
pricing is developed by Carr et al. (2007), who investigate Sato processes (Sato 1991) in derivative
modeling (see also Eberlein and Madan 2009). Benth and Sgarra (2012) use additive processes,
which they call time-inhomogeneous Levy processes, in the electricity market. In their paper,
the electricity spot price is characterized by Ornstein-Uhlenbeck processes, which are driven by
additive processes. More recently, Li et al. (2016) have considered a larger class of additive pro-
cesses. Their paper studies additive subordination, which (they show) is a useful technique for

1The relevance of pure jump dynamics in the equity and commodity asset classes has been discussed in the
recent literature, see, e.g. Ornthanalai (2014), Li and Linetsky (2014), Ballotta and Rayée (2018).

2Gamma is the Greek measure that quantifies the amount of this hedging and, generally, it decreases with
time-to-maturity.
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constructing time inhomogeneous Markov processes with an analytically tractable characteristic
function. This technique is a natural generalization of Lévy subordination.

We introduce a new class of (pure-jump) additive processes through their characteristic function
which are named additive normal tempered stable (ATS) processes. ATS processes (in general)
cannot be obtained via a time-change as in the additive subordination of Li et al. (2016) and
are not Sato processes. There is a subclass of ATS obtained via additive subordination and a
subclass of Sato ATS process. The main advantage of this new class of models is the possibility to
“exactly” calibrate the term structure of observed implied volatility surfaces, while maintaining
the parsimony of LTS.
We provide a calibration example of the ATS on the S&P 500 and EURO STOXX 50 implied
volatility surfaces of the 30th of May 2013. The ATS calibration is on average two orders of
magnitude better than the corresponding LTS in terms of mean squared error. We show that the
calibrated time-dependent parameters present an interesting and statistically relevant self-similar
behavior compatible with a power-law scaling subcase of ATS. Moreover, we have verified that
these results are robust over time.

The main contributions of this paper are threefold. First, we introduce a new broad family of
additive processes, which we call additive normal tempered stable (ATS) processes.
Second, we calibrate the ATS processes on S&P 500 and EURO STOXX 50 volatility surfaces.
We show that ATS have better calibration features (in terms of both the Mean Squared Error and
the Mean Absolute Percentage Error) than LTS and Sato processes.
Finally, we consider a re-scaled ATS process via a time-change based on the implied volatility
term structure. We show that the calibrated parameters exhibit a self-similar behavior w.r.t. the
new time. The statistical relevance of these scaling properties is verified.

The rest of the paper is organized as follows. In Section 2, we introduce the model: we prove that
there exists a new family of additive processes as the natural extension of the corresponding Lévy
processes. In Section 3, we describe the dataset used in the calibration, the calibration results for
ATS, LTS, and Sato processes and an interesting scaling property of the calibrated parameters.
In Section 4, we show that LTS and Sato processes fail to reproduce some stylized facts observed
in market data, which are adequately described by ATS processes and we present a robustness
analysis. Finally, Section 5 concludes.

2 The model

In this Section, we introduce the ATS process, as a natural extension of the LTS process, that,
on the one hand, maintains the increments’ independence as in the corresponding Levy process,
and, on the other hand, allows for time-inhomogeneous parameters. First, we prove a sufficient
condition for the existence of ATS processes (Theorem 2.1) and the martingale property for
the corresponding forward process (Proposition 2.2). Then, we introduce the power-law scaling
ATS as a subcase of a generic ATS (Theorem 2.3): we show in the next Section that this model
describes accurately the implied volatility surface. Finally, we prove a key model feature: the
model allows to reproduce a generic volatility term structure (Proposition 2.4).

Lévy normal tempered stable processes (LTS) are commonly used in the financial industry for
derivative pricing. According to this modeling approach, the forward with expiry T is an expo-
nential Lévy; i.e.

Ft(T ) := F0(T ) exp(ft) , (1)
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with ft a LTS

ft = −
(

1

2
+ η

)

σ2 St + σ WSt + ϕ t ∀t ∈ [0, T ] ,

where η, σ are two real parameters (η ∈ R, σ ∈ R
+), while ϕ is obtained by imposing the martingale

condition on Ft(T ).
3 Wt is a Brownian motion and St is a Lévy tempered stable subordinator

independent from the Brownian motion with variance per unit of time k. Examples of LTS
subordinators are the Inverse Gaussian process for NIG or the Gamma process for VG.
It is possible to write the characteristic function of ft as

E
[

eiuft
]

= Lt

(

iu

(

1

2
+ η

)

σ2 +
u2σ2

2
; k, α

)

eiuϕ t , (2)

where α ∈ [0, 1) is the LTS index of stability and Lt is the Laplace transform of St

lnLt (u; k, α) :=















t

k

1− α

α

{

1−
(

1 +
u k

1− α

)α}

if 0 < α < 1

− t

k
ln (1 + u k) if α = 0

. (3)

This theory is well known and can be found in many excellent textbooks (see, e.g. Cont and Tankov
2003, Schoutens 2003).

As already discussed in the Introduction, LTS processes do not properly describe short and long
maturities at the same time, while they allow an excellent calibration for a fixed maturity. For this
reason, we would like to select a process that allows independent but non-stationary increments:
i.e. an additive process. The simplest way to obtain this modeling feature is to consider an
additive process with a characteristic function of the same form of (2) but with time-dependent
parameters

E
[

eiuft
]

= Lt

(

iu

(

1

2
+ ηt

)

σ2
t +

u2σ2
t

2
; kt, α

)

eiuϕtt , (4)

where σt, kt are continuous on [0,∞) and ηt, ϕt are continuous on (0,∞) with σt > 0, kt ≥ 0 and
ϕt t goes to zero as t goes to zero. α ∈ [0, 1) as in the LTS case.
In Theorem 2.1, we prove that this process exists if some conditions on σt, ηt and kt are satisfied.

An additive process is a cádlág stochastic process on R {Xt}t≥0, withX0 = 0 a.s. and characterized
by independent increments and stochastic continuity (see, e.g. Cont and Tankov 2003, Def.14.1
p.455). It can be proven that the distribution of an additive process at time t is infinitely divisible.
(At, νt, γt) is the generating triplet that characterizes the additive process {Xt}t≥0. At, νt and γt
are called respectively the diffusion term, the Lévy measure and the drift term (see Sato 1999,
pp.38-39).4

Sato (1999, Th.9.8, p.52) proves a powerful link between a system of infinitely divisible probability
distributions and the existence of an additive process. In particular, Sato requires two main classes
of conditions on the generating triplet: i) some conditions of monotonicity, necessary to avoid
meaningless negative diffusion term or negative Lévy measure for the process increments and ii)
some continuity conditions, in order to obtain the stochastic continuity.
We use Sato (1999, Th.9.8, p.52) to prove the main theoretical results in this paper: there exists
a family of additive processes with characteristic function (4).

3A parametrization scheme of the drift in terms of η can be suitable for some applications: η controls the
volatility skew. In particular, it can be proven that for η = 0 the smile is symmetric, i.e. the implied volatility
skew is zero (see, e.g. Baviera 2007, Prop. p.21).

4In this paper, the notation follows closely the one in Sato (1999).
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Theorem 2.1. Sufficient conditions for existence of ATS

There exists an additive process {ft}t≥0 with the characteristic function (4) if the following two
conditions hold.

1. g1(t), g2(t), and g3(t) are non decreasing, where

g1(t) := (1/2 + ηt)−
√

(1/2 + ηt)
2 + 2(1− α)/(σ2

t kt)

g2(t) := −(1/2 + ηt)−
√

(1/2 + ηt)
2 + 2(1− α)/(σ2

t kt)

g3(t) :=
t1/ασ2

t

k
(1−α)/α
t

√

(1/2 + ηt)
2 + 2(1− α)/(σ2

t kt) ;

2. Both t σ2
t ηt and t σ2α

t ηαt /k
1−α
t go to zero as t goes to zero.

Proof. See Appendix A

Let us emphasize that the conditions of Theorem 2.1 are quite general. In the market, we
observe only a limited number of maturities, and thus, there is a large set of functions of time
that reproduce market data and satisfy the conditions of the theorem. Furthermore, we prove in
Theorem 2.3, that the conditions of Theorem 2.1 are satisfied by a simple sub-case of ATS
with power-law scaling ηt and kt and constant sigma. Finally, we also prove in Proposition 2.4

that ATS models allow a generic volatility term structure σt.

In a similar way to the LTS case, it is possible to consider a forward price Ft(T ) (1) as the
exponential of the ATS process {ft}t≥0 with the characteristic function (4). The deterministic
function of time ϕt can be chosen s.t. the process Ft(T ) satisfies the martingale property, as
shown in the next proposition.

Proposition 2.2. Martingale property

The forward {Ft(T )}t≥0, modeled via an exponential additive process characterized by an ATS
process {ft}t≥0 is a martingale if and only if

ϕt t = − lnLt

(

σ2
t ηt; kt, α

)

, (5)

where Lt is the Laplace transform in (3).

Proof. See Appendix A

We introduce a sub-case of ATS, determined by self-similar functions of time. In Subsection 3.3, we
show that this family of processes describes accurately market implied volatility surfaces. Power-
law scaling functions of time allow us to rewrite Theorem 2.1 conditions as simple inequalities
on the scaling parameters.

Theorem 2.3. Power-law scaling ATS

There exists an ATS with

kt = k̄ tβ , ηt = η̄ tδ, σt = σ̄ ,

where α ∈ [0, 1), σ̄, k̄, η̄ ∈ R
+, and β, δ ∈ R that satisfy the following conditions:

1. 0 ≤ β ≤ 1

1− α/2
;
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2. −min

(

β,
1− β (1− α)

α

)

< δ ≤ 0 ;

where the second condition reduces to −β < δ ≤ 0 for α = 0.

Proof. See Appendix A

It is interesting to observe that the LTS case falls in the subcase described by this theorem. This
corresponds to the case with both kt and ηt time independent; that is, β and δ equal to zero.

The following result allows us to obtain a new additive process from a known one with a deter-
ministic time change.

Proposition 2.4. Deterministic time change of additive process

Given an additive process {Xt}t≥0 and a real continuous increasing function of time rt s.t. r0 = 0,
then {Xrt}t≥0 is an additive process.

Proof. See Appendix A

Thanks to Proposition 2.4, it is possible to extend the ATS power-law scaling sub-case to a case
with time-dependent σt. Indeed, if σ

2
t t is non decreasing, we can use it to time-change a power-law

scaling ATS without losing the property of independent increments: being able to reproduce the
volatility term structure is an important feature from a practitioner perspective.

In the next Section, we show that the ATS model introduced in this Section describes accurately
volatility surfaces observed in the equity derivative market.

3 Model calibration and power law scaling

In this Section, we show that the ATS processes achieve excellent calibration results on the S&P
500 and EURO STOXX 50 volatility surfaces; moreover, we show that power-law scaling param-
eters are observed in market data.
First, after having described the dataset, we illustrate the model calibration procedure and com-
pare the performance of ATS processes with some benchmarks (LTS processes and Sato processes
in Carr et al. (2007)). Then, we outline some statistical evidence that the market-implied volatility
surface is compatible with a power-law scaling of ATS parameters.

3.1 Dataset

We analyze all quoted S&P 500 and EURO STOXX 50 option prices observed at 11:00 am New
York Time on the 30th of May 2013. The dataset is composed of real market quotes (no smoothing
or interpolation). Let us recall that the options on these two indices are the most liquid options
in the equity market at the world level. For both indices, options expire on the third Friday of
March, June, September, and December in the front year and June and December in the next
year. In the EURO STOXX 50 case also December contracts for the following three years are
available. The dataset includes the risk-free interest rate curves bootstrapped from (USD and
EUR) OIS curves. Financial data are provided by Bloomberg. The dataset contains all bid/ask
prices for both call and put. The strikes are in a regular grid for each available maturity. We
exclude options that do not satisfy two simple liquidity thresholds. We discard options whose
price is less than 10% the minimum difference in the grid of market strikes (the so-called penny
options) and options with bid-ask over bid bigger than 60%. The last condition filters out strikes
for which either a bid or an ask price is missing.
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We use the synthetic forward, as forward price, because this allows a perfect synchronization with
option prices and, for several maturities, it identifies the most liquid forward in the market. The
synthetic forward price is obtained for every maturity, from very liquid options as the (algebraic)
mean of the lowest forward ask and the highest forward bid.

We implement a simple iterated algorithm that identifies the synthetic forward price at a given
maturity T : let us briefly describe it. We start selecting the call and put options with strike price
nearest to the spot price for the shortest maturity or to the previous maturity forward price for the
next maturities. We compute forward bid, ask, and mid prices for that strike price. We consider
the options with the nearest superior strike. If the forward mid-price computed previously falls
within the new bid-ask interval, then the updated forward bid is the highest value among the two
forward bids, while the updated ask is the lowest value among the two ask prices. The updated
forward mid-price corresponds to the mean of the updated bid and ask. Then, we consider the
nearest inferior strike and iterate the same procedure comparing the updated forward mid-price
with the new bid/ask prices relative to this new strike. This procedure is iterated with the next
superior strike and then with the next inferior strike, and so on for all the options present at that
maturity T .

In Figure 1, we show, for a given underlying and a given maturity, the values considered in the
forward price construction and the value selected by the procedure.

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100
Strike

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

P
ric

e

Synthetic forward bid-ask prices

Figure 1: EURO STOXX 50 synthetic forward prices on the 30th of May 2013 at 11 am NT for the
JUN14 maturity: bid, ask, and mid forward prices. Only prices not discarded by the two liquidity criteria
are shown in the figure. According to the algorithm described in the text also the price related to the
strike 1700 is discarded from the forward price computation. We show in red the corresponding forward
bid-ask prices and with a diamond, the selected forward price F0(T ) relative to this expiry.

In Figure 2, we plot the bid, ask, and mid synthetic forward prices for the different maturities
available for the S&P 500 and the EURO STOXX 50.
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Figure 2: Term structure of the synthetic forward prices on the 30th of May 2013 : we
report also the observed bid and ask prices for every maturity. On the left hand side, we
plot the S&P 500 index case and, on the right hand side, the EURO STOXX 50 index
case.

3.2 Calibration

We calibrate the ATS following the procedure discussed by Cont and Tankov (2003, Ch.14, pp.464-
465). We cut the volatility surface into slices, each one containing options with the same maturity,
and calibrate each slice separately. Hereinafter, we focus on α = 1/2 (NIG) and α = 0 (VG),
which are the two (ATS and Sato) generalizations of the two most frequently used LTS processes.
For every fixed maturity T , it is possible to define a new Lévy normal tempered stable process
such that, at time T , its marginal distribution is equal to the marginal distribution of an ATS. A
different Lévy NIG and VG is calibrated for every different maturity and the three time-dependent
parameters kT , ηT , σT are obtained. The calibration is performed imposing the conditions of
monotonicity of Theorem 2.1.
Beneath the ATS processes, we consider the calibration of the standard Lévy processes and of
the (four parameters) Sato processes proposed by Carr et al. (2007).5 We remind that the latter
are additive and self-similar processes (see, e.g. Sato 1991). Call option prices, with strike K and
maturity T , are computed using the Lewis (2001) formula

C(K, T ) = BT F0(T )

{

1− ex/2
∫ ∞

−∞

dz

2π
eiz xφc

(

−z − i

2

)

1

z2 + 1
4

}

, (6)

where φc(u) is the characteristic function of fT , x := lnK/F0(T ) is the moneyness, and BT is the
discount factor between value date and T .
The calibration is performed by minimizing the Euclidean distance between model and market
prices. The simplex method is used to calibrate every maturity of the ATS process. For Lévy
processes and Sato processes, because standard routines for global minimum algorithms are not
satisfactory, we consider a differential evolution algorithm together with a multi-start simplex
method.

5We underline that, in both cases (LTS and Sato), model parameters are obtained through a global calibration
of the whole volatility surface.
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The calibration performance is reported in Table 1 in terms of Mean Squared Error (MSE) and
Mean Absolute Percentage Error (MAPE).6 It is possible to observe that Sato processes slightly
improve Lévy performance, as reported in the literature (see, e.g Carr et al. 2007), while the ATS
processes improvement is, on average, above two orders of magnitude. Although we present the
results for VG and NIG, similar results can be obtained for all ATS processes with α ∈ [0, 1). The
worst results are observed in the VG case.

MSE MAPE
Index Model Lévy Sato ATS Lévy Sato ATS

S&P 500 NIG 4.56 1.92 0.02 3.13% 1.47% 0.23%
S&P 500 VG 8.49 2.20 0.24 4.31% 1.62% 0.79%

Euro Stoxx 50 NIG 22.15 9.87 0.10 1.75% 0.75% 0.09%
Euro Stoxx 50 VG 55.81 9.22 0.35 2.85% 0.73% 0.21%

Table 1: Calibration performance for the S&P 500 and EURO STOXX 50 in terms of MSE and MAPE.
In the NIG (α = 1/2) and VG (α = 0) cases, we consider the standard Lévy process, the Sato process, and
the corresponding ATS process. Sato processes perform better than Lévy processes but ATS improvement
is far more significant: two orders of magnitude for MSE and one order of magnitude for MAPE.

Figure 3 shows the differences of MSE w.r.t. the different times to maturity for S&P 500 volatility
surface calibrated with a NIG process. Sato and Lévy LTS have a MSE of the same order of
magnitude, while the improvement of ATS is of two orders of magnitude and particularly significant
at short-time. The short time improvement in implied volatility calibration is particularly evident,
as shown in Figure 4.

0.2 0.4 0.6 0.8 1 1.2 1.4
Time to maturity (years)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Lo
g 10

 M
S

E

MSE comparison

LTS
Sato
ATS

Figure 3: MSE w.r.t. the different times to maturity (in years) for S&P 500 volatility surface calibrated
with a NIG process. Sato (circles) and Lévy (triangles) have a MSE of the same order of magnitude,
while the improvement of ATS (squares) is of two orders of magnitude and particularly significant at
short-time.

In Figure 4, we plot the market implied volatility and the volatility replicated via ATS, LTS, and
Sato processes at the 22 days (on the left) and 9 months and 21 days (on the right) maturities.
We observe that the ATS implied volatility is the closest to the market implied volatility in any
case and it significantly improves both LTS and Sato processes, particularly for small maturities.
Similar results hold for all other ATS.

6Calibrated model parameters are available upon request.
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Figure 4: Implied volatility smile for S&P 500 for a given time to maturity: 22 days (on the left)
and 9 months and 21 days (on the right). The NIG ATS process, Sato process, and LTS process implied
volatilities are plotted together with the market-implied volatility. ATS reproduces the smile significantly
better than the alternatives, the improvement is particularly evident for small maturities.

In Figure 5, we plot the market and the ATS implied volatility skew for EURO STOXX 50 w.r.t.
the times to maturity. We observe that the calibrated ATS replicates accurately the market
implied volatility skew.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time to maturity (years)

-0.5

-0.4

-0.3

-0.2

-0.1

S
ke

w

Skew comparison

Market
ATS

Figure 5: The market and the NIG ATS implied volatility skew for EURO STOXX 50 w.r.t. the times
to maturity. ATS replicates the market implied volatility skew behavior.

The calibration results of ATS are startling. In particular, we have a model that reproduces “ex-
actly” the volatility term structure observed in the market.

It is useful to stop and comment. The ATS model allows us to calibrate slice-by-slice the surface;
we have only to impose the monotonicity conditions of Theorem 2.1. With the slice-by-slice
approach, we use 3 parameters for every expiry (e.g. 18 parameters in the S&P case). We have
observed that ATS outperforms Levy and Sato processes, the benchmark pure-jump processes in
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the literature. It could seem unfair to compare the calibration results of ATS with a Levy (3
parameters) and a Sato (4 parameters).

In the next Subsection, we show that this family of additive processes combines parsimony with
the desired property of a perfect fit of the volatility term structure: we show that, once the term
structure has been taken into account, only 2 free parameters allow a detailed calibration of the
whole volatility surface.

3.3 Scaling properties

In this Subsection, we show that power-law scaling parameters are observed in market data.
This stylized fact is extremely relevant: we observe statistical evidence that the market-implied
volatility surface is compatible with a power-law scaling ATS of Theorem 2.3.

We introduce a new ATS process, w.r.t. the time θ := Tσ2
T .

We define k̂θ := kTσ
2
T and η̂θ := ηT . We call f̂θ the ATS with parameters k̂θ, η̂θ and σθ := 1.

Notice that for every maturity f̂θ has the same characteristic function of the calibrated ATS fT .
We analyze the re-scaled parameters, in both S&P 500 and EURO STOXX 50 cases. We observe
a self-similar behavior of k̂θ and η̂θ; that is,

{

k̂θ = k̄θβ

η̂θ = η̄θδ
, (7)

where k̄, η̄ are positive constants and β, δ are real constant parameters. To investigate this
behavior and to infer the value of the scaling parameters we consider equations (7) in the log-log
scale.
In Figures 6 and 7 we plot the weighted regression lines and the observed time-dependent pa-
rameters ln k̂θ and ln η̂θ with their confidence intervals for S&P 500 and EURO STOXX 50. The
confidence intervals are two times the standard deviations of ln k̂θ, of ln η̂θ and of ln θ. In Appendix
B, we discuss the estimation of the standard deviations via a confidence interval propagation tech-
nique and the selection of the weights.
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Figure 6: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the NIG calibrated model for S&P 500. We plot a confidence interval equal to two times the
corresponding standard deviation. Notice that confidence intervals on ln k̂θ and ln η̂θ are one order of
magnitude wider than confidence intervals on ln θ. The scalings of k̂θ and η̂θ in (7) are statistically
consistent with β = 1 and δ = −1/2. The values of θ correspond to times to maturity that goes from 22
days to two years.
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Figure 7: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the VG model calibrated on EURO STOXX 50. We plot a confidence interval equal to two times
the corresponding standard deviation. Notice that confidence intervals on ln k̂θ and ln η̂θ are one order
of magnitude wider than confidence intervals on ln θ. The scalings of k̂θ and η̂θ in (7) are statistically
consistent with β = 1 and δ = −1/2. The values of θ correspond to times to maturity that goes from 22
days to five years.

We have observed what seems to be a stylized fact of this model class: both η̂θ and k̂θ scale
with power-law. The same scaling laws are observed both for short time-horizon (days) and long
time-horizon (few years) options. The fitted regression lines provide us with an estimation of β
and δ. Moreover, let us emphasize that the scaling parameters appear qualitatively compatible to
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β = 1 and δ = −1
2
in all observed cases.

We can test whether there is statistical evidence that our hypotheses are consistent with market
data. The estimated scaling parameters together with the p-value of statistical tests are reported
in Table 2.

Surface Model Parameter Parameter’s Value p-value

S&P 500 NIG β 1.10 0.228
S&P 500 NIG δ −0.47 0.705
S&P 500 VG β 1.01 0.758
S&P 500 VG δ −0.43 0.057

EURO STOXX 50 NIG β 1.02 0.816
EURO STOXX 50 NIG δ −0.44 0.472
EURO STOXX 50 VG β 0.99 0.690
EURO STOXX 50 VG δ −0.45 0.195

Table 2: Scaling parameters calibrated from S&P 500 and EURO STOXX 50 volatility surfaces for NIG
(α = 1/2) and VG (α = 0). Parameter estimates are provided together with the p-values of the statistical
tests that verify whether it is possible to accept the null hypotheses β = 1 and δ = −1

2 .

In all cases, we accept the null hypotheses (β = 1 and δ = −1
2
) with a 5% confidence level. Notice

that all p-values, except the S&P 500 VG δ, are above 19%.
In Table 3 we report an estimation of the parameter k̄ and η̄.

Surface Model Parameter Parameter’s Value p-value

S&P 500 NIG k̄ 1.50 0.022
S&P 500 NIG η̄ 0.98 0.015
S&P 500 VG k̄ 1.01 0.001
S&P 500 VG η̄ 0.91 0.000

EURO STOXX 50 NIG k̄ 0.68 0.023
EURO STOXX 50 NIG η̄ 1.21 0.021
EURO STOXX 50 VG k̄ 0.98 0.000
EURO STOXX 50 VG η̄ 0.72 0.000

Table 3: k̄ and η̄ calibrated from S&P 500 and EURO STOXX 50 volatility surfaces. Parameter estimates
are provided together with the p-values of the statistical tests that verify whether it is possible to accept
the null hypothesis k̄ = 0 and η̄ = 0.

We have statistical evidence that in all cases k̄ and η̄ are positive (we reject the null hypotheses of
k̄ = 0 and η̄ = 0 with a 5% confidence level). From these results and from Figure 5 it is possible
to infer a connection between a positive η̄ and the observed negative skew.

It is interesting to observe that these estimated parameters satisfy the inequalities of Theorem

2.3 for the existence of a power-law scaling ATS f̂θ. Moreover, the re-scaled process is additive
w.r.t. the “real” time T . This fact is a consequence of the properties of the volatility term
structure σT (it is always observed on real data that σ2

TT is non-decreasing) and of Proposition

2.4. This proposition states that if
{

f̂θ

}

θ≥0
is an additive process then

{

f̂Tσ2
T

}

T≥0
is an additive

process w.r.t. T .7

7We have also considered a global calibration of the implied volatility surfaces considering the power-law scaling
parameters in (7) with β = 1 and δ = −0.5. The results are of the same order of magnitude of Table 1.
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4 Model selection and robustness tests

In this Section, we show two additional results for the proposed process class. First, we compare
the ATS with two other additive processes already present in the financial literature and propose
some statistical tests able to select the most adequate modeling description of the implied volatility
surface. Then, we show that the results, described in detail in the previous Section, appear robust
over time.

4.1 Model selection via statistical tests

In this Subsection, we compare ATS with two classes of additive processes already present in the
financial literature, the Sato processes (see, e.g. Carr et al. 2007) and the additive processes con-
structed via additive subordination (see, e.g. Li et al. 2016). The comparison is among processes
that have the marginal distribution of normal tempered stable type: i.e. with the Sato processes
NIGSSD and VGSSD and with the sub-class of ATS constructed through additive subordination.
An ATS process can be obtained as a Brownian motion subordinated with an additive subordina-
tor, as in Li et al. (2016), if and only if ηT is constant.8 We discuss two features: one related to the
ηT parameter and another to the skewness and to the excess kurtosis of the calibrated exponential
forward.

A first test is built to verify the adequacy of Sato processes. Given the index of stability for the
model (e.g. chosen α in the Normal Tempered Stable model), it is possible to compute skewness
and kurtosis (see, e.g. Cont and Tankov 2003, p.129). For example the ATS NIG skewness is

E
[

(fT − E [fT ])
3]

(V ar(fT ))
3
2

= −3σ4
T

(

ηT + 1
2

)

kTT + 2σT
6
(

ηT + 1
2

)3
k2
TT

(

σT
2T + kTTσT

4
(

ηT + 1
2

)2
)

3
2

.

A Sato process has skewness and kurtosis constant over time, as it can be deduced by definition
(see, e.g. Carr et al. 2007).
We analyze the term structure of these higher-order moments observed in our dataset adopting
the same procedure of Konikov and Madan (2002). For both indices, we observe a linear behavior
of skewness and kurtosis w.r.t. the squared root of the maturity as shown in Figure 8 in the
NIG case. In the Figure, we have plotted also the confidence interval chosen equal to two times
the standard deviation, respectively, of the skewness and the kurtosis (cf. Appendix B for the
methodology adopted to obtain these standard deviations).
The statistical test is simple. We perform a linear regression statistical analysis of the higher
moments behavior w.r.t. the square root of the time to maturity

√
T : we reject the null hypothesis

of no slope in all of the cases that we analyze (both indices and both tempered stable models;
that is, NIG and VG) with p-values of the order of 10−16. Similar results hold in all ATS cases.

8Proof available upon request.
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Figure 8: Observed time-dependent skewness (kurtosis) w.r.t.
√
T for the NIG calibrated model on S&P

500 volatility surfaces. We plot a confidence interval equal to two times the standard deviation. The
behavior is not consistent with a Sato process.

The other statistical test aims to verify the adequacy of additive processes obtained through
additive subordination (Li et al. 2016) in volatility surface calibration. As already mentioned the
ATS process, when η̂θ is equal to a constant η̄, falls within this class.
In Figure 6 and 7 we have already shown the time scaling η̂θ. We can statistically test the null
hypothesis of constant η̂θ. For both volatility surfaces and for both tested tempered stable models
(NIG and VG) we reject the null hypothesis of a constant η̂θ with p-values below 10−7. As already
observed, ATS processes are characterized by a power-law scaling in η̂θ.

4.2 Robustness tests

In this Subsection, we perform a robustness analysis of the results in Section 3. We repeat the
analysis on four other days, both on the S&P 500 and EURO STOXX 50 volatility surfaces. We
show that the excellent calibration features of the ATS and the power-law scaling properties, ob-
served on the 30th of May 2013, arise also in these other dates.

In these robustness tests, we use bid and ask close prices for the S&P 500 and EURO STOXX
50 options on the 29th of November 2012 (6 months before the date of the analysis of Section 3,
the 30th of May 2013), the 27th of February 2013 (3 months before), the 30th of August 2013 (3
months after), and the 29th November 2013 (6 months after).9 The dataset includes the boot-
strapped risk-free rate curve. The data is provided by Reuters Datastream (option data) and
Reuters Eikons (rate data). Let us observe that close prices are, in general, less accurate than
open market prices (the ones used for the analysis in Section 3).

In Table 4, we report calibration performances for the S&P 500 and EURO STOXX 50 in terms of
MSE and MAPE on the four dates considered. In the NIG and VG cases, we consider the standard
Lévy process, the Sato process, and the corresponding ATS process. In all considered cases, Sato

9These are the penultimate business days of November 2012, February 2013, August 2013, and November 2013.
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processes perform better than Lévy processes but ATS improvement is far more significant: on
average, two orders of magnitude for MSE and one order of magnitude for MAPE. These results
appear coherent with the ones reported in Table 1.

MSE MAPE MSE MAPE
Index Model Lévy Sato ATS Lévy Sato ATS Lévy Sato ATS Lévy Sato ATS

29th of November 2012 (-6 months) 27th of February 2013 (-3 months)
S&P 500 NIG 4.78 1.15 0.38 2.93% 1.36% 0.60% 10.77 4.31 0.52 3.65% 3.30% 0.66%
S&P 500 VG 11.04 1.00 0.38 4.46% 1.36% 0.71% 18.28 3.74 0.48 4.81% 2.16% 0.69%

Euro Stoxx 50 NIG 20.64 19.73 0.26 2.39% 2.29% 0.18% 54.54 19.99 0.15 3.79% 2.47% 0.15%
Euro Stoxx 50 VG 34.51 20.65 0.41 3.05% 2.38% 0.31% 90.81 19.25 0.38 4.91% 2.47% 0.24%

30th of August 2013 (+3 months) 29th November 2013 (+6 months)
S&P 500 NIG 8.27 1.08 0.18 3.29% 1.21% 0.12% 10.23 1.42 0.01 3.50% 1.32% 0.09%
S&P 500 VG 18.37 0.98 0.37 4.95% 1.16% 0.20% 16.80 1.36 0.09 4.52% 1.30% 0.35%

Euro Stoxx 50 NIG 40.98 5.03 1.53 2.68% 0.93% 0.44% 24.22 12.03 0.50 2.38% 1.73% 0.27%
Euro Stoxx 50 VG 59.23 4.81 0.64 3.26% 0.94% 0.32% 57.25 12.66 0.91 3.75% 1.77% 0.45%

Table 4: Calibration performance for the S&P 500 and EURO STOXX 50 in terms of MSE and MAPE
on the 29th of November 2012 (6 months before the date of the analysis), the 27th of February 2013
(3 months before), the 30th of August 2013 (3 months after), and the 29th November 2013 (6 months
after). In the NIG and VG cases, we consider the standard Lévy process, the Sato process, and the
corresponding ATS process, as in Table 1. In all considered cases, Sato processes perform better than
Lévy processes but ATS improvement is far more significant: two orders of magnitude for MSE and one
order of magnitude for MAPE.

In Figure 9, we plot the MSE w.r.t. the different times to maturity (in years) for S&P 500 volatility
surface calibrated with a NIG process on the four considered dates. We observe that Sato (circles)
and Lévy (triangles) have a MSE of the same order of magnitude, while the improvement of ATS
(squares) is, on average, of two orders of magnitude and particularly significant at short-time.
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Figure 9: MSE w.r.t. the different times to maturity (in years) for S&P 500 volatility surface calibrated
with a NIG process on the 29th of November 2012 (6 months before), the 27th of February 2013 (3 months
before), the 30th of August 2013 (3 months after), and the 29th November 2013 (6 months after). Sato
(circles) and Lévy (triangles) have a MSE of the same order of magnitude, while the improvement of
ATS (squares) is, on average, of two orders of magnitude and particularly significant at short-time.

In Figures 10 and 11, we plot the implied volatility smile for S&P 500 on the 29th of November
2012 (time to maturity of 22 days on the left and of 9 months and 22 days on the right) and on
the 29th of November 2013 (time to maturity of 21 days on the left and of 9 months and 21 days
on the right). The NIG ATS process, Sato process, and LTS process implied volatility are plotted
together with the market-implied volatility. As in the case of the 30th of May 2013 (cf. Figure
4) the ATS reproduces the smiles significantly better than the alternatives, the improvement is
particularly evident for small maturities.
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Figure 10: Implied volatility smile for S&P 500 at the 29th of November 2012 (6 months before) for
a given time to maturity: 22 days (on the left) and 9 months and 22 days (on the right). The NIG
ATS process, Sato process, and LTS process implied volatility are plotted together with the market-
implied volatility. ATS reproduces the smile significantly better than the alternatives, the improvement
is particularly evident for small maturities.
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Figure 11: Implied volatility smile for S&P 500 at the 29th of November 2013 (6 months after) for
a given time to maturity: 21 days (on the left) and 9 months and 21 days (on the right). The NIG
ATS process, Sato process, and LTS process implied volatility are plotted together with the market-
implied volatility. ATS reproduces the smile significantly better than the alternatives, the improvement
is particularly evident for small maturities.

In Figure 12, we plot the market and the ATS NIG implied volatility skew for EURO STOXX 50
w.r.t. the times to maturity on the 27th of February and on the 30th of August 2013. In both cases,
the calibrated ATS replicates accurately the market implied volatility skew, as already observed
in Section 3 for the 30th of May 2013. Similar results hold for the other two dates and in the S&P
500 case.
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Figure 12: The market and the ATS NIG implied volatility skew for EURO STOXX 50 w.r.t. the times
to maturity on the 27th of February and on the 30th of August 2013. Again, ATS replicates the market
implied implied volatility skew.

In Figures 13 and 14, we plot the weighted regression lines and the observed time-dependent
parameters ln k̂θ and ln η̂θ with their confidence intervals for S&P 500 and EURO STOXX 50 on
the 29th of November 2012 (on the top) and on the 29th of November 2013 (on the bottom).10

The confidence intervals are two times the standard deviations of ln k̂θ, of ln η̂θ and of ln θ. In
both days, the observed scalings of k̂θ and η̂θ are equivalent to the ones observed in Figures 6 and 7.

10Results for the 27th of February 2013 and the 30th of August 2013 are available upon request.
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Figure 13: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the NIG calibrated model for S&P 500 on the 29th of November 2012 (on the top) and on the 29th

of November 2013 (on the bottom). We plot a confidence interval equal to two times the corresponding
standard deviation. Notice that, also in this case, confidence intervals on ln k̂θ and ln η̂θ are one order of
magnitude wider than confidence intervals on ln θ. The observed scalings of k̂θ and η̂θ are equivalents to
the ones observed in Figures 6 and 7. The values of θ correspond to times to maturity that goes from
tree weeks to two years and a half (all available maturities on Reuters Datastream dataset).
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Figure 14: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the VG calibrated model for EURO STOXX 50 on the 29th of November 2012 (on the top) and
on the 30th of November 2013 (on the bottom). We plot a confidence interval equal to two times the
corresponding standard deviation. Notice that, also in this case, confidence intervals on ln k̂θ and ln η̂θ
are one order of magnitude wider than confidence intervals on ln θ. The observed scalings of k̂θ and η̂θ
are equivalents to the ones observed in Figures 6 and 7. The values of θ correspond to times to maturity
that goes from tree weeks to five years (all available maturities on Reuters Datastream dataset).

The results presented in Table 4 and in Figures 9-14 are equivalent to the one of Section 3.
This analysis confirms the robustness, over a one-year time interval, of the excellent calibration
performances and the power scaling behavior of the ATS.

5 Conclusions

In this paper, we introduce a new broad family of stochastic processes that we call additive normal
tempered stable processes (ATS). An interesting subcase of ATS presents a power-law scaling of
the time-dependent parameters.

We have considered all quoted options on S&P 500 and EURO STOXX 50 at 11:00 am New York
Time on the 30th of May 2013. The dataset considers options with a time to maturity starting
from three weeks and up to several years. We calibrate the ATS processes on the options of
both indices, showing that ATS processes present better calibration features than LTS and Sato
processes. The observed improvement of ATS is even of two orders of magnitude in terms of MSE,
as reported in Table 1. ATS replicates accurately market implied volatility term structure and
skew as observed in Figures 4 and 5.
The quality of ATS calibration results looks quite incredible. In Subsection 3.3, we have shown
that once the volatility term structure has been taken into account, the whole implied volatility
surface is calibrated accurately with only two free parameters.
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We also construct a re-scaled ATS process via a time-change based on the implied volatility term
structure. We show that the re-scaled process calibrated parameters exhibit a power-law behavior.
The statistical relevance of the scaling properties is discussed in detail.

We have compared some model characteristics with the two alternative additive processes present
in the financial literature. These two classes fail to reproduce some stylized facts observed in
market data, which are adequately described by ATS processes.
Finally, we have verified the robustness, over a one-year time interval, of the excellent calibration
performances and the power scaling behavior of the ATS.

As for future research, two main promising directions appear evident. First, it can be in-
teresting to extend ATS processes to the commodity asset class, in general, and to the oil
(Shiraya and Takahashi 2011, Kyriakou et al. 2016) and freight markets (Prokopczuk 2011,
Nomikos et al. 2013), in particular; this model extension should allow for mean-reversion and
seasonality patterns in prices, which are typically found in empirical studies (see, e.g. Benth et al.
2014, and references therein). Second, it would be worthy to develope a fast and reliable simulation
algorithm for ATS processes (see, e.g. Azzone and Baviera 2021) and to study pricing techniques
for exotic derivatives (e.g., generalizing the techniques for path-dependent exotics products, as
Asian options, in Fusai and Meucci 2008, Černỳ and Kyriakou 2011, Fusai and Kyriakou 2016,
through the characteristic function of the ATS increments).
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Notation

Symbol Description

At diffusion term of the additive process {Xt}t≥0

BT discount factor between value date and T
B(R) Borel sigma algebra on R

C (T,K) call option price at value date with maturity T and strike K
{ft}t≥0 ATS process that models the forward exponent
{

f̂θ

}

θ≥0
re-scaled ATS process w.r.t. the time θ = σ2

T T

Ft(T ) price at time t of a Forward contract with maturity T
k variance of jumps of LTS
kt variance of jumps of ATS

k̂θ re-scaled variance of jumps of ATS

k̄ constant part of the re-scaled variance of jumps of ATS k̂θ
Lt Laplace transform of the subordinator St in (3)

{St}t≥0 Lévy subordinator

T option time to maturity
Wt Brownian motion
x option moneyness
α Index of stability : tempered stable parameter of ATS, α ∈ [0, 1)]

β scaling parameter of k̂θ
γt drift term of additive process {Xt}t≥0

Γ(∗) Gamma function evaluated in ∗
δ scaling parameter of η̂θ
ϕ deterministic drift term of LTS
ϕt deterministic drift term of ATS
φc characteristic function of the forward exponent
η skew parameter of LTS
ηt skew parameter of ATS
η̂θ re-scaled skew parameter of ATS
η̄ constant part of the re-scaled ATS skew parameter η̂θ
νt Lévy measure of the additive process {Xt}t≥0

σ diffusion parameter of LTS
σt diffusion parameter of ATS
σ̂θ re-scaled diffusion parameter of ATS, equal to one
σ̄ constant diffusion parameter of ATS
θ re-scaled maturity, defined as σ2

T T
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Appendix A Proofs

We start proving a technical Lemma that we use in the proof of Theorem 2.1.

Lemma A.1.

If limt→0 t σ
2
t ηt = 0, then

lim
t→0

∞
∫

0

ds
t

Γ(1− α)

(

1− α

kt

)1−α(
e−(1−α) s/kt

s1+α

)

∫

|x|<1

dx
x√

2πsσt

e
−
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x+sσ2
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√

sσt
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∣
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|x|<1

dx
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2πsσt

e
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x+sσ2
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sσt

)2
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∫
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2πsσt
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e
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x+sσ2
t (ηt+1/2)
√
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−

(

−x+sσ2
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√
sσt

)2)
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∣

∣

∣

=σ2
t s

∣

∣

∣

∣

1

2
+ ηt

∣

∣

∣

∣

.

The inequality is due to the fact that both terms inside the right-hand side absolute value are
positive if (1/2 + ηt) is positive and are negative if (1/2 + ηt) is negative. Now it is possible to
write the following bound
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∣

∣
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1

2
+ ηt

∣

∣

∣

∣

,

where the last equality is due to the definition of Γ(1 − α). We prove the thesis by the squeeze
theorem

Proof of Theorem 2.1

The idea of this proof is to show that there exists an additive process with the characteristic
function in (4) using the result in Sato (1999, Th.9.8, p.52).
At any given time t > 0 the characteristic function in (4) is the characteristic function of a LTS
(2), at time t, with parameters k = kt, η = ηt, σ = σt and ϕ = ϕt. Hence, we have an expression
for the generating triplet of (4) (see, e.g. Cont and Tankov 2003, eq. 4.24, p.130)


























At = 0
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∫ ∞
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with

C (α, kt, σt, ηt) :=
2

Γ(1− α)
√
2π

(

1− α

kt

)1−α

σ2α
t

(

(1/2 + ηt)
2 + 2(1− α)/(kt σ

2
t )
)α/2+1/4

,

and

Kν(z) :=
e−z

Γ
(

ν + 1
2

)

√

π

2z

∫ ∞

0

e−ssν−1/2
( s

2z
+ 1
)ν−1/2

ds

is the modified Bessel function of the second kind (see, e.g. Abramowitz and Stegun 1948, Ch.9
p.376). For t = 0, as usual in additive processes, we set γ0 = 0, A0 = 0 and ν0 = 0.

First, we verify that νt(x) is a non decreasing function of t. It is possible to identify two expressions
in the jump measure νt(x)

e−x(1/2+ηt)−|x|
√

(1/2+ηt)
2+2(1−α)/(σ2

t kt) (8)

t1/ασ2
t

k
(1−α)/α
t

(

s

|x| +
√

(1/2 + ηt)
2 + 2(1− α)/(σ2

t kt)

)

. (9)

We point out that expression (9) is inside the integral and depends on the integration variable
s ≥ 0. If these two expressions, (8) and (9), are non decreasing w.r.t. t for any t, x and s ≥ 0 then
the jump measure is non decreasing. Expression (6) is non decreasing because g1 and g2 are non
decreasing by hypothesis 1. Hypothesis 1 on g1 and g2 also implied that the squared root in (9)

is non increasing for any t and then, because condition 1 on g3 holds, the prefactor
t1/ασ2

t

k
(1−α)/α
t

is non

decreasing (even multiplied by s/|x|). Thus, (9) is non decreasing for any t, x and s ≥ 0 because
it is the sum of a non decreasing function and g3, a non decreasing function by hypothesis. This
proves that νt(x) is non decreasing in t.

Second, we prove that limt→0 νt(x) = 0 for x 6= 0; this is equivalent to demonstrate that (8) or (9)
go to zero as t goes to zero. We show that this happens in all possible cases. We first consider
the case where

lim
t→0

kt > 0 and lim
t→0

|(1/2 + ηt)| < ∞ . (10)

In this case is evident that expression (9) goes to zero for small t. Otherwise, when (10) is not
true, we have to distinguish two further cases depending on whether

lim
t→0

(1/2 + ηt) ktσ
2
t = 0 (11)

holds. If (11) is true expression (8) goes to zero, otherwise, because of condition 2 on t ηαt σ
2α
t /k1−α

t ,
expression (9) goes to zero. This proves that limt→0 νt(x) = 0 for any x 6= 0.

We can now check whether the triplet satisfies the conditions in Sato (1999, Th.9.8, p.52).

1. The triplet has no diffusion term.

2. νt is not decreasing in t.

3. The continuity of νt(B) and γt , where B ∈ B (R+) and B ⊂ {x : |x| > ǫ > 0}, is obvious
for t > 0: it is a natural consequence of the composition of continuous functions. For t = 0
we have to prove that the limits of νt(B) and γt are 0. We have already proven that νt(x) is
non decreasing in t and that limt→0 νt(x) = 0, ∀x 6= 0. The convergence of νt(B) to 0 is due
to the dominated convergence theorem. The convergence of γt is because of Lemma A.1

and because tϕt goes to zero by definition of ATS.
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Proof of Proposition 2.2

A forward contract, valued in t with delivery in T , is Ft (T ) = F0 (T ) eft , also for an ATS, as in
(1) for the LTS.

Let us prove the sufficient condition. If the forward is martingale

E [Ft(T )|F0] = F0 (T ) .

This is equivalent to impose that
E
[

eft
∣

∣F0

]

= 1 , (12)

that is, the characteristic function of ft computed in −i is equal to one. From equation (4)

E[eft |F0] = Lt

((

ηt +
1

2

)

σ2
t −

σ2
t

2
; kt, α

)

eϕtt = Lt

(

σ2
t ηt; kt, α

)

eϕtt . (13)

Imposing the condition (12), we get ϕt.

Let us prove the necessary condition in two steps. First, given ϕt by equation (5) we prove that
E[eft |F0] = 1, ∀t ≥ 0. This fact is a consequence of equation (13).
Second, we check the martingale condition; that is, ∀s, t s.t 0 ≤ s ≤ t

E [Ft(T )|Fs] = F0 (T )E
[

eft−fs+fs
∣

∣Fs

]

= efsF0 (T )E
[

eft−fs
]

= Fs(T )E
[

eft−fs
]

.

The proposition is proven once we prove that E
[

eft−fs
]

= 1.
This equality holds because ft is additive; that is, process increments are independent

E
[

eft |F0

]

= E
[

eft−fs|F0

]

E
[

efs |F0

]

,

then

E
[

eft−fs
]

= E
[

eft−fs|F0

]

=
E
[

eft |F0

]

E [efs |F0]
= 1

Proof of Theorem 2.3

We check that the power-law sub-case of ATS satisfies the two conditions of Theorem 2.1.
First, we verify that g1(t), g2(t), and g3(t) are non decreasing.

1.

g1(t) = (1/2 + η̄tδ)−
√

(1/2 + η̄tδ)2 + 2σ̄2(1− α)/(k̄tβ)

is non decreasing because its derivative w.r.t. t is always greater or equal than zero for any
t ≥ 0.

d

dt

(

(1/2 + η̄tδ)−
√

(1/2 + η̄tδ)2 +
2(1− α)t−β

σ̄2k̄

)

≥ 0

1− α

2σ̄2k̄

(

βt−δ−β/2

η̄δ

)2

− βt−δ

2η̄δ
− β

δ
≥ 1 .

The last inequality is verified for any t if and only if β ≥ −δ. The inequality holds due to
the hypotheses δ ≤ 0 and β > −δ.

2.

g2(t) = −(1/2 + η̄tδ)−
√

(1/2 + η̄tδ)2 + 2σ̄2(1− α)/(k̄tβ)

is non decreasing for any t ≥ 0: it is the sum of two non decreasing functions because of the
conditions β ≥ 0 and δ ≤ 0.
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3.

g3(t) =

√

σ̄4t2/α−2β(1−α)/α (1/2 + η̄tδ)2 + 2t−β+2/α−2β(1−α)/ασ̄2(1− α)/(k̄)

k̄(1−α)/α

is non decreasing for any t ≥ 0: it is the sum of three non decreasing functions of t (positive

powers) elevated to a positive power because of the conditions β ≤ 1
1−α/2

and δ > β(1−α)−1
α

.

Second, we verify that t σ2
t ηt and t σ2α

t ηαt /k
1−α
t go to zero. The expressions t1+δ σ̄2 η̄

and t1+δα−β(1−α) σ̄2α η̄α/k̄1−α go to zero as t goes to zero because of the conditions δ >

−min
(

β, 1−β(1−α)
α

)

and β ≤ 1
1−α/2

Proof of Proposition 2.4

We prove the thesis using the definition of additive process (Cont and Tankov 2003, Def.14.1
p.455).

1. By hypothesis r0 = 0 and by definition of additive process X0 = 0 almost surely. Thus,
Xr0 = 0 almost surely.

2. Independence of increments follows from the monotonicity of rt.

3. Stochastic continuity w.r.t. time follows from stochastic continuity of the additive process
and continuity of the function rt

Appendix B Parameter estimation

In physics and engineering, all measurements are subject to some uncertainties or “errors”. Error
analysis is a vital part of any quantitative study (see, e.g. Taylor 1997). In this appendix, we
estimate pricing errors and “propagate” them to model parameters. This is a crucial passage to
verify the quality of the proposed model.

First, we estimate pricing errors. In finance, the idea of considering the bid-ask spread in market
prices as a sort of measurement error of “true” prices is well known and goes back to the seminal
paper of Roll (1984). He considers the price y = y∗ + q(yask − ybid)/2, where y is the observed
price, y∗ the unobserved true price, and q a binomial r.v. that takes value in {−1, 1} with
equal probability, where −1 corresponds to the bid price and +1 to the ask price. Modeling
the uncertainty with such a distribution, the relation between bid-ask spread and price standard
deviation Σy is Σy = (yask − ybid)/2. More recently, George et al. (1991) propose an extended
formulation of the price y = y∗ + πq(yask − ybid)/2, where π is the unobserved proportion of the
spread due to the so-called order processing cost; π is estimated from market data as a value 0.8 and
in all cases analyzed in George et al. (1991) is observed a value greater than 0.5. Conservatively,
π can be chosen as 0.5, obtaining the relation Σy = (yask − ybid)/4.
Another possibility, in the plain vanilla option market for equity indices that we consider in this
study, is to model the true price y as a Gaussian random variable with a mean equal to the mid-
market price (yask+ybid)/2 and bid and ask prices chosen as symmetric quantiles. This represents
more closely what is observed in this derivative market. On the one hand, it is standard for a
market player to pass through an options broker to work the order. Generally, real trades are
closer to the mid-market than to bid/ask prices (see, e.g. Petersen and Fialkowski 1994). On the
other hand, it is not sure that a market player trades within the bid-ask spread. In some rare
cases, a trade can take place at a price higher (lower) than the ask (bid) price: it can happen
because the bid-ask enlarges due to sudden movements in the underlying or in presence of a very
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large trade, such as the hedging of a large exposure. It is rather difficult to estimate how rare these
events are. They can happen roughly around the 5% of the cases (i.e. yask − ybid ≃ 2× 1.96 Σy).
For this reason, in this paper, we consider the measurement error in prices as Gaussian and
related to the bid-ask spread via Σy = (yask − ybid)/4. With this choice, the relation between
prices standard deviation and the bid-ask spread is equal to the one obtained by George et al.
(1991).

Second, we “propagate” to model parameters this measurement error in prices. In applied statis-
tics, the propagation of uncertainties is a standard technique (see, e.g. Taylor 1997, Ryan 2008).
We briefly recall some main results present in the literature for the models (14), (16) and (18)
considered; then we describe the calibration procedure adopted in the paper.

Consider the linear model
y = Zg + ǫ , (14)

where y ∈ R
n is the response vector, Z ∈ R

n×(r+1) is the explanatory variables matrix, ǫ ∼
Nn (0,Σ), Σ ∈ R

n×n is the diagonal response vector variance-covariance matrix, g ∈ R
r+1 is the

unobserved coefficient vector. We indicate with Nn (µ,Σ) an n-dimensional Gaussian distribution
with mean µ and variance Σ. We perform a weighted linear regression with weights W ∈ R

n×n, a
diagonal matrix. The least square solution is

ĝ = (Z ′WZ)
−1

Z ′WY ,

where Y ∈ R
n is the observed response vector (see, e.g. Ryan 2008, Ch.3, pp.115-116). Thus, ĝ is

the Gaussian linear combination of Gaussian random variables:

ĝ ∼ Nr+1

(

g, (Z ′WZ)
−1

Z ′WΣWZ ′(Z ′WZ)−1
)

. (15)

In the weighted non-linear regression case, it is possible to obtain a similar result (see, e.g.
Seber and Wild 1989, Ch.2, pp.21-24). Consider the model

yi = f(g, zi) + ǫi (16)

where yi is the ith component of the response vector y ∈ R
n, ǫi is the ith component of the

error vector ǫ ∼ Nn (0,Σ), zi is the ith row of the explanatory variables’ matrix. Similarly, the
coefficients of a non-linear regression are:

ĝ ∼ Nr+1

(

g, (F ′WF )
−1

F ′WΣW ′F (F ′WF )−1
)

, (17)

where F ∈ R
n×(r+1) is s.t. its (i, j) element is

F i,j =
∂f

∂gj
|g,zi

and gj is the jth component of g.

In the literature, the case that takes into account Gaussian correlated errors on both the response
vector and the explanatory variables is available for the fitting of a straight line (see, e.g. York
1968). Consider the model

yi = a+ b(zi + ǫzi) + ǫyi , (18)

with yi and zi subjected to Gaussian errors with variance Σzi and Σyi and covariance Σzi,yi. The

estimated slope and intercept â and b̂ can be obtained through a fast iterative procedure. In the
first order approximation

â ∼ N (a,Σa)

b̂ ∼ N (b,Σb) ,
(19)
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where the expressions of Σa and Σb are reported in York (1968, 1st equation in p.324).

In this paper, the calibration procedure is divided into two steps.
First, for a given maturity T , we deal with the non-linear problem and we calibrate from market
data the three time-dependent parameters kT , σT and ηT on options with different strikes. The
distribution of the estimated parameters can be obtained using equation (17). We construct Σ
through all observed bid and ask prices at the given maturity: the diagonal value is equal to
(yask − ybid)

2/16. The matrix of weights W , as standard in the option market, is chosen as the
identity matrix because the bid-ask spread does not differ significantly in the market prices in
the calibration dataset. Consequently, the calibration results of different models can be easily
compared as shown in Section 3, where we compare ATS with LTS and Sato models. As result
of this step, we obtain a variance-covariance matrix ΣT ∈ R

3×3 of the estimated parameters
(kT , σ

2
T , ηT ) for every maturity T .

Then, to estimate the scaling parameters of model (7), we rewrite the parameters definition w.r.t.
θ := Tσ2

T in log-log scale as

ln k̂θ = ln k̄ + β ln θ

ln η̂θ = ln η̄ + δ ln θ .

The estimated variance and covariance of ln k̂θ, ln η̂θ and ln θ are obtained by a first-order expansion
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,

where T is the maturity corresponding to the θ of interest. The distributions of the estimated
parameters β, δ, k̄, and η̄ are the one identified in equation (19). The weights selected in the
minimization procedure (see York 1968, equation (1), p.320) are 1/V ar(ln k̂θ) in the regression on
ln k̂θ and 1/V ar(ln η̂θ) in the regression on ln η̂θ. The weights of the explanatory variable ln θ are
1/V ar(ln θ).

Finally, from the confidence intervals for kT and ηT we can also get the confidence intervals of
the skewness and the excess kurtosis at a given maturity. We are able to obtain skewness and
excess kurtosis of ATS thanks to the identity in law with LTS (for the moments of LTS see,
e.g. Cont and Tankov 2003, p.129). The linear regression of these two higher moments, w.r.t.
the squared root of time, is realized by computing the Gaussian errors (15), in the first-order
approximations, of skewness and excess kurtosis.
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