Evolution of the wake of a floating wind turbine under imposed motion and mild turbulent conditions: a wind tunnel study

¹ ForWind - Center for Wind Energy Research, University of Oldenburg, Institute of Physics, 26129 Oldenburg, Germany ² Dept. of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy

<u>*thomas.messmer@uni-oldenburg.de</u>

WESC 2023 Conference - Glasgow, 24/05/2023

© ForWind

T Messmer^{1*}, M Montenegro Montero², K Yilmazlar², A Croce², J Peinke¹ and M Hölling¹

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement N° 860879.

Wake of floating wind turbines

Motions of a FOWT

- Wave driven (f_p~0.1Hz)
- Natural period in translation (f_p~0.03 Hz)
- Natural period in rotation (f_p~0.01Hz)

Roberston et al. (2014) Leimester et al. (2018)

How these movements impact the wake?

- Recovery
- Transition to far-wake (gaussian profile)
- Wake dynamics

@ForWind_DE

Schliffke et al. (2020) Li et al. (2022)

© ForWind

C A R L V O N O S S I E T Z K Y universität OLDENBURG

Wind tunnel testing with a model FOWT

Model turbine Oldenburg 0.6 on a 6-DoF platform

- Reproduce motions of a floating turbine
- Wake measurements, 2D to 10D
- Hot-wires (1d in Oldenburg and 3d in Milan)

Imposed 1DoF sinusoidal motions

- Fixed
- Sway with St ≈ 0.38, A~0.01D
- Sway with St ≈ 0.38, A~0.01D
- C_T ≈ 0.85
- U_∞ ≈ 5 m/s -> Re ≈ 2.10⁵

ForWind_DE

DoF platform Messmer et al. (2022) $St = \frac{f_p D}{U_{\infty}}$

Experimental set-up

Milan

Background $TI_{\infty} \approx 1.5\%$

Oldenburg

Background $TI_{\infty} \approx 0.3\%$

Wake speed and TI profiles at hub height (Milan, TI_{∞} \approx 1.5 %)

- Recovery starts x>4D
- sway > surge > fixed
- Shear layers merge at x=4D

fixed

surge

5

sway

© ForWind

Color map of TI (Oldenburg, $TI_{\infty} \approx 0.3 \%$)

ForWind_DE

© ForWind

++	+	+	+	+	++	+	+	+	+++	+++	
+	+	+	++++	+++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	-
+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	-
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	
+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	-
+	÷	+	+	÷	+	+	+	+	+	+	-
+	++	+++	++	+++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	-
ŧ	ŧ	ŧ	ŧ	÷	+	++++	+++	+++	++++	+++	-
÷	÷	t i	ŧ	+	+	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	-
+++++++++++++++++++++++++++++++++++++++	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	-
+++	++++	++++	+++++	+++	+++++	+++++	++++	+++++	++++++	+++	-
+	+	+	+	+	+	+	+	+	+	+	-
						-	T	T			
÷	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	-
+++	+++	+++	+++	++	++++	++	++	+++	+++	+++	-
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	-
++++	+	+++	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	-
+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	-
++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	-
	5		6		7		8		9	+	10
	0	X/	D[-]		1		0		5		10
		/	L J								

6

Wake wind speed map (Milan, Tl_∞ ≈ 1.5 %)

4D[mm] ∇

- Wake starts to recover at 4D
- Integration of the average wind speed in rotor area
- -> recovery

ForWind_DE

Power available for a downstream turbine

 $\begin{bmatrix} 10D\\ mm \end{bmatrix}$ \mathbf{N}

Recovery vs. X/D (Oldenburg, $TI_{\infty} \approx 0.3 \%$)

ForWind_DE

© ForWind

8

Recovery vs. X/D (Milan, Tl_{∞} \approx 1.5 %)

ForWind_DE

© ForWind

9

Recovery vs. X/D (Milan and Oldenburg)

- Significant differences for fixed between $TI_{\infty} \approx 0.3\%$ and TI_∞ ≈ 1.5 %
- Effect of inflow turbulence seems more significant than movements
- Nevertheless, motions enable faster recovery

ForWind_DE

© ForWind

10

What are the mechanisms that play a role in the wake recovery process?

ForWind_DE FLOAWER

© ForWind

Wake recovery rate (Oldenburg, $TI_{\infty} \approx 0.3 \%$)

© ForWind

FLOAWER

ForWind_DE

Wake recovery balance (Milan, $TI_{\infty} \approx 1.5 \%$)

- Region of large variations: X/D in [3D, 7D]
- Exch. of momentum driven by ∇ of turbulent fluctuations (Reynolds stresses), ($\partial_v < v'u' >$)/U and), $(\partial_z < u'w' >)/U$
- Floating's turbine's movements induce more wind speed fluctuations (small scale) turbulence & coherent structures)

FLOAWER

ForWind_DE

© ForWind

Conclusion

 Recovery up to 20% higher with motions in laminar (TI_∞ ≈ 0.3%) wind compared to 7% with turbulence (TI_∞ ≈ 1.5%)

- Motions accelerate transition to farwake and enhance intensity of recovery
- Induce larger wind speed fluctuations (Reynolds stresses)
- Movements generate coherent flow structures in the wake

@ForWind_DE

© ForWind

- Strong dependency to St but also to A*
- Further investigations needed on transition region and with different turbulent conditions

(h) pulsing

(i) meandering

Mail

thomas.messmer@ uni-oldenburg.de

U Websites

www.forwind.de/

www.floawerh2020.eu/

Appendix

© ForWind **J** @ForWind_DE

Typical motions of a 5MW FOWT

Results from openFAST simulations

- 3 floaters (OC4 Semi-sub, Spar, TLP)
- H_s,T_p in ([1,6] m, [6,10] s)
- Turbulent wind (U in [5,15] m/s)

Analysis of motions show

- Motions at floater's natural frequencies, up to 15 m of amplitude
- Motions at wave's frequencies
- Motions also driven by large turbulent eddies

OC4 DeepCwind semi-sub ($H_s = 2.1 \text{ m}, T_p = 8.8 \text{ s}, U_0 = 13 \text{ m/s}$) simulated with openFAST

NREL 5MW FOWT \rightarrow MoWito 0.6 FOWT

Conservation of ΔC_p

@ForWind DE

© ForWind

1st order Taylor development

 $\Delta P = 0.5 \rho \pi R^2 (3 U_0^2) C_p(\lambda_0) v + 0.5 \rho \pi R^2 U_0^3 dC_p/d\lambda \lambda_x$ $||\Delta C_{P}|| = 3 C_{p} ||v|| / U_{0} = 3 C_{p} 2\pi f_{p} A_{p} / U_{0}$

 $||\Delta C_{P}||^{5MW} = 3 C_{p} 2\pi f_{p}^{5MW} A_{p}^{5MW} / U_{0}^{5MW}$ = 3 $C_p 2\pi (\lambda_T x f_p^{MoWiTO 0.6}) \cdot (A_p^{MoWiTO 0.6} / \lambda_L) / ((\lambda_T / \lambda_L) x U_0^{MoWiTO 0.6})$

 $= ||\Delta C_{P}||^{MoWiTO 0.6}$

 $P(U_0 + v, \lambda_0 + \lambda_x) = P(U_0, \lambda_0) + dP/dU(U_0, \lambda_0) \times v + dP/d\lambda(U_0, \lambda_0) \times \lambda_x$

 $P(U, \lambda) = 0.5 \rho \pi R^2 U^3 C_p(\lambda) \& \Delta P = P(U_0 + v, \lambda_0 + \lambda_x) - P(U_0, \lambda_0)$

Power produced by a WT and power variation due to motion

• $f_p^{MoWiTO 0.6} = \lambda_T \times f_p^{5MW}$ • $U_0^{MoWiTO 0.6} = (\lambda_T / \lambda_L) \times U_0^{5MW}$

• $A_p^{MOWiTO 0.6} = A_p^{5MW} / \lambda_L$

