
TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Fixed-point Iterations Approach to Spark
Scalable Performance Modeling and Evaluation

Soroush Karimian-Aliabadi, Mohammad-Mohsen Aseman-Manzar, Reza Entezari-Maleki, Danilo Ardagna,
and Ali Movaghar

Abstract—Businesses are dependent on mining of their Big Data more than ever and configuring clusters and frameworks to reach the
best performance is still one of the challenges. An accurate performance prediction of the Big Data application helps reducing costs
and SLA-violations with better tuning of the configuration parameters. Among the Big Data frameworks, Apache Spark is the widely
used and popular one, with the in-memory processing of graph-based workflows, usually running on top of the YARN cluster. While a
great number of attempts have been made to predict the execution time of Spark jobs, to the best of our knowledge, none of them
considered multiple simultaneous YARN queues and users in the underlying layer which, by the way, play a great role in the cluster’s
performance. We first presented a monolithic analytical model based on Stochastic Activity Networks (SANs) for the performance
evaluation of Spark applications running inside YARN queues submitted by multiple users. Then we improved the scalability of the
proposed model using the fixed-point technique and validated the accuracy of the model through real world experiments on TPC-DS
benchmark. We compared results of the proposed model in predicting the Spark job execution time with that of measurements and
reported a 5.6% average error for all the queues in experiment setups. While the first monolithic proposal was not feasible to study due
to the state-space explosion issue, the fixed-point approach is solvable in reasonable time and thus scalable.

Index Terms—Apache Spark, Big Data Frameworks, Analytical Modeling, Performance Evaluation, Fixed-point Method, Stochastic
Activity Network.

F

1 INTRODUCTION

A LMOST every corner of the computer science is touched
by the challenges and opportunities introduced by Big

Data analytics. From Data Mining and Business Intelligence
to Internet of Things (IoT) and Databases are adopting
new technologies that are capable of storing and processing
huge amount of data [1]. Data volumes that are constantly
increasing in a pace not seen until today, bring difficulties
as well as chances. Over 500 centers around the world are
processing COVID-19 test results, looking for patterns and
opportunities to find a treatment [2]. Big Data frameworks
are, bar none, playing a great role in this industry, and
among them Apache Spark [3] is one of the most popular.

Prior to the introduction of Apache Spark, Hadoop
framework [4] was the dominant tool in Big Data era as the
perfect implementation of the MapReduce (MR) paradigm
[5] and still is continuing as the de-facto standard for the
underlying cluster setup. While both Spark and Hadoop
have their own scheduling mechanism, providers usually
use a more sophisticated layer named YARN [6]. Resource
management in the cluster is the specialization of the YARN
layer which is also equipped with two main scheduling
scheme, namely, Capacity and Fair.

• S. Karimian-Aliabadi, M. M. Aseman-Manzar, and A. Movaghar are
with the Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran.
E-mail: {skarimian, asemanmanzar}@ce.sharif.edu, movaghar@sharif.edu

• R. Entezari-Maleki is with the Department of Computer Engineering, Iran
University of Science and Technology, Tehran, Iran.
E-mail: entezari@iust.ac.ir

• D. Ardagna is with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Milan, Italy.
E-mail: danilo.ardagna@polimi.it

A considerable portion of data intensive businesses,
about 35% of them, are predicted to move to the data
marketplace in 2024, up from 25% in 2020 [2]. Thereby, it is
of paramount importance to improve efficiency and reduce
operating costs in Big Data infrastructure. At the same time,
however, each of above-mentioned layers and frameworks
are adding complexity to the whole system, widening the
state space of different configurations [7], [8]. The surge of
interest in breaking down this complexity, understanding its
behavior, and predicting it has led to a number of researches.
In order to manage a huge process and plan for it we
need to be able to predict its performance [9]. Accurate
prediction is necessary for both providers and end-users
since both are paying for the resources. The former is able
to avoid SLA violations and the latter can make budget-
aware decisions [10]. In the Cloud environment, in order
to avoid over-provisioning, it is sometimes possible to start
with the minimum amount of resources and then scale it up
on-demand, though this scale-up approach do not apply to
MR-based applications [11].

Too many details of the Spark framework along with
other parameters of the cluster makes it hard to have a
straightforward mathematical model for the job completion
time and more professional methods should be employed in
order to tackle the complexity. Simulation [12], [13], machine
learning [14], [15], [16], [17], and analytical modeling [18],
[19], [20] are three main approaches in the literature so
far. Efforts in building a Spark simulator have resulted
in a number of comprehensive ones which are capable of
copying the actual framework’s behavior [12] while their
utilization is time-consuming and needs an extra phase of
mastering the library. Different learning techniques from

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

regression to neural networks are effective in estimating the
execution time of Spark applications, albeit tuned only for
a single criterion. Analytical modeling, on the other hand,
gives a greater insight into the system and takes less time to
solve.

Most of the proposals about performance modeling of
Big Data frameworks are either focused on conventional
architectures or have ignored important details of the Spark
nature. Unlike MR, Spark supports workflows in form of a
Directed Acyclic Graph (DAG) making it difficult to adopt
conventional models. Moreover, there are some aspects of
the YARN planning scheme not addressed in previous
works. Resources can be allocated to a hierarchy of queues
running in parallel based on the category or precedence.
The same level of multi-tenancy is also included inside
the queue itself and multiple users are welcome to submit
their jobs to the queues at once. Although considering these
details might increase the accuracy and practicality of the
model, it also introduces serious scalability issues.

To address the challenges above, and in order to in-
clude important details, we proposed an analytical model
based on Stochastic Activity Network (SAN) formalism
[21], [22] for multiple YARN queues running Spark appli-
cations submitted by multiple users. Our proposed model
is numerically solvable, thus enabling faster decisions. The
monolithic form of the model and its scalability problem
is first presented and then fixed-point iteration approach is
employed to make the model feasible. Capacity planning is
our choice of scheduling scheme since its wider adaptation
in industry and clusters are assumed homogeneous. The aim
of this modeling effort is to accurately predict the average
execution time of Spark applications in each YARN queue
and this claim is assessed through a set of TPC-DS bench-
mark [23] executions in a real cluster. Results show that the
proposed model is accurate enough with the average error
of 5.6% and at the same time scalable with few seconds of
solving time.

The rest of the paper is organized as follows. Section
2 illustrates the architecture of the target system. Section
3 gives a brief introduction to the SAN formalism and
section 4 presents the monolithic form of the proposed
prediction model along with its scalability issues. In order
to address these issues, a fixed-point approach is leveraged
in section 5 and its applicability is examined in section 6.
Section 7 discusses related work and section 8 concludes
this paper.

2 TARGET ARCHITECTURE

Before introducing the performance models, it is necessary
to discuss the details in the framework which are going to
be reflected in the proposed models. This section clarifies
the architecture of the target system along with assump-
tions about the Spark cluster, scheduler, and the application
execution model.

2.1 Spark

Spark has emerged as one of the most referred distributed
Big Data processing engines [24] which apart from the not so
novel parallelism, benefits from its high speed in-memory

YARN

HDFS

Capacity

Scheduler

Spark

Fig. 1. Target system architecture

Stage 3

ShuffledHashJoin

Project

Aggregate

Exchange

Stage 4

ReduceByKey

Stage 2

Parallellize

MapPartitions

Project

Exchange

Stage 1

Exchange

Parallellize

MapPartitions

Project

Fig. 2. The DAG including stages for a sample Spark application

calculations. Although Spark is available for standalone
usage and is equipped with its own file system, the more
popular scenario is the deployment on top of the Hadoop
cluster [18]. By doing so, developers can not only take
advantage of the mature HDFS, but also the comprehensive
stack of frameworks intertwined with Hadoop and most
notably, the YARN. YARN provides expert means for man-
aging resources, scheduling, and dividing applications into
separate queues of users. It is assumed in this paper that
Spark is running on top of the Hadoop-YARN cluster with
homogeneous resources as depicted in Fig. 1.

The hierarchical execution style of the Spark frame-
work is a key to handle the complexity together with the
parallelism. Applications which are submitted are realized
as one or more jobs which some are responsible for the
data fetching tasks and some others for doing the actual
processing. The data-flow inside each job is represented by
a Directed Acyclic Graph (DAG) including vertex and edge
concepts. The former stands for a Spark stage and the latter
shows the flow of the data from one stage to another. Stages
in Spark are meaningful encapsulation of tasks that can run
in parallel, knowing that each task is the atomic unit of
process. The structure of a sample application is shown in
Fig. 2.

The orchestration of concepts described above, however
is implemented behind the scene. SparkContext is the main
object of the application which holds the code as well as the
processes that user has defined. It is wrapped by the Driver
which is responsible for collaborating to other nodes and
is specific to a single application. The driver needs worker
nodes to do the computations and asks for them via the
cluster manager. Cluster manager here is assumed to be the
YARN but is not limited to. A worker node contains an exe-
cuter which performs individual tasks. The number of tasks
that can run in parallel inside an executer is equivalent to the
number of cores configured for the executer. Configuration
of each executer, namely, its memory and cores are user-

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

defined.
Some other details of the application are embedded

inside the SparkContext. It will create a job whenever it
encounters an action inside the user program and forms
the execution DAG afterwards. According to the above-
mentioned, this DAG holds stages as well as the tasks
residing in them. The SparkContex rationale behind the
DAG formation is how the dataset is being transformed
from one state to another and relies on an abstraction named
Resilient Distributed Dataset (RDD) which is one of the
key characteristics of Spark framework. The first RDD is
the initial dataset and lazily transforms to other RDDs on-
demand, in the sense that all the mappings will be applied
at once and right when an action is triggered. Tracking
and saving changes on RDDs have enabled Spark to meet
the fault tolerance through the lineage. If an RDD is lost
eventually, this lineage helps Spark to build that RDD again
from scratch.

2.2 Capacity Scheduler
When multi-tenancy was added to the Hadoop architecture
for the first time FIFO was the scheme for the scheduling
but with the development of YARN, it became the expert
in scheduling with its comprehensive methods, namely,
Capacity and Fair planning. The former option is the more
common scheme [16] and easier to study due to the preemp-
tive nature of the latter one. Thus, here we have assumed
that the scheduling is being done in Capacity.

Instead of one FIFO queue of submitted applications,
Capacity planner allows multiple queues and guaranties
minimum amount of resources for each one. Users can
submit their applications to one of these queues according
to their estimation of resource demand. Hierarchical parent-
child structure is another feature of Capacity queues in
which there is a root queue by default which accesses all
of the resources and distributes them among its sub-queues.
This structure ends in leaves where actual applications are
running according to the configuration defined for their
current queue. This includes minimum and maximum of
resources it can consume as percentages of its parent queue.
Inside each queue scheduling is done in FIFO and user’s
acquired resources is also controlled by upper and lower
bounds as percentage of queue’s minimum capacity.

Free resources can be used by requesting applications in
order to increase utilization while under-provisioned ones
always have higher priorities to capture free resources. In-
side a queue, an application can start just when the previous
application has registered for enough resources to finish its
final stage.

2.3 Execution Model
In order to create a closed performance model, we need
to determine a further assumption that every user’s appli-
cation will be submitted again to the queue after a think
time. This scenario is not far from real world scenarios
where often a single application is executed over and over
possibly after assessing its results in previous run [25].
Finally, toward providing a more clear and understandable
environment to study, we have considered each queue is
dedicated to a specific application. This last assumption

again is not odd since one can simulate running different
applications in a single queue with multiple queues running
each of them.

3 INTRODUCTION TO SAN
Petri Nets (PNs) and their stochastic derivatives are useful
in modeling and evaluating computing systems specially
distributed ones and among them Stochastic Activity Net-
work (SAN) has a good tool support and is flexible enough
to model complex systems compared to other extensions
[26], [27], [28], e.g. Stochastic Petri Nets (SPNs) and Gener-
alized Stochastic Petri Nets (GSPNs). SAN which is actually
a probabilistic generalization of Activity Networks (ANs)
also benefits from novel features like activity time distri-
bution functions, reactivation predicates, and enabling rate
functions. While the formal definition is presented in [22],
an informal description of its basic elements is given below.

• Place: Places are similar to the places in PNs and
graphically are represented by circles.

• Timed activity: Timed activities are used for mod-
eling actions of the system whose duration affects
performance of the system under-study noticeably.
Graphically, timed activities are represented by thick
vertical bars or boxes. Any timed activity can have
several inputs and outputs. An input of a timed
activity can be a place or an input gate, and similarly
an output can be a place or an output gate. An activ-
ity distribution function, an enabling rate function,
and a computable predicate called the reactivation
predicate are associated to each timed activity.

• Instantaneous activity: Instantaneous activities are
used for modeling actions of the system which are
done in a negligible amount of time compared to
the other actions which can be modeled using timed
activities. Graphically, instantaneous activities are
represented by thin vertical bars. An instantaneous
activity can have several inputs and outputs.

• Input gate: Gates provide higher flexibility in defining
enabling and completion rules. An input gate has a
finite set of inputs and one output. A computable
predicate called enabling predicate and a computable
function called input function are associated to each
input gate.

• Output gate: An output gate has a finite set of outputs
and one input. A computable function called the
output function is associated to each output gate.

Applicability and effectiveness of SAN formalism covers a
wide range of expertises including Cloud Computing [27],
Computational Grids [28], and Computer Networks [26]
and is proved to be effective to analyze complex IT systems
performance.

4 MONOLITHIC MODEL

The monolithic form of the proposed model is presented
in this section for the simple scenario of two YARN queues
running Spark applications. The rest of the section addresses
the definition of the performance metric as well as the
scalability issues of the monolithic design.

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

TABLE 1
Gate predicates/functions of the SAN model represented in Fig. 3

Name Feature Definition

OGSij
Function #PWij

= #PWij
+Nij

IGDij

Function #PDij
= #PDij

−Nij

Predicate #PDij
≥ Nij

IGNi

Function #PLi
= #PLi

− 1

Predicate (#PLi
> 0) && (#PWik

= 0)

IGRij

Function
#PWij

= #PWij
− 1

#PC = #PC − 1

Predicate

(#PWij
> 0) && (#PC > 0) && (

(
∑Ki

j=1 #PRij
< Si · C) ||

for each queue q, q 6= i :

(
∑Kq

j=1 #PWqj
= 0 ||∑Kq

j=1 #PRqj
≥ Sq · C)

)

4.1 SAN model description
As stated in section 2 we have assumed each queue is
running a specified application from one or more users,
therefore it is possible to reflect the workflow of the ap-
plication in the queue itself. Supposing there are two kinds
of applications with three and two consecutive stages which
are running in two separated queues in parallel by one or
more users, the execution model can be proposed as Fig. 3.
It consists of two main parts for each of the queues and a
place named PC which represents the available resources
as free cores and is initialized to contain C of them shared
among all queues.

Red dashed boxes indicate stages inside a Spark applica-
tion and the SAN sub-model proposed for them is the same
for all. Every stage starts with populating its tasks which
are Nij for the jth stage of the queue i. The instantaneous
activity IASij

and the output gate OGSij
together are

responsible for introducing Nij tokens to the place labeled
PWij

where tasks wait for acquisition of cores. Afterwards,
another instantaneous activity IARij

with the help of an
input gate named IGRij

provides free available cores to the
waiting tasks. It wraps the logic for the Capacity planning
scheme in resource allocation and depends on the share of
each queue which is denoted by Si. The detailed behavior
of all the input and output gates including their predicates
and functions are collected in Table 1. If according to IGRij

a free core matches a waiting task, IARij
then removes one

token from each of PWij
and PC and adds one to place PRij

where tokens simulate running tasks. The execution time of
each task is considered exponentially distributed with rate
µRij

thus the rate of timed activity TARij
which models

completion of tasks is µRij
multiplied by the number of

tokens in PRij
. Upon completion of a task TARij

takes a
token from PRij

and inserts a token to PDij
marking it as

done. When all tasks of the stage j are completed that is
when multiplicity of the place PDij

reaches Nij , the stage is
finished and IGDij

collects all of the tokens in PDij
.

Apart from the elements that are modeling the execu-

tion of stages, some others are necessary to complete the
workflow. Just when the last stage finishes, an instantaneous
activity dubbed IADi

puts a token in PDi
determining that

the application owned by one of the users in queue i is
done and the user can submit it again after some moments
of thinking. This think time is modeled by TATi

, a timed
activity with a marking dependent rate [(#PDi

) ·µTi
] which

is exponentially distributed and moves a token from PDi

to PSi
in every firing. Place PSi

is the starting point for
applications and holds Ni tokens initially equivalent to the
number of active users in the queue i.

Recalling from section 2, Capacity scheduler only lets
an application to start executing in a queue when the last
running one is provided with enough cores to finish its
finalizing stage. That is when PWij

becomes empty while
IASij

had been fired and prompted the starting of the stage
some time earlier. Thus, for the last stage of the ith queue,
Ki, the output gate OGSik

adds a token to a place named
PLi

in addition ot its normal function. A token in PLi
means

that the last stage is already started. Moreover, IANi
fires

when IGNi
has noticed an empty PWik

and a token in PLi
.

This firing introduces a new token to PNi
which in turn

enables the next waiting application to fire its first stage via
IASi1

. As might be expected the marking of the place PNi

is set to one initially.

4.2 Performance metric

One of the key characteristics of every Stochastic model is
the definition of the performance metric for which the model
is solved and represents the main concern of the designer.
Reward functions are the mechanism devised for some of
the formalisms based on Markov Reward Model (MRM)
such as SANs in order to formulate the performance metric
in terms of the state probability distribution. The measure
that we wish to assess for the model proposed in Fig. 3 is
the steady-state application execution time in each of the
queues. This is analogous to the time an application takes
to move from place PSi

to the place PDi
in average and is

modeled via the reward function Eq. 1

ri =
Ni

throughputIADi

− 1

µTi

(1)

where, ri is the reward function for the ith queue and
throughputIADi

is the rate IADi is fired and is computed
as following.

throughputIADi
= P(#PDik

= Nik − 1) · µRik
(2)

where P(#PDik
= Nik − 1) is the probability of being in

a state where all but one task of the last stage of the ith
queue are finished, so there are Nik−1 tokens in place PDik

and one token left to finish the entire job. This probability is
multiplied by µRik

, the rate of execution of a task.

4.3 State-space explosion

The proposed model’s complexity is proportional to the
number of states of the underlying MRM and the larger its
state space become, the more time-consuming it would be
to solve the model. In the case of the Fig. 3 state space size
is reported in Table 3 for different parameter assignments.

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

𝑁1

𝑃𝑆1
𝑇𝐴𝑇1 #𝑃𝐷1 . 𝜇𝑇1

𝐼𝐴𝑆11𝑃𝑊11

𝐼𝐴𝑅11

𝑃𝑅11

𝑇𝐴𝑅11
#𝑃𝑅11 . 𝜇𝑅11

𝑃𝐷11𝐼𝐴𝑆12𝑃𝑊12
𝐼𝐴𝑅12

𝑃𝐿1

𝑇𝐴𝑅12
#𝑃𝑅12 . 𝜇𝑅12

𝑃𝐷12

𝐼𝐴𝑆13𝑃𝑊13
𝐼𝐴𝑅13

𝑃𝑅13

𝑇𝐴𝑅13
#𝑃𝑅13 . 𝜇𝑅13

𝑃𝐷13𝐼𝐴𝐷1

𝑃𝐷1

𝐼𝐴𝑁1

𝑃𝑅12

1
𝑃𝑁1

𝐼𝐴𝑆21

𝑃𝑊21 𝐼𝐴𝑅21

𝑃𝑅21

𝑇𝐴𝑅21
#𝑃𝑅21 . 𝜇𝑅21

𝑃𝐷21

𝐼𝐴𝑆22

𝑃𝑊22
𝐼𝐴𝑅22

𝑇𝐴𝑅22
#𝑃𝑅22 . 𝜇𝑅22

𝑃𝐷22 𝐼𝐴𝐷2𝑃𝑅22

𝑃𝐿2

𝑇𝐴𝑇2 #𝑃𝐷2 . 𝜇𝑇2
𝑃𝐷2𝑃𝑆2

𝑁2

𝐼𝐴𝑁2

1
𝑃𝑁2

C

𝑃𝐶

Stage 1

: Queue 1

Stage 2Stage 3

Stage 1 Stage 2

: Queue 2

Fig. 3. Monolithic SAN model proposed for a sample scenario of two Capacity queues

TABLE 2
Elements of the SAN model represented in Fig. 3

Name Description Rate/ Initial
marking

Name Description Rate/ Initial
marking

IASij
Start of the jth stage of ith queue PDi

Completed applications 0

PWij
Tasks waiting for resource 0 TATi

Thinking time [(#PDi
) ·µTi

]

IARij
Assignment of free cores to waiting tasks PSi

Users waiting to start their application Ni

PRij
Running tasks 0 PLi

Start of the last stage 0

TARij
Task execution time [(#PRij

)·µRij
] IANi

Enabling the next application to start

PDij
Completed tasks 0 PNi

Enabling the next application to start 1

IADi
Completion of an application

For the simple configuration of only 2 users in each queue,
stages with 32 tasks each, and 20 cores, the state space
grows to more than 2M in size which takes more than 42
minutes to generate. Provided that in real usage scenarios
of Spark applications, stages usually have hundreds of tasks
and plenty of resources, the monolithic model of Fig. 3 is
impractical and its scalability should be reconsidered. In the
next section the fixed-point iterations approach is proposed
in order to break down the complexity of the model and
a composite model is presented instead of the monolithic
style.

5 FIXED-POINT APPROACH

Recalling from the Table 3 state space size of the monolithic
proposal grows easily with the multiplicity of the param-
eters and falls short in meeting scalability requirements
even for simple scenarios. One of the key reasons is the
multiplication of markings in different queue sub-models

TABLE 3
State space size of the Fig. 3 for different parameter assignments

Users
in
each
queue
(Ni)

Tasks
in
each
stage
(Nij)

Cores
(C)

State space
size

State
space
generation
time (m)

2 40 10 1 333 885 17

2 50 10 1 945 905 18

2 32 20 > 2 154 000 > 42

3 20 10 939 085 8

3 30 10 2 153 389 39

3 30 20 > 2 154 000 > 29

in order to devise all possibilities of the whole state space.
Therefore, knowing that a single queue structure is com-

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

C

𝑃𝐶

Queue 𝑖

𝑃𝑅

𝑇𝐴𝑅
𝜇𝑅 𝐼𝐴𝑅

𝑃𝐼
𝑃𝑊 𝑇𝐴𝐼

𝜇𝐼

𝑇𝐴𝑊
𝜇𝑊

Other Queues

𝐼𝐴𝑅𝑖1

𝑃𝑅𝑖1

𝑇𝐴𝑅𝑖1
#𝑃𝑅𝑖1 . 𝜇𝑅𝑖1

𝑃𝐷𝑖1

𝐼𝐴𝑅𝑖𝐾𝑖

𝑃𝑅𝑖𝐾𝑖

𝑇𝐴𝑅𝑖𝐾𝑖

#𝑃𝑅𝑖𝐾𝑖
. 𝜇𝑅𝑖𝐾𝑖

𝑃𝐷𝑖𝐾𝑖

Fig. 4. SAN model proposed for a decomposed queue

TABLE 4
Gate predicates/functions of the SAN model represented in Fig. 4

Name Feature Definition

IGR

Function #PC = #PC − 1

Predicate

(#PW = 1) && (#PC > 0) && (

(#PR <
∑Q

q=1,q 6=i Sq · C) ||

(
∑Ki

j=1 #PWij
= 0)

)

IGRij

Function
#PWij

= #PWij
− 1

#PC = #PC − 1

Predicate

(#PWij
> 0) && (#PC > 0) && (

(
∑Ki

j=1 #PRij
< Si · C) ||

(#PW = 0)

)

pletely tractable, a fragmentation scheme is presented in
this section in which each queue sub model is being solved
individually and fixed-point theorem [29], [30] is used in
order to estimate the final solution. Following describes the
decomposed model as well as the fixed-point approach to
solving proposed models.

5.1 SAN model description
Each queue sub model in the previously proposed mono-
lithic model is decoupled and is presented individually,
thus, instead of a single SAN model for the whole structure,
here a system of multiple SAN models are represented each
dedicated to one of the queues. These newly created models
are similar in general structure, therefore, a representative
example is shown in Fig. 4 which is decomposed equivalent
of the queue i in Fig. 3.

Some details of the queue i sub-model are hidden to
avoid repetition. In the lower sub-model the behavior of
all the other queues that are running in parallel is simpli-
fied and estimated by a SAN mechanism which simulates

TABLE 5
Elements of the SAN model represented in Fig. 4

Name Description Rate/ Initial
marking

PI All the other queues are in idle state 1

PW At least one of the other queues is
waiting for resources

0

PR Running tasks 0

TAW Time from idle to waiting µW

TAI Time from waiting to idle µI

TAR Task execution time µR

IAR Resource allocation

acquiring and returning cores by them as well as their
requests. It is important for the queue i whether there is any
other queue demanding resources. To model such behavior,
two places PI and PW are designed which represent the
idle and waiting state respectively. Initially PI contains one
token which means none of the other queues are requesting
for cores. At least one of the queues other then queue i
is asking for resource if a token is encountered in PW .
Timed activities TAW and TAI are simulating the transition
from idle to waiting state and vice versa respectively with
relevant rate parameters µW and µI . The acquisition of
resources by other queues is modeled by the input gate IGR

and its appointed instantaneous activity IAR. It takes a core
from PC and adds to place PR if there is a token in PW

and if cumulative share of other queues is greater than the
current number of acquired resources in PR. Gate functions
and predicates used in the model of Fig. 4 are collected in
Table 4 and a brief description of newly introduced elements
is given in Table 5. The exponentially distributed timed
activity TAR with rate µR fires upon completion of tasks
and frees resources to PC .

5.2 Parameter assignment
SAN model parameter assignment prior to reward compu-
tation is another important step in performance evaluation
scheme proposed in this paper. Some parameters of the
model are infrastructure related including the number of
users in each queue, think time, each queue’s capacity, and
number of all the available cores which in our proposed
SAN formalism are denoted with Ni, µT , Si, and C respec-
tively. Others are application specific, namely, the DAG of
each queue, number of tasks in each stage, and the average
time of task execution. Assuming that the DAG is specific
to the application and remains constant for different data
sizes it can be obtained once the application is submitted
and prior to the actual execution of the job since Spark
generates the DAG, right after the submission. In order
to estimate the average task execution time in each stage
of the application and therefore µRij

, micro-benchmarking
approaches can be employed, where the application is tested
against a small portion of the actual data and measurements
are then extrapolated to estimate that of actual run. The
same approach can be used to realize number of the tasks
in each stage, Nij . In this regard, learning-based method

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

developed in [31] is proved practically accurate and is also
adopted in this paper.

While assignment of the above-mentioned parameters is
feasible, µW , µI , and µR are not known a priori. Rather
they can be computed in term of the results obtained from
solving individual queue sub-models according to Eq. 3 to
Eq. 5.

µW =

Q∑
q=1,q 6=i

µWq (3)

µR =

Q∑
q=1,q 6=i

µRq
(4)

µI = µW ·
PI

1− PI
(5)

where µWq is the rate of the transition from idle to waiting
state and µRq is the rate of task execution, both for the
queue q. Rates µI and µW are proportional to the steady
state probability of being in idle or waiting state, therefore,
PI is introduced in Eq. 5 as the steady state probability of
being in idle state which can be calculated by Eq. 6,

PI =

Q∏
q=1,q 6=i

PIq (6)

where PIq is the probability of queue q in idle state. So
far µW , µR, and µI are related to parameters in individual
queues for which we have designed reward functions.

rWq
=

Kq−1∑
j=1

P(#PDqj
= Nqj − 1 ∧#PRqj

= 1) · µRqj

+ P(#PDq
> 0) · µTq

(7)

The reward function for estimating µWq
is named rWq

. In
Eq. 7 for each stage j except the last one the probability that
one of the tasks is running and all the others are finished
is multiplied by the rate of task execution which indicates
the rate that stage j enables its next stage. The last stage
is not going to enable another stage and the first stage is
only enabled with rate µTq

if there is any token in the place
PDq

. Summing all these terms, the overall rate in which
queue q goes to waiting state can be calculated. In order to
estimate the value of µRq

reward function rRq
is proposed in

Eq. 8 where the marking dependent rate of task execution is
aggregated for all the stages and π(PRqj

) denotes the steady
state marking of place PRqj

.

rRq
=

Kq∑
j=1

π(PRqj
) · µRqj

(8)

Finally, rIq is designed for PIq estimation in Eq. 9 where
the probability that all the tasks of the stage are provisioned
or accomplished and none of them is waiting for resources is
summed for all stages. Also when jobs are waiting in place
PDq

and are not yet started, queue is in idle state.

rIq =

Kq∑
j=1

P(#PRqj +#PDqj = Nqj)

+ P(#PDq
> 0)

(9)

Queue 2

Sub-model

++

+

Initial

values

Queue 1

Sub-model

Queue 3

Sub-model

𝜇𝑊
𝜇𝑅

𝜇𝐼

𝜇𝑊
𝜇𝑅
𝜇𝐼

𝜇𝑊
𝜇𝑅
𝜇𝐼

𝜇𝑊1

𝜇𝑊1

𝜇𝑅1
𝕡𝐼1

𝜇𝑊2

𝜇𝑊2

𝜇𝑅2
𝕡𝐼2

𝜇𝑊3

𝜇𝑅3
𝕡𝐼3

𝜇𝑊3

𝜇𝑅3
𝕡𝐼3

𝜇𝑅2𝕡𝐼2
𝜇𝑅1 𝕡𝐼1

Fig. 5. Fixed-point iterations depicted for a sample scenario of three
YARN queues

The performance metric designed in Eq. 1 is still applica-
ble in the decomposed model proposed in this section and
a fixed-point scheme is proposed next in order to circulate
parameters µWq

, µRq
, and PIq between sub-models which

facilitates realizing an estimation of this metric.

5.3 Fixed-point iterations
There is a circular dependency between individual queue
sub-models and definite solution of each of them is not
possible but a fixed-point scheme can be devised in which
each round of model solving increases the accuracy of
performance metrics until a threshold is reached. During
each iteration the output of one sub-model is input to others
while in the first round initial values are used for circulating
parameters. The fixed-point scheme is depicted in Fig. 5 for
the sake of clarity and for a sample case of three queues
running in parallel where red dashed line is showing the
order of model solving and central boxes are aggregating
updated single queue results to compute µW , µR, and µI

values. Through successive iterations, performance metric
designed in Eq. 1 for each queue sub-model converges to a
value which its existence is examined next.

5.4 Fixed-point existence
Fixed point variables are depicted in Fig. 5 for a sample case
of three queues but for the general case of Q queues the
fixed point equation can be written as below.

y = F (y) (10)

y = (µW1
, µW2

, ..., µWQ
,

µR1
, µR2

, ..., µRQ
,

PI1 ,PI2 , ...,PIQ)

(11)

In order to demonstrate existence of a solution to Eq. 10
we use Brouwers fixed point theorem [32]:

let F : C ⊂ Rn → Rn be continuous on the compact,

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

convex set C and suppose that F (C) ⊆ C. Then, F has a fixed
point in C.

From Eq. 7 we can derive lower and upper bounds
of µWi

values as 0 and (K − 1)µR + µT , respectively,
assuming that K = max(Ki), 1 ≤ i ≤ Q is the
largest number of stages among all queues and
µR = max(µRij

), 1 ≤ i ≤ Q, 1 ≤ j ≤ Ki is the greatest
task execution rate among all stages of all queues. Similarly,
µRi

is bounded between 0 and KNµR according to Eq. 8,
assuming that N = max(Nij), 1 ≤ i ≤ Q, 1 ≤ j ≤ Ki is
the biggest number of tasks among all stages of all queues.
Finally, knowing that PIi is a probability closed in [0, 1],
then we can define the set C as:

C = {y = (µW1 , µW2 , ..., µWQ
,

µR1
, µR2

, ..., µRQ
,

PI1 ,PI2 , ...,PIQ),

µWi
∈[0, (K − 1)µR + µT],

µRi
∈[0,KNµR],

PIi ∈[0, 1]}

(12)

According to Heine-Borel theorem, if a subset of the
euclidean space Rn is closed and bounded then it is also
compact, therefore, C defined in Eq. 12 is compact knowing
that all of its n-tuples are closed and bounded. Next we
show that C is convex. The set C is convex if, given two
elements x ∈ C and y ∈ C, the element tx + (1 − t)y,
with t ∈ [0, 1] belongs to C. Since members of C are n-
vectors lets consider the ith component of y, and define
zi = txi + (1 − t)yi. maximum value of zi happens when
xi = yi = max(yi), so zi is bounded by max(yi) and
consequently txi + (1− t)yi ∈ [0,max(yi)].

A vector function F is continuous over the set C if its
component functions Fi are continuous over C, for each
y ∈ C. That is, for each ŷ ∈ C, limy→ŷ Fi(y) = Fi(ŷ).
Component functions of F are those declared from Eq. 7
to Eq. 9 for which the limit converges to its (finite) value at
ŷ and therefore they are continuous. Hence, F is continuous
over C and a solution exists for the fixed point equation of
Eq. 10.

6 ANALYTICAL AND EXPERIMENTAL RESULTS

Extensive experiments performed in order to asses the ac-
curacy and feasibility of the model proposed in Fig. 5 with
regards to the performance measure defined in Eq. 1. The
results of measurements from real world experiments are
compared to those of analytically solving the fixed point
model and errors are reported relatively denoted by θ.

θ =

∣∣∣∣τ − TT
∣∣∣∣ (13)

Where τ stands for the execution times obtained analytically
from the proposed SAN model and T denotes those mea-
sured from experiments. Numerical solutions for proposed
SAN models are acquired using the state-of-the-art tool,
Mobius [33], and its iterative steady state solver. In order
to successively solve each sub-model of Fig. 5 and auto-
matically pass parameters among them a script employed
which stops when the difference between τ values of the last

Output: r1, r2, ... , rQ
1: µW1

, µW2
, ... , µWQ

← initial values
2: µR1

, µR2
, ... , µRQ

← initial values
3: PI1 , PI2 , ... , PIQ ← initial values
4: r′1, r

′
2, ... , r

′
Q ← initial values

5: converge← false
6: while converge = false do
7: converge← true
8: for q = 1 to Q do
9: compute µW , µR, PI for qth queue

10: solve the sub-model of qth queue
11: update µWq

, µRq
, PIq , rq

12: if
∣∣rq − r′q∣∣ /r′q ≥ δ then

13: converge← false
14: end if
15: end for
16: r′1, r

′
2, ... , r

′
Q ← r1, r2, ... , rQ

17: end while
18: return r1, r2, ... , rQ

Fig. 6. Fixed point iterations pseudo-code

iteration and the current iteration falls under a threshold,
implying the convergence to the fixed point. The script
is represented as a pseudo-code in Fig. 6 where δ is the
convergence threshold and is assigned to 0.01 throughout
this paper. Tests show that the fixed point is reached in
no more than 4 iterations, thus the convergence is fast.
However, solving time of the model is reported in Table 6
and Table 7. Numerical analysis is performed on a personal
computer with an i5 Intel processor and 6 GB of memory.

The workload of experiments is provided with the well-
known TPC-DS benchmark which is frequently used in
industry and literature for characterizing Big Data systems
and includes data and query generators. TPC-DS Kit 1 is put
into use as an edition of TPC-DS v2.10 with some bug fixes
and improvements. The dataset generated for this setup is
500 GB in size and is tested against queries 20, 40, 52, and
84 of the TPC-DS query table in different configurations.
These queries are of variety of DAGs from two to four stages
each containing hundreds of tasks. The profile of each query,
namely its DAG, number of tasks in each stage (Nij), and
average task execution time in each stage (µRij

) is realized
through 10 time pilot execution of the query. The learning-
based technique presented in [31] made it possible for us to
accurately find out above-mentioned input parameters for
the actual size dataset from micro-executions by dividing
stages into two sets, namely, those which scale with increas-
ing in the data size and those which remain more or less
constant. More information about the selected queries can
be found in the TPC-DS documentation and is omitted here
to conserve space. Also for the sake of reproducibility, traces
of the experiments, SAN model description, and fixed-point
iteration script are distributed online 2.

Spark 2.4.1 release is installed on top of the Hadoop
version 3.1.1 cluster comprising 4 VMs each configured with
10 cores and 25 GB of Memory. Each executor has 2 GB of
memory and a single dedicated core while 10 GB of RAM

1. github.com/gregrahn/tpcds-kit
2. github.com/mohsenasm/Spark-Fixed-Point-SAN-Model-Paper

github.com/gregrahn/tpcds-kit
github.com/mohsenasm/Spark-Fixed-Point-SAN-Model-Paper

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

TABLE 6
Real and predicted execution times for 2 queues scenario

Queue Nq Query Sq T (ms) τ (ms) θ (%) Solving
(%) time (s)

1 1 2 52 50 51 630 51 305 0.63
30

2 1 52 50 52 162 52 105 0.11

2 1 2 52 50 83 046 66 470 19.96
39

2 2 20 50 52 423 53 650 2.34

3 1 2 20 40 55 104 55 060 0.08
155

2 3 40 60 285 880 280 305 1.95

4 1 1 84 30 29 005 32 172 10.92
73

2 2 20 70 32 734 32 655 0.24

5 1 1 52 20 76 281 77 410 1.48
126

2 3 84 80 26 506 26 342 0.62

6 1 2 40 50 252 590 289 847 14.75
181

2 1 40 50 274 719 309 636 12.71

7 1 2 20 40 37 332 39 639 6.18
61

2 3 20 60 32 186 34 030 5.73

8 1 2 84 30 28 055 30 049 7.13
156

2 2 84 70 27 309 26 198 4.07

9 1 1 52 20 92 132 80 901 12.19
75

2 1 40 80 313 521 294 396 6.1

and 5 cores are set aside for the YARN’s nodemanager.
The cluster is able to consume up to 20 executors in all of
the trials. Results are reported in Table 6 and Table 7 for
scenarios of 2 and 3 parallel queues respectively. Each queue
is tested with different values as its share of the resources
and the maximum possible allocation is set to 100% in case
other queues are idle.

According to Table 6 and Table 7 the proposed SAN
model along with the fixed-point scheme is able to predict
the execution time of Spark jobs on YARN queues with the
average error of 5.9% and 5.4% for scenario of 2 and 3 par-
allel queues respectively, which is an acceptable error and
proves that numerical results are accurate enough. While
the reported accuracy is an indicator of the effectiveness of
the proposed prediction tool, capturing the behavior of the
target system is another advantage that arrives thanks to
the power of analytical modeling and is not easily obtained
in learning-based methods. An example is the decrease of
the average execution time observed when increasing the
number of users in a queue. This is due to the overlapping
of two consecutive jobs and is also captured in the numerical
results of the SAN model. Following is another possible
application of the proposed model.

6.1 Minimizing the makespan

In many use cases, particularly, minimizing the makespan,
it is favorable to balance execution times in different YARN
queues. Imposing such equity among queues results in
minimized makespan, which is the completion time of the
queue with the longest job. Analytical prediction models are
useful in finding the most suitable capacity partitioning and
here we tested the practicality of our fixed-point model in
this regard. We conducted experiments on a representative
scenario of two YARN queues running queries 52 and 84
each by a single user and capacity percentages that vary
from 90% to 10%.

90 80 70 60 50 40 30 20 10

20000

30000

40000

50000

60000

70000

80000

90000

10 20 30 40 50 60 70 80 90

Q52 capacity (%)
R

u
n

ti
m

e
 (

m
s
)

Q84 capacity (%)

Q84 Measurement

Q84 Prediction

Q52 Measurement

Q52 Prediction

Fig. 7. Makespan analysis for different capacity configurations

Results of experiments are depicted in Fig. 7 with dashed
lines which show that an approximate capacity partition of
75% for the query 52 and 25% for the query 84 leads to
the almost same execution time for both queues and there-
fore optimal makespan. The analytical fixed-point model
proposed in this paper is also solved for similar configu-
rations and numerical results are illustrated in solid lines.
Intersection of numerical lines is just about the one that was
obtained from experiments. This implies that the execution
time prediction proposed in model of Fig. 5 is useful in
finding a proper allocation scheme between YARN queues
in order to minimize the overall makespan.

7 RELATED WORK

Recently, a notable amount of research is conducted in
order to break down the complexity of Big Data processing
frameworks, from early ones such as Hadoop to those more
recent like Spark. Their approach to model the performance

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE 7
Real and predicted execution times for 3 queues scenario

Queue Nq Query Sq T (ms) τ (ms) θ (%) Solving
(%) time (s)

1
1 1 52 20 81 960 97 483 18.94

842 1 20 30 41 063 49 115 19.61

3 1 40 50 279 585 286 295 2.4

2
1 1 40 20 431 389 353 955 17.95

1822 2 84 30 49 897 48 969 1.86

3 3 52 50 72 317 72 852 0.74

3
1 2 52 30 109 241 119 663 9.54

602 2 20 30 56 702 54 184 4.44

3 2 20 40 49 698 49 445 0.51

4
1 2 52 30 97 671 110 114 12.74

472 2 20 30 54 797 54 813 0.03

3 1 20 40 55 339 52 688 4.79

5
1 1 40 30 306 785 301 109 1.85

1502 1 20 30 58 052 56 496 2.68

3 2 84 40 33 182 33 584 1.21

6
1 1 40 25 321 554 317 181 1.36

1132 1 20 25 54 730 57 330 4.75

3 3 52 50 79 079 78 557 0.66

7
1 3 52 33 102 579 103 543 0.94

762 2 52 33 133 755 125 328 6.3

3 2 52 34 127 184 126 256 0.73

of the framework can be classified mainly as learning-based,
analytical, or simulation and their aim is to better tune the
configuration parameters, improve resource management,
or identify faulty behaviors. Here, we try to introduce differ-
ent viewpoints and discuss their strengths and weaknesses
starting from the most recent ones.

Both simulation and analytical approaches are leveraged
in [18] in order to predict the execution time of Spark
jobs and the error of different methods are compared with
regard to sample benchmarks showing that the simulator
is the most accurate with 5.7% error. Although they have
presented an analytical model based on queuing networks,
simulation is used in order to solve the model instead of
numerical methods. This is also the case in [34] where
authors have proposed a model based on process algebra
for Spark and solved it using simulation tool. The proposed
formalism, however, is limited to a number of tasks running
in parallel and lacks the power to expressive more complex
DAGs. Other examples of simulation efforts are [12], [13]
which have proposed comprehensive simulators to study a
distributed system.

A considerable portion of both analytical and learning-
based approaches have reported the employment of sam-
pling and micro-benchmarking. In several researches [11],
[35], [36], [37], linear regression of selected sample exe-
cutions are considered as the predictor for the actual-size
performance of Hadoop application. Based on a similar
sampling approach, more sophisticated learning techniques
have been adopted such as deep reinforcement learning
[14] or combining multiple regression models each for a
single stage of the whole application, [15]. Regarding the
feature selection challenge, authors in [16] have investigated
a comprehensive list of features from the application to the
underlying infrastructure and then trained multiple models

in order to compare accuracies.

A mathematical formulation has been proposed in [19]
for Spark job completion time based on an assumption
that stages in independent branches of the DAG are all
running in parallel which is not always the case in reality
and also they have ignored the synchronization waiting
time between the end of a stage and starting of the next
stage. From a geometrical viewpoint every configuration of
YARN cluster parameters can be seen as a point in an n-
dimensional coordinate system where interrelation of exe-
cution time with parameters can be expressed as a surface.
This computational geometry idea was seen through by [20]
where authors used sampling in order to construct the mesh.
While accuracy of the prediction is acceptable, choosing
the proper set of dimensions needs trials and might vary
for different applications. A black-box formulation of the
execution time in Spark is presented in [31], dividing pro-
cessing phases into two groups, namely those scaling with
the data size and others which remain constant. The former
group is then predicted from statistics gathered from sample
executions. Authors in [38] targeted the problem of latency
prediction in fork-join environments with analytical models
and more particularly with closed-form solutions realized
for queuing networks. Employment of stochastic formalisms
is still popular and in one of the most recent ones, [39], a
Petri-net model is proposed as a Representative of stream
processing in Spark.
In our previous work [40], in order to alleviate the scalability
issue of predicting multi-queue YARN environment we con-
sidered lumping technique which introduced a significant
error of about 15%. The contribution was built upon the
efforts for developing analytical models for single queue
scenarios in [41], [42]. We closely examined the state-of-the-

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

art in this area and more precisely those specific to Spark
which to the best of our knowledge have not considered
multiplicity of nor the users neither the queues. The details
of the YARN scheduling mechanism despite the wide adop-
tion in industry, is also rarely explored in literature.

8 CONCLUSIONS AND FUTURE WORK

In this paper we presented a numeric analytic model based
on SAN formalism for the performance evaluation of Spark
jobs running on a YARN cluster considering the multiplicity
of YARN queues and users. Due to the low scalability
of the monolithic design we then decomposed the model
into sub-models each representing a single YARN queue
negotiating parameters in a fixed-point scheme. We tested
the accuracy and feasibility of numerical results obtained
from solving the model against benchmark experiments
which showed acceptable errors and low running times for
a variety of configurations. Average error of 5.6% proves the
applicability of the model as a prediction tool which can be
useful in resource management decisions and Service Level
Agreements.

Interesting follow-up research can be centered around
utilizing the presented model in optimizing cluster parame-
ters with the aim of decreasing operating costs or frequency
of SLA-violations. More accurate and faster profiling ap-
proaches can also be leveraged in order to further increase
the prediction accuracy or lower the solving time.

REFERENCES

[1] A. Singh, A. Payal, and S. Bharti, “A Walkthrough of the Emerging
IoT Paradigm: Visualizing Inside Functionalities, Key Features,
and Open Issues,” Journal of Network and Computer Applications,
vol. 143, pp. 111–151, 2019.

[2] Gartner, “Top 10 Trends in Data and Analytics for 2020.” [On-
line]. Available: https://www.gartner.com/smarterwithgartner/
gartner-top-10-trends-in-data-and-analytics-for-2020/

[3] Apache, “Spark.” [Online]. Available: http://spark.apache.org/
[4] Apache, “Hadoop.” [Online]. Available: http://hadoop.apache.

org/
[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-

ing on Large Clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[6] V. K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, and H. Shah, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in Proceedings
of the 4th annual Symposium on Cloud Computing, SOCC ’13. Santa
Clara, California, USA: ACM Press, oct 2013, pp. 1–16.

[7] R. Krishna, C. Tang, K. Sullivan, and B. Ray, “ConEx: Efficient
Exploration of Big-Data System Configurations for Better Perfor-
mance,” to appear in the IEEE Transactions on Software Engineering,
2019.

[8] L. Cai, Y. Qi, W. Wei, J. Wu, and J. Li, “mrMoulder: A
Recommendation-based Adaptive Parameter Tuning Approach
for Big Data Processing Platform,” Future Generation Computer
Systems, vol. 93, pp. 570–582, 2019.

[9] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance Modeling
and Workflow Scheduling of Microservice-based Applications in
Clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 9, pp. 2101–2116, 2019.

[10] D. Cheng, X. Zhou, Y. Xu, L. Liu, and C. Jiang, “Deadline-Aware
MapReduce Job Scheduling with Dynamic Resource Availability,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 4,
pp. 814–826, 2019.

[11] Y. Li, F. Liu, Q. Chen, Y. Sheng, M. Zhao, and J. Wang, “Mar-
VeLScaler: A Multi-View Learning based Auto-Scaling System for
MapReduce,” to appear in the IEEE Transactions on Cloud Computing,
2019.

[12] P. Czarnul, J. Kuchta, M. Matuszek, J. Proficz, P. Rościszewski,
M. Wójcik, and J. Szymański, “MERPSYS: An Environment for
Simulation of Parallel Application Execution on Large Scale HPC
Systems,” Simulation Modelling Practice and Theory, vol. 77, pp. 124–
140, 2017.

[13] Y. Liu, C. Zhang, B. Li, and J. Niu, “DeMS: A Hybrid Scheme
of Task Scheduling and Load Balancing in Computing Clusters,”
Journal of Network and Computer Applications, vol. 83, pp. 213–220,
2017.

[14] T.-Y. Mu, A. Al-Fuqaha, and K. Salah, “Automating the Configu-
ration of MapReduce: A Reinforcement Learning Scheme,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–14,
2019.

[15] Z. Chao, S. Shi, H. Gao, J. Luo, and H. Wang, “A Gray-box Per-
formance Model for Apache Spark,” Future Generation Computer
Systems, vol. 89, pp. 58–67, 2018.

[16] Á. B. Hernández, M. S. Perez, S. Gupta, and V. Muntés-Mulero,
“Using Machine Learning to Optimize Parallelism in Big Data
Applications,” Future Generation Computer Systems, vol. 86, pp.
1076–1092, 2018.

[17] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. El-Ghazawi,
“Towards Accurate Prediction for High-Dimensional and Highly-
Variable Cloud Workloads with Deep Learning,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 4, pp. 923–934, 2020.

[18] D. Ardagna, E. Barbierato, E. Gianniti, M. Gribaudo, T. B. Pinto,
A. P. da Silva, and J. M. Almeida, “Predicting the Performance of
Big Data Applications on the Cloud,” Journal of Supercomputing,
pp. 1–33, 2020.

[19] F. Xu, H. Zheng, H. Jiang, W. Shao, H. Liu, and Z. Zhou, “Cost-
effective Cloud Server Provisioning for Predictable Performance
of Big Data Analytics,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 5, pp. 1036–1051, 2019.

[20] Y. Chen, P. Goetsch, M. A. Hoque, J. Lu, and S. Tarkoma, “d-
Simplexed: Adaptive Delaunay Triangulation for Performance
Modeling and Prediction on Big Data Analytics,” to appear in the
IEEE Transactions on Big Data, 2019.

[21] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic Activity
Networks: Structure, Behavior, and Application,” in Proceedings of
the International Workshop on Timed Petri Nets, Torino, Italy, 1985,
pp. 106–115.

[22] A. Movaghar and J. F. Meyer, “Performability Modeling with
Stochastic Activity Networks,” in Proceedings of the 1984 Real-Time
Systems Symposium, Austin, TX, USA, 1984, pp. 215–224.

[23] M. Poess, B. Smith, L. Kollar, and P. Larson, “TPC-DS, Taking
Decision Support Benchmarking to the Next Level,” in Proceedings
of the 2002 ACM SIGMOD international conference on Management
of data, SIGMOD ’02. Madison, Wisconsin, USA: ACM Press, jun
2002, pp. 582–587.

[24] S. Tang, B. He, C. Yu, Y. Li, and K. Li, “A Survey on Spark
Ecosystem: Big Data Processing Infrastructure, Machine Learning,
and Applications,” to appear in the IEEE Transactions on Knowledge
and Data Engineering, 2020.

[25] H. Zhang, H. Huang, and L. Wang, “Meteor: Optimizing Spark-
on-YARN for Short Applications,” Future Generation Computer
Systems, vol. 101, pp. 262–271, 2019.

[26] L. Rashidi, R. Entezari-Maleki, D. Chatzopoulos, P. Hui, K. S.
Trivedi, and A. Movaghar, “Performance Evaluation of Epidemic
Content Retrieval in DTNs with Restricted Mobility,” IEEE Trans-
actions on Network and Service Management, vol. 16, no. 2, pp. 701–
714, 2019.

[27] E. Ataie, R. Entezari-Maleki, S. E. Etesami, B. Egger, D. Ardagna,
and A. Movaghar, “Power-aware Performance Analysis of Self-
adaptive Resource Management in IaaS Clouds,” Future Generation
Computer Systems, vol. 86, pp. 134–144, 2018.

[28] R. Entezari-Maleki, M. Bagheri, S. Mehri, and A. Movaghar, “Per-
formance aware Scheduling Considering Resource Availability in
Grid Computing,” Engineering with Computers, vol. 33, no. 2, pp.
191–206, 2017.

[29] V. Mainkar and K. S. Trivedi, “Sufficient Conditions for Existence
of a Fixed point in Stochastic Reward net-based Iterative Models,”
IEEE Transactions on Software Engineering, vol. 22, no. 9, pp. 640–
653, 1996.

[30] L. A. Tomek and K. S. Trivedi, “Fixed Point Iteration in Availability
Modeling,” M. Dal Cin (Ed.), Informatik-Fachberichte, vol. 91, pp.
229–240, 1991.

[31] S. Sidhanta, W. Golab, and S. Mukhopadhyay, “Deadline-Aware

https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/
https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/
http://spark.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

Cost Optimization for Spark,” to appear in the IEEE Transactions on
Big Data, 2019.

[32] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables. Academic Press, 1970.

[33] T. Courtney, S. Gaonkar, K. Keefe, E. W. D. Rozier, and W. H.
Sanders, “Möbius 2.3: An Extensible Tool for Dependability, Secu-
rity, and Performance Evaluation of Large and Complex System
Models,” in Proceedings of the 2009 IEEE/IFIP International Confer-
ence on Dependable Systems & Networks (DSN). Lisbon, Portugal:
IEEE, jun 2009, pp. 353–358.

[34] J. Ding, Y. Xie, and M. Zhou, “Performance Modeling of Spark
Computing Platform,” Studies in Computational Intelligence, vol.
810, pp. 121–133, 2020.

[35] M. Alalawi and H. Daly, “Designing a Hadoop MapReduce
Performance Model using Micro Benchmarking Approach,” in
Proceedings of the International Conference on Innovation in Computer
Science and Artificial Intelligence, London, UK, jul 2019, pp. 1–11.

[36] Z. Fu and Z. Tang, “Optimizing Speculative Execution in Spark
Heterogeneous Environments,” to appear in the IEEE Transactions
on Cloud Computing, 2019.

[37] A. Gandomi, A. Movaghar, M. Reshadi, and A. Khademzadeh,
“Designing a MapReduce Performance Model in Distributed Het-
erogeneous Platforms Based on Benchmarking Approach,” Journal
of Supercomputing, vol. 76, no. 9, pp. 7177–7203, 2020.

[38] M. Nguyen, S. Alesawi, N. Li, H. Che, and H. Jiang, “A Black-box
Fork-join Latency Prediction Model for Data-intensive Applica-
tions,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 9, pp. 1983–2000, 2020.

[39] R. Tolosana-Calasanz, J. Á. Bañares, and J. M. Colom, “Model-
driven Development of Data Intensive Applications Over Cloud
Resources,” Future Generation Computer Systems, vol. 87, pp. 888–
909, 2018.

[40] S. Karimian-Aliabadi, D. Ardagna, R. Entezari-Maleki, and
A. Movaghar, “Scalable Performance Modeling and Evaluation of
MapReduce Applications,” in Proceedings of the Communications in
Computer and Information Science, vol. 891. Tehran, Iran: Springer,
apr 2019, pp. 441–458.

[41] S. Karimian-Aliabadi, D. Ardagna, R. Entezari-Maleki, E. Gianniti,
and A. Movaghar, “Analytical Composite Performance Models for
Big Data Applications,” Journal of Network and Computer Applica-
tions, vol. 142, pp. 63–75, 2019.

[42] D. Ardagna, S. Bernardi, E. Gianniti, S. K. Aliabadi, D. Perez-
Palacin, and J. I. Requeno, “Modeling Performance of Hadoop
Applications: A Journey from Queueing Networks to Stochastic
Well formed Nets,” in Proceedings of the International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP).
Granada, Spain: Springer Verlag, dec 2016, pp. 599–613.

Soroush Karimian-Aliabadi received the BS
degree in Computer Engineering from the
Tehran University and MS degree in Software
Engineering from the Sharif University of Tech-
nology. He is currently working toward the PhD
degree in Software Engineering at the Depart-
ment of Computer Engineering at the Sharif
University of Technology, Tehran, Iran. His main
research interests include Performance Evalu-
ation, Big Data frameworks, Cloud Computing,
and Failure Prediction.

Mohammad-Mohsen Aseman-Manzar is cur-
rently MSc. student of Computer Engineering at
Sharif University of Technology. He received his
BSc. of Computer Engineering from Iran Univer-
sity of Science and Technology (IUST) in 2018.
His research interest includes performance mod-
eling, Big Data frameworks, and mixed power
and performance modeling of data centers and
Cloud environments. In his industrial life, he is
a full-stack developer and works with various
frameworks and languages.

Reza Entezari-Maleki received the B.S. and
M.S. degrees from the Iran University of Science
and Technology (IUST) in 2007 and 2009, and
the Ph.D. degree from the Sharif University of
Technology in 2014, all in computer engineering.
He was a postdoctoral researcher at Institute for
Research in Fundamental Sciences, Iran, before
joining IUST as an assistant professor in 2018.
His main research interest is performance and
dependability modeling.

Danilo Ardagna received the PhD degree in
computer engineering in 2004 from Politecnico
di Milano, from which he also graduated in De-
cember 2000. He is an associate professor at
the Dipartimento di Elettronica Informazione and
Bioingegneria, Politecnico di Milano. His work
focuses on the design, prototype and evaluation
of optimization algorithms for resource manage-
ment of self-adaptive and cloud systems.

Ali Movaghar received the BS degree in elec-
trical engineering from the University of Tehran
in 1977, and the MS and PhD degrees in com-
puter, information, and control engineering from
the University of Michigan, Ann Arbor, in 1979
and 1985, respectively. He is a professor in
the Department of Computer Engineering at the
Sharif University of Technology in Tehran, Iran
and has been on the Sharif faculty since 1993.
He visited the Institut National de Recherche en
Informatique et en Automatique in Paris, France

and the Department of Electrical Engineering and Computer Science
at the University of California, Irvine, in 1984 and 2011, respectively.He
worked at AT&T Information Systems in Naperville, Illinois in 1985-1986,
and taught at the University of Michigan, Ann Arbor, in 1987-1989. His
research interests include performance/dependability modeling and for-
mal verification of wireless networks, and distributed real-time systems.
He is a senior member of the IEEE and the ACM.

	Introduction
	Target Architecture
	Spark
	Capacity Scheduler
	Execution Model

	Introduction to SAN
	Monolithic Model
	SAN model description
	Performance metric
	State-space explosion

	Fixed-point Approach
	SAN model description
	Parameter assignment
	Fixed-point iterations
	Fixed-point existence

	Analytical and Experimental Results
	Minimizing the makespan

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Soroush Karimian-Aliabadi
	Mohammad-Mohsen Aseman-Manzar
	Reza Entezari-Maleki
	Danilo Ardagna
	Ali Movaghar

