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A B S T R A C T

Objective: The Rey Osterrieth complex figure (ROCF) is one of the most used neuropsychological tests for
the assessment of mild cognitive impairment (MCI) and dementia. In the copy test, the patient has to draw a
replica of a 18-pattern image and the outcome is a score based on the accuracy of the overall drawing. The
standard scoring system however have limitations related to its subjective nature and its inability to evaluate
other cognitive domains than constructional abilities. Previous works addressed those problems by proposing
tablet-based automated evaluation systems. Even promising, such methods are still far away from clinical
validation and translation. In this work, we developed a decision support system (DSS) for the evaluation
of the ROCF copy test in the common practice using retrospective information from previously performed
drawings. The goal of our system was to support the professionals providing a qualitative judgement for each
of the 18 patterns, estimating the most probable diagnosis for the patient, and identifying the main signs
associated to the obtained diagnosis.
Methods: A total of 250 human evaluated ROCF copies were scanned from 57 healthy subjects, 131 individuals
with MCI, and 62 individuals with dementia. The images were pre-processed and analysed using both computer
vision and deep learning techniques to assign a qualitative label to the 18 patterns. Then, the 18 labels
were used as features in 3 binary (healthy VS MCI, healthy VS dementia, MCI VS dementia) and a 3-class
classifications with model explanation (SHAP).
Results: Very good to excellent performance were obtained in all the diagnosis classification tasks. Indeed,
an accuracy of about 85%, 91%, and 83% was obtained in discriminating healthy subjects from MCI, healthy
subjects from dementia and MCI from dementia respectively. An accuracy of 73% was achieved in the 3-class
classification. The model explanation showed which patterns are responsible for each prediction and how the
importance of some patterns changes according to the severity of the cognitive decline.
Significance: The proposed DSS enriches the standard evaluation and interpretation of the ROCF copy test.
Being trained with retrospective knowledge, the performance of the DSS can be further enhanced by extending
the dataset with existing ROCF copies.
1. Introduction

Neuropsychological assessment is the main non-invasive instrument
for the diagnosis of mild cognitive impairment (MCI) and dementia in
older adults (Zucchella et al., 2018). It is performed by administering a
set of paper-and-pencil tests during in-person visits which prove various
cognitive domains (visuospatial function, memory, attention, executive
function, and language). The patient’s performance in each of the tests
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is determined by a numerical score which correlates with the entity of
the cognitive impairment (Donders, 2019). Among the clinical neuro-
psychological tests, the Rey Osterrieth Complex Figure (ROCF) (Rey &
Osterrieth, 1993) is widely used. The ROCF is a drawing test based on
reproducing a complex geometrical figure using paper-and-pencil and
under the supervision of a clinician. The template figure is shown in
Fig. 1 and will be noted with 𝐹 in the following. The ROCF test is
articulated in two variants, which could be administered in sequence
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Fig. 1. Example of a ROCF test. A template ROCF on the left and the patient’s replica,
with the clinician’s annotation, on the right.

or mutually, the copy and the recall. In the copy test, the subject has
to sketch the ROCF image while looking at a template figure 𝐹 as
reference. In the recall test, which is sometimes performed after the
copy one, the subject has to sketch what he recalls of the ROCF figure
𝐹 after 30 min and without looking at the reference figure. The complex
figure 𝐹 subject of the tests is composed of 18 geometrical patterns. The
score of the test is computed by identifying how the image drawn by the
subject (noted with 𝐹 ) is similar, in all 18 patterns, to the original one
𝐹 . The total score is computed summing up all the pattern scores and it
ranges from 0 (worst performance) to 36 (best performance) (Bertolani,
Renzi, & Faglioni, 1993).

However, the sole ROCF test score in the evaluation of the cognitive
decline in older adults presents some limitations as the normal val-
ues range between 27 and 36 (Elderkin-Thompson, Boone, Kumar, &
Mintz, 2004; Merten & Blaskewitz, 2008). Elderly individuals can have
difficulties reproducing the ROCF so that the normal values of coping
the figure are generally highly variable. This problem makes hard the
definition of a baseline performance and the detection of changes in
the long term evaluation (Rasmussen et al., 2001). In addition, some
studies investigating the reliability of the ROCF test reported poor inter-
rater agreement with a score variation approaching the 20% (Liberman,
Stewart, Seines, & Gordon, 1994; Tupler, Welsh, Asare-aboagye, &
Dawson, 1995), mostly due to the operators’ subjective experience in
the evaluation process.

To copy the ROCF a person should engage several cognitive abil-
ities: attention and concentration, visuo-spatial perception to identify
elements and process the visual information; organisational abilities,
and executive skills (Broderick, Van Gemmert, Shill, & Stelmach, 2009;
Shin, Park, Park, Seol, & Kwon, 2006; Strauss, Sherman, & Spreen,
2006). Such abilities are completely hidden inside the actual overall
scoring of the test (Scarpina, Ambiel, Albani, Pradotto, & Mauro, 2016;
Westin et al., 2010). The multi-dimensionality of the ROCF test was
demonstrated by the multitude of qualitative scoring systems proposed
since the creation of the test (Shin et al., 2006). Given the lack of
precision and accuracy of scoring and interpretation of the ROCF
test, there is the need of developing computer-based systems to help
neuropsychologists during the ROCF evaluation.

1.1. Objective

In this study, we aimed at developing a decision support system
(DSS) to improve the evaluation and interpretation of the paper-and-
pencil ROCF copy test. To design the DSS, we considered the following
practical requirements: (1) the DSS should be based on the paper and
pencil tests. Indeed, the executions of writing and drawing tasks on
a tablet is not ecological and may have an influence on the final
performance (Gerth et al., 2016); (2) the DSS should enrich the al-
ready available standard methodology for the test evaluation in order
to facilitate the translation into clinical practice; (3) the DSS should
2

exploit explainable AI methods in order to let the clinicians interpret
the results obtained by the AI algorithms. To meet the first requirement,
the proposed DSS used retrospective data i.e., scanned images of ROCF
copy tests, to build the knowledge base of the DSS. In addition, the
main goal of our system was not to replicate the overall scoring of the
experts, but to enrich the standard evaluation of the test (requirement
2). Indeed, the proposed DSS involved a quick human-in-the-loop initial
setup process to select initial control points in the image. Then, it
included both computer vision (CV) and deep learning (DL) to produce
a qualitative evaluation of each image pattern based on the type of
error (omitted, distorted, misplaced and correct) used in the standard
evaluation of the test (Rey & Osterrieth, 1993). Starting from the 18
pattern evaluations as input, a machine learning algorithm classified
the patient’s diagnosis in healthy, MCI and dementia. Finally, to meet
the third requirement, we adopted explainable methods to support
clinician in identifying which drawing pattern is more important to
discriminate between groups of diagnosis. The proposed DSS was cal-
ibrated and trained using retrospective copy-test records from 250
mid-aged to older individuals (healthy, MCI, and with dementia). The
system performance was assessed by computing the accuracy in the
pattern evaluation and various classification metrics in the formulation
of the diagnosis.

This paper is organised as follows: Section 2 presents the state of
the art analysis, Section 3 the data collection and Section 4 describes
the DSS including the whole process of data analysis including: (i) the
pre-processing, (ii) the methods applied for patterns evaluation and (iii)
the diagnosis formulation. Results are shown in Section 5 and discussed
in Section 6. At last, Section 7 discusses the limitations and the possible
improvements of the decision support system.

2. Related work

As reported in a very recent survey on handwriting analysis during
neuropsychological assessments, the automatic characterisation of vi-
sual or procedural biomarkers of brain health is a very interesting field
deserving more attention (Moetesum, Diaz, Masroor, Siddiqi, & Vessio,
2022). The methodologies used to analyse a graphomotor response
of a neuropsychological test can be grouped in two categories: visual
analysis techniques, evaluating drawings/handwriting only statically
after completion, and procedural analysis techniques, focusing on the
dynamic evaluation of gesture production (Moetesum et al., 2022).

Among visual analysis techniques, early works tried to automate
the search of the ROCF patterns location by identifying all the suitable
basic geometric shapes in the drawing (Canham, Smith, & Tyrrell, 2000,
2005; Crevier & Lepage, 1997; Fairhust & Smith, 1991). However,
given the high level of distortion of the shapes that could be found
in the figures, they accurately identified only 6 patterns including
triangles, rectangles, prisms and simple lines, by representing the con-
nectivity of their collinear lines, using the attributed relational graph
algorithm (Messmer & Bunke, 1995). Then, they rated the quality of its
representation according to basic spatial rules, grouped into categories
of position, orientation and size, using fuzzy logic (Zadeh, 1965). The
automated rating of the 75% of the patterns, compared with the scores
given by 6 independent human raters, showed a discrepancy less than
5%.

Visual analysis techniques used to evaluate the ROCF showed huge
challenges in localising and segmenting the specific patterns used to
score the test. Indeed, free handwriting is characterised by imprecision,
ambiguity, distortion that are even amplified when drawing such a
complex figure. More recently, with the growing interest of the AI,
the visual techniques were more directed towards global-level analysis
of the whole figure based on black box deep learning approaches. As
an example, Youn and collaborators adopted deep learning to pre-
dict cognitive impairment starting from the ROCF tests (Youn et al.,

2021). They classified healthy, MCI and severely cognitive impaired
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individuals obtaining accuracy performance of about 70% in the 3-
class classification and between 80 and 90% for the binary classification
problems. Their work was however restricted to the prediction of the
diagnosis and additionally they were not reporting the most difficult
binary classification problem (i.e. MCI vs healthy).

Vogt et al. proposed a cascade deep neural network algorithm to
estimate both the 18 pattern scores and the overall patient performance
starting from 303 ROCF drawings (Vogt et al., 2019). A good perfor-
mance in the overall accuracy was found despite it was not strictly
equivalent to the human ratings scores collected. The focus of such a
work was to develop an automated scoring method for the raw image of
the test, but they did not provide any additional information to support
the clinician in the evaluation of the results. Moreover, Vogt et al.
(2019) presented only preliminary results, without the explanation of
the full details of their approach.

Among procedural approaches to evaluate the ROCF test, a very
recent study, Petilli, Daini, Saibene, and Rabuffetti (2021), proposed
a novel tablet-based ROCF automatic evaluation system aimed at dif-
ferentiating the overall performance in its three main cognitive sub-
domains: constructional, organisational and motor abilities. Data col-
lected on healthy subjects during the whole execution of the ROCF copy
was used to extract 12 indicators of interest. Using principal component
analysis on the indicators 3 components explained the 80% of the
variance and thus the 3 composite scores were computed accordingly.
A subgroup of 35 healthy subjects was evaluated with an additional
battery of tests specifically provided to assess the 3 cognitive domains
considered (constructional, organisational and motor abilities). The
composite scores resulted by the tablet-based evaluation system mod-
erately to highly correlated (r: ranges from 0.41 to 0.85) with the
3 sub-domains of interest. However, such results should be clinically
validated on patients and are still far from becoming a clinical standard.

To conclude, previous works have shown the difficulties in develop-
ing an automated evaluation system for the ROCF test able to extract
scores equivalent to human raters and, at the same time, provide useful
information about the specific cognitive components required to obtain
an accurate drawing.

3. Materials

3.1. Data collection

We acquired retrospective data from subjects and neurological pa-
tients who underwent a neuro-psychological examination at the Istituto
Palazzolo, Fondazione Don Carlo Gnocchi in Milan (Italy), within a
time period from Jan 2017 to Dec 2018. During the examination, they
performed the ROCF tests. We collected digital versions of the images 𝐹
drawn by the users during the copy variant of the ROCF test, where the
subject has the availability of the template image 𝐹 . Drawn copies are
digitalised by scanning the paper records filed in the annual clinical
registers. The figures were scanned with a resolution of 300dpi and
saved as portable graphics format (PNG) in RGB colours. Personal
data (age, years of education), the neurological assessment outcome
(healthy, MCI or dementia) and other information such as the date of
the visit and the MMSE score were also retained. Both patients and
their caregivers provided written informed consent to participation in
retrospective studies as this one.

A total of 57 ROCF samples were acquired for healthy subjects, 131
for the MCI and 62 for patients affected by dementia, for a total of 250
ROCF samples. The healthy individual’s reported a median age of 75
(IQR 70–81), median years of education (y.o.e.) of 8 years (IQR 8–13)
and median MMSE of 29 (IQR 28–29.5); the MCI patients had a median
age of 79 (IQR 75–83), median y.o.e. of 8 years (IQR 8–11) and median
MMSE of 27 (IQR 26–29); while the dementia patients’ median age was
82 (IQR 79–85), the median y.o.e. was 8 (IQR 5–10) and the median
3

MMSE was 22 (IQR 22–24). l
3.2. DataSet

To get the ground truth for the pattern evaluation, each of the 18
patterns of the image 𝐹 was inspected by an expert and labelled with
a score. More precisely, the outcome of the tests is the total score
computed as the sum of the single scores the clinician assigned to each
one of the patterns as drawn by the subject. To evaluate the accuracy
of the drawing, a standard protocol is the Osterrieth system (Osterrieth,
1994). A continuous numerical score (between 0 and 2) is given to each
pattern according to the quality of its representation. The guidelines
suggest 0 if indistinguishable or absent, 0.5 if deformed and misplaced,
1 if correct and misplaced or just deformed, and 2 if correct and well
placed in the figure. In this study, we considered a simplified pattern
scoring system based on four qualitative scores, each one representing
a single error type category1:

• 0 (omitted), if the pattern was not represented nor recognisable in
the figure;

• 1 (distorted), if a distorted,2 yet recognisable, version of a pattern
was represented in the figure;

• 2 (misplaced) if the pattern was not distorted but placed differ-
ently from the expected location;

• 3 (correct) if all the previous conditions did not applied.

The sharp categorisation of the Osterrieth system’s pattern scores in
error types simplified the manual inspection and labelling of the dataset
and allowed us to configure the pattern evaluation problem as 4-classes
classification instead of a regression between 0–2, as it would be the
case of the Osterrieth system.

In the final dataset, each ROCF sample collected was associated
to the 18 scores assigned manually by a clinician to each pattern
(each score ranged from 0 to 3 as explained above) and an overall
label correspondent to the clinical outcome of the neuropsychological
visit (the label can be dementia, MCI, healthy). The composition of
the dataset, including the number of occurrences for each one of the
patterns, divided for each label, is reported in Table 1.

4. Methods

4.1. Workflow

The analysis and automated evaluation of images 𝐹 consists of a
set of steps executed in sequence, which are explained in the following
sections. As images 𝐹 had evaluation marks made by clinicians, see
Fig. 1, the first step of the system consisted of the image pre-processing
in which the ROCF samples were cleaned from marks and standard-
ised (Section 4.2). Then, the analysis of a sample ROCF image was
implemented in two main stages: the pattern evaluation (Sections 4.3
and 4.4) and the diagnosis formulation (Section 4.5). Pattern evaluation
consists of an initial detection step, in which a pattern is searched in
the figure to determine its presence or absence, and an evaluation step
in which a label between 0,1,2 or 3 was assigned to the pattern. A
schematic representation of the method workflow is reported in Fig. 2.
The patterns of ROCF were divided into two categories according to
their complexity, simple patterns and complex ones, as shown in Fig. 3.
During their evaluation, the detection from 𝐹 of those patterns was
deal with two different methods; simple patterns are detected using
computer vision (Section 4.3); complex patterns are detected using
deep learning (Section 4.4).

In the diagnosis formulation stage, the labels assigned to each
pattern by the tool were used as features for the classification of the

1 The labels were treated as categorical. Yet they ranked from 0 to 3
eflecting the correctness of the drawing

2 The patterns which were not topological equivalent to the template were
abelled as distorted.



Expert Systems With Applications 213 (2023) 119226D. Di Febbo et al.
Table 1
The count of the patterns, divided for each label.

Pattern number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Omitted 15 26 55 170 43 67 33 34 70 55 79 36 73 18 24 39 34 34
Distorted 104 139 76 16 107 0 0 153 30 55 23 101 65 55 46 11 94 112
Misplaced 42 0 43 0 8 12 56 0 36 10 8 0 8 15 24 38 0 0
Correct 89 85 76 64 92 171 161 63 114 130 140 113 104 162 156 162 122 104
Fig. 2. The workflow of the tool.
ROCF copy 𝐹 in one of the 3 clinical outcomes, thus determining the
subject’s most probable diagnosis. Furthermore, we then analyse which
patterns were most important into the classification process to provide
such data as a diagnosis support mechanism to the clinician.

4.2. Image pre-processing

The pre-processing stage of images 𝐹 started with the noise re-
moval, which was mostly characterised by the clinician’s annotations
during the ROCF copy evaluation. The clinician’s signs consisted in
the numerical score (marks) they sketched upon the drawing to track
the patterns they already evaluated. In all the collected images, scores
were written using red and green ink pen, while the ROCF lines were
drawn with a common pencil. This difference between the clinician’s
and patient’s signs allowed the noise removal through the use of
colour filtering techniques. The images have been converted in the hue-
saturation-value (HSV) colour space (Levkowitz & Herman, 1993) to
easily identify the colour shades to remove. We found the HSV triplets
[0 30 10], for red ink, and [160 30 10], for green ink, as the optimal
values to identify the noisy pixels (clinician’s marks) in the image.
Then, we replaced the colour of those pixels with the most frequent
pixel colour in 𝐹 , which we assumed to be the background colour of
the paper sheet. Other spurious noise component were attenuated using
low pass and median filtering with 3 × 3 kernels.

After noise removal, images have been binarized. We used unimodal
thresholding (Rosin, 2001) to separate the pixels belonging to the
drawing (set to 0 grey-scale intensity, black) from the ones belonging
to the page (set to 255 in grey-scale, white). However, the handmade
drawings 𝐹 were still imprecise. For examples they presented strokes
with irregular thickness and non-perfectly closed shapes. To attenuate
the effect of these additive disturbances, we first used image erosion
with a 9 × 9 kernel to cover all the gaps between close tracts. Then
we applied a Skeletonization algorithm (Abuain, Abdullah, Bataineh,
Abu-Ain, & Omar, 2013) to the negative-binary image to obtain one
pixel wide lines. At last, we dilated the drawing with a 3 × 3 kernel to
enhance the objects in the image.

All images were very different in shapes, dimensions and propor-
tion. Therefore a figure standardisation was required before further
analysis. This required the support of an expert user, who manually
selected, with a GUI embedded within our method, five reference point
in the image. Those points, indicated in Fig. 4(a), identify the four
vertices of the pattern 2 of the ROCF plus the rightmost point of
the figure, which coincided with a vertex of the right triangle. The 5
4

reference points were used to perform an image homography (Szeliski,
2011) to match the reference points to their respective locations in the
template model, preserving the structure of the patient’s drawing. The
template model image was a binary representation of the original ROCF
centred in a 428 × 733 pixels binding box. An example of the figure
standardisation is shown in Fig. 4 (b). Noise removal, image processing
and the homography were implemented using the image processing
Python libraries Open CV 4.5.1.48 (Bradski, 2000). Noise removal
was applied using the Median Blur operator with a 3 × 3 kernel.
The proposed standardisation method should reduce localisation and
segmentation challenges in the following steps of analysis.

4.3. Simple patterns evaluation via computer vision

As each pattern was located into a different characteristic part of
the image, the initial coordinates of the area in the image in which
a pattern was searched, i.e. its region of interest (ROI), was chosen
from the template model as shown by the red shapes in Fig. 3. The
initial ROI of a pattern could be adjusted during the analysis, using
the information of those previously detected. For the detection of some
patterns, additional rotated variants of the initial ROI were considered
(the parameters 𝑚⃖⃖⃖⃗𝑐𝑙𝑘 and 𝑚⃖⃖⃖⃖𝑐𝑙𝑘 determined the clockwise or counter-
clockwise inclination respectively), as shown in Fig. 5. The pattern
were iteratively searched by moving the ROIs in the horizontal and
in the vertical direction. In every iteration, A ROI was shifted by 𝑚𝑠ℎ
pixels, until it reached the image limits or additional pattern-specific
bounds. In the case of the simple patterns (those characterised by an
easy and regular geometrical structure, as a line, a regular polygon or
multiple similar elements) we applied CV algorithm for their automatic
detection and evaluation. The presence or absence of a simple pattern
was determined using line detection algorithm, for patterns number 1,
4, 6, 7, 8, 11, 13 and 16, which were mainly composed by lines, and
shape detection techniques, for the numbers 2, 9 and 14, which consisted
in shapes. The identified pattern were then evaluated using topological
analysis, as described in Section 4.3.3.

4.3.1. Line detection
Line detection is performed using the probabilistic Hough trans-

form algorithm implementation available in the OpenCV Python li-
brary (Matas, Galambos, & Kittler, 2000). The algorithm’s parameters
radius resolution 𝑟 and the angle 𝜃 have been fixed to 1 pixel and to
180∕𝜋 respectively. The other parameters, namely the threshold for the
minimum number of edges to detect a tract (𝑡ℎ ), the minimum line
𝑒
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Fig. 3. The original ROCF figure 𝐹 is composed of 18 patterns. We divide them in two
categories, simple and complex patterns, according to the difficulty to automatically
identify them in copied figures 𝐹 . Panel (a) shows the simple patterns and panel (b)
shown the complex patterns. The red squares indicate the region of interest of each
pattern.

Fig. 4. Example of the standardisation of a ROCF sample, Panel (a) represent the scan
the of paper sheet where the template (in the upper part) and the patient’s replica
(lower part) of the ROCF are figured. The green dots indicates the reference points
selected by the examiner and the red lines associate the drawing reference points to
the ones of the template model. Panel (b) shows the ROCF sample after the homography
transformation.
5

Fig. 5. An example of rotating and shifting the ROI for a pattern (Pattern 6 in this
case). The original one has a continue red line. Other shapes are the variants.

segment length (𝑙𝑚𝑖𝑛) and the maximum number of gap between points
allowed in a line (𝑚𝑎𝑥𝑔), were set differently for each pattern. The
algorithm returned the coordinates of all the detected line edges. The
lines belonging to the adjacent patterns and the other noise components
were filtered out by setting a specific threshold (𝑡𝛼) on their inclination
w.r.t. the horizontal direction. Then, a set of lines was selected by
counting the percentage of the pixels coinciding with those of the
original pattern overlapping the sample ROCF and the template model.
By defining a threshold on such percentage (𝐴𝑐) we decided how much
a collection of detected segments had to cover the template pattern
to be identified as a pattern. From the chosen set of segments, we
approximated a single line using linear regression with the edges of
all the lines in the set. In Pattern 8, composed by more than one line,
the procedure was repeated for each line separately.

4.3.2. Shape detection
For shapes recognition, the contour detection method in OpenCV

(Suzuki & be, 1985) was used to find a set of geometrical objects
in a ROI. To approximate the obtained contours to a regular figures,
the OpenCV implementation of the Douglas–Peucker’s iterative end-
point fit algorithm (Douglas & Peucker, 1973) was used. Given a
curve composed of line segments, a similar closed curve with fewer
points was returned. Then a single shape was selected applying the
following criteria: (i) the convex shapes with the same number of
vertices of the pattern to search was checked, evaluating the convex
hull (Schmidtmann, Jennings, & Kingdom, 2016); (ii) if more than one
shape met the requirements of (i), a threshold 𝑃𝑚𝑖𝑛 was set to discard
all the shapes whose perimeter was inferior to such value; (iii) if there
was still more than one eligible shape, a hierarchical representation
of contours was computed and the innermost node (i.e. the outermost
shape) was retained.

4.3.3. Topological analysis of simple patterns
The label was assigned to a pattern in the sample ROCF according

to the following rules: (i) if no line or shape was detected in a ROI,
the score omitted was assigned to that pattern; (ii) if some shape
was found, but none with the right number of vertices, the score
distorted was assigned to the convex shape with a perimeter longer
than 𝑃𝑚𝑖𝑛; (iii) otherwise, the detected object, defined by the set of its
edges coordinates, was topologically analysed using the Python library
Shapely (Gillies et al., 2007). The object was inspected to check if it
satisfied a set of structural properties (as continuity, intersections and
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Table 2
Topological analysis rules for the evaluation of the simple patterns.

Pattern 2 Main rectangle. The main rectangle was identified by 4 of the reference points selected by the user, transformed by the
homography. The topological analysis returned: correct, if rectangular shape was found; distorted, if no rectangular
shape was found.

Pattern 1 Main diagonals. The initial ROI was split in four part, each of them was dedicated to the detection of one half of a
diagonal. The topological analysis returned: distorted, if at only one half per diagonal has been detected or at least two
halves of the same diagonal did not intersect; misplaced, if none of the previous conditions applied and at least one
vertex did not intersect the corresponding vertex of pattern 2; correct, if none of the previous conditions applied.

Pattern 4 Short horizontal line. The topological analysis returned: distorted, if more than one lines was detected; correct, if a single
line was detected.

Pattern 6 Horizontal line. If pattern 2 was previously found, the ROI6
0 was centred with its horizontal axis of symmetry. The

topological analysis returned: distorted, if a line was detected and at least one of its vertices did not intersect an edge
of pattern 2; misplaced, if none of the previous conditions applied and the line did not intersect pattern 1 in a single
point; correct, if none of the previous conditions applied.

Pattern 7 Vertical line. If pattern 2 was previously found, the initial ROI was centred with vertical axis of symmetry. The
topological analysis returned: distorted, if a line was detected and at least one of its vertices did not intersect an edge
of pattern 2; misplaced, if none of the previous conditions applied and the line did not intersect pattern 1 in a single
point; correct, if none of the previous conditions applied.

Pattern 8 Parallel lines. Pattern 8 was composed by four parallel segments so the initial ROI was divided in four sub-parts. The
procedure was repeated iteratively by searching a segment in each sub-ROI. When a line was detected, the respective
sub-ROI was excluded in the next iteration. The topological analysis returned: distorted, if less or more than four lines
were detected and they did not intersect each other; correct, if none of the previous conditions applied.

Pattern 9 Topmost triangle. Pattern 9 was composed by four parallel segments so ROI9
0 was divided in four sub-parts. A segment

was iteratively searched in each sub-ROI. When a line was detected, the respective sub-ROI was excluded in the next
iteration. The topological analysis returned: distorted, if a convex shape with more than 3 edges was found; misplaced,
if none of the previous conditions applied and the shape had no intersections with other lines of the figure; correct, if
none of the previous conditions applied.

Pattern 11 Short vertical line. The topological analysis returned: distorted, if more than one line was detected or one line was
detected but it did not intersect either patterns 1 and 2; misplaced, one line which intersect either patterns 1 and 2 is
detected and it intersect the two diagonals in the same point; correct, if none of the previous conditions applied.

Pattern 16 Right horizontal line. The topological analysis returned: distorted, if more than one line was detected or one line was
detected but it did not intersect patterns 2 and 6; misplaced, if none of the previous conditions applied and the line
did not intersect the manual rightmost point; correct, if none of the previous conditions applied.

Pattern 13 Right vertical line. The topological analysis returned: distorted, if more than one line was detected or one line was
detected but it did not intersect at least one inclined edges of the delimiting triangle; misplaced, if none of the previous
conditions applied and the line intersected the pattern 16 in its rightmost half; correct, if none of the previous
conditions applied.

Pattern 14 Rhombus. The topological analysis returned: distorted, if a convex shape with more or less than 4 vertex was detected;
misplaced, if none of the previous conditions applied and the shape did not intersect the rightmost manual point.
correct, if none of the previous conditions applied.
gaps) to be considered a correct drawn pattern. If the properties were
partially satisfied the pattern could be labelled whether misplaced or
distorted.

Empirically, several straight lines were in fact drawn as a set of se-
quential segments. Similarly, several edges common between different
6

segments (forming, e.g., a 90◦ angle) present, due to small inaccuracies,
small ‘gaps’ that could led to miss the detection of the edge itself. To
cope with this, the boundary margins were considered to account for
these types of natural inaccuracy of hand-made drawings. Therefore,
the thickness of the lines and shapes was increased according to two
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Table 3
Parameters setting of the computer vision algorithms for the detection and evaluation of the simple patterns.

Pattern n◦ Definition of the ROI variants Line/shape detection Topological analysis

𝑚𝑠ℎ [pixel] 𝑚⃖⃖⃖⃗𝑐𝑙𝑘 [◦] 𝑚⃖⃖⃖⃖𝑐𝑙𝑘 [◦] 𝑡ℎ𝑒 𝑙𝑚𝑖𝑛 [pixel] 𝑚𝑎𝑥𝑔 𝑡𝛼 [◦] 𝐴𝑐𝑜𝑣 [%] 𝑃𝑚𝑖𝑛 [pixel] 𝑑𝑣 [pixel] 𝑑𝑙 [pixel]

1 20 30 30 50 40 20 20–60 60 – 15 1.5
2 – – – 50 40 20 – – 500 30 –
4 10 5 5 40 20 5 <10 60 – 20 1.5
6 15 10 10 75 40 20 <10 80 – 15 1.5
7 15 15 25 75 40 20 >70 80 – 15 1.5
8 5 5 12 30 10 5 <15 30 – 15 1.5
9 – – – – – – – – 200 25 3
11 10 10 30 50 20 10 >60 60 – 15 1.5
13 10 10 30 50 20 10 >80 50 – 15 2
14 – – – – – – – – 100 20 1.5
16 10 10 30 45 60 50 <10 80 – 15 3
D
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parameters, 𝑑𝑣 for each vertex and 𝑑𝑙 for each segment, as margin error,
n pixels, resulting ultimately in thickening the drawing and closing
gaps’ in straight lines. The pattern-specific properties to be satisfied in
he topological analysis are listed in Table 2, in the same order as the
esearch in the algorithm occurs. The particular parameter choice for
he CV algorithms used for the detection of simple patterns is reported
n Table 3, for each of the patterns.

.4. Complex patterns evaluation via deep learning

The detection of complex patterns is performed by a DL algorithm
hat finds the regions in the ROCF sample image 𝐹most similar to the
emplate 𝐹 . The measure of similarity has been defined as the euclidean
istance (L2) between two images, calculated by mapping them into a
024-dimensional embedding space (Schroff, Kalenichenko, & Philbin,
015). Two images are the more similar the shorter the L2 distance
etween their vectors in the embedding space.

The embedded representation of the images was obtained using a
odified ResNet50V2 neural network architecture (He, Zhang, Ren,
Sun, 2016). The fully-connected layer on top of the network was

emoved, the output of the residual part flattened, and a 1024-rectified
inear units (ReLU) fully-connected layer was added. A triplet loss,
eported in Eq. (1), was chosen as cost function, which has been shown
o be efficient for this type of tasks (Schroff et al., 2015). The triplet
oss, Eq. (1), encourages the images of the same pattern to be projected
nto very close points in the embedding space and it also enforces the
argin between images of different objects by considering triplets of

ectors.

= 𝑚𝑎𝑥(𝑚 +𝐷(𝜉𝑎, 𝜉𝑝) −𝐷(𝜉𝑎, 𝜉𝑛), 0). (1)

n the equation of the loss, 𝜉𝑎 is the vector of a reference image (the
nchor) in the embedding space, 𝜉𝑝 is the vector of an image of the
ame object of the anchor (the positive) and 𝜉𝑛 is the vector of an image
f a different object (the negative); 𝐷(𝜉𝑖, 𝜉𝑗 ) is the squared euclidean
istance between the vectors of 𝑖 and 𝑗, and 𝑚 is the margin between
ositive and negative pairs. The loss minimisation must also satisfy the
onstraint in Eq. (2),

(𝜉𝑎, 𝜉𝑝) + 𝑚 < 𝐷(𝜉𝑎, 𝜉𝑛), (2)

herefore, 𝐷(𝜉𝑎, 𝜉𝑝) was pushed to zero and 𝐷(𝜉𝑎, 𝜉𝑛) to be greater than
he former plus 𝑚.

We trained a different network for the recognition of each complex
attern. Pattern-specific datasets were created by manually cropping
he pattern representations from the ROCF of all the subjects. For
he similarity measurement, correct and distorted patterns only were
onsidered. The scarce amount of samples retrieved was incremented
en times applying the following data augmentation techniques. The
ython library ImgAug (Jung et al., 2020) was used to perform the
ollowing image transformations in random order:

• Gaussian blur with variance ranging from 0 to 0.5,
7

• Aspect ratio preserving scaling with a factor ranging from 0.85 to
1.15,

• Rotation by −10 to 10 degrees,
• Shear mapping by −15 to 15 degrees,
• Translation by −40 to 40% on 𝑥-axis and 𝑦-axis independently.

atasets were strongly unbalanced as the portion of wrongly drawn pat-
erns was consistently lower. In particular the percentage of correctly
rawn patterns in images 𝐹 was 66%, 77.4%, 86.7%, 70.8%, 88.8%,
2.5% and 70.2% for patterns 3, 5, 10, 12, 15, 17 and 18 respectively.
herefore, heavier forms of image augmentation to 100 correct samples
o obtain other 1000 ‘distorted’ versions were performed, with the aim
f re-balancing the datasets. The new data augmentation parameters
ere manually set to better resemble the actual distorted samples.

To train a network, a batch of 32 pattern images was randomly
xtracted from a dataset and each of them was paired with the same
attern of the template model. A positive pair was generated if the
mage was labelled as correct, or a negative pair if it was labelled
istorted. The network computed the L2 distance between the images
f each pair and the triplet loss was computed using the batch-hard
trategy (Pereira & Campos, 2020), i.e. by selecting the hardest positive
air (with the maximum L2) and the hardest negative pair (with the
inimum L2) only. The training consisted in 50 epochs in which the
ataset was split in training and validation/test set by randomly picking
he 30% of the samples from both the correct and distorted class. The
dam optimiser (Kingma & Ba, 2014) was used with a learning rate
f 0.0001 and the model with the lowest validation loss value among
ach epoch was retained.

In the complex pattern detection, the set of its initial ROIs was
oved in the vertical and horizontal direction for a maximum distance

f 50 pixels. For each pattern, the ROI with the maximum value of sim-
larity with respect to the template was retained. Then, the assignment
f the label according to the following procedure:

• Omitted. A linear support vector machine (SVM) classifier was
trained and used to discriminate between the presence or the
absence of the pattern counting the portion of non-white pix-
els contained in the ROI. Pattern-specific dataset were used,
including the cropped samples of all the omitted and the non-
omitted patterns. The balanced accuracy of the classification was
estimated with the leave-one-out cross-validation (LooCV); The
label omitted was assigned when the SVM returned the absence
for the pattern.

• Misplaced. If a pattern was detected, topological analysis was
applied to examine its correct location by checking all expected
intersections with the surrounding patterns;

• Distorted or Correct. If the pattern was neither omitted nor mis-
placed, a second linear SVM classifier was trained and applied to
discriminate between a distorted and a correct representation, us-
ing the similarity measure above defined. Pattern-specific dataset,
with correct and distorted patterns only, were used as training
data and the L2 from the template pattern was considered as
single input feature. The balanced accuracy of the classification

was estimated with LooCV.
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4.5. Diagnosis formulation

The diagnosis formulation stage was aimed at associating the most
probable subject’s diagnosis (between healthy, MCI and dementia) to
each ROCF sample, using the 18 labels assigned to its patterns as
predictors. The ability of the system to discriminate between groups
was investigated by setting various classification tasks. Four classi-
fications were considered: healthy vs MCI, healthy vs dementia and

CI vs dementia; and a multi-class classification task including the 3
roups with all the samples. Since the classes were unbalanced, the four
lassification tasks were also performed with new datasets created by
andomly sampling (without replacement) 50 elements per class and by
veraging the outcomes of 50 iterations, for a more robust estimate. A
tate-of-art boosting algorithm, Catboost (Dorogush, Ershov, & Gulin,
018), was trained to solve the classification tasks by choosing a
eighted cross entropy loss function (Phan & Yamamoto, 2020) and

etting a number of 500 iterations. The performance were evaluated by
stimating the Accuracy, F1, Precision and Recall scores with the Leave-
ne-out cross-validation (LooCV). The normalised numerical labels of
he patterns (0, 1, 2, 3) were normalised (between 0 and 1) and used
s input features. The classification tasks were implemented with the
ython library sciKit-learn.

.5.1. Model explanation
The binary classification tasks were further analysed by applying

he model explanation technique SHAP (Lundberg & Lee, 2017). Here,
randomly sampled datasets with 50 samples per class were used

o avoid the stronger influence of the more numerous group in the
lassification. SHAP uses game theory to rank the features (i.e. the pat-
erns) importance and to assess the contribution of each feature in the
inary classification of a ROCF sample in the trained models. The single
eature contribution in the classification of each sample was quantified
y a weight (the Shapely value) which moved its prediction towards a
lass or the other, if negative or positive, by an amount proportional
o its magnitude. The features rank was then obtained by considering
he average absolute weight of each feature for each sample. With this
echnique, one could better interpret the effect of each single pattern
n the binary classification tasks and thus appreciate the importance
f the patterns in discriminating between healthy and pathological
ndividuals and between different levels of cognitive decline.

. Results

.1. Simple and complex patterns evaluation

For each simple pattern, the 4-class evaluation Accuracy was calcu-
ated as the percentage of the correctly labelled patterns over the total
umber of patterns (with the labels 0, 1, 2 and 3). The Accuracy scores
re reported in Table 4, for the simple patterns, and in Table 5, for the
omplex ones. Table 5 shows the balanced Accuracy of the SVM models
the first predicting the absence/presence and the second predicting
he correct/distorted representation of the pattern) and the Accuracy
or each of complex patterns. The Accuracy score corresponded to a 4-
lement labelling task and lower accuracy scores were observed for the
atterns 3, 5 and 9 (61.9%, 61.4% and 61.9% respectively). Patterns
, 7, 16 and 17 achieved the highest Accuracy scores (78.9%, 77.6%,
4.9% and 77.1% respectively) and the rest of the patterns gained and
verage Accuracy score of 68.8%.

.2. Diagnosis classification

The results of the 4 classification tasks (healthy vs MCI, healthy
s dementia, MCI vs dementia and 3-class task) in terms of accuracy
1 precision and recall are reported in Table 6. On the left are listed
he outcomes of the classifications made using all the samples of each
8

roup. On the right, the average outcomes (with standard deviation) are
Table 4
Simple pattern scoring accuracy.

Simple
patterns

Acc [%]

1 65.5
2 66.8
4 72.2
6 78.9
7 77.6
8 68.2
9 61.9
11 72.2
13 71.3
14 68.2
16 74.9

Table 5
Complex pattern scoring accuracy.

Complex
patterns

Omitted/others
[balanced acc.]

Correct/distorted
[balanced acc.]

Acc
[%]

3 0.94 0.81 61.4
5 0.81 0.76 61.9
10 0.91 0.77 70.0
12 0.83 0.86 68.2
15 0.89 0.89 65.9
17 0.71 0.82 77.1
18 0.65 0.82 68.2

shown for the tasks performed with random sampled datasets (N = 50
subjects per group). High to excellent performance were obtained in the
binary classification tasks with all the samples, with Accuracy scores
ranging from 87% (healthy vs dementia) to 92% (healthy vs dementia);
F1 between 79% (MCI vs dementia) and 93% (healthy vs MCI); Preci-
sion between 85% (MCI vs dementia) and 100% (healthy vs dementia);
and Recall between 74% (MCI vs dementia) and 90% (healthy vs MCI).
Similar performance were achieved mediating the outcomes of the clas-
sifications with the random sampled dataset. The lower performance
were obtained in the more complex multi-classification tasks: scores
from 73% to 76% were obtained for the Accuracy and scores from 73%
to 74% for the other metrics. The confusion matrices and the receiving-
operator curves (ROC) for the 4 classifications in which all the samples
were retained are shown in Fig. 6.

The explainable artificial intelligence SHAP tool was used to better
interpret the models decision by estimating the single contribution of
the patterns in the determination of a subject’s diagnosis. Furthermore,
it supplied insights on the patterns importance to different levels of
severity of the cognitive decline. The SHAP tool allowed the automatic
analysis of the classification results giving the Shapely values as output,
which in turn were used to estimate the pattern importance and impact
in the determination of the samples diagnosis. The Shapely values
indicated how much a pattern score pushed the prediction towards a
class: negative values favoured the healthy class (or the less cognitive
impaired class between the two groups considered), while positive
values favoured the dementia class (or the more cognitive impaired
one). The average absolute Shapely values of each pattern are displayed
in Fig. 7, column (a), for the 3 tasks. The SHAP analysis revealed that
patterns 9, 11, 3, 6 and 4 were the most important in the discrimination
between healthy subjects and MCI patients (as their average absolute
Shapely value was greater). Alternately, in the classification between
MCI and dementia patients the most informative resulted in the pat-
terns number 10 (predominantly), 13, 3, 18 and 17. In the remaining
task (healthy-dementia), a mix of the pattern found in the previous
cases was found as the most important, and additionally pattern 1.
The plots in Fig. 7, column (b), show the single Shapely values of
the patterns for the classification of each sample. Negative Shapely
values pushed the classification of a sample towards the ‘less severe

diagnosis’ (i.e healthy in the first two tasks and MCI in the third), while
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Table 6
Results of the diagnosis classification tasks.

All samples (unbalanced) Random sampling (balanced)

Healthy vs MCI Healthy vs dementia MCI vs dementia 3-class Healthy vs MCI Healthy vs dementia MCI vs dementia 3-class

Accuracy 0.89 0.92 0.87 0.76 0.85 ± 0.03 0.91 ± 0.02 0.83 ± 0.03 0.73 ± 0.04
F1 0.93 0.91 0.79 0.74 0.85 ± 0.04 0.90 ± 0.03 0.84 ± 0.03 0.73 ± 0.03
Precision 0.95 1.00 0.85 0.74 0.89 ± 0.04 0.96 ± 0.02 0.84 ± 0.04 0.74 ± 0.04
Recall 0.90 0.84 0.74 0.74 0.81 ± 0.05 0.85 ± 0.04 0.89 ± 0.04 0.73 ± 0.04
Fig. 6. Performances for the 3 binary and the multi-class classification tasks performed with all the samples. The confusion matrices are reported in the left column and the ROC
curves in the right column. For the 3-class classification, the ROC curves are figured in the same plot in different colours: green for the healthy class, blue for the MCI class and
red for the dementia class.
9
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Fig. 7. Shapely values for the binary classifications.
positive values moved the prediction towards the other diagnosis. The
blue-red colour-map of the dots indicated the quality of the pattern
representation, as a continuous interpolation from the minimum score
of 0 (in blue), corresponding to the label omitted, to the maximum score
10
of 3 (in red), which corresponded to the label correct. For example, the
difference in the quality representation of pattern 9 in the classification
healthy-MCI resulted very sharp between the two classes (with higher
scores for the healthy one). The same behaviour is visible for the more
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significant patterns in the other classifications (e.g. numbers 10, 18
and 11). Other patterns (such as the numbers 5 and 7) instead did not
show a clear difference in the scoring between the classes in all the
classifications. It suggested that individuals of both classes were likely
to make similar mistakes in the drawing of these elements.

6. Discussion

6.1. System performance

In this work, a method for the analysis of the ROCF copy test has
been proposed as a DSS to support clinicians in the evaluation of the
ROCF copy test and in the prediction of the patient’s diagnosis. The
system performs a semi-automatic analysis of a scanned ROCF image,
returning a qualitative score for each of the 18 patterns used in the
standard scoring method (4 levels) and the most probable diagnosis for
the subject between healthy, MCI or dementia.

The simple patterns were evaluated using predefined expert-based
rules and low to medium Accuracy scores were obtained in their
labelling. The main reason behind the choice of CV methods for the
evaluation of the simple patterns consisted in the small amount of
samples available for each label category. In some cases indeed, the
rules were adjusted on limited examples of differently labelled patterns.
For example, pattern 9 resulted the hardest to be evaluated (with
an Accuracy of 61.9%), since only a small portion was labelled as
distorted and a very diverse group of representations fell into that
category (Table 1). The variety of the patterns replicas represented the
main issue to the formulation of general rules for the exact labelling,
although some positive Accuracy scores were obtained in the evaluation
of the patterns 6, 7 and 16.

For the evaluation of the complex patterns, the articulated shapes
represented a further barrier to the use of explicit labelling rules.
Therefore, deep learning models were applied in their evaluation. The
Accuracy scores (in Table 5) were similar to those achieved with the
simple patterns. Overall, the main limitations in the single pattern
evaluation are the unbalance of the labels available and the small
sample size. Thus, as further development, we envisage the collection
of a larger amount of retrospective data to increase the accuracy in the
evaluation of the 18 patterns and make the system more robust. Also
the complex pattern evaluation might improve increasing the sample
size.

Very good to excellent classification metrics were obtained in the
discrimination between all the healthy and MCI individuals. Despite
of the class unbalance, high Precision and Recall were achieved (95%
and 90% respectively). The ROC analysis revealed that the threshold of
the classifier could be adjusted to calibrate the true positive rate to the
maximum of 100%, tolerating a false positive rate of 30%. Even higher
performances were achieved in the classification between healthy and
dementia individuals, with the 100% of Precision score and a Recall
equal to 84%. Such behaviour was quite expected since an increased
level of impairment of cognitive functions is present in patients with
dementia. Slightly lower performance was obtained in the MCI vs de-
mentia classification with all the samples. However, the initial Recall of
74% could be improved to 100% by selecting a different threshold with
a Precision equal to 80%. The fourth classification, with the 3 groups,
presented the lower performances (still good with 76% for the accuracy
and 74% for the other metrics) as the task complexity increased. The
same tasks were repeated using random sampled balanced datasets
and mediating the classification metrics of 50 iterations. The outcomes
converged to high performances for the 3 binary tasks, yet lower than
the case in which all the samples were included. A higher Precision
was obtained in the tasks healthy vs MCI and healthy vs dementia,
while Recall resulted higher in the MCI vs dementia classification.
Similar performances were kept in the 3-class task. Our results were
analogous in terms of accuracy to those reached by a recent work
11

by Youn et al. (2021). In the study, they used a total number of 980
ROCF copy images to train convolutional neural networks as screening
tool to classify between healthy, MCI and severely cognitive impaired
individuals. Their accuracy performance were comparable to ours in
the classification between healthy and severely impaired patients (90%)
and in the 3-group classification task (71%). However, our system
was able to achieve excellent accuracy (85%) in the classification
between healthy and mild cognitive impaired individuals, which is the
most relevant classification problem addressing early screening. Such
classification problem was not reported in the previous study by the
previous study (Youn et al., 2021). Furthermore, the proposed DSS
was also capable of evaluating individually the 18 test patterns thus
enriching the information provided to clinicians.

6.2. System impact

The DSS presented in this work is a prototype that can be used
in the study and development of medical expert systems applied in
the diagnosis of cognitive decline. It was developed as a part of a
retrospective study in which past data samples of the ROCF copy test
were collected to build the system’s knowledge base. It represents an
advantage with respect to the tablet-based solutions as it allows to
expand the dataset by simply scan existing ROCF copy images, instead
of asking new participants to execute the test. The amount of past
ROCF examples constitutes the information level of the expert system,
therefore it is likely to increase as the number of data samples grows.
A higher level of information enhance the accuracy of the tool in the
pattern evaluation and the confidence in the formulated diagnosis.
Currently, samples data consist of experts evaluated ROCF copies,
combined with the patient’s true diagnosis. However, larger amount of
samples might also allow the exploitation of unsupervised techniques
for the image analysis, removing any residual subjective component in
the evaluation of the test.

The results of the SHAP analysis revealed that some ROCF patterns
were the most important in discriminating between healthy people and
MCI patients or between MCI and dementia patients. As an example it
could be seen from Fig. 7 how Pattern 11, which is a small vertical
line that could be easily neglected (see Fig. 3(b)), is particularly im-
portant to distinguish between healthy and MCI patients. This finding,
which could have direct clinical utility and applicability to support
diagnosis, could be well regarded as a first step in the discovery of
a new clinical sign. Indeed, the outcome of the neuropsychological
assessment is based not only on the patient’s performance score on
the test, but also on whether certain signs of cognitive dysfunction
appear. In general, a pathological sign is a complex but discrete, fairly
invariable and recognisable pattern of responses or behaviours given by
the patient during the performance of the test (Abbate et al., 2019). The
experienced clinician may recognise some typical pathological signs in
many neuropsychological tests. The clinical value of a sign is sometimes
more relevant than the value of a low score returned on the test,
because the sign directly suggests a particular cognitive dysfunction
and corresponding brain damage. For example, in the case of the ROCF,
the closing-in phenomenon, where the user draws the image 𝐹 close to
or on the image 𝐹 or on the margin of the drawing area, is a sign highly
suggestive of environmental dependence syndrome, which corresponds
to frontal-parietal brain damage. However, it is difficult to define
objectively such underlying clinical signs, and inter-rater agreement
on their assessment is often low. In this context, the application of a
automated decision support system software to the ROCF, by providing
further and objective information, could have the additional benefit of
helping to more objectively define a neuropsychological sign at the test,
contributing to a more reliable assessment. Furthermore, the proposed
DSS tried to estimate also the same labels (omitted, distorted, mis-
placed, correct) used by clinicians in the standard storing to evaluate
the 18 patterns. This allowed the DSS to track and provide the expert
with information about the type of the patient’s mistakes, which is

not included in the overall numerical score. The expert clinician then
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could use this information to associate the patient’s performance with
other cognitive dysfunctions (Trojano & Gainotti, 2016). For example,
a performance characterised mainly by omissions might be related
primarily to deficits in visual attention and/or prefrontal executive
monitoring. Instead when dislocation errors prevail, it could be asso-
ciated primarily to a deficit in visuospatial skills, and in a minority of
cases also to a particular cognitive disorder known as simultanagnosia.
Finally, distortion errors made on small elements of the figure (figure
content) might be related to deficits in grapho-motor skills and/or
visual perception; instead distortion error made on frame elements
of the figures might be associated to deficits in prefrontal executive
planning. Unfortunately, in the standard correction system the different
types of mistakes even observed and used concurrently to compute
the overall score, are not exploited individually and not saved. So,
in the actual clinical practice, the analysis of the qualitative aspects
of the execution and consequently a possible analysis of the supposed
different cognitive abilities involved is not directly available. The pro-
posed decision support system is designed to support the clinician in
retrieving, cataloguing, and leveraging also this valuable information
regarding the type of error made by the patient. In the future an
extensive use of our DSS in clinical practice is envisaged to evaluate
its full potentialities and usefulness.

7. Conclusions

This work presented a decision support system for the analysis of
the ROCF copy test, able to qualitatively evaluate the 18 patterns of
the figure and to formulate the subject’s most probable diagnosis with
high accuracy. The system was tested using retrospective data and
it achieved a very high accuracy performance of about 85%, 91%,
and 83% in discriminating healthy subjects from MCI, healthy subjects
from dementia and MCI from dementia respectively. Those results are
even more relevant considering that the ROCF copy test represents just
partial information in the clinical process of the cognitive assessment.
The DSS integrates also explainable AI methods to better interpret the
results of the diagnosis prediction. In particular, the DSS can identify
which are the main patterns responsible for the prediction. Focusing
the clinician attention on such a specific information might enrich his
evaluation and can be a first step towards the discovery of specific signs
possibly associated to specific cognitive dysfunctions. To conclude, the
proposed DSS can enrich the standard evaluation of the ROCF copy test.
Therefore, an extensive use of the system in clinical practice might pave
the wave towards a more robust use of the ROCF test in the process of
cognitive evaluation.
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