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Brain‑computer interface 
for robot control with eye artifacts 
for assistive applications
Kaan Karas 1, Luca Pozzi 1, Alessandra Pedrocchi 2, Francesco Braghin 1 & Loris Roveda 3*

Human‑robot interaction is a rapidly developing field and robots have been taking more active roles in 
our daily lives. Patient care is one of the fields in which robots are becoming more present, especially 
for people with disabilities. People with neurodegenerative disorders might not consciously or 
voluntarily produce movements other than those involving the eyes or eyelids. In this context, Brain‑
Computer Interface (BCI) systems present an alternative way to communicate or interact with the 
external world. In order to improve the lives of people with disabilities, this paper presents a novel BCI 
to control an assistive robot with user’s eye artifacts. In this study, eye artifacts that contaminate the 
electroencephalogram (EEG) signals are considered a valuable source of information thanks to their 
high signal‑to‑noise ratio and intentional generation. The proposed methodology detects eye artifacts 
from EEG signals through characteristic shapes that occur during the events. The lateral movements 
are distinguished by their ordered peak and valley formation and the opposite phase of the signals 
measured at F7 and F8 channels. This work, as far as the authors’ knowledge, is the first method that 
used this behavior to detect lateral eye movements. For the blinks detection, a double‑thresholding 
method is proposed by the authors to catch both weak blinks as well as regular ones, differentiating 
itself from the other algorithms in the literature that normally use only one threshold. Real‑time 
detected events with their virtual time stamps are fed into a second algorithm, to further distinguish 
between double and quadruple blinks from single blinks occurrence frequency. After testing the 
algorithm offline and in realtime, the algorithm is implemented on the device. The created BCI was 
used to control an assistive robot through a graphical user interface. The validation experiments 
including 5 participants prove that the developed BCI is able to control the robot.

Robots can be used for a wide range of purposes and with recent advancements in the robotic field, they have 
become available in many aspects of human life. Robots had a significant impact in many sectors, such as manu-
facturing  operation1, teleportation  application2, intelligent vehicles and air-crafts3, entertainment and  education4, 
assistive and rehabilitation  technology5, and robot-assisted  surgery6. Among these, the assistive and rehabilitation 
field has the most direct effect on people’s lives. Active prostheses or exoskeletons for assisting different sensori-
motor functions such as arm, hand, leg, and ankle are other human-robot interaction applications that are used 
in assistive  technologies7. The usage of biological signals has become very common in assistive technologies due 
to their ability to decode the information of the current state of the human partner. Later, this information can 
be altered to control devices by the change of measured state. Prosthesis and/or exoskeletons, however, are not 
an effective solution for people with neurodegenerative disorders, requiring another level of assistance and new 
ways for human-robot interaction, such as Brain-Computer Interface (BCI).

BCI state of the art for assistive robotics
BCI is a non-muscular communication channel that enables a person to send commands and messages to an 
automated system such as a robot or prosthesis, by means of his brain  activity8. BCI technology has special impor-
tance for people with disabilities since people with neurodegenerative disorders may not be able to consciously 
produce any movements other than those involving the eyes or  eyelids9. Consequently, BCI offers a good solution 
for enabling communication with assistive  technologies9–11. Eye movements and blinks are considered pervasive 
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problems in EEG-based BCI  research12. However, in some research, eye artifacts have been considered valuable 
sources of information and exploited for communication and control of  machines13. Control of a mobile robot 
with brain-actuated signals is reported in Ref.14. Researchers were able to control a mobile robot after a few days 
of training with EEG-recorded brain signals from standard fronto-centro-pariental positions. Recorded 8 chan-
nels were spatially filtered and used in the Welch periodogram algorithm. The resulting signals were used in a 
statistical classifier to recognize mental tasks. They adopted an asynchronous BCI to avoid waiting for external 
cues as in synchronous BCI. Evoked potentials were used to control wheelchairs to help people with disabilities, 
in Ref.15. Although it was a slow process, participants were able to choose the location through a graphical user 
interface. On the monitor, destinations were flashed randomly and when the user focused on a flashed location, 
the EEG signal presented a peak of around 300 ms. Authors of Ref.16 managed to control a robotic arm by a 
hybrid approach. Users-generated motor imaginary (MI) was used to control the movement of the arm, while 
P300 potential was used to stop the robotic arm. Two different kinds of evoked potential signals are used in Ref.17 
for another kind of hybrid BCI system which was developed by using P300 and SSVEP, to control a wheelchair. 
The problems with the evoked potentials are an external stimulus is required to initiate them and a time loss 
occurs due to the waiting time between stimulus and detection.  Reference18 developed a communication interface 
for people with disabilities. Horizontal and vertical EOG signals were measured using two surface electrodes 
from either eye and used this information to select the letter from a virtual keyboard based on the thresholding 
method.  Reference19 focused on developing a simple motor-controlling application with an EOG sensor for 
controlling the grasping of a humanoid robot. 2 electrodes, 1 horizontal and 1 vertical, are placed around each 
eye. They detected blinks by adding a preset minimum threshold and a maximum threshold. In Ref.9, authors, 
contrary to the traditional eye blink detection by using the alpha-blocking in the occipital region measured by 
EEG, used an EOG sensor and developed a detection algorithm based on thresholding. They collected multiple 
samples from different people to determine the value. They concluded that the EOG detection’s accuracy is higher 
than alpha-blocking methods while it requires fewer electrodes to measure. Neural Networks are also used for 
the detection algorithm in Ref.20,21.

In the literature, eye artifact-related papers are generally focused on blink detection, and works using EEG 
signals are enforcing the participant to not move their eyes. Works focused on eye movement detection are quite 
rare and they are mostly taking advantage of EOG sensors instead of using EEG. Moreover, eye artifacts have a 
higher signal-to-noise ratio (SNR) and they are observable in the time domain in contrast to most of the useful 
EEG signals. The general cons of EOG-based methods are that electrodes placed around the eyes may cause some 
loss of eyesight and no other information can be gathered compared to an EEG cap.

Paper contribution
This work proposes a real-time Brain-Computer Interface to control an assistive robot in a human-robot col-
laborative scenario in order to increase the quality of a patient’s life by enabling interaction with the environ-
ment. EEG sensor, the TMSi SAGA 64+, will be used to record signals from the prefrontal cortex of the patient. 
The algorithm will detect the lateral eye movements and blinks that occur voluntarily or forced on the frontal 
cortex. This information will be used to control a graphical user interface that has multiple functions including 
controlling the TIAGo assistive robot. The contributions of this work to the literature are:

• Creating a unique real-time BCI for TMSi SAGA 64+ device;
• Developing a novel methodology to detect blinks, by using 2 threshold approach, and left and right eye 

movements, by exploiting the phase difference and peak and valley pattern, from EEG signals;
• Testing the proposed BCI with online blinks/eyes direction detection to control a real assistive robot (the 

TIAGo robot).

EEG technology is investigated in this paper instead of EMG, EOG, or contactless eye trackers due to the related 
advancements in the field in the last  years22. The aim of this paper, indeed, is to evaluate the possibilities provided 
by this technology in human-robot interaction applications. In addition, EEG is considered due to its improved 
comfort and natural human-machine interaction w.r.t. EMG (being placed close to the eye, the solution might 
be too invasive and uncomfortable) and w.r.t. contactless eye trackers (being affected e.g., by light conditions 
and head placement).

Paper layout
The remainder of this work is organized as follows; in Section "Background Information" information related 
to EEG signals, blink, and eye movement is presented, in Section "Materials and methods" used equipment 
information about the experimental setup, signal acquisition, processing, threshold detection, and detection 
algorithm is presented, in Section "Results and discussion" offline and real-time detection results and real-time 
robot control results are presented, finally, in Section "Conclusions and future developments" conclusion of this 
work with the possible future works to improve the system are presented.

Background information
EEG signals
Brain activity monitoring technologies can be invasive, which requires surgical procedures, or non-invasive. 
Thanks to its desirable attributes, namely high temporal resolution up to 1 ms, low cost, ease of portability, and 
non-invasiveness, EEG is the most commonly employed neuroimaging  modality23,24. EEG signals are typically 
in the ten to hundred µ V ranges and classified as delta rhythm ( 0.1− 3.5 Hz), theta rhythm ( 4− 7.5 Hz), alpha 
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rhythm ( 8− 13 Hz), beta rhythm ( 14− 30 Hz), and gamma rhythm ( > 30 Hz)23. Studies in neuroscience, cog-
nitive science, and psychology fields with EEG devices showed various brain lobes are responsible for specific 
cognitive  activities25–28.

A universally accepted method is used to indicate the locations of electrodes on the scalp, the 10/20 system. 
The system is reliant on the link between the electrode site and the underlying cerebral cortex region. The frontal, 
parietal, temporal, and occipital lobes are indicated by the letters F, P, T, and O, respectively and the letter C is 
utilized only for identification purposes, in the 10/20 system as depicted in Fig. 1 (where the SAGA device and 
one subject with the SAGA device are also shown). The letter Z (zero) indicates that an electrode is positioned 
on the midline. Even numbers (2, 4, 6, 8) are used to represent right hemisphere electrode placements, whereas 
odd numbers represent left hemisphere electrode positions (1, 3, 5, 7)24. EEG sensors are small and light, making 
it convenient to wear them for extended periods of time without being unobtrusive to the users while continu-
ously sensing at home or  outside29,30.

Eye blinks and eye movements
Blinking is the semi-automatic closure of the eyelids and it protects the eyes from potentially harmful stimuli such 
as bright lights and foreign substances, like dust while it does not affect the continuity of the subjective impression 
of images. Various eye-related motions, such as lateral movement to the left, right, up or down, blinks, and so on, 
give rise to characteristic features on the signals  collected31. The eye blink signal acquired by EEG electrodes, due 
to the electrodes’ different positioning, is different from the same event recorded by electrooculography (EOG)31. 
Eye blink and eye movement power spectrum are investigated at various channels and it is found that when a 
blink or eye movement occurs a change of the signal power can be observed in delta ( 0.1− 3.5 Hz), theta ( 4− 7.5 
Hz) and alpha ( 8− 13 Hz)  bands21,32–34. Alpha rhythm blocking, which is the increase of brain signal amplitudes 
in alpha bands due to the closure of the eyes in a wakeful condition, is used to detect blinks at various channels 
and eye closing/opening procedure has a widespread effect overall EEG  electrodes9,35.  In36, authors demonstrate 
the effect of a blink in C3 channel in the averaged power spectrum. Power corresponds at frequencies between 
0 to 30Hz is higher for blink compared to no blink and this phenomenon can be observed in all channels even 
without averaging multiple times of the same event. An example of this behavior is demonstrated in Fig. 2A) for 
Cz Channel. In another work authors  of37 demonstrated the blink power topographic distribution on the scalp. 
The power decreases while moving away from the source, eyes. The same phenomenon is also demonstrated in 
Fig. 2B) with fewer channels.

In addition to the change in the power of the signal, a spike on the signal can also be observable when there 
is a blink and in the case of movements, multiple spikes are observed. Corneo-retinal potential (CRP) refers to 
the constant potential difference that exists between the retina and the foveal sclera of the eye. This facilitates 

Figure 1.  (A) the 10/20 System Side View, (B) the 10/20 System Top View, (C) the SAGA device.

Figure 2.  (A) Power spectrum of Cz Channel during Blink and no Blink, (B) Power topographic of the blink 
components.
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the generation of a large-amplitude current field with the movement of eyeballs in every direction. With the 
frontal electrodes that are placed in accordance with the 10-20 System, it is possible to detect those current fields, 
as demonstrated in Fig. 3. When the eyeball rotates upwards, the positive pole (cornea) becomes closer to the 
frontal channels and produces a positive deflection. On the other hand, a downward rotation causes a negative 
peak in those channels. This is identical to what happens when a blink happens. When the eyelid shuts, the 
cornea moves closer to Fp1, resulting in a positive deflection. However, as the eyelid opens, the cornea rotates 
away from electrodes, resulting in a negative  deflection32,34,38,39. Another form of the electric signal is produced 
by eye movements. The cornea of the eye is positively charged relative to the retina, resulting in a continuous 
retino-corneal charge of between 0.4 and 1.0mV in both eyes, which approximates a dipole. The direction of this 
dipole in three-dimensional space shifts when the retino-corneal axis rotates during eye movements, resulting in 
variations in electric potential. Signals caused by eye movement travel mostly through the shunt conduit given 
by the eye sockets. These signals attenuate more slowly than blink  signals40. Opposite polarity is induced during 
lateral eye movements in the left and right hemispheres, resulting in the phase  difference18,32. Duration of the eye 
blink can vary between 200 to 400ms and its electrical magnitude is more than 10 times that of cortical signals 
but it rapidly decreases with the distance from the  eyes40–42. The electrical magnitude of the blinks has some 
fluctuations within the same individual and even higher variation amongst different  participants43. Eye blinks 
can be classified into three types: reflexive, spontaneous, and  voluntary18,39,43. The reflexive eye blink is the sim-
plest response and does not engage cerebral  regions21,43. The spontaneous blink (also referred to as involuntary 
or natural eye blink) happens ten to twenty times per minute without external stimulation and serves to clean, 
lubricate, and oxygenate the  cornea31,43. The voluntary blink is caused by intentional eye closing and it produces 
clearer signals with larger amplitude than that obtained from other types of blinks and lateral eye  movement18,43. 
Moreover, it involves multiple areas of the cerebral  cortex21,43.

Materials and methods
Materials
In this work, a 64-bit Windows laptop is used to record EEG data for offline analyses. The device has 16 GB 
of installed RAM, 15.8 GB is available, and has an Intel(R) Core(TM) i7-6700HQ with a 2.6 GHz base and 3.1 
GHz turbo CPU. The processor has 8 cores for multiprocessing. TMSi SAGA 64+ device is used for EEG signal 
acquisition, sampling frequency was chosen as 500 Hz. A gel-type EEG cap was used and in all experiments, 
impedance values were kept under 5 k � . The ground electrode was placed at the bone back of the right ear and 
the reference electrode at the bone back of the left ear.

Participants
All the experiments that involved human subjects were approved by the ethical committee of Politecnico di 
Milano (Opinion n. 13/2021), and participants were asked to sign a written informed consent.

All the experiments were carried out in accordance with relevant guidelines and regulations.
5 subjects (3 males, 2 females, age 27± 3 ), participated in experiments controlling a robot platform (Sec-

tion 4.4) with a given consent. During all sessions, the subjects were asked to sit comfortably in front of the moni-
tor. The eye side is aligned with the center of the screen so that the idle rhythm is not affected. At the beginning 
of each trial, the desired eye artifacts are told to the participant.

Signal acquisition
In order to decide which channels to use, channels corresponding to the frontal, temporal, parietal, and occipital 
cortexes are examined. After a thorough investigation of raw and filtered ( band pass filtered between 0.5− 100 
Hz) signals, FP1, F7, and F8 channels were decided to be used in the detection algorithm. FP1 channel demon-
strated the highest relative peaks compared to other channels and it is used in the blink detection part, while 
F7 and F8 channels showed the highest relative change during the lateral eye movement and consistent phase 
difference compared to other coupled channels on opposite hemispheres and they are used in the detection of 
lateral movements.

Figure 3.  (A) Anatomy of eye and eyelid, shown in a parasagittal  section44 (B) Polarity of Retina and Cornea 
and its effect on Fpz Channel on EEG Signal.
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Signal pre‑processing
In the literature, as has been mentioned before, eye artifacts elicit power increases in specific frequency bands. 
There are different suggestions for the frequency band between 0− 13 Hz21,33,38. In order to find a relevant fre-
quency band and affirm the previous findings, time-frequency analyses of the channels were conducted. Short-
time Fourier transform (STFT) is used to determine the sinusoidal phase and frequency content of local sections 
of a signal as it changes over time. The signal is segmented in windows of 100 data points with an overlap of 50 
data points. Hanning windows have been applied. Before calculating the STFT, the signal is filtered to get rid of 
the high-frequency components, higher than 100 Hz, and low-frequency components, lower than 0.5 Hz which 
are in line with the mentioned frequency bands of the EEG signal. Frontal channels showed more clear results 
compared to others. The rise in the amplitudes is exactly in line with the events, demonstrated in Fig. 4. By 
looking at electrodes in the temporal cortex, a rise of power between 0.5− 15 Hz is observed and in the frontal 
cortex, it has a frequency range of up to 30 Hz.

Fourier transform (FT) of the idle, blink, look left, and look right events are calculated to further examine 
the components of the signal between 0.5− 30 Hz. After visualization of the FT plots, Fig. 5, it is clear that the 
dominant frequency bands are indeed between 0.5 and 15 Hz. Since the principal frequency bands are prior to 
15 Hz, a second-order Butterworth filter between 1− 13 Hz is chosen for filtering the signal.

Remark 1 Blink, look left, and look right signals have been considered in this paper. Indeed, look up and look 
down are not studied. These signals can be included in future work to provide more capabilities to the proposed 
approach.

Threshold determination
Most of the threshold-based approaches suffered from the variability of peaks between subjects and also within 
subjects on different  dates45. By considering these, threshold determination was done by considering all experi-
ments at one date, and then to reduce the variability within a subject, different dated experiments were used to 
optimize the final values. Two values were chosen for blink for the Fp1 channel and 4 values for the look left for 
F7 and F8 channels and 4 values were chosen for the look right for F7 and F8 channels. The general behaviors 
of the signals on the events are demonstrated in Fig. 6.

The mean and standard deviation values for each trial are calculated separately as demonstrated in Eq. (1) 
and distribution analysis was conducted to investigate the quartiles and outliers of mean values for all peaks and 
valleys. Considering the mean and standard deviation the threshold value should be between 167− 22α µV  and 

Figure 4.  STFT of F1, FT7, FT8, Fp1, F7, F8 channels while blink and look right on 22/07/2022.
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167+ 22α µV  for the Fp1 channel to detect blinks. For significant peaks, considering the relation given above, α 
was chosen to be 0.5 so that the first threshold became 156 µV  . The value also corresponds to the first percentile 
of the overall distribution. For the second threshold, α was chosen to be 4 based on the visual examination of 
all data sets, and the second threshold was determined as 80 µV  , which is lower than all the blink peak values 
during the experiments.

A similar procedure was followed to find threshold values for F7 and F8, only this time both negative and 
positive peaks have to be found (all the thresholds are shown in Table 1). As it is demonstrated in Fig. 7, left 
and right looks have an opposite behavior which is composed of multiple peaks and valleys. The peak at one 
channel and the valley in the other were observed almost at the same time. The mean and standard variation of 
each channel for each trial is calculated separately. Then the distribution of the peaks and valleys is examined 
to determine thresholds.

(1)THR = M − α ∗ SD,

(2)M =

∑N
n=1 y(n)

N
,

(3)SD =

√

∑N
n=1 (y(n)−M)

N
.

Figure 5.  FFT of Idle, Blink, Look Left and Look Right at Fp1, F7, F8 Channels on 28/06/2022.
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Algorithm

The algorithm can distinguish single blinks, look left and look right events. Furthermore, it also catches the 
relative time, the first data point received corresponds to 0 in virtual time. Filtered data is divided into windows 
of size 100 and fed into the algorithm.

First, the algorithm checks whether the Fp1 channel has a value higher than 156 µV  and if there is, it raises 
a Blink Flag. If there is a previous window, that is not used in any event, it is added before the new event. Since 
Blink Flag is raised, the next batch also enters to blink case. This allows passing the threshold obligation so that 

1: Filter the Raw Signal Between 1-13 Hz
2: Set Parameters to Initial States
3: Set BFlag, LRFlag and LLFLag to False
4: while True do
5: Create a Window with size 3× 100
6: if Fp1 > 156 or BFlag then
7: if not BFlag then
8: Set BFlag to True
9: Save First Part of the Blink

10: else
11: Concatenate the Second Part with the First Part
12: Record Blink Event
13: Set Variables To Initial States
14: else if ((F7 > 20 and F8 < −30) or LRFlag) and not LLFLag then
15: if not LRFlag then
16: Set Variables To Initial States
17: Set LRFlag to True and SaveCurrentBatch to False
18: Save First Part of the Look Right Event in an Array
19: else
20: Concatenate First Part with Incoming Windows
21: Set SaveCurrentBatch to False
22: Check Number of Peaks and Valleys of the Array
23: if 2 Peaks for F7 & 2 Valleys For F8 then
24: if Last 30 Elements of F7 below 10 µV then
25: Record Look Right Event
26: Set Variables To Initial States
27: else if ((F7 < −20 and F8 > 30) or LLFlag) and not LRFlag then
28: if not LLFlag then
29: Set Variables To Initial States
30: Set LLFlag to True and SaveCurrentBatch to False
31: Save First Part of The Look Left Event in an Array
32: else
33: Concatenate First Part with Incoming Windows
34: Set SaveCurrentBatch to False
35: Check Number of Peaks and Valleys of the Array
36: if 2 Peaks for F8 & 2 Valleys For F7 then
37: if Last 30 Elements of F8 < 20 then
38: Record Look Left Event
39: Set Variables To Initial States
40: else if Fp1 > 80 then
41: Set Variables To Initial States
42: Set BFlag True and SaveCurrentBatch to False
43: Save First Part of The Blink
44: if SaveCurrentBatch is True then
45: Previous Batch = Current Batch
46: else
47: Previous Batch = []
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the remaining, downward decrease from the peak of the signal, can be caught. The new window is concatenated 
with the previous one in the previous variable. Since a blink can occur between 200 ms to 400 ms, this enables the 
algorithm to catch long blinks. If a blink event is caught, then the last batch of data is not kept for the next run.

In the second case, the algorithm checks for F7 and F8 channels. If there is a value higher than 20 µV  for F7 
and lower than −30 µV  for F8 channels, the algorithm initiates the detection of the look right event by raising 
Look Right Flag. Unless a blink occurs, all new batches enter to look right case. The previous batch, if it is not 
used, merged with the current batch. The main idea of the algorithm is to increase the size of the window while 
checking the peaks and valleys of both F7 and F8 channels. Recorded window loops in the same condition with 
new batches concatenated in each loop until it acquires the desired shape for corresponding channels. After it 
succeeds, it checks whether the tail of the signal diminished within the idle state by examining the amplitudes 
of the last elements of the window. Then the algorithm exits the case and all flags turned to the initial state. Look 
left case is similar to the right case, the only difference is the order of the peaks on corresponding channels. 
Finally, if a current sample does not enter any of those statements, an additional conditional statement checks 
whether a weak blink has occurred. If the statement detects a value higher than 80 µV  inside the Fp1 stream of 
the data, it raises the Blink Flag. Since the Blink Flag is raised, the next batch will enter the first condition and a 
blink event will be caught. Lastly, if the batch does not satisfy any of the conditions, it is recorded to become the 
previous window to be used with the next batch. If the next batch also does not satisfy any conditions, then the 
old one is deleted and the current one takes its place.

In the next chapter, offline and real-time test results will be demonstrated. Furthermore, the BCI application, 
controlling TIAGo, through a graphical user interface is also explained in the "Results and discussion".

Data flow and processing schema
Figure 8 shows the data flow and processing schema, including the proposed algorithm for eye motion 
classification.

Figure 6.  Butterworth Band Pass Filtered Signals at 1–13 Hz of Channels Fp1, F7, and F8 on 28/06/22.
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Results and discussion
The performance of the developed system was evaluated by using offline data which was gathered through a 
series of experimental tests performed with the same subject. After obtaining satisfactory results with offline data, 
real-time tests were conducted, with the same participant, and the performance of the algorithm was evaluated. 
After observing satisfactory results both in offline and real-time tests, the algorithm is implemented to commu-
nicate with TIAGo through a graphical user interface to achieve successful robot control. 5 participants tested 
the developed algorithm, controlling the TIAGo robot with the proposed BCI approach.

Offline results of the algorithm

6 different dated sets of data were examined to determine offline performance. In Table 2, the results of the offline 
system are demonstrated. EEG signal variability in the same subject can be observed from the results. The setup 
of the system, electrode placement of the scalp, and impedance values of the electrodes have a high influence on 
the results as well as the natural variation in biological conditions of the patient, such as skin conductance, and 
eye moisture. Nevertheless, the overall performance of the offline system was quite satisfactory. The start and the 
end of the events can become decisive if two events occur close to each other. In some of the cases, in which two 
eye motions or an eye motion and a weak blink occurred without the initial one settling down, the first event was 
recognized but the first recorded event also contains the second one inside. Due to this, misclassification or misses 
were observed. The confusion matrix is demonstrated in Table 3. From the table, it can be concluded that some 
cases of looking right and blink events are misclassified as looking left. However, these results do not mean that 
one event is misclassified as another event but multiple events were forming a single misclassification. Overall 
the 70 blinks, 5 look right, and 9 look right events were not recognized. After observing satisfactory results with 
offline setup, the algorithm was implemented into the TMSi SAGA 64+ data acquisition library.

Figure 7.  Effects of Eye Artifacts on Fp1, F7 and F8 Channels.

Table 1.  The threshold values set for each channel, and the corresponding event.

Channel Event

Threshold [ µV]

Upper Lower

Fp1 Blinks 156 80

F7
Look left 20 − 20

Look right 20 − 20

F8
Look left 30 − 20

Look right 20 − 30
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Remark 2 As highlighted in this section, 6 datasets from a single subject and different days have been used to 
train the algorithm. This makes it possible to account for uncertainties and variability of user behavior, achieving 
more robust training. In the same way, data belonging to multiple users can be included in the training, providing 
robust behavior across different subjects. If the algorithm’s performance has to be improved, transfer learning 
or meta-learning approaches might be considered. As a matter of example, fine-tuning for a specific user can 
be achieved on the basis of Ref.46, where a Recurrent Neural Network (RNN) is cascade-connected with a Fully 
Connected layer retrained for each specific subject in a human-robot collaborative application.

Real time results of the algorithm
In real-time tests, the participant was allowed to perform eye artifacts by his choices. The experimental data 
were also saved for offline results to compare accuracy. In order to use the algorithm in real-time, Python library 
which is provided by TMSi company for data acquisition has to be modified. As far as the authors’ knowledge, 
there was not any available open-source or provided real-time processing software for this device. The provided 

Figure 8.  The data flow and processing schema is shown. The data are acquired from the SAGA device. Then, 
the data are preprocessed and filtered. The training algorithm is fed with the processed data. Finally, the trained 
algorithm is used online in the human-robot interaction application.

Table 2.  Offline detection accuracy of the algorithm.

 Experiment

Blink Look left Look right

Accuracy % Accuracy % Accuracy %

15/06/22 206/299 90.0 11/13 84.6 14/18 77.8

16/06/22 164/208 78.8 25/27 92.6 22/28 78.6

28/06/22 88/94 93.6 47/49 95.9 49/50 98

29/06/22 102/102 100 58/59 98.3 68/71 95.8

20/07/22 111/137 81.0 72/74 97.3 49/62 79

22/07/22 137/141 97.2 68/68 100 54/67 80.6

Overall 808/911 88.7 281/290 96.9 256/296 86.5

Table 3.  Confusion matrix of overall offline detection tests.

Actual blink Actual look left Actual look right

Predicted blink 808 0 7

Predicted look left 29 281 24

Predicted look right 4 4 256
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library has the function for semi-real-time filtering of the signal for visualization purposes. The function provided 
was exploited and by introducing new functions, including a detection algorithm, real-time data processing and 
detection of the eye artifacts was made possible with the TMSi SAGA 64+ device.

Overall in the real-time tests, the subject performed 316 blinks, 82 left look, and 83 right look movements. 
Afterward, the recorded experimental data sets were fed into the offline algorithm to compare the results. In 
Table 4, both results are demonstrated. Offline and real-time performance of the same data showed quite different 
results, with the real-time application having lower accuracy. One of the main reasons for this difference can be 
the difference in filtering between both cases. In real-time operation, random-sized signals are windowed com-
pared to offline where the whole signal is filtered at once. Although real-time accuracy was lower than expected, 
it was enough to control an assistive robot through a GUI since moving between buttons can be done with both 
lateral sides and the lacking one can be suspended by the other one. As far as the blink detection, its accuracy 
does not vary much between real-time and offline algorithms, since it has more evident peak amplitudes.

BCI experiment description
For the robotic unit, TIAGo by PAL ROBOTICS was chosen. Robot communication is possible through ROS, 
Robotic Operating System, Melodic framework. In order to have full access to all offered features, Ubuntu 18.04 
operating system was used as a second operating system on the same computer. In order to create a successful 
BCI communication, some subsystems had to be created, namely an event-detection algorithm (as described in 
subsection 3.6), a distributor to further differentiate multiple blinks (single, double, or quadruple blinks) based 
on the frequency of occurrences, a graphical user interface (GUI) through which the user can select the desired 
task, and a ROS distributor, enabling communication between the described pipeline and the ROS network that 
controls the robot. In Fig. 9, the data flow within the systems is demonstrated. By considering the initial setup 
of the GUI, the distributor sent the queue to switch between buttons or change pages by incoming events from 
the device. Double blink is used to press buttons for changing the page, picking the object, or in the robot base 
control page, going forward. On the other hand, lateral movements are used to move between buttons. Continu-
ous rotation is adopted for changing the highlighted button. Finally, 4 consecutive blinks are used to go back to 
the previous page. In order to detect double and quadruple blinks, the virtual time of the detected event and the 
latest stream are used. The algorithm sets the time between blinks as 0.5s second, and it waits for 1.5s second 
from the first occurrence of a blink to make the final judgment whether it is a single, double, or triple blink. If 
a quadruple blink is initiated within the time frame then it directly sends the appropriate command, “return to 
the previous page”, to the GUI.

GUI welcomes the user with 2 options; controlling the mobile base of the robot and the other is choosing a 
predefined task:

• On the mobile base control page, the robot can either go forward for 1m or rotate left or right by 15◦.
• From the predefined tasks page,

– A caregiver can be informed through email;
– The robot can perform a dance which also resets its arm, head, and torso position and aligns it with the 

initial direction;
– The robot can go to a table at a predefined location;
– The robot can scan the plane in front of it to distinguish the objects on it. The currently selected object 

is highlighted and the user can change the selection by looking left or right. At this stage, the pick task 
is activated. After pressing the pick button by double clicking, the robot calculates its arm and torso 
joint values and picks the object. After the robot grips the object, it goes back to a safer spot since the 
robot arm configuration is different from the initial state. Then a participant can control the robot to 
any position from the base motion page.

Table 4.  Real time vs. offline detection accuracy. 1real time detection. 2offline detection.

 Experiment

Blink Look left Look right

Accuracy % Accuracy % Accuracy %

09/09/221 25/25 100 – – – –

09/09/222 25/25 100 – – – –

14/09/221 188/189 99.5 43/59 72.9 27/58 46.6

14/09/222 189/189 100 56/59 94.9 58/58 100

23/09/221 96/102 94.1 6/23 26.1 16/28 57.1

23/09/222 102/102 100 17/23 73.9 23/28 82.1

Overall1 309/316 97.9 49/82 59.8 43/86 50.0

Overall2 316/316 100.0 73/82 89.0 81/86 94.2
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BCI validation experiment
In this section, the performance of the BCI robot control with eye artifacts is presented. The participants were 
able to control the base movements and select a predefined task for the robot to perform by using their eye 
artifacts. The subjects tested all functions of the robot to validate the usability of the whole system. Figure 10 
demonstrates some frames from the video of the validation experiment of the BCI system. Figure 11 shows the 
implemented GUI for BCI.

The validation tests prove that indeed the developed novel thresholding-based pattern recognition algorithm 
for detecting eye artifacts from EEG signals was able to control a robot through eye artifacts. In the following 
Tables 5, 6, 7, 8, 9, the confusion matrix for detection of blinks, look left, and look right in the real-time experi-
ment is presented for all the subjects.

The eye artifact detection algorithm showed poor results in detecting left looks and a lot of misclassification 
of look left as look right has been observed. However, the subjects were able to perform all tasks.

Figure 9.  Communication flow between subsystems.

Figure 10.  (A) TIAGo moving back with the object, (B) TIAGo reached a safe position, (C) Participant moving 
the base of TIAGo, (D) Colleague taking the object from the TIAGo.
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Discussion
The algorithm is designed and presented as both an offline and a real-time algorithm. Real-time identification of 
eye artifacts broadens the applicability of such a method in the domains of BCI-based communication, control, 

Figure 11.  Implemented GUI for BCI.

Table 5.  Confusion Matrix of Overall Real-Time Experiments - Subject #1.

Actual blink Actual look left Actual look right

Predicted blink 901 11 42

Predicted look left 6 41 7

Predicted look right 44 112 201

Table 6.  Confusion Matrix of Overall Real-Time Experiments - Subject #2.

Actual blink Actual look left Actual look right

Predicted blink 788 23 47

Predicted look left 9 34 8

Predicted look right 33 56 101

Table 7.  Confusion Matrix of Overall Real-Time Experiments - Subject #3.

Actual blink Actual look left Actual look right

Predicted blink 921 44 71

Predicted look left 10 55 12

Predicted look right 65 113 199
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neurogaming, as well as real-time EEG data processing. By design, the algorithm records the eye artifacts and 
occurrence time of the events which enables the researcher to later examination of the events. Although the 
offline results are accurate, during the online process the overall accuracy drops a lot. The reason for that can be 
the filtering operation in the real-time case is done to small and different-sized matrices and then they combined 
to form a sample with 100 data points. Later, it is used in the algorithm. On the other hand, in the offline case, 
the whole recorded data is filtered and then it is split into 100 samples and sent to the algorithm one batch at a 
time. Real-time filtering can be done after collecting the 100 data points so the accuracy may increase. Another 
issue with the algorithm is that after each lateral movement, a small amount of time had to be waited to increase 
the accuracy. However, this does not represent an issue for the application at hand as, for the robot base move-
ments, the user has to wait for the robot to complete each motion before giving a new one to establish aware 
control of the robot. For other kinds of applications like neurogaming, this might create some problems due to 
the reduction of reaction time. Nevertheless, this real-time BCI algorithm to control a robot with eye artifacts 
can improve the life of a disabled person based on the results exhibited in this work.

Conclusions and future developments
The thesis work, presented in this paper, proposes a BCI robot control with eye artifacts for people with dis-
abilities to improve their lives by giving them a method to interact with the environment through an assistive 
robot. The developed algorithm detects eye artifacts through characteristic shapes of the EEG signals. The lateral 
movements are distinguished by their ordered peak and valley formation and the opposite behavior of F7 and 
F8 channels. This work, as far as the authors’ knowledge, is the first method that used this behavior to detect 
lateral eye movements. For the detection of blinks, a thresholding method is proposed but as different from the 
works in literature, two thresholds are determined to catch the weak blinks as well as regular ones. The real-time 
detected events with their virtual time stamps are fed into a second algorithm, distributor, to further differenti-
ate the consecutive blinks based on the frequency of occurrences to determine whether users perform single, 
double, or quadruple blink.

The proposed algorithm was tested offline to assess the performance of the blink, look left, and look right 
detection. Variability of the EEG signal of the same participant on different dates causes the performance to 
vary. Nevertheless, the proposed algorithm has been proven to detect eye artifacts. The worst observed accuracy 
results with the record data sets are 77.778% for a look right, 84.615% for a look left, and 78.846% for a blink. 
The variation of the EEG signal between different subjects has to be further investigated to demonstrate the 
generality of the algorithm. After observing the offline results, the algorithm is embedded inside the acquisition 
algorithm, which is one of the first real-time EEG signal processing algorithms with this device, to check its 
performance, and a BCI is developed to control an assistive robot. Finally, with the developed BCI, the robot 
performs each task successfully.

The algorithm is designed and presented both offline and online. By design, the algorithm records the eye 
artifacts and occurrence time of the events which enables the researcher to later examination of the events. One 
of the directions to extend this work is to feed the recorded events into a neural network, such as a supervised 
clustering algorithm, which is trained with a blink, look left and look right events so that even if a miss classifica-
tion occurs, the second layer can catch or correct the output. It is a challenging task to add a second layer into the 
general process, since the event occurrence and output of that event should be consecutive, without so much lag.

In order to prevent the contamination of blink and reduce the effect of random noise in F7 and F8 channels, 
F7 and F8 channels’ signals can be subtracted from each other. Since their behavior is opposite, this will increase 
the peak amplitudes while reducing the idle state amplitude, noise, and blink artifacts on those channels. This 
was actually tried with the offline case and it increased the accuracy of the offline detection results but since it 
was not tried for real-time application, it did not take place in this work. Moreover, Long Short Term Memory 
Recurrent Neural Networks, thanks to their memory units, showed good performances in different research that 
uses time domain signals for classification.

Table 8.  Confusion Matrix of Overall Real-Time Experiments - Subject #4.

Actual blink Actual look left Actual look right

Predicted blink 895 37 76

Predicted look left 9 39 10

Predicted look right 79 117 192

Table 9.  Confusion Matrix of Overall Real-Time Experiments - Subject #5.

Actual blink Actual look left Actual look right

Predicted blink 905 39 81

Predicted look left 13 55 11

Predicted look right 87 113 179
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Future work will investigate transfer learning and meta-learning techniques (such as the approach in Ref.46) 
to generalize the training and improve the robustness of online performance. In addition, full-body motions (e.g., 
the arms motion) will be also considered to improve the human-robot interaction naturalness and performance. 
Finally, software optimization will be investigated in order to minimize the online computational time, providing 
the user with a fast and natural human-robot interaction interface (Supplementary Video 1).

Data availability
The related code is available at the following link: https:// github. com/ KK4r4s/ BCI- TIAGo- Contr ol- with- EEG- 
Using- Eye- Artif acts. Data will be made available on reasonable request (write to loris.roveda@idsia.ch).
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