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ABSTRACT. We deal with eigenvalue problems for the Laplacian with varying mixed boundary
conditions, consisting in homogeneous Neumann conditions on a vanishing portion of the bound-
ary and Dirichlet conditions on the complement. By the study of an Almgren-type frequency
function, we derive upper and lower bounds of the eigenvalue variation and sharp estimates in
the case of a strictly star-shaped Neumann region.
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1. INTRODUCTION

The present paper concerns the eigenvalue problem for the Laplacian in a bounded domain, with
mixed Dirichlet-Neumann homogeneous boundary conditions prescribed on variable portions of the
boundary. More precisely, we focus on a perturbative problem characterized by the disappearance,
in some limiting process, of the region where Neumann boundary conditions are imposed. In this
situation, the eigenvalues of the mixed problem converge to Dirichlet eigenvalues: we aim to study
the rate of this convergence. This paper is the counterpart of [13], where the case of Dirichlet
disappearing region is studied.

In the literature there have been several contributions on asymptotic behaviour of eigenvalues
of elliptic boundary value problems under singular perturbation of the boundary conditions. Con-
cerning, in particular, the case treated in the present paper, i.e. the perturbation of a Dirichlet
problem by imposing a homogeneous Neumann condition on a vanishing portion of the bound-
ary, we mention the results in [16], where a full asymptotic expansion of perturbed eigenvalues is
obtained in dimension 2, see also [3]; we mention additionally the paper [8], concerned with the
spectral stability of the first eigenvalue. The complementary problem, i.e. a Neumann problem
perturbed with a Dirichlet condition on a small part of the boundary, is treated by [17] in dimen-
sion 2 and by [13] in any dimension N > 3. The approach developed in [13] is based on a capacity
argument inspired by [9] and [2], where the problem of spectral stability for the Dirichlet Laplacian
in domains with small holes is investigated; in particular in [13] the sharp asymptotic behaviour
of perturbed eigenvalues is described in terms of the Sobolev capacity of the boundary portion
where the Dirichlet condition is imposed. This kind of method does not seem to be effective in the
case of a disappearing Neumann region, being the Dirichlet boundary set not small. Therefore,
in the present paper we treat this case with a different approach, based on blow-up analysis for
scaled eigenfunctions and energy estimates obtained by monotonicity formulas, in the spirit of [3];
we point out that the case of dimension N > 3 presents several additional difficulties with respect
to the 2-dimensional case treated in [3], because of the occurrence of some effects of the geometry
of the Neumann region in the monotonicity argument, see Remark 1.3.

Let Q ¢ RN, N > 3, be a bounded open set such that 0 is of class C''! in a neighbourhood
of 0 € 9, namely there exist o € (0,1) and g € CHH(RN 1) such that

(1.1) B,,NQ={x€B,,: xny >g(x')} and B,, NN ={zx € B,,: zny = g(z')},
where B,, = {z = (21,22,...,2y5) € RN : |z| < 10} is the ball in RY centered at the origin with

radius rg and '’ = (z1,...,2y—1). Up to a suitable choice of the Cartesian coordinate system, it
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is not restrictive to assume that
(1.2) 9(0)=0 and Vg(0)=0,

i.e. that 99 is tangent to the coordinate hyperplane {xy = 0} in the origin.
Let V be a bounded open set in RY such that

(1.3) 0eV and diam(V) =sup{|z —y|:z,y €V} <ro.
For every € € (0,1), let

(1.4) e = (V) N 09,

where eV = {ex : x € V} C B,,. Furthermore, we set

(1.5) Y =VNoRY ={z = (z1,22,...,25) €V :an =0},

where RY = {(2/,zy) e RN = RN x R:ay > 0}.
We consider the following eigenvalue problem with mixed boundary conditions
—Au = Au, in Q,
(1.6) u =0, on 90\ X,
Opu =0, on X,

and we are interested in the asymptotic behaviour of its eigenvalues as € — 0%, that is when the
Neumann region 3. is disappearing.

In order to write the weak formulation of (1.6), we first introduce the suitable functional
framework. For any open set w C RY and for any closed set I' C dw, we define H&F(w) as the
closure in H'(w) of C°(w \ I'); we refer to [11] for a more detailed analysis of this kind of space
(see also [6]). We note that, if Q and V are sufficiently regular (for example Lipschitz), then we
have the following characterization

H&,a(z\za Q) ={uec H(Q): Tr(u) =0 on dN\ L.}
for every e € (0,1), where Tr denotes the trace operator (see [6]). We note also that, formally,
when e = 0 the space Hj »5,(§2) coincides with the usual Sobolev space Hg(Q2).

We say that A € R is an eigenvalue of problem (1.6) if there exists ¢ € H} DO\ (Q), ¢ Z0,
called an eigenfunction, such that

(1.7) / V- -Voder = /\/ pvdx for every v € Hol,BQ\EE Q).
Q Q
From classical spectral theory, (1.7) admits a diverging sequence of positive eigenvalues

0< A <A <A< <A<

)

where each eigenvalue is repeated according to its multiplicity. Letting N, := N\ {0}, we denote
by {¢5 }ien, a corresponding sequence of eigenfunctions satisfying

(1.8) /ﬁ%:&
Q

with &7 denoting the usual Kronecker delta. In the sense clarified in (1.7), the functions ¢ weakly
solve

—Ap; = Nyi, inf,
(1.9) ©; =0, on 90\ X,

O =0, on Y.

In the limit € = 0, once the Neumann region Y. has disappeared, we formally recover the eigenvalue
problem for the standard Dirichlet Laplacian
{Au = Au, in €,

(1.10)
u =0, on 01,
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which is well known to admit a diverging sequence of positive eigenvalues
D<A <Al <N

We denote by {¢;}ien, a corresponding sequence of eigenfunctions satisfying
(1.11) / pip; dz = 8.
Q
More precisely, A; and ¢; solve (1.10) in the sense that ¢; € Hj(2) and
(1.12) / Vo, - Vodz = )\i/ pivdz  for all v € Hy ().
Q Q

In Section 2 we prove that, for all i € N,
A=A ase— 0.

The main goal of the present paper is to detect the sharp rate of the above convergence.

The vanishing rate of the eigenvalue variation A — A; turns out to be strongly related to the
behaviour of the Dirichlet eigenfunctions ¢;, locally near the point 0 € 0£2. We can derive from
[12] the classification of possible vanishing orders of ¢; at the boundary: for every i € N, there
exist v; € Ny, U; € H&(Sf_l), with ¥; # 0, such that

(1.13) ‘Pi(:z) — |z, <|i> in H'(B,) as r — 0, for every p > 0,
i x
where S¥ ! = {(z1,...,2n) € RY : |z| = 1, 2y > 0} and ¢;, respectively U;, are trivially

extended outside €2, respectively Sf ~1. Moreover the function ¥; is the restriction to Sf “Lofa
spherical harmonic odd with respect to the equator x = 0 and the y;-homogeneous function 1);
with angular profile U, i.e.

(1.14) i) = b ().

is a harmonic homogeneous polynomial of degree ~; vanishing on 8Rf . In particular, being v;
harmonic, nontrivial and vanishing on GRf , we have that d,,1; Z0 on X.
In the following we fix ng € N, such that

(1.15) An, 18 simple

as an eigenvalue of the standard Dirichlet Laplacian in 2. Moreover, hereafter we denote
(1.16) Y = g

and

(1.17) Ui=W,., ©:=1p,.

Under assumption (1.15) it is possible to choose the eigenfunctions ¢f, , solving (1.9) with i = ng,
in such a way that

o = Pny I Hl(Q) as e — 0,
see Proposition 2.4.

The scaled shape (1.5) of the Neumann disappearing region emerges in the asymptotic ex-
pansion of the eigenvalue variation in the guise of a coefficient C,,(X) admitting a variational
characterization. We define C,,(II) for any bounded open subset II C R% such that 0 € IL
Letting D*?(RY UII) be the completion of C2°(RY UII) with respect to the norm

luloragyom = [ | IVul?da,
R+
we define

(1.18) Crg (I0) := —2min {Jn(u) cu e DY2(RY U H)},
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where

1
(1.19) Jun : DVRY UI) - R, Jn(u) ::5/ Vul” der/ua,ﬂ/)dz/,
]Rf 11

¥ is defined in (1.17), and v = (0,0, ...,0,—1) is the vertical downward unit vector. By classical
variational methods one can easily prove that the minimum in (1.18) is attained (by the function
wo,i defined in (3.3)) and Cp, (II) > 0, see Section 3. We define

(1.20) Cny = Cno(B1) > 0,
where we are denoting, for all r > 0,

— N
(1.21) B, := B, NoRY.

Our first main result provides asymptotic lower and upper bounds of the eigenvalue variation as
e —0.

Theorem 1.1. Let V C RY be a bounded open set satisfying (1.3) and 0 < ry < Ry < 1o be such
that B,,, CV C Bg,,. Then
A Ang — AS

Ay —

N+2y—2 .. no no . no N+2vy-2
[ <liminf ————2 <limsup ————2= < C,, R

no'y = 50 N+2y—2 — - Op N+42y—2 no-yY

with Cp, as in (1.20) and v as in (1.16).

The proof of Theorem 1.1 will be obtained by comparison of the eigenvalues A}, ~of problem
(1.9) with the eigenvalues of the analogous problems with V replaced by the balls Bg,, and B,
for which a more precise asymptotic expansion can be derived, exploiting the star-shapedness of
the Neumann region.

We now state the sharper asymptotic estimates which we are able to obtain under stronger
regularity and geometric assumptions on the set V. Let us assume, in addition to (1.3), that

(1.22) V is of class C*!
and V is strictly star-shaped with respect to the origin, i.e.
(1.23) there exists o > 0 such that = - v(z) > o for every x € 9V,

where v(x) is the exterior unit normal vector at z € 9V. We observe that the notion of strict
star-shapedness given in (1.23) is equivalent to the notion of star-shapedness with respect to a ball
discussed in [21, Section 1.1.8], see [7, Lemma 1] and [20, Lemma 3.2].

Theorem 1.2. IfV satisfies (1.22) and (1.23) in addition to (1.3), then the following asymptotic
expansion holds

Aoy = Ang — Cng ()N 2772 4 o(eNT2772) 52 — 0,

with Cpy () as in (1.18) and X as in (1.5).

The proof of Theorem 1.2 is obtained through sharp estimates from above and below of the
Rayleigh quotients for the eigenvalues A}, and A, which in turn require energy bounds, uniform
with respect to €, on eigenfunctions, provided by an Almgren-type monotonicity argument. The
last step in the achievement of sharp eigenvalue estimates consists of a blow-up analysis for scaled
eigenfunctions.

The Almgren frequency function at a point is given by the ratio of the local energy over the
mass near that point, see [5]; we refer to formula (6.2) in Section 6 for the precise definition of the
frequency for our problem. Monotonicity of this quotient implies a uniform control of the local
energies and, in the classical case of harmonic functions, such a monotonicity easily follows from
the positivity of the derivative. For solutions u of elliptic equations of the type

—Au = Vu,
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with V' bounded, the frequency is no more monotone because of the presence of the potential.
However, the “perturbed frequency”

T/ (|Vul* = Vu?) dz
|z—z0|<r

/ u*ds
|lz—z0|="

still enjoys some monotonicity properties, in the form of an estimate of the type
N{ (r) > —const Ny (1),

which allows proving boundedness of Ny, and then energy estimates for u. In this spirit, here we
mean to prove boundedness of the frequency of eigenfunctions ¢5 at the origin (which belongs to the
boundary), uniformly with respect to the parameter €, by establishing its perturbed monotonicity
through an estimate from below of its derivative. Since, in the case we are considering here,
all neighbourhoods of the origin contain portions of the boundary, some additional boundary
terms appear in the derivative of the frequency; star-shapedness assumption (1.23) forces these
remainder terms to have a sign which is favorable to the desired estimate. On the other hand,
the lack of regularity of the eigenfunctions ¢f at Dirichlet-Neumann junctions prevents us from a
direct differentiation of the frequency function, which requires a Pohozaev-type identity based on
the integration of the Rellich-Necas identity (5.10). For what concerns this last issue, considerable
differences appear between the cases N = 2 and N > 3, as explained in the following Remark.

Ny (r) =

Remark 1.3. With respect to the 2-dimensional case treated in [3], significant new difficulties
arise, mainly due to regularity issues for mixed boundary value problems like (1.9), which turn out
to be more delicate in dimension N > 3 because of the positive dimension of the junction set 03
and some role played by the geometry of X, in particular in connection with its star-shapedness.
Indeed, when N = 2 the interface 9%, has zero dimension (basically, it consists of a couple of
points) and it is possible to perform an approximation just by removing a small neighbourhood
of the junction points, thus allowing quite explicit computations in the derivation of Almgren
monotonicity formulas (see [3, Lemma C.5]). In higher dimensions, we overcome the difficulties
produced by lack of regularity of solutions by constructing a sequence of approximating problems,
for which enough regularity is available to derive Pohozaev-type identities, needed, in turn, to
obtain Almgren-type monotonicity formulas and consequently to perform blow-up analysis. In
particular, the geometry of the boundary manifests in the form of some extra remainder terms
appearing in the Pohozaev-type identity for the regularized problem and depending on the mutual
orientation of normal and position vectors, whose control motivates here the geometric assumption
(1.23), which is, in fact, a star-shapedness condition on the Neumann region, see Proposition 5.1
and, in particular, (5.27).

Under the same assumptions of Theorem 1.2, the blow-up analysis performed in Section 9 allows
us to describe the behaviour of perturbed eigenfunctions ¢}, when they are scaled at the origin,
i.e. at the point around which 3. is shrinking, thus yielding the following result.

Theorem 1.4. Let V satisfy (1.3), (1.22) and (1.23). Let U =t 4+ wo x, where ¥ is as in (1.17)
and wox (defined in (3.3)) is the unique minimizer of the functional Jx introduced in (1.19).
Then, for any R > 0 sufficiently large,

_N— 2
e N 27/ |5, | dz — U?dx
QNBR. B

g—N—%”/ Ve, |* dz — /+ VU dz,
QNBRre BR

as e — 0.

The paper is structured as follows. In Section 2 we prove convergence of eigenvalues and eigen-
functions as € — 0 to eigenelements of the unperturbed problem. In Section 3 we construct the
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limit profiles, which will appear in the blow-up analysis, by minimization of the functional intro-
duced in (1.19). In Section 4 we introduce an equivalent auxiliary problem obtained by deforming
the boundary of €2 into a straight hyperplane; to this aim we use a particular diffeomorphism, in-
troduced in [4] and made on purpose to ensure that the equation is conserved by reflection through
the straightened boundary. Section 5 is devoted to a Pohozaev-type identity for the approximating
problems, which is then used in Section 6 to develop a monotonicity argument, from which energy
estimates follow. In Sections 7 and 8 we prove sharp upper and lower bounds for the eigenvalue
variation, while Section 9 is devoted to a blow-up analysis for scaled eigenfunctions. In Section
10 we combine the lower/upper estimates on the eigenvalue variation and the blow analysis to
prove Theorem 1.2, which is then combined with a comparison and scaling argument to prove
Theorem 1.1 in Section 11. Finally, in the appendix we recall some Poincaré-type inequalities and
an abstract lemma on maxima of quadratic forms.

2. CONVERGENCE OF EIGENELEMENTS

In the following we tacitly assume that the hypotheses on € set out in the Introduction and
assumption (1.3) on V are satisfied; consequently we let ¥, be as in (1.4). In this section we
prove that the eigenvalues and eigenfunctions of the perturbed problem converge, as € — 0, to the
corresponding unperturbed eigenelements.

Lemma 2.1. Foranye € (0,1), let \. € R be an eigenvalue of problem (1.7) and p. € H} ooz ()

be an associated eigenfunction such that fQ @©2dx = 1. Let us assume that there exists a decreasing
sequence (€n)n C (0,1) and a real number \* such that €, — 0 and \s, — A* as n — oo. Then
there exist a subsequence (g,,); and p* € H(Q) such that

Pe,, = p* weakly in HY(Q) and Pe,, = " strongly in L2(9),
as i — 00. Moreover \* is an eigenvalue of the Dirichlet Laplacian in Q2 with * as an eigenfunc-

tion, in the sense of (1.12), and [, |p*|> do = 1.

Proof. By hypothesis we have that
/ (p?n dr=1 and / |V<p£n|2 dz =X, = X" +0(1)
Q Q

as n — 0o. Therefore there exist a subsequence (g,,); and ¢* € H(£2) such that
Pe,, — " weakly in H'(Q) and Pe,, = " strongly in L3(9),

as i — 0o. We first aim at showing that p* € H}(Q). In order to do this, let ro > 71 > 0 and
let ¢ € C(RY) be such that supp(¢{) C B,, and ((z) = 1 for every = € B,,. For every § > 0
and x € RV, we define (s5(z) = ((z/4). First we notice that (1 — (s5)¢* € H(Q) for every § > 0.
Indeed, by approximation of ¢., with CZ° (Qu e, )-functions, we see that, for every fixed § > 0
and for i large enough, (1 — (s)¢e, € H}(2); moreover, (1 — Gs)pe,, — (1 = (s)p* weakly in
H'(Q) as i — oo, thus implying that (1 — (5)¢* € H}(Q). Secondly, we have that, as § — 0,

11 = o)™ = " () = 169" 1 () < /Q (2IVCs (") + 265 IVe™ | + 3 (97)?) da

2/2*
< 267292 ) / (w*)de+0(1)SC</B . (sa*>2*dsc> +o(1) = of1),
sro \Bory

Bsry\Bsry
for some C > 0, with 2* = 2N/(N — 2). Hence (1 — (s)¢* € HE(Q) for every § > 0 and converges
to ¢* in HY(Q) as § — 0, so that p* € H}(Q).

By strong L?(£2)-convergence, we have that Jole*| dz = 1. Finally, by hypothesis we have
that, for every i,

/VSﬁsnv 'V(ZSdSC:)\sn,/Sﬁsn,fbdz,
(2 K K Q K
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for all ¢ € Hjj o\ 5. () and, in particular, for any ¢ € Hg(R2). Passing to the limit as i — oo

in the previous equation for ¢ € H{(£2) proves that p* and \* satisfy (1.12) thus completing the
proof. O

Remark 2.2. Some basic relations among the families of perturbed eigenvalues and between
the perturbed and unperturbed sequences can be easily observed. The eigenvalues A admit the
following classical Min-Max variational characterization

R . HV“||2L2(Q) 1 o .
(2.1) A{ = min { max ———= F; C H 5, 5_(£2) i-dimensional subspace ; .
u€eF; ||u||L2(Q) ? €

By (1.3), for every 1 > 0 there exists 0 < ez < 1 such that Hj 50,5, (?) C Hj o\ 5. (2). Then
3 €9 s e1
for every sequence e, — 0 there exists a decreasing subsequence {e,, } such that, for every i € N,
En Eng
A U >N for every k.
Moreover, since Hg(Q) C H& DO\ 5. (Q) for every € > 0, we readily get, for every i € N,
(2.2) Ai > A5 for every € > 0.
Proposition 2.3. For any i € Ny, A\ = X; as € — 0.

Proof. By Remark 2.2 and Urysohn’s subsequence principle, it is enough to prove the convergence
along sequences ¢,, — 0 for which n — )\én is increasing; then, by (2.2), it is not restrictive to
assume that ¢ — Al is decreasing for any i € N, and admits a limit A} < \; as ¢ — 0. We now
prove that, for any ¢ € N, A; < \f. We argue by induction on ¢. From Lemma 2.1 we know that
Al is an eigenvalue of the unperturbed problem so that, A} > A;. Let us now assume that

(2.3) Al = forall j=1,...,7—1.

Let ¢f5,...,¢5 be a family of perturbed eigenfunctions as in (1.8). By Lemma 2.1 there exist a
sequence €, — 0 as n — oo and functions uj,...,u;, that are eigenfunctions of the unperturbed
problem (1.12), such that

no_\ g% : 1 n * . 2
(2.4) ©; uj weakly in H™(€2) and ¢j" — uj strongly in L=(1),
asn — oo, for every j =1,...,1.
On the one hand, by passing to the limit as n — oo in (1.8), we obtain
(2.5) /Qu;‘uf dz = 55-.

for all j,l € {1,...,7}. On the other hand, by (2.3) and (2.4), for every j =1,...,i — 1, uj isa
L?(Q)-normalized eigenfunction corresponding to the eigenvalue )\; . Therefore, in view also of
(2.5), u} € span{uf,...,u_;}*. From the iterative variational characterization of the eigenvalues
(see e.g. [19, Section 11.5]) we have that

Vul? dz
A :/ |Vu;‘|2 dx > min 7f9| 2| =\
Q uespan{uf,...,ul_;}+ fQ u? dx

and this concludes the proof. (]

Proposition 2.4. Let \; be a simple eigenvalue of (1.12) and let p; be a L*(Q))-normalized
associated eigenfunction. For any e € (0,1) let XS be the i-th eigenvalue of (1.9) and let 5 be a
L?(Q)-normalized associated eigenfunction such that

(2.6) [ eieiaszo
Q

Then @5 — @; in HY(Q) as e — 0.
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Proof. From Lemma 2.1 and Proposition 2.3 we infer that there exist a sequence €,, — 0 asn — oo
and p* € H}(Q), eigenfunction associated to \;, such that

Oi" — ¢* weakly in H'(Q) and ¢" — ¢* strongly in L*(Q)

as n — oo. In particular, by strong L?()-convergence, ©* is L%(2)-normalized. Being \; simple,
we have that either o* = p; or p* = —¢;. The assumption (2.6) rules out the second possibility,
allowing us to conclude that ¢* = ;.

Finally, in view of Proposition 2.3,

Il By = A5+ 1 A1 = il
as n — oo. Hence 5" — ¢; strongly in H'(Q) as n — oo. By Urysohn’s subsequence principle
the convergence holds as € — 0, thus concluding the proof. O

3. LIMIT PROFILES

We now introduce the functions that appear as limit profiles in the blow-up analysis. From
here on, for any R > 0, we denote by ng a cut-off function such that

_ 4
3.1 €C*[RY), 0<nr<1, |Vnrl<4 =
(3.1) nR (RY) SRS Vg < nr(z) {0, if |z| < R/2.

R,
Lemma 3.1. Let I be a bounded open subset of 8Rf such that 0 € TI and let f € L?(I1). Then
there exists a unique function w = w(f,II) € DV2(RY UIL) such that

—Aw =0, in Rf,
w =0, on ORY \ I,
oow=f, onll,

where v = (0,...,0,—1), in a weak sense, that is

(3.2) /R

Proof. The result is a direct consequence of the Lax-Milgram Theorem. (I

Vw - Vodz = / foda’  for allv e DVA(RY UTD).
m

N
+

Given ¢ € C’OO(@) as in (1.17), we define
(33) Wo,11 ‘= w(_al/l/]a H)a

where w(-,-) is defined in Lemma 3.1. We point out that the function won € DV?(RY UII) is

the unique minimizer, among all the possible u € DY2(RY U II), of the functional Ji defined in
(1.19). We denote

(3.4) M (1) := J(wo,m) = min Jr(u).

ueDL2(RY UID)
Since, for any bounded open set II C aM, Ozn # 0 on I, we have that wo 1 # 0 and hence,
choosing v = wo 11 in (3.2), we obtain that

1

1
(3.5) My, (I1) = —/ wo oyt da’ = f—/ |Vwon|* dz < 0.
2Jn 7 2 Jry 7

The following lemma is a consequence of the homogeneity of the function .
Lemma 3.2. For every r > 0 we have that my,,(B.) = rN+27=2m,, (B}), with v as in (1.16).

Proof. Since O, (ra’) = r7"1d,1(z'), a scaling argument easily yields that

T
’LU07B;(.T) = vaO,Bi (;)
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Hence, by a change of variable, we obtain that

1 1
M, (BL) = —5/ ‘Vwo,B;(ac)’2 dz = —§r2("71)/ ’VwO,B{ (m/r)’2 dz
RY RY
1
= *—TN+2772/ ‘VwO B’ (y)‘Q dy == TN+2772mn0 (Bi)v
2 Rf 1
thus concluding that proof. O

Hereafter in this section, we let ¥ be as in (1.5), for some V satisfying (1.3), (1.22) and (1.23),
and define

Wo ‘= Wo,n
and
One can see that U € 9 + DLQ(]Rf U X) weakly satisfies the following boundary value problem
—AU =0, inRY,
(3.7) U =0, on ORY \ %,
a,U=0, onX,
ie. [on VU-Vodz =0 for all v € DM2(RY U X).
+

The two following existence results Lemma 3.3 and Lemma 3.4 can be easily proved by standard
minimization methods. Henceforth we denote, for all R > 0,

(3.8) Bl :=BrNRY, and S} :=0BrnRY.

Lemma 3.3. Let ¥ C aRf be as in (1.5). For every R > 1 there exists a unique function

Upev+ Hé,aBg\E(BE) achieving

min {Hvuniz(%) LuE+ HéyaB;\E(B;g)} :
Moreover, Ur weakly solves
—AUr =0, in Bf,
(3.9) Ur =1, on OB} \ X,
oUgr =0, onX,
that is
UR - ’l/) S H(%,BBE\Z(BIJ%)’

3.10
( ) fB;VUR-qudx:O forallqﬁEHOl

+
,BB;\Z(BR)'

Lemma 3.4. Let ¥ C ORY be as in (1.5), R > 2, nr as in (3.1), and U as in (3.6). Then there
exists a unique Zr € nrU + H{(B},) achieving

min{HVu||2 -uenRU—i—H&(ng)}.

L2(Bf)
Moreover, Zr weakly solves
—AZp =0, in B},
(3.11) Zn=U,  onS,
Zr =0, on B,
that is
Zr € nrU + Hg (BY),
fB; VZr -Védr =0 for all ¢ € H(B}).
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The function Ugr naturally appears as a limit profile of a scaled convenient competitor in the
estimate of the eigenvalue variation \,, — A, from below. Indeed, to estimate A from above
with the most precise approximation of A, we are led to test the Rayleigh quotient for A with
test functions obtained by modifying the limit eigenfunction ¢, (inside balls Bg.) into a solution
of the mixed boundary problem, in the less expensive way from the energetic point of view. By
the Dirichlet principle, among all functions satisfying some prescribed boundary conditions, the
energy is minimized by harmonic ones, so that the above defined harmonic functions Ug turn out
to be the blown-up limit profile of best competitors. In a similar way the function Zg is the limit
profile of scaled best competitors for the estimate of the eigenvalue variation A, — A7, from above.

The function Ug, introduced in Lemma 3.3, is locally a good approximation of the limit profile
U, defined in (3.6), for large values of R.

Lemma 3.5. For anyr > 2, Ugp — U in H'(B;}) as R — +o0.
Proof. Let R > r and ng as in (3.1). The function Ug — U € H*(B;") weakly solves

~A(Ugr —U)=0, in Bf,
Ugp—U=0, on B\ %,
W(Ur—-U)=0, onX,
Up—U=1—-U, onS}.

By the Dirichlet principle, we observe that ngr(y) — U) € H*(B}) has higher energy than U — U
in B;g. Hence

[ V-0 ar < [ 9@e-0)f o< [ 9= U)F @

+
R BR

< 2/ Va2 16 — U de + 2/ 2 V(- U)? de
o o

32
gﬁ/ [y — U d:c+2/ IV —U))? da
Bg\B;/z Bi\B}

R/2
—_UP
§32/ Mdzw/ V(¢ —U)|? da.
Bi\Bf, |2l Bi\B},

The last two terms vanish as R — 400 thanks to the validity of the Hardy inequality and the fact
that ¢ — U € DV?(RY UX). Since B, \ T has positive (N — 1)-dimensional measure, by Poincaré
inequality we may conclude the proof. (I

4. AN EQUIVALENT PROBLEM ON A DOMAIN WITH A FLAT CRACK

Sections 4 to 10 are devoted to the development of the monotonicity formula and the consequent
energy and eigenvalue estimates needed to prove Theorem 1.2 and requiring regularity and star-
shapedness assumptions on the open set V. Then throughout Sections 4 to 10 we tacitly assume
hypotheses (1.3), (1.22), and (1.23) on V, besides the assumptions on € set out in the Introduction;
consequently we let 3. be as in (1.4) and ¥ as in (1.5).

In the present section, we first introduce an equivalent problem, obtained by straightening the
boundary of 2 locally around the origin. Then, we prove that the star-shapedness of the Neumann
region is preserved by such a transformation, see Section 4.2.

4.1. Flattening the boundary of the domain. In this section, we consider a particular dif-
feomorphism straightening the boundary of ) near 0, first introduced in [4], see also [13]. Let
g € CHYRN=1) be as in (1.1). Let ¢ € C°(RY~1) be such that supp( C Bj, ¢ > 0 in RN 71,
Jen—1 C(W')dy’ =1 (see (1.21) for the notation B}). For every ¢ > 0 we consider the mollifier

Gly) =6V (%) .
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Forall j=1,...,N — 1, we define

0
CyN*_g (v), ify eRN"L yn >0,
Gy, yn) = %3
! o ag / : / N—-1
a—y(y), ify' e RY ™%, yny =0,
J

where % denotes the convolution product. We observe that, forall j =1,...,N—1,G; € C* (Rf),
G; is Lipschitz continuous in RY, and %ij € L>(RY) for every i € {1,..., N}. Furthermore we

have that, forall j=1,...,.N—landi=1,..., N,

oG —

YN 3 L is Lipschitz continuous in Rf.
Yi
Let, for every j=1,...,N — 1,
G] :RN %Rv G](y/ayN) = G](y/7|yN|)
and ~
Fi:RY =R, F(y,un) =y —ynG; (¥, yn).

It follows that G; is Lipschitz continuous in RY and F} belongs to C11(RY) (i.e. it is continuously
differentiable with Lipschitz gradient) for all j =1,..., N — 1.

In particular, defining G : RY — RV~1 as

G(yla yN) = (Gl (yla yN)a G2 (y/a yN)a SERE) GN—I(y/a yN))a
we have that
Jg € L®(RYN, RNWNV=1),

where Jz(y',yn) is the Jacobian matrix of G at (v',yn), and

(4.1) Gy yn) — Vg(y')| < Clyn| for all (', yn) € RV,

for some constant C' > 0 independent of (y', yn).
Let F : RY — RY be defined as follows

(4.2) Fy yn) == (F1(y'syn)s - En1(y s yn)s uw +9(y')-

Using the above function F', we are going to construct a diffeomorphism which straightens the
boundary. To prove Lemma 5.2, which will be crucial in the monotonicity argument, we will need
a quite precise quantification of the behaviour of all entries of the Jacobian matrix of F. Hence,
by direct computations and (4.1) we have that

oG aG 8G ~ oG
L=yn3n  —UNBy 0 TN —G1—Yngyy
Jr(y' yn) = :
OGN _ OGN _ OGN =~ OGN _
_yN 62]1 1 _yN 61;2 1 . 1 _ yN By;\\;,ll _GN—I _ yN a;VN 1
Og (.1 dg (.1 dg /
(W) ) G5 W) 1
| In-1—ynJg ‘ —Vg(y') +O(yn)

(Vg(y)" ‘ 1

where Iy_p is the (N — 1) x (N — 1) identity matrix, Vg(y’) is a column vector and (Vg(y'))T
denotes its transpose; henceforth, the notation O(yx) will be used to denote blocks of matrices
with all entries being O(yn) as yn — 0 uniformly with respect to y'.

From (1.2) and the assumption that ¢ € CH1(RN~1) we deduce that Vg(y') = O(|y']) as
ly’| = 0, so that

(4.3) det Jp(y',yn) = 14 |Vg(y)]> + Olyn) = 1+ O(ly'I*) + Olyn)
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as yny — 0 and |y'| — 0.

In particular, det Jp(0) = 1 # 0. Hence, by the Inverse Function Theorem, F is invertible in a
neighbourhood of the origin, i.e. there exists 1 € (0,79) such that F' is a diffeomorphism of class
CH! from B,, to U = F(B,,) for some U open neighbourhood of 0. Moreover, it is possible to
choose 11 sufficiently small so that

(4.4) F'un)=RYnB, =B and F'UNIN) =0RYNB, =08,
i.e. near the origin the image of Q through F~! has flat boundary (lying on dRY). Let
(4.5) ®:U— B, ®:=F"
From the fact that

»cch U, B,,), dteccb (B, U), ®0)=3"10)=0, Js(0)=Jp1(0)= Iy,
it follows that
(4.6) Jo(z) = In +O(|z|) and ®(z) =2+ O(|z]*) as |z| = 0,
(4.7) Jo-1(z) =In +O(Jz]) and @ '(2) =2+ O(]z]*) as|z| — 0.

Let i € N, and £ € (0,1) be such that €V C U for all € € (0,&) (so that ®(eV) C B,, for all
e€(0,¢)). For y € ®UNQ) = B}, we define

ui (y) == 5 (271 (y)) = ¥§ (F(y)).

From (1.9) we deduce that

(4.8) /B+ A(y)Vui (y) - Voly) dy = A /B+ p(y)u; (y)(y) dy
for all ¢ € Héﬁale \8. (By), where
(4.9) e = 0(5:) = (V) N09Q) = 2(eV) NOIRY,  p(y) = |det Jr(y)],
and
(4.10) Ay) = (Jry) " ((Tr(y) ™) det Tp(y)]-
Notice that uf € Hé BIAS (B,) for every e € (0,). We observe that (4.8) is the weak formulation
of the problem '

—div(A(y)Vui(y)) = A7 p(y)ui(y), n B,

u; =0, only,,

A(y)Vui(y) - v =0, on X,
where

T.,, =B \2.

and v is the exterior unit normal vector on ig, which is equal to —ey with ey = (0,0,...,1)

since ig - 8Rf.
From (4.10) it follows directly that A is symmetric. Moreover, by direct computations we have
that

A(y) = a(y)B(y)(B(y))"

where, taking into account (4.3),

(4.11) a(y) =1+0(y'1*) + O(yn)

1
| det Jr(y)|
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as yny — 0 and |y/| — 0, and

1+ ;1 |75 [*+0(yn) —FL 2L +0(yn) — P 52—+ 0(yn)
RO SIE PO e sdmdnotn | o
B= : : : :
“minr o HOWN) e +0N) e 14 2 G +0wN)
—(Vg)" +O(yn) 1+ O(yn)
Hence we have that
In_1 +O(y[?) + Olyw) | Oyn)
(412) Ay yx) = oy yw) -
Oyw) 1400y + Olyw)

where here O(yy ), respectively O(|y’|?), denotes blocks of matrices with all entries being O(yx)
as yn — 0, respectively O(|y'|?) as |y'| — 0.

From (4.11) and (4.12) it follows that, if r; is chosen sufficiently small, a(y) > 0 and A is
uniformly elliptic in B;". Moreover, by (4.10) and the fact that F' € C*'(B,,,RY), we have that,

if we denote A(y) = (a;,;(y))i j=1,...,n, then

(4.13) ai; € C¥H (B UBy),

while (4.12) ensures that

(4.14) a;n(y',0)=an;(y,0)=0 foralli=1,...,N—1.

The even reflection through the hyperplane {yny = 0} of u$

(415) ’Uf(y/ayN> :U;?(y/, |yN|)a (y/ayN) € BTU
belongs to Holfm1 (B, ) and

(4.16) /B

for all p € H!

0,0B,, Ul 1y

Aly)Vosi(y) - Vo(y) dy = A?/ p(y)vi (y)o(y) dy

- Br,

(Br,), i.e. v§ weakly solves

(4.17) —div(A(y)Vei (y) = AB)vi (y), in By \Tep,
. /Uz"e = 0? on FE,TI,
where
~ p y/ayN ) if YN Z 0; e A y/;yN ) if YN > 05
(4.18) P(y',yn) = ( , ) _ and Ay, yy) == ( ; ) !
p(y ain)v if yn < 05 QA(y ain)Qv if yn < 05
with
0
In_1
Q= -
0
0O ... 0 |-1

We observe that (4.13) and (4.14) ensure that the coefficients of the matrix A are Lipschitz
continuous in B, .

Remark 4.1. From (4.6)—(4.7) we easily deduce that, as e — 0, RV \ (ORY \ (%ENIE)) converges
in the sense of Mosco (see [10, 22]) to the set RN \ (9RY \ ), where ¥ is defined in (1.5). In
particular, for every R > 0, the weak limit points in H'(B}) as ¢ — 0 of a family of functions

{w}e with w. € H! B}) belong to H; (B#)-

008515 OB\
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4.2. Star-shapedness of the transformed domains. We are interested in proving that the
star-shapedness of the set X is preserved under the transformation ® introduced in (4.5). To this
aim, we first observe that ®(¢V) is strictly star-shaped provided ¢ is sufficiently small.

Lemma 4.2. Let V be a bounded open set in RN satisfying (1.3), (1.22), and (1.23). Then

(i) there exists a function p: SN~1 — R of class CY! such that p > 0,
(4.19) V={r0:0cS" P and0<r <p@®}, and 0OV ={p0)0:0c SV}

(ii) letting @ be as in (4.5), ®(eV) is strictly star-shaped with respect to 0 provided ¢ is sufficiently
small.

Proof. (i) Let us define, for all § € S¥=1 p(d) = sup{r > 0 : 70 € V}. Assumption (1.23)
implies that (4.19) is satisfied. To show that the function p is of class C1'! we use the Implicit
Function Theorem. To this aim, let us fix Py € 9V, so that Py = p(6p)0y for some y € SN~1.
Up to a rotation, it is not restrictive to assume that 6y = en = (0,0,...,1). Let p: B} = R,
p(x') = p(a’, /1 — |2'|?). We observe that p(0) = p(6p) and that p is the composition of p with
a smooth local parametrization of S ~! near 0; hence p is of class C™! in a neighbourhood 6y if
and only if p is of class C*! in a neighbourhood 0. Since V is of class C1!, there exist § > 0 and
a Ch1-function ¢ : RV~1 — R such that

VN Bs(Py) ={(2',zn) € B(Py,9) : xn < ¢(z')},
IV N Bs(Py) = {(2',xn) € Bs(Ry) : an = p(a)}.

Let H : (0,+00) x By = R, H(r,2") = p(ra’) — ry/1 — |2/|2. We have that H is of class C1'! in a
neighbourhood (pg,0), H(po,0) = 0 and %—f(po, 0) = —1 # 0; furthermore

H(p(z"),2") =0 for |2'| small.

By the Implicit Function Theorem we can then conclude that p is of class C*! in a neighbour-
hood 0.

(ii) Since V is of class C*!, there exists a function G € CL1(RY) such that

V={zcRY:Gx) <0}, V={xcRY :Gx)=0} and VG(z)#0 for all z € V.

In particular we have that v(z) = % for all x € 9V, hence assumption (1.23) can be
reformulated as follows:
(4.20) there exists & > 0 such that z - VG(z) > ¢ for every z € OV.
We observe that
(4.21) 2 (®(eV)) = {z e RY : G.(x) = 0},
where
Ge(z) =G (@)

From (4.7) we deduce that (by choosing r; smaller if necessary) there exists some positive constant
C > 0 independent of € such that

(4.22) |z] < Ce for all x € 0 (®(eV)).

Since the exterior unit normal at € 9 (®(¢V)) has the same direction as VG.(z), to prove
assertion (ii) we have to show that, if € is sufficiently small,

4.23 inf - VGe(z) > 0.
(4.23) ol )" <(z)
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From (4.7), (4.20), and (4.22) it follows that, for all z € 9 (®(eV)),
o~ 1(z
( )>Jq>1(.’1])

_ Z@‘W +i‘ ‘I"l@) w(@)(m +0(|a]))
0]

T

x-vcg(:c)z—-vc(

9 9

“(z) o~ 1(z) 1 o
— VG| —= —0(|z/H) > 6 —-0() > =
ve () 4 Do) 2 5 - 06) >
provided ¢ is sufficiently small, thus proving claim (4.23). O

We now prove that sections of strictly star-shaped sets are strictly star-shaped.

Lemma 4.3. Let w be a C%! bounded open set in RN such that 0 € w and w is strictly star-shaped
with respect to the origin (i.e. w satisfies (1.23)). Then the set w' = {2/ € RN=1: (2/,0) € w} is
a CY1 strictly star-shaped open subset of RN —1,

Proof. Since w is of class Cb', there exists G € C1(RN) such that w = {z € RN : G(z) < 0}
and Ow = {x € RY : G(z) = 0}. Then

W= {2’ eRN1: (') < 0}
where §(z') = G(z',0), g € CVH(RN=1). We claim that
(4.24) o' = {2’ e RN (2/,0) € dw}.
It is easy to verify that, if 2’ € dw’, then (2/,0) € Ow. Thus, to prove claim (4.24) it is enough to
show that, if (z/,0) € Ow, then 2’ € Ow’. To this aim, the assumption of strict star-shapedness of
w plays a crucial role. Let (2/,0) € dw. Then G(z’,0) = 0; hence for every n € N, there exists
&n € [0, 1] such that

G((1—1)2,0) = VG((1 - &)7',0) - (—2,0) = —1 (vé(x’,()) - (2,0) + 0(1))
as n — 4o00. The assumption that w is strictly star-shaped with respect to the origin yields that
VG(2',0) - (2/,0) > 0, hence we conclude that é((l —1)2’,0) < 0 for n sufficiently large, so that
(1 — %)z’ € w’ and (1 - %):c’ — 2’ asn — +oo. In a similar way, we can prove that (1 + %)z’ Zw
and (1+ 1)a" — 2’ as n — +oo. Hence we conclude that 2/ € w’, thus proving claim (4.24).
From (4.24) it follows that

ow' = {2’ e RN (') = 0}.
We observe that, for 2’ € dw’,
(4.25) Vi(z') -2’ = VG(2',0)- (z/,0) >0

by strict star-shapedness of w. In particular Vg(z’) # 0 for all 2’ € dw’, hence by the Implicit
Function Theorem the boundary of w’ can be locally parametrized as the graph of a C1:!-function,
i.e. W is of class CH!. The strict star-shapedness of w’ directly follows from (4.25). O

From Lemmas 4.2 and 4.3 we may directly conclude the following result.

Corollary 4.4. The set >, defined in (4.9) is of class CY! and strictly star-shaped in RN =1 with
respect to 0 for e sufficiently small.

Corollary 4.4 achieves our aim of proving preservation of star-shapedness after the action of the
diffeomorphism ®. The following Lemma 4.5 provides a quantitative estimate of the size of the
transformed Neumann region, proving that its size remains of order ¢.

From Lemma 4.2 (ii) we have that there exists eg € (0, 1) such that ®(¢V) is strictly star-shaped
with respect to 0 for all ¢ € (0,&0). Then, applying Lemma 4.2 (i) to ®(¢V), for all € € (0,ep)
there exists a function p, : S¥ =1 — R of class C*! such that p. > 0,

(4.26) ®(eV)={r0:0cSV tand0<r < p.(0)}, and O(®(cV)) = {p(0)0:0 SV}
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Lemma 4.5. For every e € (0,20), let pe be as in (4.26). Then there exist e1 € (0,e9) and k > 1
(independent of €) such that, for all € € (0,e1),

(4.27) = < p(0) < ke forallcSN!
K

and

(4.28) |Vev-1p:(0)] < ke  for all § € SN

Proof. Estimate (4.27) follows from (4.6) and the fact that, being V a bounded open set containing
0, 0 <infreay |z < sup,epy 2] < +00.
To prove (4.28), we observe that, by (4.26) and (4.21),

q)fl
A(P(eV)) = {:c e RN\ {0} : |z p5<%> = 0} = {:c e RN\ {0} : G<¥> = 0},
with G being as in the proof of Lemma 4.2. Therefore, for every ¢ € (0,20) and = € 9(®(eV)),
there exists c.(z) € R such that

(4.29) éVG<(I)1(z>)J¢1(z) = ce() < i ll—leNflpE (%)) .

lz[  Jz

5
Hence, from (4.29), (4.20), (4.7), and (4.27) we deduce

(4.30) ce(z)|z] = vg(¢‘;(w))J¢l( ).z
. vc(@;(x)) , qr;(x) . % ve (4);(:16)) (s (@) — 5 (a)
1

x

if € is sufficiently small. On the other hand, multiplying both sides of (4.29) by Vgv-1 pg(m) we
obtain that
1 ot
il v/e. (z) Jo—1(x) - Van—1pe R _M Ven—1pe .
€ 3 || ||
and hence, in view of (4.30),
o 2 lee(2)] x
e
||

|z|
x x
-~ 19 VSN—lp (—) VSN—lp (—)
2|x[? “\lz] |z N

for all x € 9(®(eV)) and for some const > 0 independent of x and €. Therefore, taking into
account (4.27), we have that, for all x € I(D(eV)),

2

2

1
< const —
€

x 2|x|?
VsN-1p¢ m < const —— < const e,

ge
thus proving (4.28). O
Remark 4.6. Lemma 4.5 implies that $. C B.,_ for all € € (0,&1).

We conclude this section with the following refined Poincaré-type inequality for function van-
ishing on the crack I'c ..

Lemma 4.7. For all 7 € (0,1) there exists M; > 1 such that, for all 7 > 0 and € < min{e1, <},

1—71

/ quSS/ |Vul?dz  for all u GHél: (Br)
r JoB, o

r

N -1 1
3 /B u?de < <1+ :) /B |Vul?dz for all u € Héfm(BT).

Proof. Tt follows directly from [14, Lemma 4.2, Corollaries 4.3 and 4.4], recalling that Lemma 4.5
implies B;. \ B/, C Iz, for ¢ < min{ey, -}, as also observed in Remark 4.6. O
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5. A POHOZAEV-TYPE INEQUALITY

Pohozaev-type identites play a pivotal role in the differentiation of the frequency function;
indeed, by the coarea formula,

i AVv - Vodz = / AVv - Vodz
dr B, OB,
and the Pohozaev identity allows to rewrite the latter boundary integral in terms of volume
integrals and boundary integrals of normal derivatives. Therefore, this section is devoted to the
proof of a Pohozaev-type inequality for solutions to problem (4.17).

Let A be the matrix-valued function introduced in (4.10)~(4.18). From (4.12) and (4.13) it
follows easily that

(5.1) A(O)=In, Aly)=1In+O(ly) as |yl = 0.
Recalling that r; was defined in (4.4), we define, for all y € B,
Ay -y I
5.2 wly) = ——=—= and b(y)=——A(y)y.
(5.2) (v) ME (v) ) (v)
From (4.13) and (5.1) we have that
(5.3) peC™(By), uly)=1+0(y), Vuly)=0(1) aslyl =0,
and
(54) b(y) =y +O(ly*), Jo(y) =In +O(lyl), divb(y) =N +O(lyl) as [yl — 0.
Furthermore we have that, possibly choosing r; smaller, for every y € B,
1 ~ 3

(5:5) €7 < Ay € < SIEP for all ¢ € RY,

1 3
5.6 - < < =
(5.6) 5 SHy) <35,

1 3
5.7 < < -.
(5.7) 5 SPy) =5
Finally we have that
(5.8) bly) - % =|y| forally € B,,.
Proposition 5.1. Let ng be as in (1.15) and let €1,k be as in Lemma 4.5. Fori=1,... ,ng and

e € (0,e1), let vf solve (4.17). There exists 7 € (0,r1) such that, for all € € (0, min{eq,7/K}) and
a.e. v € (ke, ),

(5.9) r / AVvE- Vs dS — / ((divb)ﬁijva72Jb(ﬁva)~va+(dﬁVv§va)~b) dy
9B, B,

1 ~
> 2r/ —|Ava-V|2dS+2A§/ pb- Vi) dy.
B, M "

The proof of a Pohozaev-type identity for an equation of type (4.17) is classically based on the
integration by Divergence Theorem of the following Rellich-Necas identity

(5.10)  div ((AVw - Vw)b — 2(b - Vw)AVw) = (div b)AVw - Vw — 2(JyAVw) - Vw
+ (dAVwYw) - b — 2(b - Vw) div(AVw),
which holds in a distributional sense for any H 2_function w. Nevertheless, the highly non-

smoothness of the cracked domain B,, \ I'c,,, on which equation (4.17) is satisfied, prevents

us from the direct use of the Divergence Theorem, because of lack of regularity of the solution 5,
which could indeed fail to be H?2.
In order to overcome this regularity issue, we perform an approximation process.
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5.1. Regular approximation of the cracked domain. The first step of our regularization
procedure relies in the construction of a family of sets which approximate the cracked domain,
being of class C*! and star-shaped with respect to the origin.

To this aim, let us first consider the sequence of functions

1/8

1

hn R — R, hn(t):(n2t2+—2) .
n

By direct computations it is easy to verify that

(5.11) hn(t) > 4th! (t) forallt € R
and

4
(5.12) if (4, yn) € By and |y'| > ha(yy), then |yn| < %

Recall the definition of p. in (4.26). For every e € (0, min{e1,7m1/k}), r € (ke,r1], and n € N, we
define

DI, = {x:(:c’,:cN) € B, : |2/] <p5(
FZ,T:{:E:(:EI):EN)GB |$|_p8(
St =0DZ, \I¢Z,

We note that, for ¢ € (0, min{eq,71/£}) and 7 € (ke, 1] fixed, D?, # B, and I'
provided n is sufficiently large.

‘) +hn(:L'N>}
|)+ ‘TN }C@DET,

cr is not empty

Lemma 5.2. There exists ro € (0,71) such that, for every ¢ € (0,min{ey,r2/k}) (with £ as in
Lemma 4.5), there exists n. € Ny such that A(y)y -v(y) >0 on TZ,, for all n > n., where v(y)
is the exterior unit normal at y € ODZ,.,.

Proof. Because of the definition of I'?

g,17

we have that, if y € TZ .,
VG
124 y =
W) = G

where G2(v', yn) = V| — hn(yn) — pe (%) Then, to prove the lemma it is enough to show that,

for some ro € (0,71) sufficiently small and all € € (0, min{ey,r2/k}), A(y)y - VGZ(y) > 0 for all
y € I't,.,, provided n is sufficiently large.
We observe that

VGz () = (7~ i Von e () o) )

From (4.12) and (4.11) it follows that, as |y'| — 0, |yn| — 0,

AW yn) (Y yw) = (y’ +O0(y'1) + 1y'10(yw ) + OyR), yn + ¥/ 10(ly~1) + O(y?v)),
so that

AW yn)(y' yn) - VG2 yn) = [y + Oy 1) + O(ly'1?) | Ven—1pe

+O(lyn1) ‘VsNﬂPe(é ) %)

O|( 0 Zﬂ)\ —ynhy,(yn) (1 +O(y']) + O(yn)),
uniformly with respect to € € (0,e1). Therefore, in view of (4.28),
(5.13)  A(y",yn)(W s yn) - VG (W' yn) = Fi(y' yn.€) + [ 10(lyn )

L eO(lynl) + O3 +¢ Ol(yylev) L () Fa(ys ),

L)+ 1y 10(yn )

+

}VSN 1p5(

where

Fi(y yn.e) =+ O0(y*) +O0(y'|) and Fa(y',yn) =14 O(y'|) + O(yn)
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as |¢'| = 0 and |yny| — 0 uniformly with respect to e € (0,¢1).
Let us choose rp € (0,71) such that

(5.14) Fi(y,yn,e) > =ly| and Fy(y',yn) <2 forall (v,yn) € By, and € € (0,¢1).

N~

We note that, if & € (0, min{e1,r2/k}), then 2. C By, and T'?,, is not empty for n sufficiently
large. Moreover by (4.27) we have that, if (v/,yn) € T'?,., then |y/| > ps(‘z—j‘) > £, 5o that

£,r29

5
/]
From (5.12), (5.13), (5.14), (5.15), the definition of I'? ., (5.11), and (4.27), we conclude that, for
all € € (0,min{ey, *2}) and (y',yn) € I'?

e,r2?

(5.15) < forall e € (0,min{ey,r2/k}) and (3, yn) € T,

1 1
AW 0) 0}V GE ) 2 310~ 2ot ) +0 (3

(hn(yzv) + Pe(@;l)) ~ 2ynhulyn) +0 (é)

1
2
1
2

Y

2K n

(hn(yw) — 4ynhly(yx)) + o= + O (l) >= 40 (l) as n — oo.

From the above estimate it follows that, choosing ro as above, for every € € (0, min{ey, ©2}) there
exists ne € N, such that A(y)y - VGZ(y) > 0 for all y € I'?,., with n > n., thus completing the

proof. O

Let & € (0,1) and p as in (5.2). In view of (4.11), (4.12), (4.9), (4.3), (4.18), (5.3) and Lemma
A.1, there exists

&
(5.16) e <0,min {TQ, 7}>
2||pllpee(s,,)
such that
(5.17) Ay)E-€ > al¢)? forall € € RY and y € B;

and, for all r € (0, 7],
(5.18) / (ng -Vw — )\noﬁwQ) dz —|—/ pw?dsS > d/ |Vw|?dz  for all w € H'(B,).
B, OB, B,
In particular, from (5.18) it follows that, for all r € (0, 7]
(5.19) / AVw - Vw dz — A, /
B

pw?® dz > d/ |Vw|?dz  for all w € Hy(B,).
B,

By
We denote
Dl=DI; T'=TI7. S'=8"; TI.=DBL\Z..
5.2. Regular approximation of vf. Let v{ be the functions defined in (4.15). Let us fix
i€{l,...,no} and e € (0,min{ey,7/K}).

Since v§ € H 5,1:5 (Br), there exists a sequence of functions v, = v, such that

(5.20) v, € C°(Br \I.) and v, — o in H'(B;) as n — oc.

The functions v, can be chosen in such a way that

_ 4
(5.21) (2, zn) =0 if 2’ €. and |on| < T
n
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Remark 5.3. We observe that v, = 0 in Bz \ D? (in particular v,, has null trace on I'?). Indeed,
let = (¢/,xn) € Br \ D?. Then

|/ > ha(xn) + pe (17) > p=(£7),

so that 2’ € T'.; moreover
P> || > ho(an) = 0oy,
so that |zx| < 7 /n. Then v,(z) = 0 in view of (5.21).

We are going to construct a sequence of approximated solutions {wy, }nen on the sets DZ. Let
fle > ne be such that I'7 is not empty for all n > ..

Lemma 5.4. For every n > fi., there exists a unique weak solution w, € H'(D?) to the problem

—div(A(y)Vwn(y)) = Aip(y)waly), in DL,
(5.22)
Wy = Up, on 0D”.
Furthermore, extending wy, trivially to zero in By \ DT, we have that
(5.23) wp, — v in HY(Bp) asn — +oo.
Proof. Letting W,, := w,, — v,, we observe that w, is a weak solution to (5.22) if and only if

W,, € H3(D?) weakly solves

(5.24) {_ div(AVW,) = X; Wi, = NP, + div(AVu,) in D2,
Wn =0 on 0D7.

i.e.

(5:25) 0 (Wn, &) = (Fo,¢) for all ¢ € HY(DZ)

where

G s HY(DP) x HY(DP) 5 R, an(é1, 62) = /

Dy

AV$1 - Vo dy — A / D1 d2 dy,

Dy
F, e Hﬁl(D‘?)a H*l(DQ)<Fna ¢>H§(DS) = / ()‘fﬁvn ¢ — /~1an ) V¢) dy.
Dy

Since p € L*°(D?), by the Poincaré inequality the bilinear form a,, is continuous, whereas estimate
(5.19) implies that a,, is coercive on H}(D"). The Lax-Milgram Theorem ensures the existence of
a unique weak solution W, to (5.24) and, consequently, of a unique weak solution w,, = W,, + v,
to (5.22), for all n > n..

From the Poincaré inequality and boundedness of {v,} in H*(B;) we can easily deduce that

[{Fn, 0)| < cll¢llmy(pny for all ¢ € Hy (DY),

for some constant ¢ > 0 which may depend on i,&, N,7 but is independent of n. Therefore,
choosing ¢ = W, in (5.25) and using estimates (5.19) and (2.2), we obtain that

&”WnHzg(Dg) < an(WnaWn> = <FnaWn> < CHWnHHg(Dg)a

so that

Wallm(s:) < for all n > ne,

where W, is extended trivially to zero in Bz \ D?. Therefore there exist W € H3(B;) and a
subsequence {W,,, } of {W,} such that

(5.26) W, =W weakly in Hg(By).

[oT8 oY

We observe that, for any § > 0 small, the set A§ = {(gg” 0) € Br:|2'| >0+ pe(‘i—:‘)} is contained
in By \ Dg for n sufficiently large (how large it should be depends on §); hence, for any ¢ > 0
small fixed, W,, € H017A§U6B; (By) for n sufficiently large. Since H&,AEUBB; (By) is weakly closed
in H'(B;), we deduce that W € H&,AguaB; (By) for all 6 > 0 small; therefore we conclude that
WeH! (B7).

0,0B7UL.
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Then, from (4.16), (5.20), (5.26), and (5.25) we deduce that

0= —/ (ZVuf VW dy — ASpus W) dy
B

I3

— — lim (Zvunk W, dy — AP, Wnk) dy

k— o0 Bs
= lim (F,, ,Wy,)= lm an, (W, Wy,)
k—+oo k— o0

thus concluding that Wy, [|g1(p,) — 0 as k — +oo in view of (5.19). Hence Wy, — 0 in HY(Br)
and wy, = Wy, + v, — vf in H'(B;) as k — 4oo thanks to (5.20). By Urysohn’s subsequence
principle, we finally conclude that w, — v¢ in H*(B;) as n — +oc. O

5.3. Proof of Proposition 5.1. Let us fix i = 1,...,n¢ and ¢ € (0, min{ey,7/k}) with 7 being
as in section 5.1 (see (5.16)—(5.19)). Let v solve (4.17) and, for all n > f., let w, € H'(D") be
as in Lemma 5.4.

Let r € (ke, 7). By classical elliptic regularity theory (see e.g. [18, Theorem 2.2.2.3]) we have
that w,, € H*(D?,). Then

(AVwy, - Vw,)b — 2(b - Vw, ) AVw, € W (D)

so that we can use the integration by parts formula for Sobolev functions on the Lipschitz domain
D, and obtain, in view of (5.10), (5.22), and (5.8),

7’/ /~1an~an dS*/

S, D

:2r/
S

n
e,r

((div b)AVw, - Vw, — 2(JoAVaw,) - Vaw, + (dﬁvwnvwn)-b) dy,

n n
e,r e,r

1~ _
—|Aan-u|2dS+2A§/ (b Vw,)pw, dy
D

+/ (— (AVw, - Vw,)b - v +2(b- Vw,)AVuw, - v) dS
F?,T
where v = v(y) is the exterior unit normal at y € 9D, = T'?, US!,. On I'?, we have that

wy, = 0 so that Vw,, = 6{;’:; v; hence

2

1 ~ ~
(Ay-v)(Av-v) >0 onI7,

(5.27)  — (AVwy - Vwa)b- v+ 2(b- Vw,)AVw, - v = —‘ aa“;"
7!

thanks to Lemma 5.2 and (5.5). Then we obtain the following inequality

(5.28) r / AV, - Vw, dS
o8,
- / ((div b)AVw, - Vw, — 2(JoAVw,) - Vwy + (dAVw, Vi) - b) dy,
B
1 ~
> 27’/ —|AVw, ~I/|2dS+2/\§/ (b Vwy)pw, dy
B, M B,
for all n > f., where w,, is extended trivially to zero in B, \ DZ.

For i and ¢ fixed as above, we now intend to pass to the limit in (5.28) as n — +oo for every
r € (ke,7). The strong H!-convergence of w, to v stated in (5.23) directly implies that

lim ((div b)AVuw, - Vi, — 2(JoAVwn) - Vaw, + (dAVw, Vwy,) - b) dy

n—-+o0o B,
= / ((div b)AVeS - Vo — 2(JpAVE) - Vit + (dﬁvvfwf).b) dy
B
and

im [ (b Vuy)puw, dy = / (b- Vo )os dy,
n—-+oo B, B,
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for all r € (ke, 7). In order to deal with the boundary integrals in (5.28), we observe that, by the
strong H!-convergence (5.23) of w, to v,

lim (/ |V (w, — vf)|2dS) dr =0,
n—-+o0o 0 OB,

Le., letting Fi,(r) = [, |V(wn, —v§)[?dS, F,, = 0in L*(0,7). Then there exists a subsequence
F,, such that F,, (r) — 0 for a.e. r € (0,7), hence
Vw,, — Voi in L*(0B,) ask — +oo for a.e. 7 € (0,7).

Therefore, for a.e. r € (0,7),

lim AVw,, - Vi, dS = AViE - Vg dS,
k=+oo JopB, 9B,
1~ 1~
lim ~|AVw, -v[*dS :/ —|AVof - v|?dS.
k=+oo Jop, M Y

Hence we can pass to the limit in (5.28) as n — +oo for a.e. r € (ke, 7), thus obtaining (5.9). O

6. ENERGY ESTIMATES VIA AN ALMGREN-TYPE FREQUENCY FUNCTION

6.1. Monotonicity formula. For every A € R, r > 0, and v € H!(B,.) we define

E(v,r, \) = 7’27N/

. (/TVU - Vv — XﬁvQ) dy,

where A and p have been introduced in (4.18), and

H(v,r) = rl_N/ po?ds,
8B,

where p has been introduced in (5.2). We observe that from (5.18) it follows that

(6.1) E(v,r,\) +rH(v,7) >0 for all 7 € (0,7], A < A\, and v € H(B,.).
We also define the Almgren-type frequency function as
E(v,r,\)
6.2 N A) = ———=.

Lemma 6.1. Let vf be as in (4.15).
(i) H(vg,r) >0 for all € € (0, min{ey,7/K}), r € [ke, 7], and 1 <1i < ny.
(ii) For every r € (0,7], there exist C, > 0 and o, € (0,r/k) such that H(v$,r) > C, for all
0 <e<min{a,er} and 1 <i<ng.

Proof. To prove (i) we argue by contradiction and assume that there exist e € (0, min{e;,7/x}),
r € [ke, 7], and 1 < i < ng such that H(vi,r) = 0, i.e. vf = 0 on 9B,. Testing (4.17) with o5,
integrating over B,, and using estimates (5.19) and (2.2), we obtain that

0= / AVeE - Vg dy — )\f/ plus|? dy > d/ |Vos |2 dy
B, B, B,
and hence v§ = 0 in B,. It follows that u§ = 0 in B}, i.e. 5 =0in F(B;), with F as in (4.2), so
that from the classical unique continuation principle for elliptic equations we may conclude that
¢$ =0 1in Q, a contradiction.

In order to prove (ii), suppose by contradiction that there exist 0 < r < 7, g, — 0, and
ip € {1,...,n0} such that

lim H(v;,r) =0.

{——+o00
From (1.9), (1.8), and (2.2) we have that {5}, is bounded in H'(Q2). Then there exist A € [0, A, ]
and ¢ € H'(Q) such that, along a subsequence, ANl — A and ¢;f — ¢ weakly in H'(Q) and
strongly in L?(Q). From (1.8) it follows that [, ¢?dz = 1 and then ¢ # 0 in Q. Moreover ¢
weakly satisfies —Agp = Ay in Q.
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The weak convergence ¢;’ — ¢ in H L(Q) implies tha v;! — v weakly in H Y(B,,), where v is
e H'- (B), we

the even reflection through the hyperplane {ynx = 0} of u = ¢ o F. Since v;, oF
g slep,r
have that v € H!

0BT (Q). Moreover, v weakly solves

17

63) {mﬂﬁv@&h,inBM\B’

v =0, on By .

By compactness of the trace embedding H'(B,.) — L*(dB,), we also have that

0= élim H(vif,r) = lim rlfN/ i 2ds = rlfN/ | ds,
—00 £—00 B 9B,

r

which implies that v = 0 on dB,.. Testing (6.3) by v in B,, from (5.19) we deduce that

0= / (AVVU Vv — Apv?) da > d/ |Vo|? da.
B B

T T

Then v = 0in B, and, consequently, ¢ = 0in F(B;"), so that from the classical unique continuation
principle for elliptic equations we may conclude that ¢ = 0 in Q, a contradiction. (I

As a consequence of Lemma 6.1 the function r — N (v, r, AS) is well defined in the interval
[ke, 7] for all € € (0, min{ey,7/k}) and 1 < i < ng. Furthermore, estimate (6.1) implies that

N@;,r,\;)+1>1—7>0 forallre [re,7].

In order to differentiate the function N, we need to differentiate both E and H. We start here
by deriving a formula for the derivative of H, which turns out to be expressible in terms of the
function E, see (6.6).

Lemma 6.2. For all € € (0,min{e1,7/k}) and 1 <i < ng, H(vE,-) € Whi(ke,7),

€
(6.4) iH(’Uf,T) = 2r1_N/ g Ov; dS+O(M)H(vi,r) asr—0,
dr 9B, ov
(6.5) %H(vf,r) = 27’17N/ (AVVE - v)oi dS + O()H WS, r)  asr — 0,
OB,
and
(6.6) diTH(vf,T) = %E(vf,r, X))+ OM)H(vi,r) asr—0,

where the derivative is meant in a distributional sense and a.e. in (ke,7), v =v(y) = IZ_I is the unit

outer normal vector to OB, and O(1) denotes terms which are bounded for r in a neighbourhood
of 0 uniformly with respect to €.

Proof. By direct calculations we have that H(vg,-) € Wh1(ke,7) and
d ovs 0
—H(vi,r) = 2r1_N/ ,uvifi ds + rl_N/ |Uf|2—u ds
dr OB, ov 9B, ov

in a weak sense, from which (6.4) follows in view of (5.3).
To prove (6.5) we define

w(y)(bly) —y)

a(y) =
lyl
and observe that
~ =2 1
(6.7) / (Aves vyprds = [ s dS+—/ a-V((v5)?)dS.
9B, 9B, ov 2 JaB,

By (5.8) we have that
(6.8) a(y)-y=0.
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From (5.3), (5.4), and (6.8) we deduce that

(6.9) diva:E—T~(bfy)+|%l(divbf]\7):0(1) as |y| — 0.
From (6.7), (6.8), and (6.9) it follows that
~ €
(6.10) / (AVE - v)sdS = / e g L / (div a)[vE[2dS
OB, oB, OV 2 Jon,

= / ,uvfavi dS—i—O(l)rN_lH(vf,r)
OB, 811

as 7 — 0 (uniformly in €). Combining (6.4) and (6.10) we obtain estimate (6.5).
To prove (6.6) we test (4.17) with v§ and integrate over B, thus obtaining

rNT2E WS, X5 = / (ngf - Vi — )\ffﬂUﬂQ) dy = / (AVvS - v)vs dS,
B OB,
whose combination with (6.5) immediately yields (6.6). O

Remark 6.3. We observe that (6.6) implies that there exist 7y € (0,7) and Cy > 0 (independent
of ) such that, for all € € (0,79/x),

2 1 d 2
—EWi,r,A;)— =— HWwi,r) < —H@W;,r) < =E;,r,A;) + CoH (vi,r) a.e. r € (er,To).
r Co dr r

Lemma 6.4. For all € € (0,min{e1,7/k}) and 1 < i < ng, E(v,-, ;) € Whi(ke,7) and

d 1 ~
d—E(Uf,r, A5) > 2r2_N/ —|AVvS - 1/|2 dS+ O E(vi,r, ;) +rO()H (v, r)
T 8B, M

as v — 0, where the derivative is meant in o distributional sense and a.e. in (ke,7) and O(1)
denotes terms which are bounded for r in a neighbourhood of 0 uniformly with respect to €.

Proof. By direct calculations we have that E(v$,-,\5) € Wh!(ke, 7) and

r 7

d ~ -~
B D) = @ N [ (A9 Vet - ) dy
d’r B

+r2_N/ (AVo; - Voi = Xplos ) as.
OB,
Hence, in view of Proposition 5.1,

d
S B(0f,7, %)

1 ~
> 27“2_N/ —|AVvS - v|?dS — )\fTQ_N/
B, M

plvi*ds
0B,

+r1—N/ ((2 — N)AVYS - Vit + (div b) AVS - Vi — 2Jp(AV0S)- Vo + (dﬁvufvuf).b) dy
B

T

+AgA4V/'cmw.Vﬁyf+(N>—mMﬁF)dy
B

T

Therefore, in view of (4.13), (5.1), (5.4), (5.3), Lemma A.1, and (5.18)

1 ~
iE(’Uf, SAS) > 2r2_N/ —|AVvS - v|?dS
dr B, H

+O(1)r2_N/ |vu§|2dy+0(1)r2—N/
By

plos[? ds
0B,

1 ~
=2r* N / ;|AV1}§ v|?dS + O(1)E(vs,r, X5) + rO(1)H (v5,7)
0B,

thus proving the lemma. O
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Lemma 6.5. There exist ¥ € (0,79) and C > 0 such that, for all ¢ € (0,min{e;,7/k}) and
1 <i<ng, NS, -, ;) € Whi(ke, ) and

(6.11) diTN(vf,T, A;) > —C(N(wj,r, ;) +1) for a.e. r € (ke,T).

Furthermore, for all e € (0,min{e1,7/k}), 1 <i<ng, and ke <r < R<F

(6.12) N(v,r, X5) + 1 < e“EI(N (05, R, AS) +1).

Proof. The fact that N(vg,-,A5) € Whl(ke,7) follows directly from the fact that H(vg,-) and
E(vf,-, %) belong to Wh(ke,7) and Lemma 6.1.
From (6.6) it follows that, as r — 0,

B, 7,X) = 5L H (5, ) + O H(vf, 7).
r

-
2
which, together with (6.5) and again (6.6), yields

d
E(’Uf,T, )\f)—H(’Uf, T)

dr
= <T2N/ (AVE - v)os dS + rO(1)H (v, 7’)><27’1N/ (AVE - v)of dS + O(l)H(vf,r))
OB, 9B,

—a ([ o dS>2 +rO()(H(f, 1))?

+r2NO(1)H (vf,7) ( /6 (AVv; - v)of dS>

B,
2
= 9p372N (/ (ngf AL dS) + rO(l)(H(vf,r))2
dB,

+rO(1)H (v, ) liH(vf, r)+O)H(vi,r)
2 dr

= 9,32N < /6 N (AVE - v)os dS>2 +rO(1)(H (v5,7))?
+rO()H(uf, 7) (%E(Uﬁf,r, ) +O(1)H(vf,r)) .

The above estimate, Lemma 6.4, the Cauchy-Schwarz inequality, and (6.1) imply that
H(’Ufa T)%E(Ufa T, )‘18) - E(Ufa T, )‘zg)d%«H(sza 7")
(H(vf,r))?

3-2N (fé‘BT %LZ{V’U;? ' V|2dS) (fé‘BT H|Ui€|2ds) _ (faBT (/~1va v)o; dS)2
= (H oz, )2

d
aN(Uf, Ty /\f) -

+O()N (W5, r,X5) +rO(1)
> -C (N(’Ufara )‘f) + 1)

a.e. in (e, 7), for some 7 € (0,7) and C > 0 independent of ¢.
Finally, estimate (6.12) follows by integration of (6.11) over the interval [r, R]. O

Lemma 6.6. Fort € (0,1), let M- be as in Lemma 4.7. Leti € {1,...,no}. Ife < min{ey, ﬁ}
and kM,e < s1 < so < T, then

2a(1—7)

M > e*(4+0071)7: 52 Tellzeo (B7) .
H(U'E 81) o S1

77
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Proof. Let @ € (0,1) be as in (5.17). By (5.18), (2.2) and Lemma 4.7, for every ¢ < min{ey,
and r € [kM;e,,T]

o [ 1veiPde< [ (A9 Ve - NFEP) do ot e [ RS
B, B, 0B,

wir; }

< [ (A9 V07 = A BleE) dot iy [ 1offaS
B, 0B,

i 1—-7

oo = T‘
<N T2EWE, 1 AD) + [ PATERG / |Vos§|? da
By

so that, using again Lemma 4.7 and recalling that & — 2|u|[pe(p,)r > 0 in view of (5.16), we
obtain that

619) B0 2 (6= PLEE) [ 9 ae > (@ - 2luler) [ 907 ds
- B, By

- 1—7
> (6= 2ullmmor) T [ s

1—17

> (@& = 2||pll Lo p,yr) rNT2H (W, r)

l1tll zoe (7
a(l—r1)
= el s
From Remark 6.3 and (6.13) it follows that
d 2 1 2a(1 — H(v¢
D) > 2B v 30 - & HGeg ) > 2T T
r 0

dr " lellesy T
in [kMre,,7|. The conclusion then follows by integration between s; and ss. O

rNT2H (S ) — 2rN T H (08 7).

— (44 Oy H @, 7)

6.2. Energy estimates. By a combination of Lemma A.1 with estimates (5.5)—(5.7) it is possible
to prove the following perturbed Poincaré-type inequality.

Lemma 6.7. For any r < ry and for any u € H*(B,.) there holds

N -1 - ~ 1
5 / pu2dy§3(/ AVu-Vudy+—/ uquS).
r B, B rJoB,

T

Proposition 6.8. For any R, K such that R > K > k there holds

(6.14) / AVYS - Vi dy = O(eN2H (v, Ke)) ase — 0,
Bre
(6.15) / plus)? dy = O(eNH (v, Ke)) ase — 0,
Bre
(6.16) / plvs)? dS = O(eN " H (v, Ke)) ase — 0,
6BR5

for allie{1,...,np}.

Proof. First of all, we prove that

(6.17) N5, 7,05) =0(1) ase— 0.
We notice that

E(i,7, A7) < f27N/ /~1va - Vo§ dy
Br

o2 Al(m Vi de < 2?2*N/Q V] = 272N e

Since A; < A, for all € € (0,1) and all 1 < ¢ < ng, we have that E(v,7, A) is bounded for
e € (0, min{e;,7/K}). From Lemma 6.1 (ii) we know that there exists Cr > 0 and a5 € (0,7/K)
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such that H(v§,7) > Cj for all ¢ € (0,min{«as,e1}). Therefore (6.17) is proved. Hence from
estimate (6.12) we deduce that there exists ¢y > 0 such that

(6.18) N@:,r ) < co

for all € € (0, min{ey, 7/ K, ar}) and all Ke <r <.
By Lemma 6.2 and (6.18) there exist R; € (0,7), ¢1 > 0 and € € (0, min{ey, Ry /R}) such that,
for any ¢ € (0,&) and for any Ke <r < Ry

d
L H(vs,r) 1
6.19 L <o (=+1).
(0:49) orn <o (: )
By integration of (6.19) in (K¢, Re) we obtain that
H(i,Re) _ (RY' . icr-)
H(ve, Ke) — \ K
which, in turn, implies (6.16).
From (5.19) and (5.5) we have that there exists Ry € (0,7) such that

/ (AV - Vo — Ayploc?) dy > & / AVof - Vo dy
BRE 2 BRE

for all € € (0, min{ey, Ra/R}). Therefore, since A\; < A,,, there exists ¢z > 0 such that
/B AViE - Vol dy < coeV 2B (0, Re, XY)
Re
for all € € (0, min{e;, Ry/R}). Then (6.18) (with r = Re) yields
(6.20) /B AV - Vol dy < cocaeN T2 H (05, Re),
Re

for all € € (0, min{ey, Ra/R, o }). This fact, together with (6.16), proves (6.14). Applying Lemma
6.7 with r = Re, for ¢ sufficiently small, and w = v¢, in view of (6.14) and (6.16) we obtain (6.15),
thus concluding the proof. O

Hereafter, we denote
(6.21) B=2a/|plpe(p, -

Proposition 6.9. Let 7 € (0,1/2), M, > 1 as in Lemma 4.7 and § as in (6.21). Then, for any
R > M.k, there holds

(6.22) / AV - Vi dy = OV 724807y 52 0,
Bre
(6.23) / Gl dy = 0N+ 452 50,
Bre
(6.24) / plE? dS = O(eN 1A= gs e — 0,
aBRE

for allie{1,...,np}.

Proof. From Lemma 6.6 we know that there exists a constant C' > 0 such that

(6.25) H (v, Re) < CePUI"H(wE,7) for all € € (0,7/R).
Combining estimates (5.5) and (5.6) with Lemma 4.7, we obtain that
2—N _
(6.26) H(ve,7) < 37"7/ AVeE - Vit dy.
(1 - T) Br

By definition of A and monotonicity of eigenvalues, we have that

/ AV - Vol dy = 2/ Vs |2 do < 205 < 2),,.
By ®-1(B])
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This, together with (6.26) and (6.25), implies (6.24). Moreover, (6.22) follows from (6.20) and
(6.24), while (6.23) comes as a consequence of Lemma 6.7, (6.22) and (6.24). O

The following result is a straightforward consequence of the previous two propositions.
Corollary 6.10. Let 7 € (0,1/2). Then for any K > k there exist C,q,& > 0 such that
(6.27) H(v;,,Ke) > Ce?  forall e € (0,¢).

Moreover, letting M, be as in Lemma 4.7, B as in (6.21) and K > M.k, we have that, for all
xS {1,...,710},

(6.28) H$,Ke) = 0(EP7))  ase — 0.
Proof. If we integrate (6.19) between Ke and R; we obtain that

H(’Ufm,Rl) < R1€R1 c1 e
H(vs Ke) — \ K

no?

Then, in view of Lemma 6.1 point (i), (6.27) follows with

_ K “
C .= CRI <m> and q:=cCy.

Finally (6.28) directly comes from Proposition 6.9. (]

7. UPPER BOUND ON Ay, — Ay,

Hereafter we fix 7 € (0,1/2) and
K, > 25M,

with x as in Lemma 4.5 and M., as in Lemma 4.7. For convenience in the exposition, hereafter
we denote

(7.1) 0, =3 (B/)

for any r € (0,71), with ® as in (4.5).
For every i € {1,...,n0}, R > K, and ¢ € (0, min{e1,7/R}) we consider the following mini-
mization problem

(7.2) min {/ IVul® dz: u € HY (OR.), u— (nge o )¢S € H&(@RE)} )
@Ra

where nre(r) = nr(z/c) and ng is as in (3.1). By standard variational methods, it is easy to prove
that this problem has a unique solution fz‘“é -» which weakly satisfies

_— .
—AGR . =0, inOg,

int

i,Re — (ng’ o1 (aeRa)J’_;
;“}25 =0, on (00g.)?,

where

(8®RE)+ = 00Rr:. N and (8@38)0 = 00 g NON.

Lemma 7.1. For any R > K. the following estimates hold as e — 0

(7.3) | Ive. de = 0N 2H G K 2)),
@Ra 77
(7.4) | leh.f? do = 0N HEE K0,
@Ra

(7.5) [ lenm. ] as = 0>t Ko,
(0Or)*T
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together with

75) [ 98P da = 02430
®R£ 11
(7.7) / l€m |7 dx = OV +AA-"),
®R5
(7.8) / € [? S = OV -1+80-1).
(0O Re)t

forallie{1,...,no}, where B is defined in (6.21).

Proof. By the change of variable induced by the diffeomorphism @, problem (7.2) is equivalent to

min /
B
int

with A as in (4.10), and the minimum is attained by & . o ®~1. If one tests the problem above
with u = ngeus, the following is obtained, in view also of (5.5), (5.7) and (3.1),

AVu-Vudy: u € HI(BJJEE% U — nNReU; € H&(BEE)} ’

+
Re

in 2 in — in —
| Ivetl do= [ AVt o0 Vi 00 ) dy
Re B

Re

3
< _/ |7’]REVU§ +U§V77R6|2 dy
2 /s,
1 2
< 96 AVYE - Vus H dy.
. /BR< iVt g > g

Combining this estimate with (6.14) and (6.15) proves (7.3), while combining it with (6.22) and
(6.23) proves (7.6). Since &% . = ¢f on (0Og.)", estimates (7.5) and (7.8) are trivial in view
of (6.16) and (6.24). Finally, (7.4) and (7.7) come from the other estimates, Lemma 6.7, and the
change of variable induced by the diffeomorphism ®. ([

Using the functions Z‘“]EL& that solve (7.2), we construct a family of competitors (see (7.20))
to test the Rayleigh quotient for \,, and obtain a sharp estimate from above of the eigenvalue
variation A,, — A7, . To this aim, we also provide suitable energy estimates for such competitors,
see (7.21)—(7.26). For all i € {1,...,n0}, R > K, and ¢ € (0, min{e,7/R}) we define

f x), if x (S Q\ O ey
(79) €i,R,E(-T) = (me ) ) \ R
i,R,a(z)a if x € Oge.

We observe that & p. € Hg(£2) thanks to the fact that R > K, > 2k, which guarantees that
eV C 6%. Moreover it is easy to verify that the family {&1 rc, ..., &no,R.e } is linearly independent

in H}(Q), for e sufficiently small. We also define

(7.10) Zaw) w om0 ) (E0)
" HE) H(e)’
where we denote
1 1
7.11 H():==-HW ,K.&)= —— € 12d8.
(711) (©) 1= 5050 Kre) = s | b

As a consequence of the estimates given in Propositions 6.8 and 6.9 and Lemma 7.1, we are able
to prove the following result.
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Lemma 7.2. For any R > K, we have that, as € — 0,

Aey)V 25V Z5dy — /
Bf

(7.12) / Véngrel da = Ao, +eNT2H(e) </ A(sy)VTE-VTEdy> ,
Q B

K
A
(7.13) /Q V& rel” doe = X5+ 0@EN"2H80-7) " foralli=1,...,n,

(7.14) /QV&,R,E Vo redr = O(EN_2+g(1_T)\/%), foralli=1,...,n9—1,
(7.15) /Qvgi,R,g V& pedr = 0NN foralli,j=1,...,n0, i # J,
(7.16) /Q el do = 1+ O(EN H (),

(7.17) /Q lirel® dz =14+ 0NN foralli=1,...,no,

(7.18) /9&71376 €no R dr = O(5N+§(1_T)M), foralli=1,...,n9—1,,

(7.19) / Cinre&ipedr=0ENPA=N " foralli,j=1,...,n9, i # J.
Q

Proof. By definition of &,, r, we have

/|V§n07R75|2 dz:/ ‘Vgﬁfm’? dx—/ ‘chfm’Q dz+/ ’Vf,i;:fREf dz.
Q Q ORe ORe n

Since, by (1.8)- (1.9), [, |V¥5, |2 dx = X, , by the change of variable y = ®(x) and the definition
of Z5, and T¢ given in (7.10), we obtain (7.12). Similarly, for any ¢ = 1,...,no,

/ \Véirel dz =X —/ Ve dx +/ \V«Ei?}z,s\z da.
Q GRE ®R5

Then (7.13) follows from (6.22) and (7.6).
For alli=1,...,n9 — 1 we have that

[ Ve Voo == [ Vot Vii ot [ Ve e

Q @Rg GRE

since the perturbed eigenfunctions are orthogonal, therefore (7.14) follows from Cauchy-Schwartz
inequality and estimates (6.14), (6.22), (7.3) and (7.6). Finally, again by orthogonality, for any
i,7=1,...,n9, 7 # j, we have that

/ vfi,R,s : vfj,R,s dr = 7/ chf ' V@; dz +/ V&i,nltz,s ' vf}?}%,s dx
Q @Rg GRE

and so (7.15) easily follows from Cauchy-Schwartz inequality and estimates (6.22) and (7.6). The
proof of (7.16)—(7.19) is completely analogous and it is therefore omitted. O

We now construct an orthogonal basis {£1 r.c, . . ., €ng.r.c} Of the space span {€1 rc, ..., Eno Rie }-
To this aim we recursively define

no

N N R s )
(720) §noRe = &no,re aNd & pe =& Re — Z diyjagj,R,a fori=1,...,mn0 -1,
Jj=i+1
where
Re . fQ &i,r,e&j,R,e AT

i,J fsz |§j,R,8|2 dx
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The functions {5175575, - ,énO,R,E} are orthogonal in L?(Q2). Moreover they satisfy the following
estimates:

(7.21) /S2|an07R75|2dz =, +eVT?H(e) </B+A(€y)VZI%~VZI€% dy—/ﬁl(sy)VTE VA dy> :
R

BR
(7.22) /Q Vi rel?dz = A5 +O0(EN2P0-7) " foralli=1,... no,
(7.23) /Qvéms Vo pedr = 0EN220-7) /H(2)), foralli=1,...,no— I,
(7.24) /Qvémﬁ Véjpedr =O0@ENHPA= " foralli,j=1,...,n0, i # j,
(7.25) /Q o nePde =1+ OV H(E)),
(7.26) /Q EirelPdz =14+ 0(@ENHPA") " foralli=1,...,n

The proof of estimates (7.21)—(7.26) consists in direct computations and comes from Lemma 7.2
and the following estimates on the coefficients dafts

df}fg = (€N+§(177)\/H(5)) forall j=1,...,m0—1,
Ay =0(EVPIT) forallk=2,...,ng, j<k.

We are now ready to prove an upper bound of the eigenvalue variation A,, — A7, .

Proposition 7.3. For any R > K. we have that

(7.27) Ang = Asy < eNT2H () (fr(e) + 0(1)) ase — 0,

where

(7.28) fr(e) = /+ Aley)VZy -VZidy — /+ A(ey)VYe - VT dy.
BR BR

Moreover

(7.29) fr(e)=0(1) ase—0.

Proof. By the Courant-Fischer Min-Max variational characterization of the eigenvalues, see (2.1),
we have that

IV (2 aZuZ)HLZ(Q)

Any = min max 5 D {ur . un,} C H(Q)
ag;l.(;,ano_elR [ Z =1 a1u1”L2 Q) hnearly independent
i=1 %

We test the above minimization problem with the orthonormal family

. gi,R,s
U 1= ,
R, @ Ji=1,...n0

.....

where éi,pb,g is defined in (7.20); we thus obtain
2
dr — A\, = max Z M; ;a;aj,

ngs
a;
(Z l”szsHLZ(Q) a1,...,0ny ER

70, a?=1 S0, az=1 W=

i=1 "1

with
. JoVéire VEireda A §7

] T Mot

i rellz2 ()
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From estimates (7.21)—(7.26) we deduce the behaviour of the coefficients M ;’s as ¢ — 0, that is

N—2
M’Iglo,n() =€ H(E)(fR(E) + 0(1))’
M, =X =X, +o(l), foralli=1,...,n9—1,

M:, = O(EN_2+§(1_T)\/H(E)), foralli=1,...,n0 — 1,

1,M0
Mg, =0 N2 foralli,j=1,...,n0 — 1, i # j.

Moreover, (6.14) and (7.3) yield that fr(e) = O(1) as ¢ — 0, while from Corollary 6.10 we have
that, for all € € (0,€), H(e) > Ce? for some C, q,& > 0. Therefore the assumptions of Lemma A.2
are fulfilled with

o(e) =eN2H(e), p(e) = fr(e) +o(1), ase —0,

N—-2+4¢q

a:%(N72+ﬂ(1—T))>O, M > 2.

Hence

max Z M jaia; = N2 H(e)(fr(e) + o(1))

i =
as ¢ — 0 and the proof of (7.27) is complete. As already observed, (7.29) is a consequence of
(6.14) and (7.3). O

8. LOWER BOUND ON Ay, — Ay,

In this section we provide a lower bound for the eigenvalue variation A,, — A7 . In order to do
this, we first construct a family of competitors for the Rayleigh quotient of A, ; then, exploiting
the local energy estimates stated in Lemma 8.2, we prove a blow-up result for their scaling, see
Lemma 8.3.

Recalling the definition of ¢; given in (1.14), from (1.13) and (4.6)—(4.7) we easily deduce that
(pio @~ (ra)

rYi

(8.1) —1); in HY(BR) as r — 0, for every R > 0.

From (8.1) and Lemma A.1 we deduce the following estimates for ¢; 0 ®=1 i =1,... no.
Lemma 8.1. There exists C' > 0 such that, for alli € {1,...,ng—1}, forall R > 1 and e € (0, ),
V(i 0@ 1754 ) < C(R)Y,

L2(B})

s, < C(RENH,

||5010q) 22(3;55

o0 82, g | < C(REM,
where, for v > 0, BY and S} are defined in (3.8), and
IV (¢on, © (I)_l)”iZ(B;E) < C~’(R5)N+2~y—27

g < O(Re)™*,

H(pno o®” iZ(BEa)
lln, © (I)_lHiZ(SEE) < C(R&?)N_H_%a

where vy is defined in (1.16).

For every R >k and 0 < e < 3, we define

no (L), ifzeQ\O ,
(82) wng,R,s(x) _ Sainot( ) ' \ Re
w5 (), if x € Og.,

where the notation O . has been introduced in (7.1),

int

Wi, Re () = Wre(®(2))
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and wg . is the unique H'(B},)-function satisfying wg, — (¢n, o ®71) € H? Bf_) and

0,0B} \Ze (
achieving

: 2 ) 1/ p+ -1 1 +
min {vallp(BEE) cw € H (Bh.), w—(pn,0® ) € HO,GB;E\ie (BRE)} )
By classical variational methods, wg . exists and it is the unique solution to

e = (pag 007 € HY o\ (B,

(8.3)
[+ Vwge -V de =0 for every ¢ € H!
Re ’ 0

ops. Pre)

As a consequence of Lemma 8.1 and Lemma A.1 we obtain the following estimates.

Lemma 8.2. Letting C' > 0 be as in Lemma 8.1, we have that, for all R > r and ¢ € (0, ),
IV0r el < OB 12,
hom ey, < C(R)N,
o ey , < ORI+

For every R > £, 0 <& < %, and z € B, we let

wRr.e(ex
(5.4 Upe(a) = 22252
Lemma 8.3. For all R > &, lime0 ||[Ur,c — URHHI(B;) =0, where Ug is as in Lemma 3.35.

Proof. Let R > k. From a change of variables and Lemma 8.2 we have

IVURNZ sy = & 2 2V wp 2 s ) < CRY 2772

and
/+ Uj.dS =e =V /S+ wg . dS < CRN T

SR Re
for all € € (0,71/R), so that the family {Ur:}ce(o,r/r) is bounded in H'(B}) in view of
Lemma A.1.
We deduce that there exist W € Hl(BE) and a sequence €, — 0 such that Ug ., — W weakly
in H'(B}) as n — oo. Letting

(ny © 2~ 1)(e2)

(8.5) Ve(z) = = ,
from (8.1) we have that
(8.6) Vo —»v¢ in HY(B}) as e — 0.

Hence
Upe, — Ve, =W —1 asn — oo in H'(B}).
Since (8.3) yields that Ugp. — V. € H}! oBE\(1S )(BE), the above convergence and Remark 4.1
s r\ZZe

0
imply that
W—ve HéﬂaBE\E(B;g).
We observe that the equation satisfied by Ug . is
(8.7) /B+ VUge-Vodr =0 forevery ¢ € Hé,aB;\(gig)(BE)-
R

Let ¢ € C°(B}UY). From (4.6)—(4.7) we easily deduce that ¢ € CSO(BIJEU(%EIE)) for e sufficiently

small, hence ¢ € Hé 9BI\(LS )(BE) and (8.7) is satisfied for € = ¢,, and large n. Therefore we

El R £ €

can pass to the limit to infer that [+ VW - V¢daz = 0 for every ¢ € CSO(BE UYX) and then,
R

by density, for all ¢ € H 3 (B#). By uniqueness of the solution to (3.10), we conclude that

,OBH\Z
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W = Ug. Since the limit Ug is the same along every subsequence, the Urysohn’s Subsequence
Principle implies that the whole family Up . weakly converges to Ug in H'(B},) as € — 0.

It remains to show the strong H'-convergence. To this aim, we choose in (8.7) ¢ = Ug. — V-
for all € € (0,71 /R). We obtain

/ |VUR,€|2dz:/ VUR@VVEdz%/ VUR~V1/;d:c:/ |VUR|* dz,
B} B}, B} B},

R R
as € — 0, where the convergence above is justified by the fact that Ur ., — Ur weakly in Hl(BIJg)
and Vz — v strongly in Hl(BIJg), and the last equality follows from (3.10). O

From (8.2), (8.4), and (8.5) it follows that, for all R > & fixed,

(8.8) / (Vg e ()] dz = Ay — / Vg ()2 da + / Vult , (2)? da
Q ORe ORe

=y =N [ (A IV VVLo) — A) VU 0) - VU)o

= Any — EN—“%(/; (lVVa(y)I2 - |VUR,8(9)|2) dy + 0(1)),

as € — 0, where the last estimate follows from (5.1) and boundedness of {V.}. and {Ug.}. in
HY(B}) (see Lemma 8.3).
The main goal of this section is to prove the following result.

Proposition 8.4. For all R > k, we have that

(8.9) Aoy = Ang <NTPTT2(gR(e) +0(1)) ase —0,
where
(810) o) = [ (VU = [V dy

R

with Ve and Ug ¢ defined in (8.5) and (8.4) respectively. Furthermore lim._,o gr(e) = gr, where
_ 2 2
(.11) L L

Proof. We use the Min-Max characterization of the eigenvalue A, recalled in (2.1), that we rewrite
as follows

n, 2
v (Zi:ol aiui)HLZ(Q) {

(8.12) A5, = min max 3 Ut tng} © Hi pons (Q)
ainglanéfl 12252 azuZ”LQ(Q) linearly independent

Let us fix R > k. We define

11)1-1315:901- fOI‘&H?::l,Q,...,nofl,
and
no—1
N _ £
Wngy,R,e = Wno,R,e — E C; Piy
i=1
where
'
c; = / Wng,R,e@i dx.
Q
Let
~ _ Wi,R.e =1
wi,R,E"f = , 1= 1,...,Ng.
1w, r.e |l L2(0)

We note that the family {@; rec}iz1,...n, is orthonormal in L?(Q2) and linearly independent in

H&,asz\za Q).
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Lemmas 8.1 and 8.2, (8.2) and (4.7) imply that, for all i € {1,2,...,n9 — 1},
(8.13) ¢ = O0(ENT)  and / Vwng re - Vipidz = O(eNTT1) ase — 0.
Q
Then, from (8.8) we deduce that

(8.14) |Ving,r.e(2)[* da
Q

= Any — EN—2+2W(/ (|vv€(y)|2 _ |VUR,€(y)|2) dy + 0(1)) + 02N+

+
BR

= Ay — N7 ( / (IVV-)? = [VUR()?) dy + 0<1>>
By
as € — 0. Furthermore (8.13) implies that, for alli=1,...,no — 1,

(8.15) Vngy re(x) - Vi pe(x)de = O(ENJF'V*l) as e — 0,
Q

while (8.2), Lemma 8.1, Lemma 8.2, and (8.13) yield
(8.16) / [ty Re(x)|>de =1+ 0(ENT2Y), ase— 0.
Q

Choosing as test functions in (8.12) u; = @; g, we obtain the following estimate

no
\Y E ;Wi R,e
i=1

2 no
dr — A\p, = max = E L; ;a;a;,

A1ye50ng € =1
PRMNTHES R
=117t

Ay = Ang £ max /
Q

a1,...,any ER
2?21 ai‘zzl

where
Vb, -V, dzx .
Hwi,R,e| L2(Q) ||wj,R,a| L2(Q)

From estimates (8.14), (8.15), and (8.16) it follows that
N+2y—2 Nety—1 .
Lfmmo =T 2(gr(e) + o(1)), L‘;no = Lfm,i =0ENTY for all i < ny,

Li;=Xi—Any <0 foralli<mng, Lj;=0 foralli,j<nog, i#j,

as € — 0. We observe that gr(e) = O(1) as ¢ — 0 by (8.6) and Lemma 8.3. Therefore estimate
(8.9) follows from Lemma A.2. Finally the limit lim._,o gr(¢) = ggr is a direct consequence of
(8.10), Lemma 8.3, and (8.6). O

With the purpose of deducing from (8.9) a more precise estimate from above of the eigenvalue
variation A5, — A, and, in particular, of recognizing a sign in the right-hand side of (8.9), we are
now going to compute the limit of the function gg, as R diverges. To this aim we define

(8.17) Xr(r) = / Ur(r6)¥(0)dS, for R>2and1<r <R,
s

(8.18) X(r) = / Ur0)W(0)dS, forr > 1.
s
In addition, hereafter we denote
(8.19) o = 7T0(7’Lo) = / ‘112 ds.
s

We first establish the following preliminary result.
Lemma 8.5. Let m,,(X) be the constant defined in (3.4), let xr be as in (8.17), x as in (8.18)
and o as in (8.19). Then

. 2Mip, (X)
8.20 =1 1) =mp — ——no =)
(8.20) x(1) = lim xr(1) =m0 Nty o
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Proof. The fact that xg(1) = x(1) as R — +o0 is a consequence of Lemma 3.5 and continuity of
the trace map from H'(B}) to L*(S]"). We now claim that

(8.21) r 'x(r) = m asr— 4oo.

To prove (8.21), we first observe that

(8.22) x(r) = mor”? Jr/ wo(r0)¥(6) dsS,
Ch
since U(x) = wo(x)+|z|" ¥(z/ |x|) by (3.6). By considering the Kelvin transform of the restriction
of wy on RY \ Bff and observing that it must vanish at 0 at least with vanishing order 1 (see [12]),
we deduce that
lwo ()| = O(Jz| M) as |z| — 4o0.
Combining the above estimate with (8.22) we obtain claim (8.21), being v > 1.

In view of the definition of x given in (8.18), the equation satisfied by U and the fact that ¥
is a spherical harmonic of degree v, it’s easy to prove that x(r) solves the following differential
equation

(PN (r)') = 0 in [1, +00).
Integration of the the above equation yields that

1— T7N72'y+2
8.23 - =v(1)+C—

(3.23) PN = X)) + O
and for some C' € R. Taking into account (8.21), we obtain the exact value of the constant C, i.e.

C = (N+2y—2)(m — x(1)).

forallr>1

Then (8.23) can be rewritten as

(8.24) x(r) = mor” — (mo — x(1)r=N77*2,
whose derivative is
(8.25) X (r) = moyr? ™t — (N + v — 2)(x(1) — mo)r N7 H!
= (N +2y—2)mor?’ ! — w}((r), for all r > 1.

Then, by computing the derivative in (8.18) as well, and evaluating it at » = 1, we have that
(8.26) / U9, UdS = (N +2y—2)mg — (N +v—2)x(1).
Ch

Thanks to the harmonicity of the function v, the definition of U given in (3.6) and (3.5), one can
see that

/ Vi - VU dz = / Udut) + 2mp, (2).
Bf o

1

On the other hand, being ¢ a y-homogeneous polynomial d,% = vy on Sfr and so

(8.27) - Vi - VU dz = yx(1) + 2mp, (2).

Moreover, by (3.7) and integration by parts we have that
/B+V1/J~VUdz/S+\II<9,,UdS.

1 1

Combining the identity above with (8.27) and (8.26) and rearranging the terms, we finally obtain
(8.20) and complete the proof. O

As a byproduct of the proof of the previous Lemma, we obtain the following result, which is
needed in the Section 10.



EIGENVALUES WITH MOVING MIXED BOUNDARY CONDITIONS 37

Corollary 8.6. For all R > 1 there holds

o 2(N+v-2)

2 y = Nay=2 e (D
(8.28) /S;wa UdS = mpyR + Nty -2 My (2)
as well as

2mn, (X)) N

2 — v no N—v+2

(8.29) x(R) =mR Nt29-9

Proof. By definition (8.18) we have that

Ya,UdS = RN\ (R).

Sk
Plugging (8.25), (8.24) and (8.20) into the previous identity, one can deduce (8.28). On the other
hand (8.29) can be easily proved by plugging (8.20) into (8.24). O

We are now able to compute the limit of gr as R diverges.
Lemma 8.7. Let gr be as in (8.11) and my,,(X) as in (3.4). Then imp oo gr = 2my, (X).
Proof. From (3.9), harmonicity of ¢ and the fact that » = 0 on 8Rf it follows that

(8.30) 9r = / YO, URdS — / YO,1p dS.
Sk Sk

Let us compute the two terms at the right hand side of (8.30). If xg is the function defined in
(8.17), then

(8.31) Yr(R) = / U(0)0,Ur(RO)dS = R-N—+1 / V0, Ur dS.
s s%

On the other hand, one can easily prove that the function yr solves the following ODE
(rN T2 =L =Yy _ (1)) =0 in [1,R],
so that, by integration, there exists C' € R such that
1— T7N72'y+2
rxr(r) = xr(1) + Cm

Since Ug = 1 = RV on S}, then, by (8.17) and (8.19), xg(R) = moR". Therefore the constant
C above is explicitly given by

for all r € [1, R).

o (N 429 = 2)(m — xn(1))
- 1— R—N—2vy+2 :

Hence, in view of (8.31), we can rewrite the first term in (8.30) as

mo(N +v —2) — xp(1)(N + 2y — 2) + mpy RN 272
1 — R—N—-2y+2 :

(8.32) YO, UrdS = RN 1R (R) =

Sk
Concerning the second term in (8.30), from (8.19) and the fact that
Yo = yR* 12 on Sf,
we may easily deduce that

/ YO, dS = mgyRN 2772,
Sk

Plugging the previous identity and (8.32) into (8.30) we obtain that

_ (mo—xr(1))(N + 27y —-2)
9RrR = 1— R—N—-2v+2 )

In view of Lemma 8.5, passing to the limit as R — oo in the previous identity, we draw the
conclusion. O

Combining Proposition 8.4 and Lemma 8.7 we directly obtain the following lower bound for
the eigenvalue variation Ap, — A7, .
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Corollary 8.8. We have that
o )‘no B )‘fz
Combining Proposition 7.3 and Corollary 8.8 we finally obtain the following result.

Corollary 8.9. For any R > K, fized we have that
Ao =25, _ H(E)

—2mn, (%) + o(1) < (fr(e) +0o(1)) ase—0,

— EN-‘,—2'y—2 — 52')/
where fr(e) and H(e) are defined in (7.28) and (7.11) respectively. In particular
g2

(8.33) =0(1) ase—0.

H(e)

9. BLOW-UP ANALYSIS

The analysis performed in the previous sections led, in Corollary 8.9, to an estimate of the
eigenvalue variation in terms of the normalization factor H(e). In order to detect the sharp
asymptotic behaviour of H(g) as ¢ — 0, in the present section we perform a blow-up analysis
for scaled eigenfunctions. The identification of the limit profile of blown-up eigenfunctions will be
possible thanks to the energy estimate in Proposition 9.3 below, which is based on the invertibility
of the Fréchet derivative of the operator T, defined as

(9.1) T: Hy(Q) xR — H Q) xR

(0, ) — T(p, ) = <A<P — g, /Q Vel” dz — Ano) :
where
a-1() (AP — A, v) 1 () 1= /Q (V- Vo — Apv) dz.
From the normalization (1.11) it easily follows that

T(‘pnoa )‘no) = (Oa 0)'

Additionally, as a consequence of the simplicity assumption (1.15) and the Fredholm Alternative,
it is easy to prove the following invertibility result for the Fréchet derivative of T at (pn,, Ang)-
One can see [1, Lemma 7.1] for the proof in a similar framework.

Lemma 9.1. The functional T defined in (9.1) is Fréchet-differentiable at (©ny,An,) and its
Fréchet derivative

AT (g, Ang): HE(Q) x R — H™H(Q) x R,

dT(‘pno; )‘no)((pa)‘) = (—A(p - )‘(pno - )\nu% Q/QV(pno 'VSD d$> )
s invertible.

The following Lemma states that the function &,, gr e, defined in (7.9), is a good approximation
of the limit eigenfunction ¢,, for small values of €.

Lemma 9.2. Let R > K, and let £y re be as in (7.9). Then
€no.Rie = Py N H&(Q), as e — 0.

Proof. We first observe that, by definition,
2
(9'2) /Q'v(gno,R,a - (Pno)|2 do = /Q ’v(@fm - ‘pno)’ dx

[V = e ek [ V(€ = o)
ORe ORe
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In view of Proposition 2.4, estimates (6.22), (7.6) and Lemma 8.1, we can estimate the right hand
side of (9.2), thus obtaining

IV (Eno,re — ©no)|” da < 0(1) + O(eN2HPU=7)) 4 O(N+2772) = o(1) ase — 0.
Q
The proof is thereby complete. O

We now state a crucial energy estimate that quantifies the rate of convergence in Lemma 9.2.

Proposition 9.3. Let R > K.. Then

(0.3 [ V(€ e = o) do = O 2H (o)
Q
and
(9.4) / V(5 — ¢no)|” dz = O(N2H(e)), ase— 0.
Q\Ore

Proof. Let T be as in (9.1). Being T differentiable at (pn,, An,), in view of Lemma 9.2 and
Proposition 2.3 there holds

(95) T(€WO7R,Ea )‘fzo) = dT((pnoa )‘no)(gno,R,a - Spnoa )\flo - )\no)
+ O(H‘Eno,R,a - ‘PnoHH&(Q) + )\fm - )\n(,’)

as € — 0, where
1/2
10 23 0 == (/Q [Vol? dx) for all v € HZ ().
Applying (AT (pngy, Any)) ! to both sides in (9.5) and taking the norms, we obtain that
||€n07R7E - (JDWOHHé(Q) + ‘)‘fm - )‘"0’ S HdT((pnoa )‘no)ilu HT(gno,R,&" flo)HHfl(Q)X]R (1 + 0(1))’

as € — 0, where the norm of d7'(,,, An,) " is intended in the space of linear bounded operators

from H=1(Q) x R to H}(Q) x R and it is a constant independent of R and e. Therefore
(9.6) Hgno,R,s - 90"0”[—]%(9) + ‘/\fm - )‘no|

< C (H_A§"01R15 - )\flognovRvEHHfl(Q) + ‘HE”O,R,‘E| ) (1 + 0(1))a

as ¢ — 0. We first observe that the definition of §,,, r . given in (7.9), (7.3), (6.14), and Proposition
7.3 imply that

2
Hy() ~ Ano

(9.7) 1€n0.7.c

+ [ Aoy = Ano| = OV 2 H(e)),

< ’/ |v£no,R,a|2 dx — )‘flo
Q

as € — 0. Let us now study the other term at the right hand side of (9.6). For any v € HJ () we
have that, by definition of &,, g as in (7.9),

2
Hy() ~ Ano

H*1(9)<7A§no,R,€ - )\Zogno,R,Ev 'U>H(%(Q) = /((Vgng,R,s Vv — /\fm&ng,R,s'U) dz
)

- / (VEM Vo — X, €M v)da — / (Vef, - Vo — A%, 5 v) da.
@Ra @Ra

Now, thanks to the boundedness with respect to e of {5, }, Cauchy-Schwartz inequality and by
virtue of estimates (6.14), (6.15), (7.3), (7.4) and Poincaré inequality, we have that

11 @) (=B te = Nognoies Wiy = O (77 VHE)) [0l ey + O (5 VHE)) loll 2o
= 0 ("7 VHE) vl 3 e

as € — 0 and this readily implies that

N—-2

HiAgnoyRﬁ - Afmg’no,R,E||11171(Q) =0 (5 2 H(E)) y as € — 0.
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Statement (9.3) follows by plugging the previous estimate and (9.7) into (9.6).
Since by (7.9) we have that

2
no,R,e = ¥no 2 dz > ‘v(@fm - ‘pno)‘ dx,
A V(& Pno)|
Q\Ore
estimate (9.4) directly follows from (9.3). O

We are now ready to perform a blow-up analysis for scaled eigenfunctions.

Theorem 9.4 (Blow-up). Let U be as in (3.6) and Y< be as in (7.10). Then, for all R > K.,

1

(9.8) T — U in H(Bf) ase—0
VA,

and

H
(9.9) 52(? — A ase—0,
where

L 2

e

In particular, for all R > K., we have that

5, (c0)
e

(9.11) —U(z) in H'(Bf) ase—0.

Proof. Let €, — 0 as n — oo. Firstly, from (8.33) we deduce that there exists ¢ € R such that
¢ > 0 and, up to a subsequence,
.
(9.12) q(en) := —Sn e oasn— oo
H(en)
Secondly, thanks to Proposition 6.8, we have that, for any R > K,
/ Alepz)VY (z) - VY (z)dz = O(1) and / plenz) | Y5> dz = O(1)
Bj By

as n — oo. Therefore, by a diagonal process there exists U € Hlloc(@) such that, up to a
subsequence,

(9.13) Yo" —~ U weakly in HY(B}), T — U strongly in L*(B}),
and
(9.14) Y - U strongly in LQ(S}"%),

as n — oo and for all R > K. Since, by definition,

[ e rent as = kX
St

Kr

thanks to (5.3) and (9.14) we can pass to the limit and infer that

(9.15) / U?ds = KN
S

which implies that U # 0 in Rf . From the convergence, as ¢ — 0, in the sense of Mosco
of RV \ (9RY \ (1%.)) to the set RV \ (ORY \ ¥), observed in Remark 4.1, we derive that

€

Uec H; BIAS (Bf) for all R > K. In addition, U weakly solves
- N
—AU =0, in R,
(9.16) U=0, ondRY\Z,
9,U =0, onX.
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In particular
(9.17) / \VU?dx :/ Ud,UdS, forall R>K,.
B St

We now aim at proving that

(9.18) T — U strongly in H'(BJ), asn — oo,

for all R > K. For every R > K., we have that, for n sufficiently large, T weakly solves
— div(A(enz) VYo )(2) = €2 Xenp(enx) Yo (2), in By,

n’ ' ng

T (z) =0, on B\ L3,
Alen,2)VYe (z) - v(x) =0, on iign,
En
Yo (z) = Ing oo (snz), on S#.
He,)
For R > K, if we consider the restriction of T¢» to B;g \ BIJE/Q and we oddly reflect it through the

hyperplane {zy = 0}, given the equation this function satisfies, from classical elliptic regularity
theory (see e.g. [18, Theorem 2.3.3.2]) we know that {Y°"}, is bounded in H?*(Bg \ Bg/2).
Therefore, up to a subsequence (still denoted by &), we have that

(9.19) Y = 9,U in L*(SE), asn — occ.
Furthermore, from the equation satisfied by T¢~, (5.1), (5.7), (9.14) and (9.19) we have, as n — oo,
/ VT do = (14 (1) / Alenz) VT () - VI () da
B} Bf,

R

R

= (1+0(1)) <0(1)5i)\f;5 /B+ ITen)? da + /S+ Uad,UdS + 0(1)> .

Therefore, thanks to (9.13) and (9.17), we conclude that

/ Ve |? d:z:—>/ VU |? dz,
Bf Bf

R

which, together with (9.13), proves (9.18).
Now let us fix R > K. From (9.4), we know that there exist Cr > 0 and nr € N such that

2 _
[ 19 = enl do < Crel2H ()
eés\@RE
for all R > R and n > ng. In fact, up to a change of variable, this is equivalent to

/B+\B+ A(enm)V (Yo" — q(en)Vz,) (z) - V(T — q(en) Ve, ) (z) dz < Cr

for all R > R and n > ng, where q(e,,) is defined in (9.12) and V., in (8.5). Passing to the limit
as m — oo in the above estimate and taking into account (9.12), (9.18), (5.1) and (8.6), we obtain
that

/ VU — eVy|?dz < Cg

BEBY,

for all R > R and this readily implies that

(9.20) / VU — V9| dz < oc.
RY

We now claim that ¢ > 0. Indeed, if this were not the case, then [, |VU|? dz < co. Then, since
+

U =0 on dRY \ 3, in view of [15, Lemma 2.3] we would have U € DV2(RY U X); since U weakly
solves (9.16), this would imply that U = 0, thus raising a contradiction.
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From (9.20) and [15, Lemma 2.3] it follows that ¢=1U —4 € DV2(RY UX); hence, by uniqueness

of the limit profile constructed in Lemma 3.1, we conclude that U - 1) = wo. Hence, by the
definition of U in (3.6), we have that

U =cU.

Moreover, in view of (9.15), we conclude that

=7
with A, as in (9.10). Since the limit of T° is independent of the choice of the sequence {e,}n

and of the extracted subsequence, by Uryshon Subsequence Principle we may conclude that the
convergence holds as ¢ — 0. Finally, (9.11) is a direct consequence of (9.8) and (9.9). (]

As a consequence of the Blow-up Theorem 9.4, we are able to prove the strong convergence as
e — 0 of the family {Z%}. defined in (7.10).
Corollary 9.5. For any R > K., there holds

1

VA

Z5 — Zr in H'(Bf) ase—0,

where Zg is defined in Lemma 3.4.

Proof. Let us fix R > K. We observe that Z3 weakly solves
—div(A(ex)VZ§) =0, in Bf,
Z5 =T¢, on SE,
Z% =0, on Bp,

hence the function
W5 = 75 — A-Y2Zz — nr(T2 — AZV20),

with ng being as in (3.1), weakly solves

A -1

— div(A(ex)VIVE) = div (%VZR + A(sx)V(nR (T& _ v ))) in B,
Wg =0, on GBIJE,

ie.

1
\/A‘r B;
. U
- /B; A(E.T)V(T]R(T - \/A_T)) -Veéda for every ¢ € Hy(B}).

Testing the above equation with ¢ = W}, and using (5.1), we then obtain that

U
nR(TE - \/E) HHl(BE)>7

/ A(ex)VW5 - Vedr = — (A(ex) — IN)VZg - Vodx
Bj

/ A(ex)VWE - VWE dz < const HVWI%HLQ(B;) (5 + ‘
Bf;

which implies that
(9.21) W5 — 0 in H)(Bf) ase—0,

thanks to (5.1) and Theorem 9.4. Since Z5, — AP 7, = W5+ nr(Te — A;1/2U), from (9.21)
and Theorem 9.4 we deduce that Z§ — AY?Zp 5 0in HY(B}). O

We conclude this section with the proof of Theorem 1.4.

Proof of Theorem 1.4. It can be easily derived from the change of variable z = ®(y), (9.11) and
Dominated Convergence Theorem. (I
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10. PROOF OF THEOREM 1.2

From Theorem 9.4 and Corollary 9.5 it follows that, letting fr(e) be as in (7.28),

1
(10.1) lim fr(e) = — (/ IVZg|?* dz —/ IVU|? dx)
e—0 A\ Jp+t Bt
R R
for all R > K, in view also of (5.1).
Combining (10.1) with (9.9) and Corollary 8.9, at this point we know that
- Ang = Aoy

. . )\no no . m, 2 2
—2mp,(¥) < lim inf N2 S hlzljélp N2 S /B+ |VZg|” dz — /B+ |VU|” du,
R R

or all R > K. Therefore the proof of Theorem 1.2 amounts to the proof of the following Lemma,
which the rest of the Section is devoted to.

Lemma 10.1. There holds

(10.2) lim / \VZg|? dz—/ IVU|? dz | = —2mp, ().
R—+o00 BE BE

A first step in this direction is given by the following lemma.

Lemma 10.2. There holds

lim (/ |VZg|? dx—/ IVU|? dx—/ w@,,(ZR—U)dS) = 0.
R—+oc0 B; B; SE

Proof. Integration by parts and equations (3.7) and (3.11) imply that

/ V25 dx—/ VU2 dzf/ ¥y (Zn — U)dS
BY BY s

- [ 0= -vyas+ [ ©=v)o(zn-v)as.

Sk
Therefore the conclusion follows if we prove that

(10.3) lim (U — )0, (U — 1) dS = 0,

(10.4) lim [ (U—=¢)8,(Zr —¥)dS =0.

First, we observe that integration by parts and the fact that U — ¢ € DLQ(Rf U X)) is harmonic
in Ri\_f imply that
[ =, - v)as = V(U — )2 dz.
s RN\B},
Since U — ¢ € Dva(Rf U X)), the right hand side vanishes as R — 400, thus implying (10.3).
In order to prove (10.4), we let R > 2 and consider the equation satisfied by Zp — 1 € Hl(BIJg)

in Bf, ie.

—A(Zr —¢) =0, in B},

Zr — 9 =0, on Bf,

Zr—t¢=U—1, onS}.
If we multiply both sides of the above equation by ng(U —1)), where g is as in (3.1), and integrate
by parts, we obtain that

/ (U =), (Zr — ) dS = / V(Zn — ) - V(nr(U - ) de.
st B
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Therefore, from the Cauchy-Schwartz inequality and the Dirichlet principle it follows that

(10,5 | = 00uzr-v)as| < [ 1V )P @

R

Thanks to (3.1), we have that

2
: —Y)Pd =9l — )P dx |
(10.6) /B+ IV(nr(U —))|” do < 32 (/B;\m W ~’0+/B;\B+ V(U = 9)” da

R R/2 R/2

Now, since U — 1) € DV3(RY UX) and since the Hardy inequality holds in this space, we have that

U — o2
/ #dan/ V(U —)]* dz — 0 as R — +oo.
BB, 2] Bi\Bji
Combining this fact with (10.6) and (10.5) we obtain (10.4), thus concluding the proof. O
We are now ready to prove Lemma 10.1.

Proof of Lemma 10.1. By virtue of Lemma 10.2, to prove (10.2) it is enough to show that

(107) REI—Ii-loo S; "/)au(ZR - U) ds = 72mn0(2)'

For R > 2 we let
Tr(r) = / Zr(rd)¥(0)dS for any 0 <r < R.
sf

From (3.11) and the fact that ¥ is a spherical harmonic of degree 7 it easily follows that
(PN T R(1))Y =0 in (0, R).
Integrating this ODE in (r, R) we obtain that

C
r "Tr(r) =R "Tr(R)+ ————— [R_N_27+2 . T_N_QVJFQ]

N +2y—-2
for some constant C' € R and for all r € (0, R). Multiplying both sides by r¥+27=2 leads to
C
N+'y—2r =R N+2w—2r R R—N—2w+2 NA2y—2 11.
" r(7) " a )+N+2772[ " ]

Tanking into account that, by regularity of Zg, lim,_,o T r(r) is finite, thanks to the previous
identity, we may conclude that C' = 0, thus implying that

\7
Lr(r) = (E) Lr(R).
Moreover, since Zr = U on S7;, we have that I'r(R) = x(R) and then
r\7
(10.8) Lr(r) = (5) X(R).

By definition of I'r, we know that

/3 Y0, ZpdS = RNTYITL(R)

R

which, in view of (10.8), becomes
[5 V0, ZrdS = YRNT72x(R).
R

Then, taking into account (8.29), we have that

29mp, (2)

8,7pdS = moyRNT27—2 _ )
[53 YO, Zr dS =m0y N+2y-2



EIGENVALUES WITH MOVING MIXED BOUNDARY CONDITIONS 45

Combining this identity with (8.28) yields

2ma () 2ANt7-2)
N+2y—-2 N+2y-2 ™

V0, (Zr —U)dS = () = —2mp, (%),
Sk

which implies (10.7). The proof is thereby complete. O

11. PROOF OF THEOREM 1.1

In this section, we drop assumptions (1.22)—(1.23) on the set V and prove Theorem 1.1 under
the sole assumption (1.3) on V. Let 0 < ry < Ry < rg be such that B,,, C V C Bg,, (such ry, Ry
exist because V is an open bounded set containing 0). For every w C RY bounded open set, we
denote as A;, (w) the ng-th eigenvalue of problem (1.9) with ¥ given by (ew) N 0Q (i.e. with V
replaced by w). Then, from (2.1) and the fact that eB,,, C €V C €Bp,, it follows that

(11.1) Ao (BRry) S X5, (V) < AL (Bry)-

Since By, and Bp,, satisfy assumptions (1.22) and (1.23), Theorem 1.2 and Lemma 3.2 yield the
following asymptotic expansions for X}, (Bg,,), A5, (B, ):

Xoy (Bry) = Anp — R 21720, eNF272 4 o(eN4272),

Xoy (Bry) = Ang — 1Y 27720,V T2 4 (N H12),
as £ — 0, so that, in view of (11.1),

Mo =3 (Br) _ Do = X V)
N T2y—2 =T Nt2y-2
>\n0 B Afm (BRV>
Nt2y—2

rg“rQ'Y*QCnO + 0(1> _
= RYT72C,, +o(1)

as € — 0. The above chain of inequalities directly proves Theorem 1.1.

APPENDIX A.
We recall from [14, Lemma 4.1] the following Poincaré-type inequality on balls and half-balls.

Lemma A.1. Letr > 0. Then

N -1 1
5 / u?dr < / |Vu|? dz + —/ u*dS  for every u € H'(B}),
B B rJst

r

and
N-1 2 2 1 2 1
5 u”dr < |Vu|*dx + - u*dS  for every uw € H'(By).
B, B, rJoB,

r

From [1] we recall the following result, regarding the maximum of quadratic forms with coeffi-
cients depending on a parameter (see also [14]).

Lemma A.2. For every € > 0 let us consider a quadratic form
Q:: R"™ — R,
no
Qs(zl, ey Zn0> = Z Miyj(gc,')ZiZj,
i,j=1

with real coefficients M; ;(e) such that M; j(e) = M, (e). Let us assume that there exist a > 0,
e o(e) € R with () > 0 and o(e) = O(2?) as € — 0, and € — p(e) € R with u(e) = O(1) as
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e — 0, such that the coefficients M; ;(g) satisfy the following conditions:

Mg ne(€) = a(e)u(e),

for all i <mng M; () = M; <0, ase — 0,

for all i < ng M; n,(e) = O(e*\/o(e)) ase — 0,
for all i,j < ng with i #j M; ; = O(g**) as e — 0,

there exists M € N such that e®TM) = o(c(¢)) as e — 0.

Then
max Q:(z) = o(e)(u(e) +o(1)) ase —0,
z€RY
Izl=1
n 1/2
where [|z]| = [|(z1, ..., 2no) | = (D12 22) 7.
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