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Truss structures are used in power systems to support pipelines and auxiliary equipment like pumps, utility stations,
manifolds, firefighting equipment, and first-aid stations. The collapse of truss structures supporting pipelines
carrying dangerous liquids or gases, such as those used in the petrochemical and chemical industries, can trigger
accident chains. The diagnostics of damages in truss structures are, then, important to avoid catastrophic events that
can cause severe consequences. In this context, we develop a method for fault diagnostics of truss structures. The
method, which exploits the power spectral densities (PSD) derived from measured structural accelerations, is based
on the two steps of feature selection and data classification. The feature selection task, which aims at identifying the
set of features to be used as input of the diagnostic system, is here performed by a wrapper approach based on Multi-
Objective Genetic Algorithms (MOGAS). The selected features are fed to a k-nearest neighbor (KNN) classifier for
the identification of the damaged scenario of the truss structure. The developed fault diagnostic method is validated
on several damage scenarios numerically simulated for an aluminum tower structure. The results show that the
proposed approach is able to correctly recognize the damaged scenario with a limited number of misclassifications.

Keywords: Fault diagnostics, Feature selection, Wrapper approach, Multi-objective Genetic algorithm, k-nearest
neighbours, Truss structure.
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1. Introduction

Truss structures are well-accepted and cost-
effective options for supporting structural loads in
petrochemical and chemical plants, where they
are used to support pipelines carrying dangerous
liquids or gases. Truss structures are made by
assemblies of beams connected at nodes. During
their life they can be exposed to severe loads and
degradation phenomena, which can cause their
collapse and, therefore, trigger dangerous
accident chains that can potentially cause
catastrophic ~ consequences. Hence, it is
fundamental to detect the onset of abnormal
conditions and diagnose the responsible beams
(Fang, Luo, and Tang 2005).

The problem of anomaly detection in truss
structures has been recently addressed in (Milani
et al. 2021) by developing a method based on
Principal Component Analysis (PCA) for signal
reconstruction. In the present work, we consider
the fault diagnostic problem of identifying which
beam has caused the anomaly. The problem is
addressed by performing the two sequential steps
of feature selection and classification.

The objective of feature selection is to identify
the quantities to be used as input to the model the
identification of the defective beam. To this aim,
acceleration signals measured by a set of sensors
installed on the structure are processed to extract,
in the frequency domain, the corresponding
power spectral densities (PSDs) and the related
features, namely frequency and intensity of peaks,
corresponding to the estimated natural
frequencies of the truss structure. Given the large
number of features extracted in this way, a phase
of selecting the subset of features which allows
developing the most accurate classification model
is required (Guha et al. 2020).

Feature selection methods are typically
classified as wrapper, filter and embedded
(Chandrashekar and Sahin 2014). Wrapper
methods select an optimal subset of features using
the classification model itself. Embedded
methods perform feature selection as part of the
training of the classification model. Filter
methods rank the features according to their
statistical association with the response.

This work develops a wrapper method given
its superior performance in terms of achieved
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classification accuracy with respect to filter and
embedded methods, despite the large
computational effort that it typically requires.

Assuming the availability of »n features, an
exhaustive  search among all  possible
2™ combinations requires to train and test a
dedicated classifier for each feature subset for
performance evaluation, which is unfeasible
(Amaldi and Kann 1998). Commonly used
suboptimal searching strategies include forward
selection, which starts with a small number of
features and adds features until the classification
model performance is decreased, and backward
selection, which starts with all features and
removes features until the performance is
decreased (Kohavi and John 1997). Since the
order of parameter entry (or deletion) may affect
the final selection in sequential search strategies,
in this work we develop an approach based on
Genetic Algorithms (GAs) whose effectiveness
for feature selection was demonstrated in (Zio,
Baraldi, and Pedroni 2006). GAs main advantages
are: 1) relatively fast convergence to near-global
optimum, ii) superior global searching capability
in complicated search spaces, and iii)
applicability when gradient information is not
achievable, as in wrapper feature selection
problems.

With respect to the second step, i.e. the
identification of the beam responsible of the
anomaly, we resort to the k-nearest neighbor
(KNN) classification algorithm. The choice is
justified by the fact that the feature selection
algorithm requires the use of a classification
algorithm characterized by few parameters to be
tuned and fast computational times. In this
context, possible choices are Support Vector
Machines (SVM), Artificial Neural Networks
(ANN), Decision Trees (DT) and k-Nearest
Neighbour (KNN) classifiers. SVMs have been
shown to produce satisfactory performance when
applied to datasets characterized by many classes
(Gryllias and Antoniadis 2012), even when few
labelled examples are available for training. On
the other side, SVMs require the tuning of the
kernel, which can be computationally intensive.
ANNSs dealing with nonlinear and multi-class
classification problems, but they typically require
a large amount of data for the ANN training (Li
and Ma 1997) and also requires settings the ANN
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architecture and hyperparameters. Decision Trees
(DTs) are simple to understand and to interpret
and can handle multi-class classification
problems (Parvin, MirnabiBaboli, and Alinejad-
Rokny 2015). However, DT learners can create
over-complex trees that do not generalize the data
well, i.e., they suffer from overfitting and can be
unstable with small variations in the data resulting
in the generalization of completely different trees.
The KNN algorithm is intrinsically non-linear and
only requires the setting of: 1) a single scalar
parameter, i.e. the number k of near neighbours to
be considered for the classification, and 2) the
metric used to quantify the distance between
patterns in the feature space. KNN classifiers
have been employed in this work for their
simplicity and low computational requirements
(Baraldi et al. 2016).

The proposed method is validated on a dataset
containing the features extracted from structures
with damages in different beams. At present
stage, the data have been simulated by using a
Finite Element (FE) code properly developed to
this aim.

The rest of the paper is organized as follows.
Section 2 describes the considered case study.
The applied methodology is detailed in Section 3,
followed by the analysis of the obtained results in
Section 4. Finally, Section 5 contains the
conclusions and some suggestions for future
works.

2. Case study

We consider an aluminum truss structure
assembled in the LISG Laboratory of the
University of Bologna. It is made of B=70 beams
positioned in 5 cubic blocks of 1x1x1 m3. A
schematic view of the structure is shown in Fig.
1. The structure is part of the portfolio of test
cases of the “Manutenzione intelligente (smart
maintenance) di impianti industriali e opere civili
mediante tecnologie di monitoraggio 4.0 ¢
approcci  prognostici” (MAC4PRO) project
supported by “Instituto nazionale Assicurazione
Infortuni sul Lavoro” (INAIL) within BRIC2018.
The beams of the structure are characterized by a
hollow circular cross-section with an internal
diameter of d; =0.036 m and an external
diameter of d, = 0.042 m, for an overall area of
A =3.67 X 10* m?2. Quasi-spherical nodes are
used at the end sections of the beams to provide
moment-free connections. The truss structure is

constrained at the four nodes placed at its base by
means of elastic pads (elastic supports).

A FE-based truss code has been developed
within the MAC4PRO project to simulate the
dynamic behavior of the structure. The i-th beam,
i =1,..,B, of the structure is modeled as a linear
member with an equivalent Young’s Modulus E;,
length L;, cross-section A4; = A, and density p; =
p. All diagonal beams are L; = 1.42m long,
while the length of horizontal and vertical beams
isL=1m.

Fig. 1. Schematic view of the truss structure

The Young’s Modulus has been estimated by
laboratory tests on selected truss elements while
considering the stiffness contribution of the
nodes. Accordingly, the Young’s Modulus is set
equal to E; =51.94 GPa, for the diagonal
beams, and to E,, = 48.7 GPa for the vertical
and horizontal beams. Each beam element is
modeled via stiffness matrix with no
contributions for ends rotation (bar elements).
The material density is equal to p=
3130 kg/m3, where the mass contribution of the
spherical nodes is also considered in the density
calculation. A lumped mass matrix is used for
modelling the mass contribution of each beam.

Time-transient analysis are performed to
simulate the response of the truss structure under
ambient vibrations. To this aim, a gaussian white
noise input is applied at the base of the truss. The
transient simulations are performed for a duration
of t=300 s, with a sampling frequency fs=1024 Hz
using the Newmark time integration scheme.
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Acceleration time-histories are computed at each
free node of the truss along the three spatial
directions (i.e., x, y and z).

The recorded accelerations are then processed to
compute the PSD. To this aim, the data are down-
sampled at a sampling frequency fs=256 Hz and,
then, the Welch method with a window length of
20 s and an overlap of 50% is adopted to estimate
the PSDs with reduced noise.

The developed procedure allows computing the
PSDs of the acceleration signals for each
considered cases, either defective or healthy.

In particular, a dataset accounting for
variations in the structural mechanical properties
due to environmental and operational conditions
(e.g., ambient temperature), is simulated by
sampling the following parameters:

1) The elastic supports stiffness along the z
direction is taken as Eg, which is assumed to
be uniformly distributed in [k, —
0.05ky; kg + 0.05k,].

2) The Young modulus E; of each beam, which
is assumed to be normally distributed
E;~N(E;, 0.05E;).

For the simulation of damaged structures, it is
assumed that the damage will lead to a reduction
in the stiffness parameter E;A; of the defective
beam. In this work, we consider scenarios with a
single damaged beam at a time in each truss
structure. The damage index of beam i is:

Ei(d)A;(d)
E;(MWA;(h)’
where h and d represent a healthy and damaged
structure, respectively. In this structures, damages
to 10 different defective beams and with DI; =
40% are simulated. The simulation process is
repeated 100 times to consider different
operational conditions for each simulated
damaged structure. The overall dataset X, =
{xgd),d =1,..,D} contains D = 1000
simulations of damaged structures of 10 different
classes, where each class corresponds to a
different defective beam. For each simulation, the
PSDs of the acceleration signals in directions x, y
and z in correspondence of 24 nodes are obtained.
Fig. 2 shows, as example, the PSD of the
simulated acceleration signal along direction x on
a node of the first floor of the structure.

DI =1-— i=1,.,B (1)
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Fig. 2. Example of PSD of the simulated acceleration
signal in direction x on a node at the first floor

3. Problem statement

The objective of the present work is to develop
a method to identify which is the defective beam
in a truss structure by using accelerometers’
records.

The problem is addressed by performing the
two sequential steps of feature selection and
classification. In this work, feature selection
considers the possible locations of the
accelerometers and the possible features that can
be extracted from the PSDs. Regarding the
location, we assume that accelerometers
measuring vibrations along the x,y, and z axes
can be installed in correspondence of the nodes.
Regarding the feature extraction, the idea is based
on the fact that frequency and intensity of the
highest peaks of the PSD contain information on
structural response status, healthy or damaged,
since they can evidence variation in the natural
frequencies of the structure. Considering the
simulated data, 174 significant peaks have been
identified in the 64 PSDs collected at the 24 nodes
along the x, y and z axes (note that the nodes at the
base are restrained along the x and y directions but
can move along the z direction, being supported
by the elastic spring of stiffness k). Therefore,
since the intensity and frequency features are
extracted from each peak, the total number of
features is 174 X 2 = 348.

4. Method

The method developed in this work to address
the problem formulated in Section 3 is based on
the two sequential steps of feature selection and
classification.

Section 4.1 will describe the developed wrapper
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feature selection method, whereas Section 4.2
will illustrate the k-Nearest Neighbor algorithm
used for the classification.

4.1. Wrapper feature selection

A wrapper feature selector is based on a search
engine, which builds candidate groups of features,
whose performances are evaluated by using of
properly defined fitness functions. A solution is
represented by the Boolean vector x € [0, 1]348
whose i-th component, x;, is equal to 1 if the i-th
feature belongs to the solution and to 0 if it does
not belong to the solution. Therefore, the lengths
of vector x is equal to 348, i.e. the total number of
features extracted from the PSDs.

In this work, we consider as objectives the
minimization of the following three fitness
functions:

F,(x) = Misclassification error
F,(x) = Number of selected sensors
F3(x) = Computational time

Notice that the computation of the fitness

functions F; and F; requires the development of
the classifier fed by the features selected by x and
its application to a set of test data, which can be
time and resources consuming.
Since we deal with a Multi-Objective
Optimization (MOO) problem, the final objective
is the identification of the Pareto Optimal Set,
P* = {x € F(x) is Pareto — optimal}, i.c., the
set of optimal solutions. A vector of decision
variable x,,, € F is Pareto optimal if it is non-
dominated with respect to F, i.e., it does not exist
another solution x' € F such that F(x')
dominates F (x*):

Va € {1,2}, F,(x") < E,(x*),and
3@ € {1,2}, such that Fz(x') < Fz(x*) (2)

The wrapper approach developed in this work
uses a NSGA-II Multi Objective Genetic
Algorithm (MOGA), which is based on the main
steps of population initiation, crossover,
mutation, and selection. The reader interested in
more details on NSGA-II can refer to (Deb et al.
(2002); Singh et al. (2017)). The chromosomes
are encoded by the binary vectors, x, of the
possible solutions. Table 1 reports the parameters
used for the NSGA-II search.

Table 1. Parameters of the NSGA-II

Parameter Value

Max generation 100
Initial population 100
Mutation rate 0.7

Crossover rate 0.4

4.2. Classification

The classification algorithm used in this work
is the k-Nearest Neighbor. According to this
algorithm, the classification of a test pattern is
based on the computation of its distance with all
the patterns of the training set and the
identification of the & closest patterns. Then, the
class assigned to the test pattern is the class with
the largest number of representatives among those
of its k neighbours (Fix and Hodges 1989). The
only parameter of the algorithm is the number, £,
of nearest neighbours to be considered. In
(Hellman 1970) the empirical rule of setting k =
VN, where N is the number of training patterns, is
suggested. Since the number of patterns available
in this work is 1000, £ has been set equal to 32.
With respect to the metric for computing the
distance among the patterns, the Euclidean
distance has been used.

5. Results

The data of the simulated D = 1000
structures Xp = {x;,d), d =1,..,D} are randomly
divided into a training and a validation set, made
by 75% and 25% of the patterns, respectively. The
training set is used for training the KNN
classifiers and for feature selection, whereas the
validation set is used for the evaluation of the
performance of the developed method on those
data not used for model development. Regarding
the feature selection, which requires itself the
training and test of classifiers, the training set is
split into 5 folds, where 4 of them are used for
training and one for testing the selected features.
Note that, the process is repeated 5 times using
different test sets for a robust evaluation of the
MOGA fitness function.
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Fig. 3. Evolution during the MOGA search of the misclassification rate and of the number
of sensors of the Pareto optimal set solution which has the smallest misclassified rate

5.1. Feature selection results

Fig. 3 shows the evolution during the MOGA
search of the misclassification rate and of the
number of sensors of the Pareto optimal set
solution which has the smallest misclassified rate.
We remark that: 1) the misclassification rate
significantly reduces from 4.06% in generation 1
to 0.11% in generation 100. At the same time, the
number of sensors needed to measure the features
used for the classification is reduced from 48 in
generation 1 to 12 in generation 100. 2) The
solution is not changing after generation 80,
which indicates the algorithm convergence.

Fig. 4 shows the obtained Pareto optimal set.
Note that the two objectives related to the
computational time and the number of sensors
tend to be correlated, since a solution with a large
number of sensors tend to have several features

O Mintror

Computational @ selcted by TOPSIs method

Time [s]

o

Min Sensorvith the lasterror

Number of sensors

Fig. 4. Projection of the final Pareto optimal set on
to the subspaces defined by the fitness function
“Number of sensors” and “Computational time”

and, therefore, requires long computational times.
On the contrary in Fig. 5, the objectives of
reducing misclassification rate and number of
sensors tend to be conflictual. Since, as expected,
solutions based on less features tend to provide
less information for the classification. Finally, the
range of values of the computational time in the
Pareto optimal set is relatively small and very
limited, i.e., between 0.009 s and 0.0105 s, which
indicates that the corresponding objective is
satisfactorily met by all solutions.

Once the Pareto optimal set is obtained, the
solution to be used by the diagnostic system
should be selected according to the decision
maker desired trade-off among the objectives. In
this regards, Table 2 reports:

1. the solution of the Pareto optimal set
providing the smallest misclassification rate;
Misclassification
rate %)
‘MmSensarw\tmhe\emenm
Q@ 1

 Slced by TOPS methodithequlimportances
. Seleted by TOPSIS methodith iferntimportances

! Minfror

99,

g

Number of sensors
Fig. 5. Projection of the final Pareto optimal set on to
the subspaces defined by the fitness function
“Number of sensors” and “Misclassification rate”
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2. the solution of the Pareto optimal set which
requires to install the smallest number of
Sensors;

3. the solution of the Pareto optimal set selected
by the TOPSIS method (Hwang and Yoon
1981) using as importance weights of the three
objectives wr, = 0.6,wp, = 0.3, and wg, =
0.1. This choice allows prioritizing
classification accuracy and number of sensors
to install and reducing the importance of the
computational time that is acceptable for all
solutions.

Fig. 6. Location of the sensors selected by the
TOPSIS solution (green circles) and beams that are
damaged in the 10 classes of faults (red circles)

Table 2. Solutions of the Pareto optimal set

Method # Sensors Table 3 reports the features selected by the
TOPSIS solution and Fig. 6 shows the locations
of the selected sensors. Notice that 4 out of 6 of
the selected sensors are in the first two blocks of
the structure, close to 8 of the 10 beams that are

damaged by the considered fault classes.

Computational
time s
Misclassification
error %

Min sensor 5 0.0093
TOPSIS 8 0.0097
Min error 12 0.0105 0.24

=g
> K

5.2. Classification results
The KNN classifier developed using the

Table 3. Details of the TOPSIS solution features of the TOPSIS solution is used to classify
Intensity or/and o the 250 structures of the validation set. Fig. 7
Sensor  Node Frequa?ncy Direction shows the confusion matrix and reports the
1 1 Iﬂteﬂs}t}’ z obtained misclassification rates for each class of
5 5 ImenSW X the faults. Note that all structures with defective
6 5 Intensity y beams A5, A6, Al3, Al7, A22 and A5 are
11 7 Intensity X correctly classified.
- ; IFnrt;nlfétg’c;nd , The few misclassifications include: 1)
damages of beams A57 and A67, which are both
16 3 Intensity z diagonal beams in the second block; and 2)
42 17 Frequency y damages of beams A67 and A6. Since A67 is

45 18 Intensity y commonly mislabeled in both pairs, the use of a

further sensor located near to beam A67 is
expected to reduce the misclassifications.

Direction Block Beam A5 A6 Al3 Al7 AlB A22 AS1 AS7 ABE AGT Total number of samples Accuracy(36)

Vertical 145 [ 20 20 100
Vertical 146 233 23 100
Vertical 4 A13 19.0 19 100
2 Vertical 1417 19| 19 100
2 vertical 2 18 | 208 02 30 99
S Vertical 1422 | | T3 1 36 100
2 Diagonal 1451 28 28 100
! N . T
Diagonal 2 AS7 204 (o] 31 a7
: b =
Diagonal 1466 | | 02 238 24 a8
Disgonal 2 A67 (1 200 30 a7

Predicted Classes

Fig. 7. Confusion mairix of the TOPSIS solution
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6. Conclusion

We have developed a fault diagnostic method
for the identification of the damaged beams in
truss structures. The number of sensors to be
installed and their locations have been optimized
by using a wrapper feature selection approach,
where a MOGA has been used as search engine
and the k-Nearest Neighbor algorithm as
classifier. The method has been applied to data
generated using a FE code properly developed to
this aim. The results show that a satisfactory
classification accuracy is obtained by a diagnostic
system which requires the installation of a limited
number  of  sensors. Specifically, a
misclassification rate of 0.8% is obtained by a k-
Nearest Neighbor classifier fed by 9 features of
intensity and frequency of peaks extracted from
the PSDs of acceleration signals measured by 8
Sensors.
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