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Abstract

As detailed chemical mechanisms are becoming viable for large scale simu-

lations, knowledge and control of the uncertainty correlated to the kinetic

parameters are becoming crucial to ensure accurate numerical predictions.

A flexible toolbox for the optimization of chemical kinetics has therefore

been developed in this work. The toolbox is able to use different optimiza-

tion methodologies, as well as it can handle a large amount of uncertain

parameters simultaneously. It can also handle experimental targets from

different sources: Batch reactors, Plug Flow Reactors, Perfectly Stirred Re-

actors, Rapid Compression Machines and Laminar Flame Speeds. This work

presents the different features of this toolbox together with five different test

cases which exemplifies these features.
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Operating system: Linux/UNIX

Nature of problem: Optimization of uncertain kinetic parameters with respect

to experimental data.

Solution method: Using the optimization capabilities of DAKOTA [1], and solving

reacting systems with OpenSMOKE++ [2], OptiSMOKE++ determines the opti-

mal combination of specified kinetic parameters, within their uncertainty, and with

respect to the experimental data.
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1. Introduction

The steady increase in computational power enables us to describe the be-

havior of complex combustion processes with more detail in Computational

Fluid Dynamics (CFD) simulations, thus allowing us to more accurately

predict how changes to the system would affect critical parameters, such as

emissions, maximum temperature, efficiency, etc. This is crucial in the devel-

opment of novel technologies, as a more traditional trial-and-error approach

for many cases quickly becomes unfeasible, due to both time consumption and

costs. The complexity of a combustion simulation can be expressed in many

ways, i.e. geometric, flow modeling, chemical mechanism complexity, etc.

Only in recent years it became feasible to account for more detailed chemical

mechanisms in large scale simulations. This allows to improve the prediction

of intermediates and final products of the combustion process significantly, as

well as to enhance our fundamental understanding of the complex chemical

process occurring in combustion.

A chemical kinetic mechanism is built up from species, thermodynamic

and transport data and elementary reactions [1]. Each chemical reaction

consists of rate constants (k), which in turn can be expressed as a func-

tion of temperature with some parameters (the pre-exponential factor A,

the temperature exponent β, and the activation energy Ea) according to the

modified Arrhenius’ equation (k = AT βexp(−Ea/RT ), where T is the tem-

perature and R is the ideal gas constant). The definition of these parameters

for each reaction in a kinetic mechanism is not straightforward, as they can

be based on experimental data and theoretical calculations carried out at

different levels of theory [2]. Thus, there is an inherent uncertainty for each
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of these parameters, and as the size of the mechanism grows, also the number

of uncertain parameters increases.

In order to cope with the large amount of uncertain parameters, Uncer-

tainty Quantification (UQ) and Optimization have been increasingly adopted

in the process of chemical mechanism development [3]. The widely used

GRI mechanisms [4–6] are based on the Bound-To-Bound Data-Collaboration

(B2B-DC) [7–10] optimization methodology, where the optimal combination

of the kinetic parameters was determined minimizing the distance between

measurements and predictions, using surrogate modelling for the selected

quantities of interest (ignition delay times, species profiles, and flame speed

measurements). Their performance for conventional combustion of natural

gas, together with the relatively small size, proved to be an effective com-

bination. In the development of the GRI mechanisms [4–6], especially the

pre-exponential factors for the most impactful reactions were optimized.

Wang and co-workers later developed the Method of Uncertainty Mini-

mization using Polynomial Chaos Expansion (MUM-PCE) [11], which again

utilizes surrogate modelling for representing the model responses. Then by

finding the least-squares point within the parameter space, they determined

the optimal mechanism. They used this approach for several different fuels

[12–14], and also to develop the Foundational Fuel Chemistry Model (FFCM)

[15] for small hydrocarbon fuels. However, in these works [12–16] they only

considered the pre-exponential factors and some third body efficiencies as

active parameters. A species is considered as a third body if it stays in-

ert though the reaction process, and only transfers/removes energy from the

process. Only in a recent study [17], they applied the MUM-PCE approach
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considering the joint probability distribution of the pre-exponential factors

and the activation energies of some reactions.

Cai and Pitsch [18, 19] also used the MUM-PCE [11] methodology, but for

the optimization of rate rules instead of specific reactions. Later, they also

applied a Bayesian approach for the optimization of rate rules for alkanes

[20]. Rate rules are used to derive kinetic parameters for reactions that

behave in a similar way. As the determination of one rate rule directly inflicts

changes to many reactions, it is a very efficient approach for developing

kinetic mechanisms for fuels with larger molecules. Recently, they combined

this with the optimization of thermochemical properties in the works of Vom

Lehn et al. [21–23], showing a large impact of the thermochemical parameters

at especially intermediate temperatures. However, in all these works [18–23],

only the pre-exponential factors for the rate rules were considered for the

optimization.

The works of Turànyi and co-workers [24–26] have also been focused on

the optimization of kinetic mechanisms, but, differently from [4–10, 12–20],

they included all three Arrhenius parameters in the optimization, i.e. A, β

and Ea, as well as third body collision efficiencies. The approach used in

[24–26] is based on using both direct and indirect experimental data, where

direct experimental values refers to experimental data of the rate constant

k, while the indirect targets consists of concentration profiles, ignition delay

times, and laminar burning velocities [24–26]. For some of these targets,

they also used response surfaces to predict the effect of changing the kinetic

parameters.

The approach based on the use of response surfaces can be highly efficient
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for mechanism optimization, but, as mentioned by Sikalo et al. [27], the na-

ture of the objective function in mechanism optimization can be highly com-

plex, since it consists of many local minima and maxima. Therefore, Sikalo

et al. [27] suggest to use the Genetic Algorithm (GA) global optimization

approach, which has been proven to perform very well in these conditions

[27–29]. Indeed, Elliott and co-workers have applied GAs for optimizing

kinetic mechanism for many different fuels [29–32].

The use of heuristic optimization strategies for solving the problem at

hand, i.e. kinetic mechanism optimization, presents an ideal application,

and the present work focuses on the development of a flexible toolbox for the

optimization of chemical mechanisms. This toolbox, named OptiSMOKE++,

enables the user to optimize mechanisms performances handling numerous

kinetic parameters, under uncertainty. The optimization targets can be ex-

periments from many ideal reactors, considering species concentrations, Ig-

nition Delay Times (IDT) or Laminar Flame Speeds (LFS). The toolbox

relies on the OpenSMOKE++ [33] framework for the numerical simulations of

combustion processes, while the DAKOTA toolkit [34] is used for the optimiza-

tion. DAKOTA contains many different optimization algorithms, and the user

is free to choose any of them. These and more features of OptiSMOKE++ are

demonstrated in this work.

2. Code description

The following section describes the specific functionalities of the OptiSMOKE++

toolbox, together with some details about the two different codes OpenSMOKE++

and DAKOTA. An overall view of the OptiSMOKE++ workflow is depicted in Fig-
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ure 1. The code starts by reading the specified input file, then changes the

parameters in the kinetic scheme. The code then double-checks if the rate

parameters are within the uncertainty bounds (see Section 2.5), using a non-

linear constraint, i.e. kmin ≤ k ≤ kmax (provided by the literature). If yes,

OpenSMOKE++ is used for running the simulations, and the results are used to

calculate the objective function value. If at least one of the rate parameters

are outside of the uncertainty bounds, a penalty function is applied to that

evaluation and the simulations are not carried out. This allows for quite a

significant computational speed-up, as unnecessary evaluations are avoided.

A more thorough explanation regarding the uncertainty bounds can be found

in Section 2.5, while the penalty function is discussed further in Section 2.6.

Based on the objective function value, DAKOTA suggests a new set of pa-

rameter values and the process is repeated until at least one of the stop-

ping criteria has been reached. These stopping criteria can depend on the

optimization methodology used, but typical universal ones are: maximum

number of evaluations, maximum number of iterations, solution target, and

convergence criteria. All the stopping criteria are explained in further detail

in the Reference Manual of DAKOTA [35].

2.1. OpenSMOKE++

The OpenSMOKE++ framework [33] was developed specifically for solving

reacting systems with thousands of species and reactions. It consists of a

series of solvers for 0D reactors (Batch Reactors, Plug Flow Reactors (PFR),

Perfectly Stirred Reactors (PSR), Shock-Tube (ST) Reactors, Rapid Com-

pression Machines (RCM)) and 1D laminar premixed and counterflow diffu-

sion flames. The code was written exclusively in object-oriented C++, which
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Figure 1: Schematic workflow of OptiSMOKE++.

facilitated the coupling with DAKOTA, also written in C++. OpenSMOKE++ uti-

lizes advanced numerical techniques to reduce the computational cost of the
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simulation, without sacrificing accuracy or robustness. A more extensive

description of the code and its utilities can be found in [33].

2.2. DAKOTA

DAKOTA (Design Analysis Kit for Optimization and Terascale Applica-

tions) is a framework developed at and distributed by Sandia National Lab-

oratories [36]. It is a toolkit used for iterative parameter evaluations, such as

optimization, sensitivity analysis, uncertainty quantification, etc. The toolkit

consists of many different optimization methodologies which can be divided

into the following sub-categories: Gradient-Based and Derivative-Free Local

Methods and Gradient-Based and Derivative-Free Global Methods.

As DAKOTA was intended to be used together with a separate application,

it considers the simulation code as a ”black box”. There exists many cases in

literature where DAKOTA has been coupled with different simulation software

for this purpose [37–39]. OptiSMOKE++ was written in C++ which allows for

a direct and fast communication between DAKOTA and OpenSMOKE++.

2.2.1. Optimization algorithms

The adoption of any optimization methodology in DAKOTA is possible with

OptiSMOKE++. The DAKOTA User’s Manual [34] provides extensive information

regarding the available algorithms. However, due to the problem at hand,

i.e. kinetic mechanism optimization, some optimization algorithms are less

suited than others. As will be better explained in Section 3, the number of

uncertain parameters can range between 7-40 for the simple test cases pre-

sented in this work. As many of these uncertain parameters introduce strong

non-linearities, the objective function can show a highly irregular behavior.
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Due to this, Elliott et al. [29] mentioned that gradient based methodolo-

gies are not recommended in this context. For this reason, in this work we

adopted four different heuristic derivative-free optimization methodologies.

These are the: coliny direct (DIRECT), mesh adaptive search (MADS),

coliny solis wets (SW) and coliny pattern search (PS). Detailed in-

formation about all these methods can be found in the Reference Manual of

DAKOTA [35], but a brief description of their working principles is given in the

following.

The PS and MADS methods are evolved versions of the most naive ap-

proach for optimisation, i.e. the local exhaustive search (ES). Once the con-

strained parameters hyperspace Πx ⊆ Rm is defined, the method explores all

the possible combinations of the m parameters x. Finally, having examined

the entire continuous objective function f(x) : Rm 7→ R space, it finds the

best fitting combination, i.e. argminx{f(x) : x ∈ Πx}. Indeed, this method

is not feasible in real applications as it would require infinite computational

time. For this reason, more advanced ways of exploring sub-sets of Πx are

adopted. One of them is the Grid Search (GS), which is a global optimi-

sation method, as it discretizes Πx by defining a m-dimensional grid, made

with p ∈ N equidistant values inside each parameter range. Yet, the number

of evaluations E of the objective function f grows exponentially with the

number of active variables, i.e. E = pm, making GS extremely inefficient.

The Coordinate Search (CS), partially overcomes the problems related to

previously analysed methods. In particular, once a step size parameter δk

is defined, each algorithm iteration k evaluates 2m parameters combinations

defined as P k := {xk ± δk}, where P k is called the poll set. If one element
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belonging to the poll set P k is an optimizer of xk, then the incumbent solu-

tion xk+1, is updated, otherwise xk+1 = xk and δk+1 = δk/2. The CS method

seeks for an actual local optimizer, meaning it is strongly dependent on the

initial guess. For this reason, a Latin Hypercube Sampling (LHS) is initially

performed in order to choose a good starting point.

The CS method is the precursor of PS and MADS. In fact, they share

the working principle of CS with two major differences:

• the polling set is not just constituted by positive and negative coordi-

nate directions;

• when a descent direction is identified the algorithms extend the radius

of the search in that direction, i.e. δk can both increase and decrease.

In the PS algorithm, once a grid is initialised in the neighbourhood of

the incumbent solution, a polling set is built, with random directions and

distances, and evaluated. A mesh size adjustment parameter is introduced,

which decreases the step size parameter δ if a mesh optimizer is not found.

On the contrary, when a better point xk is found, δ is increased to help the

algorithm recovering from a bad initial choice of δ0. In MADS, the only

update with respect to PS concerns the mesh. In particular, the frame size

parameter ∆k substitutes the step size parameter in the poll step. This

parameter defines a frame of side ∆k around the incumbent solution. In

case of M = 2, the poll set would have 8 different directions. The mesh

size parameter δk ≤ ∆k is used to create a sub-grid internal to the frame to

increase the number of possible polling directions. Usually, the ratio δk/∆k

is initialized and kept constant, so that the frame size is the parameter to be
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decreased/increased in case of unsuccessful/successful evaluations. It has to

be pointed out that MADS converge to PS whether δk/∆k = 1 is adopted.

The SW method is a local non-gradient based approach, which uses a

multivariate normal distribution of the parameters to aid in the randomized

search approach. A radius ρi around the incumbent solution xk is defined,

which determines the search space Sx ⊆ Πx. If a better solution is found, the

radius is increased, and the new search space is determined centred at the

new optimal solution. If no better solution is found within this space after a

specific number of evaluations, ρi+1 is reduced, restricting the search space.

The counter i = 0, 1, . . . , n keeps track on the number of radius contractions

before convergence. The search ends if ρ is smaller than a specified threshold.

The DIRECT methodology is a global non-gradient based optimizer,

which starts with a random set of samples and uses these to divide the

parameter space Πx into promising and non-promising search regions. In

the promising regions it utilizes fast local optimization approaches, i.e. only

changing one parameter at a time, while for the non-promising regions it

uses slower global optimization strategies, changing several parameters si-

multaneously. The regions are then further divided into sub-regions, which

are separated into promising and non-promising regions again, and the pro-

cedure repeats itself until a stopping criteria has been reached. This balance

between local and global search methods has been highly efficient for global

optimization problems.

The combination of the different features of these algorithms can even be

used in combination, as one methodology can be used to find a good starting

point for a subsequent optimization with another methodology. This is in
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fact what the author of the DIRECT methodology suggest [40]: first find a

region in the parameter space with good potential, and then refine the search

with a local optimization method.

2.3. Optimization targets

Finding the optimal combination of a set of uncertain kinetic parameters

with respect to some experimental targets requires an optimization process

typically involving several thousand evaluations. Even if response surface

techniques are used, several hundred evaluations are needed initially for cre-

ating the response surface. It is therefore important that the numerical

simulations are fast and robust, to ensure that the optimization reaches con-

vergence within a reasonable time frame. In the field of kinetic mechanism

optimization, it is therefore common to use experimental data from so-called

0D reactors or 1D flames as targets. The present work focuses on the use

of the following solvers: Batch Reactor, Plug Flow Reactor (PFR), Perfectly

Stirred Reactor (PSR), Rapid Compression Machine (RCM), Shock-Tube

(ST) and Laminar Flame Speed (LFS). Experimental data from any of these

solver types can therefore be used as targets in the optimization.

2.4. Objective function

In any optimization problem, the optimal solution is always determined

based on the objective function (Obj). This is a measure which determines

how close the current evaluation (Y sim) is to the experimental targets (Y exp).

There exists many different ways to calculate the objective function in an

optimization problem, but arguably one of the most common is the L2-norm,

also referred to as Least Squares (LS). Here the residual between between
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the experimental data Y exp and the simulated value Y sim, are squared for

each data point (j) in each data set (i):

Obj =
N∑
i

Ni∑
j

(Y exp
ij − Y sim

ij )2 (1)

where N refers to the total number of data sets and Ni the number of data

points in data set i.

This approach has been used in many works, but this is basically weighing

each experimental point equally against each-other. Instead, if an experimen-

tal data point has a large uncertainty correlated to it, it would be beneficial

to say that this experimental target should have less weight in the objective

function, and vice versa for experimental points with small uncertainty. This

effect can of course be achieved by a weighted LS definition, and as first

introduced in [41], the weight can be directly correlated to the experimental

uncertainty by dividing the residual in Eq. 1 with the standard deviation

(σ), giving:

Obj =
N∑
i

Ni∑
j

(
Y exp
ij − Y sim

ij

σij

)2

(2)

By weighing the residuals with σ, experimental data with large uncer-

tainty have a lower impact in the overall sum.

In order to avoid that data sets with a large number of data points become

overly important, it is also important to weight the objective function based

on the number of data points in each data set. The objective function for

each data set is therefore divided by the number of data points in each

specific data set (Ni), thus removing the bias towards data sets with many
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experimental targets. Eq. 2 therefore becomes:

Obj =
N∑
i

1

Ni

Ni∑
j

(
Y exp
ij − Y sim

ij

σij

)2

(3)

This is the formulation of the objective function that was used for all of the

test cases in Section 3.

The determination of the standard deviation is in this approach is crucial

for the value of the objective function. As discussed by Olm et al. [26],

the standard deviation can be estimated as a combination of the standard

deviation based on the reported experimental errors (σexp) and the standard

deviation calculated based on the experimental scatter (σstat):

σ =
√
σ2
stat + σ2

exp (4)

where σexp is calculated based on how many standard deviations the experi-

mental error represents, i.e.

σexp =
Y exp · ε
X

(5)

where ε is the reported relative experimental error and X is the number of

standard deviations that the experimental error represents. If no specific

information regarding how many standard deviations the experimental error

represents was given, it was assumed to be 2 standard deviations in this work.

For many cases, only the experimental error is given together with the

experimental values. With no repetition of the experimental points, the

statistical standard deviation cannot be determined, and the total standard

deviation can then be estimated as only the σexp.

As mentioned in Olm et al. [42], for experimental targets that have a

scatter proportional to the experimental value itself (more specifically data
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such as Ignition Delay Time (IDT)) the objective function should be calcu-

lated using the natural logarithm of the experimental and simulated values,

i.e. Y exp
ij = ln(yexpij ) and Y sim

ij = ln(ysimij ), where yexpij and ysimij refers to the

absolute experimental/simulated value for data set i and point j. The same

applies to σ, i.e. for IDT the natural logarithm of σij is used rather than

the absolute value. This ensures that the objective function is more evenly

distributed between the data points, and it will be easier to achieve overall

improvements for each point, rather than only for some. For other experi-

mental targets, such as species concentrations and laminar flame speeds, the

objective function is calculated directly based on the absolute value of the

experimental and simulated values, i.e. Y exp
ij = yexpij and Y sim

ij = ysimij . For

the specific cases where Y exp = 0, which can occur for species concentrations,

the σexp from Eq. 5 is assumed to be equal to the minimum non-zero value

from that data set, in order to avoid numerical issues in Eq. 3.

2.5. Uncertainty range of the kinetic parameters

While performing optimization of kinetic mechanisms, it is very important

to consider the limits of the rate constants for each reaction. These limits

can be determined based on the so-called uncertainty parameter (f) (or Error

limits [43]) as kmin = k0·10−f and kmax = k0·10f , where k0 is the nominal rate

constant. An example of this can be appreciated in Figure 2 where the rate

coefficient for reaction 725, from the POLIMI C1C3 V1412 [44] mechanism,

is plotted together with kmin and kmax, considering a constant f of 0.3.

Reversely, f can be determined from the spread of the direct experi-

mental data and theoretical estimations of a specific rate constant (f =

0.5 · log10(kmax/kmin)) available in the literature. These limits can also be
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Figure 2: Rate coefficient for reaction 725 from the POLIMI C1C3 V1412 [44] mechanism,

with k0 ( ), kmin and kmax ( ).

used to determine the specific uncertainty range of the kinetic parameter (A,

β, and Ea) as done by Fürst et al. [45]. A similar approach was also used

by Turànyi and co-workers [46] in their optimization studies. OptiSMOKE++

uses the approach from [45] to calculate the range of each kinetic parameter,

but specific limits can be expressed by the user as well.

In order to reduce CPU-expensive calculations, OpenSMOKE++ uses the

following form of the rate constant k:

k = exp

(
ln(A) + β · ln(T )− E

RT

)
(6)

This is therefore also employed in OptiSMOKE++, and ln(A), β, and Ea/R

are considered as active parameters for the optimization. Both the low and

high pressure limit kinetic parameters from fall-off reactions [47] can be used

as uncertain parameters in OptiSMOKE++, as well as third body efficiencies.
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In this work, the focus is not on the characterization of the distribution of

the rate constants. For this reason, the kinetic parameters are considered

uniformly distributed within their uncertainty bounds, as discussed by Nagy

et al. [46].

2.6. Penalty function

Although the limits of each uncertain kinetic parameter are individually

specified with the procedure described above, the non-linear nature of the

modified Arrhenius curve does not necessarily ensure that during optimiza-

tion the rate constant stays within its initially prescribed bounds for the

complete temperature span (considered as 300-3000 K to correctly account

for realistic temperature conditions in combustion applications). It is there-

fore important to do a check of the proposed parameter combinations, to see

that the rate constants are within the uncertainty limits. The OptiSMOKE++

code handles this by utilizing a so-called penalty function. Penalty func-

tions can be used for many purposes. For example, Sikalo et al. [27] used a

penalty function for keeping the optimized parameters close to the original

values. However, in OptiSMOKE++ the penalty function is implemented to

forcefully increase the objective function value for parameter combinations

which do not respect the uncertainty limits of the rate constants, for all of

the reactions considered. This ensures that the optimizer does not choose

a parameter combination which violates this restriction, and finds the opti-

mal combination of parameters which satisfies the constraints. Consequently

the use of this penalty function results in quite significant computational

savings, as the penalized parameter combinations are not simulated using

OpenSMOKE++.
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The application of this externally defined penalty function allows the

users to freely use all the available optimization methodologies available in

DAKOTA, regardless if they support non-linear constraints or not. In fact,

the combination of a penalty function and non-gradient based global opti-

mizers is very efficient for constrained optimization problems such as kinetic

mechanism optimization. However, it should be said that for gradient based

optimization approaches, penalty functions are not a good choice, as these

algorithms depend on the prior evaluations for the estimation of the slope

of the objective function. The use of penalty functions disrupts the natural

slope of the objective function and gradient based algorithms would then face

issues in finding the optimal solution.

3. Test cases

In this section, some test cases will be presented, which illustrates the

functionality of the OptiSMOKE++ toolbox. The different procedures, and the

cases, were not necessarily chosen based on efficiency or any specific interests,

instead they were chosen in order to show the different features available in

the OptiSMOKE++ toolbox.

3.1. Test case 1: Ignition Delay Time for non-conventional conditions in a

Plug Flow Reactor

As a key physico-chemical property of a specific mixture [48], the IDT is

an important measure for determining if the kinetic mechanism is accurately

predicting the onset of combustion correctly or not. The ignition strongly

controls the successive combustion process, which is why it is commonly used

as a target for kinetic mechanisms in both validation and optimization.
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The experimental target data used in this test case are from Sabia et al.

[49], where the ignition delay time of biomass pyrolysis gas (1% C2H4, 2%

C2H6, 10% CH4, 25% CO, and 62% CO2) in a PFR was evaluated during

Moderate or Intense Low-oxygen Dilution (MILD) conditions, i.e. high inlet

temperature and diluted conditions. The IDT was evaluated as the time

when the mixture reaches a temperature 10 K higher than the inlet tem-

perature. This experimental data set consists of fuel diluted with nitrogen

at different oxygen ratios (Ω) [50]. Ω is defined as the ratio between the

amount of oxygen, in both the fuel and oxidizer, and the amount of oxygen

required for stoichiometric combustion of the mixture. This is commonly

use for fuels which contain partially oxidized compounds (in this case CO).

The experimental uncertainty (seen in Figure 3) was evaluated with respect

to the displacement of the thermocouples and the inlet velocity from the

experimental measurements [49].

The nominal mechanism used for this test case was the POLIMI C1-C3

V1412 [44] mechanism, consisting of 107 species and 2642 reactions. All the

kinetic parameters cannot be optimized for such a large mechanism, which

is why an initial study was performed in order to determine the reactions

having the largest impact. More details about this can be found in Section

S1 in the Supplementary Material. This preliminary analysis selected 11 re-

actions, and 26 uncertain parameters, which were all handled simultaneously

in the optimization study, thus removing necessary intervention by the user.

In Table S1 the kinetic parameters considered for this optimization can be

found.

This test case was performed using all the different optimization method-
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ologies descried in 2.2.1, namely: coliny direct (DIRECT), mesh adaptive search

(MADS), coliny pattern search (PS) and coliny solis wets (SW).

To get a fair comparison between the different optimization methodolo-

gies, each method was allowed to run for 10 000 evaluations, and the default

settings were used for each methodology. The optimal combination of the

uncertain parameters found by each method are presented in Table S5 and

the performance of each mechanism can be appreciated in Figure 3. The per-

formance of the different approaches are very similar for the different Ω, with

some quite significant improvements compared to the nominal mechanism.

A comparison of the evolution of the minimum of the objective function

for the different methods, together with number of evaluations performed,

number of penalties and runtime (on one processor) for each method, can all

be seen in Figure 4. It should be mentioned that internal stopping criteria for

each algorithm are applied, which is why the number of evaluations performed

does not strictly correspond to 10 000 for each method.

It can clearly be seen in Figure 4 that the DIRECT methodology is per-

forming overall the best, both in terms of how many evaluations it needs to

find good combinations, and in finding the absolute minimum compared to

the other methods. However, the runtime is also the second longest com-

pared to the other methods. This is due to the fact that the number of

non-penalized evaluations is high for this method. Indeed, only PS shows a

lower number of penalties, but also a longer runtime. In fact, the runtime is

directly proportional to the number of non-penalized evaluations (# Evalua-

tions − # Penalties) performed, as the application of the penalty function is

instantaneous (see Figure 1). It can also be seen that the SW methodology
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Figure 3: Test case 1, IDT for Ω=0.9, 1 and 1.67 at different inlet temperatures, where the 

experimental data is presented by the black dots with corresponding error bars. The 

different kinetic mechanisms are represented by the black and grey solid, dashed and 

dotted lines as follows: POLIMI C1C3 V1412 [44] ( ), DIRECT ( ), MADS ( ), PS 

( ) and SW ( ).

quite quickly converges to its optimum. After roughly 3 000 evaluations, no 

drastic reductions of the objective function is found with the SW methodol-

ogy. The PS methodology shows a very slow convergence rate with respect 

to the other methods, which is inherently due to the more local approach of
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used in test case 1: DIRECT ( ), MADS ( ), PS ( ) and SW ( ).

the PS methodology. Finally, the MADS methodology also shows a relatively

slow convergence rate with respect to the number of evaluations. However, it

also has the largest percentage of penalties with respect to the total number

of evaluations. Which consequently results in the fastest runtime out of all

the methodologies used.

To further aid the comparison of the different methodologies, the ra-

tio between the explored range and the allowed range of each parameter
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was evaluated. These values can be found in Table S10 in the Supplemen-

tary Material. Based on this evaluations, it can be seen that the DIRECT

methodology is evaluating quite a large part of the parameter space, but

more importantly, the percentage of the parameter space explored consid-

ering only non-penalized evaluations is still very large. Instead, with the

MADS methodology, a larger part of the parameter space is explored, but

due to the fact that many of the evaluations with the MADS methodology

results in penalties, the exploration of the parameter space considering the

non-penalized evaluations, is very small for the MADS method. The PS

method, similarly as the DIRECT method, shows only a slight reduction

of the explored parameter space comparing the complete set of evaluations

and the non-penalized evaluations. However, the explored parameter space

is quite small for the PS method, which is due to the more local approach

employed by the PS methodology. The SW method shows a more sporadic

nature in the explored parameter space, considering both the complete set

of evaluations and only the non-penalized evaluations.

Considering all this, the DIRECT methodology can be considered to per-

form best out of these four methodologies, and was therefore used for the

remaining test cases.

3.2. Test case 2: Ignition Delay Time at high pressures using data from a

Shock-Tube

A common approach for measuring the IDT, especially at higher pres-

sures, is either with ST or RCMs. As mentioned in Cuoci et al. [33], the

IDT data from both ST and RCMs can be reproduced using a transient

closed homogeneous batch reactor simulation, where facility effects can be
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accounted for using a volume history. This can either be specified using a

pressure coefficient that emulates the change in volume and pressure, or by a

user defined volume time history profile. OptiSMOKE++ utilizes these features

for the simulation of STs and RCMs.

For this test case, the experimental targets consist of IDT of methane

diluted in carbon dioxide in a ST, at high pressures (100 bar) [51]. The IDT

was experimentally evaluated at the moment where the maximum change of

the exited species OH∗ was measured. However, due to the fact that the ex-

periments were performed at very high pressure, the discrepancy between the

OH and OH∗ profiles were minimal, and the numerical IDT could therefore be

evaluated at the moment of maximum change of OH. This was also confirmed

by personal communication with the authors of the paper [51]. The exper-

iments were performed at stoichiometric (φ=1) and rich (φ=2) conditions.

The kinetic mechanism used for this case was the GRI 3.0 [6] mechanism,

which consists of 53 species and 325 reactions. Similarly to the previous case,

an initial study was performed in order to find the most impactful reactions

for the different conditions. The 9 reactions and corresponding 20 parameters

are reported in Table S2.

The results can be seen in Figure 5, and the nominal and optimized

parameter values, together with the objective function values, can be found

in Table S6.

It can clearly be seen in Figure 5 that the optimized mechanism is cap-

turing the experimental data very well.
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Figure 5: Test case 2, IDT for methane at φ= 1 and 2, where the experimental data is 

presented by the black dots with corresponding error bars. The nominal kinetics (GRI 

3.0 [6]) is represented by the solid lines ( ) and the optimized mechanism by the dashed 

lines ( ).

3.3. Test case 3: Methanol oxidation in a Jet Stirred Reactor

In this example, the optimization targets consist of species concentrations 

of methanol (CH3OH) oxidation at different temperatures in an iso-thermal 

JSR [52]. A JSR can be modeled as a Perfectly Stirred Reactor (PSR) in 

experimental studies. Indeed, the injection occurs through jet nozzles with 

a high velocity, which ensures instantaneous mixing inside the reactor. The 

species concentrations were measured after a fixed residence time (τ=0.05 

s), at atmospheric pressure, and at φ=0.5 and 1. The injected mixture 

consisted of 2000 ppm CH3OH, 6000/3000 ppm O2 and was balanced out 

with N2. The target species for this study were limited to the major species 

measured (CH3OH, O2, CO, CO2), but a larger number of species can be 

handled by OptiSMOKE++. The nominal kinetics used for this case was again 

the POLIMI C1-C3 V1412 [44], and the sensitivity study, for determining
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which reactions to consider in the optimization, was performed based on

each targeted species. This resulted in 7 reactions and 17 kinetic parameters,

which are listed in Table S3.

A comparison between the nominal and the optimized mechanism is re-

ported in Figure 6, as well as the parameter values are presented in Table

S7. As no experimental uncertainty was reported in [52], a standard uncer-

tainty of 1% of the highest measured concentration of respective species was

considered for each point, according to recommendations from Olm et al.

[42].

It can clearly be seen that an overall improvement is achieved for each

species profile. This can especially be seen for CO and CO2 in Figures 6b

and 6d.

3.4. Test case 4: Combined optimization of IDT and JSR data

In practice, many different targets will be used for optimization, ensuring

that the optimized kinetics performs good for a wide range of conditions. The

combined optimization of test cases 1 and 3 is therefore used to illustrate this

capability of the code. As in test case 1 and 3, the POLIMI C1C3 V1412

[44] mechanism was used. The combination of reactions from Tables S1 and

S3 was used in this optimization. The results are presented in Figures 7-8,

as well as in Table S8.

Comparing the results from test case 3 (Figure 6) with Figure 8, it can be

seen the same improvements were found for the two optimizations. The 

comparison of the results from test case 1 (Fig. 3) and test case 4 (Fig. 7) shows 

that the very good agreement obtained in Fig. 3 was not found. Nevertheless, Fig. 

7 shows that a substantial improvement with respect to the original kinetic 

mechanism was achieved for IDT data also in the case of combined optimization.
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Figure 6: Test case 3, oxidation of methanol (CH3OH) at atmospheric pressure in an iso-

thermal JSR at different temperatures and at φ=0.5 and 1. The experimental data is

presented by the scatter, with corresponding error bars. The nominal kinetics (POLIMI

C1C3 V1412 [44]) is represented by the solid lines ( ) and the optimized kinetics by the

dashed lines ( ).

3.5. Test case 5: Optimization of Laminar Flame Speed of methanol

As a key quantity for describing the combined effect of a mixtures diffu-

sivity, reactivity and exothermicity [44], the LFS is often used as a target for
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Figure 7: Test case 4, IDT for Ω=0.9, 1 and 1.67 at different inlet temperatures, where the

experimental data is presented by the black dots with corresponding error bars. The

nominal kinetics (POLIMI C1C3 V1412 [44]) is represented by the solid lines ( ) and the

optimized kinetics by the dashed lines ( ).

the development, validation and optimization of a kinetic mechanism at low

temperatures. The LFS describes at which speed the flame front is propagat-

ing back towards the unburned gases. When the inlet velocity of the mixture

is equal to the LFS, a stable flame front is established. The numerical eval-

uation of the LFS are mostly done using a 1D premixed flame simulations.
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Figure 8: Test case 4, oxidation of methanol (CH3OH) at atmospheric pressure in an iso-

thermal JSR at different temperatures and at φ=0.5 and 1. The experimental data is

presented by the scatter, with corresponding error bars. The nominal kinetics (POLIMI

C1C3 V1412 [44]) is represented by the solid lines ( ) and the optimized kinetics by the

dashed lines ( ).

The numerical solution of such a system depends on the inlet mixture com-

position, kinetic and thermodynamic parameters, as well as the transport

properties. OptiSMOKE++ supports the application of LFS as targets for the
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optimization by using the premixed laminar flame solver of OpenSMOKE++.

The experimental targets used for this test case consists of LFS data of

methane/air diluted with 10% CO2, at 1 bar and an inlet temperature of 473

K [53]. The experimental measurements were performed for an equivalence

ratio between 0.7 and 1.2. The kinetic mechanism used for this test case was

the GRI 3.0 [6] mechanism and the initial study resulted in determining 3

reactions and 7 kinetic parameters that were used in the optimization study,

and are listed in Table S4.

The results of the optimization can be seen in Table S9 and Figure 9.
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Figure 9: Test case 5, LFS of methane/air diluted with 10% CO2 at atmospheric pressure

and an inlet temperature of 473 K. The experimental data is presented by the black dots

with corresponding error bars, and the nominal kinetics (GRI 3.0 [6]) is represented by

the solid lines ( ) and the optimized mechanism by the dashed lines ( ).

Even though there are only some minor improvements, the optimized

mechanism is able to capture the experimental targets very well.
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4. Conclusions

This paper describes the different features of OptiSMOKE++, a toolbox that

couples the optimization toolkit DAKOTA and OpenSMOKE++, a framework for

solving reacting systems with detailed kinetics. OptiSMOKE++ can be used to

optimize kinetic mechanisms with respect to specified experimental targets,

to improve the performance of the kinetic mechanism. The toolbox consists

of different features, which can be summarized as:

• possibility to use experimental targets from different facilities, i.e. Batch

Reactors, PFRs, PSRs, ST, RCMs and 1D flames. Experimental data

from different facilities can also be used simultaneously.

• different optimization methodologies, available in the DAKOTA toolkit,

can be employed.

• in order to produce a feasible optimized kinetic mechanism (i.e. with

physically viable kinetic parameters), OptiSMOKE++ utilizes a penalty

function which forcefully increases the objective function value when a

set of kinetic parameters gives a rate coefficient outside the uncertainty

bounds. This ensures that the optimizer choose an optimal point which

still gives physically viable rate coefficient values, as well as it allows

for computational savings as penalized parameter combinations are not

evaluated using OpenSMOKE++.

All these features allows the user to optimize a kinetic mechanism with re-

spect to the targeted experimental conditions in an efficient way.
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