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ARTICLE INFO ABSTRACT

Handling Editor: Xi Lu This study proposes a procedure that can help address the challenge of achieving universal energy access by

facilitating the process of rural electrification. Our holistic methodology enables the analysis of electrification

Keywords: processes and tailored for the usage of open-source data, allowing for efficient “green-field” and “brown-field”
;‘;}rj)l electrification expansion planning. To apply this methodology to a non-electrified rural area, population distribution, terrain,

existing infrastructure, and accessible information from public databases are necessary inputs. This methodology
adopts a cluster-oriented approach and utilises multi-parameter cost surfaces to represent terrain in order to
perform routing of medium-voltage (MV) and low-voltage (LV) networks for unelectrified communities. The
solution from the routing algorithm is enhanced utilising advanced features such as road tracking and pole-
sharing. Following the energy demand assessment of each community, both the options of interconnection to
the national grid and supplying loads with standalone microgrids were evaluated and compared to define the
most cost-effective solution. This study proposes a combination of bottom-up and top-down approaches, where
the solution for each community separately, in terms of the optimal microgrids’ generation portfolio and grid
routing, is then used as input for an integrated optimisation to obtain a realistic and cost-effective electrification
plan. The overall electrification is achieved by solving a nonconvex mixed integer linear programming (MILP)
optimisation constrained by electrical parameters, considering the loading of elements and voltage drops along
the lines. Finally, the procedure provides an estimate of the overall materials and costs incurred, as well as a
georeferenced deployment of electrical equipment. To validate the procedure and demonstrate its feasibility, the
approach was applied to the electrification plan of the Butha-Buthe region in Lesotho. The proposed tool is
shared on GitHub to support the adoption of a comprehensive electrification approach.

Sustainable development
Least-cost electrification
Geospatial planning

1. Introduction

Energy access is essential for various fundamental aspects of modern
society, including cooking, heating, sanitation, telecommunication ser-
vices, and transportation. Consequently, the United Nations (UN) has
placed energy access at the centre of many of its Sustainable Develop-
ment Goals (SDGs), with 17 targets that nations worldwide have been
called to achieve by 2030. The 7th Goal of the SDGs, Affordable and
Clean Energy [1], explicitly focuses on energy. Its subgoals include
ensuring universal access to affordable and reliable energy services,
substantially increasing the share of renewable energy in the global mix
and improving energy efficiency [2].

Progress has been made over time, with the number of people
without electricity dropping to 770 million in 2019. However, this
progress has not been across the world; Southeast Asia and South
America have almost reached 100% electricity access, whereas 75% of
the global unelectrified population resides in sub-Saharan Africa, a share
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that has unfortunately risen over the years. Consequently, this region is
the poorest in the world, with an average GDP per capita of approxi-
mately $1500, without a growth trend since 2014 [3]. This part of Africa
requires significant planning efforts to identify the optimal path for-
ward, and this has motivated research on least-cost electrification
planning.

Nevertheless, the task of planning the development of electrical grids
is a complex and multidimensional problem, owing to the various un-
certainties related to socio-political developments and the lack of
expertise required to operate the installed equipment. This can be
observed in the low reliability of the existing national grids in this area
[4]. Therefore, the scientific community and stakeholders should focus
not only on deploying grids but also on education and overall devel-
opment. With that being said, providing economically feasible and
sustainable electrification solutions remain a priority. This is even more
emphasised in rural areas, where, electrification can be even less
economically justified because of the sparsity of the population and low
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income levels [5].

The goal of the proposed procedure in this paper is not only to
identify the optimal electrification path for rural areas but also to aid in
the assessment of the overall cost for electrification, providing stake-
holders with information for assessing various areas and identifying
priorities. A key focus is the electric grid structure and topology, which
is typically under investigated in approaches presented in the literature.
The remainder of this paper is organised as follows. Section 2 presents a
critical overview of the current status of literature, existing approaches,
and tools for rural electrification. Section 3 describes the proposed
methodology, with greater focus on topics that are expected to be the
main contributions of this study. Sections 4 and 5 present a case study of
Butha-Buthe in Lesotho and its results. Finally, Section 6 draws con-
clusions, discusses the limitations of the proposed approach, and dis-
cusses topics that need to be addressed for future improvements.

2. Literature overview

In recent years, research has actively studied solutions and provided
instruments that can assist stakeholders in the complex and multivariate
tasks of rural electrification [6,7]. According to Ref. [8], the complete
technical design of any new electrification strategy in rural areas should
comprise the following four points: (1) identification of the optimal
electrification solution, including choosing between on- and off-grid
solutions; (2) sizing of the generation portfolio for off-grid systems;
(3) design of the electrical network; and (4) eventual upstream re-
inforcements of the electric network and generation portfolio. The
current literature offers a wide range of tools and methodologies that
can address different aspects of the rural electrification planning. These
can be divided into three main classes based on their objectives and
scope.

The first class includes tools with the goal of optimising energy
systems from the generation side by defining the optimal mix of energy
sources to be used to satisfy a certain demand. Generally, they are split
into local off-grid sizing, focusing on electrical production, and wide-
scale energy analysis. The most well-known commercial tool for local
microgrid sizing is HOMER [9]. Other tools that can be found in the
literature are Microgrids.py [10], iHOGA [11], DER-CAM [12], and the
microgrid optimisation tool developed by Ref. [13]. Other interesting
studies that fall within this category are [14,15] which focus not only on
the economic evaluation of microgrid generation portfolios, but also the
socio-environmental impact and sustainable development. Moreover, a
comparison between an off- and on-grid solution is discussed; however,
the comparison is made for each community without an integrated
optimisation that could capture the overall costs of a grid expansion for a
vast area. The goal of these tools is generally to provide a hybrid
microgrid solution while focusing on the resources available in each
area and addressing rural electrification particularities such as load
uncertainty and long-term planning.

The second group of energy models includes frameworks that opti-
mise energy systems from smaller communities to entire nations. They
use energy models, energy flows, and balances, and consider various
energy vectors, such as heat and electricity, to represent the system
under analysis. The most recognized models in this group are Calliope
[16], Osemosys [17,18], and Oemof [19]. While these tools are not
specifically designed for rural electrification planning, their flexibility
allows for easy adaption and application to various case studies. Another
well-known tool for country-scale energy analyses is OnSSET [20]. It
determines the means of electrification as a function of the distance to
the existing grid, and the results for 56 countries are available on the
ESMAP platform [21].

The second general class of tools deal mainly with the optimisation of
the electrical network, hereon referred to as electrical models. These
models are well suited for optimising the electric grid, which is usually
the task of the local distribution system operator (DSO), by fitting them
into an already established energy plan. Typically, the models
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represented in this group focus on the siting and sizing of primary and
secondary substations and the routing of low-voltage (LV) and medium-
voltage (MV) lines. Moreover, the procedures vary depending on the
phase of development faced by planners. Note that there are various
tools designed for industrialised countries, which may not be applicable
to the problem of rural electrification. When focusing on tools that
provide greenfield solutions, the main objective is to minimise the
overall net present value investment. Therefore, innovative models have
been proposed to address specific aspects of distribution planning in
rural areas [22]. An interesting tool applicable to rural electrification is
the Reference Network Model (RNM), which adopts a greedy approach
to design high-, medium-, and low-voltage networks for wide areas [23].
It utilises cost-surfaces and street-tracking features to provide feasible
and cost-effective solutions to the distribution grid planning problem.

Finally, the third category is represented by tools aimed at providing
a comprehensive electrification plan and simultaneously optimising
both the generation and distribution infrastructure. Hereafter, these
tools are referred to as comprehensive models. Although traditional
energy and electric models have been considered complementary,
recently, some studies have merged these two approaches to obtain a
more realistic solution. This type of modelling is particularly suitable for
rural electrification in low-income countries because it helps in identi-
fying cost-effective electrification approach. Because the cost is a sig-
nificant factor in electrification planning, it is essential to choose
between grid extension and off-grid solutions to achieve least-cost
electrification. Reference Electrification Model (REM) is a comprehen-
sive computer model that supports large-scale, as well as local electri-
fication projects [24]. It initially applies a bottom-up greedy procedure
for clustering customers and then decides, through an iterative process,
which customers to connect to the grid and which to electrify using
off-grid systems. In a second step, the electric grid is designed using the
tool RNM. More specifically, REM provides the following outputs: (i) the
optimal grouping of individual consumers into electrification clusters so
that total system costs are minimised (ii) the optimal generation mix and
network layout for each of the off-grid mini-grids and selecting the size
of the diesel generators, photovoltaic (PV) modules, and battery energy
storage system (BESS) (iii) the optimal network layout for each cluster
that will be connected to the grid, designed using the RNM previously
mentioned.

The GeoSim platform [25] is a modular commercial software tool
based on geographical information systems (GIS). Its main innovation
consists of the optimisation of energy services covering a given territory,
with the goal of improving the economic and social impact of rural
electrification. GEOSIM relies on geographical distance data to identify
optimal solutions for rural electrification. This includes identifying areas
where grid densification should be implemented, determining suitable
areas for grid extension, and potential areas for off-grid systems.

REM and GEOSIM represent state-of-the-art in rural electrification
planning and have been used as support tools for the redaction of na-
tional electrification plans in sub-Saharan Africa [26,27].

Other studies that can be categorised as comprehensive models are
the Network Planner tool by Columbia University [28], LAPER [29], and
the work presented in Ref. [30], which performs multistage planning
considering grid connections, hybrid microgrids, and solar home
systems.

When discussing the algorithms adopted, one approach is to
formulate the electrification problem as an optimisation problem and
solve it using Mixed Integer Linear Programming (MILP). This concept
has been widely investigated for optimising off-grid solutions and for
general electrical routing purposes. In such cases, it is extremely
important to arrange the optimisation efficiently to avoid scaling issues.
For example [13], applied a MILP model to optimise the generation
portfolio of a microgrid while considering advanced features such as
battery degradation. Similarly [31], developed a MILP-based predictive
planning and dispatch algorithm for rural microgrids.

The application of MILP formulation in distribution system planning
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Fig. 1. Flowchart of the complete procedure.

has been extensively studied and documented in the literature for a
significant period of time [32]. Moving on to recent times [33], per-
formed a wide bibliographic overview on the optimisation techniques
for distribution system planning, describing MILP as “the guarantee of
optimality and the current processing capacity of computers, makes
approaches based on mixed integer linear programming (MILP) models
very attractive”. However, the applications mostly come in terms of a
very focused analysis for upgrading already developed systems [34],
whereas, to the best of the authors’ knowledge, in recent literature, it
has not been applied for integrated optimisation analysis that would
evaluate all the contemporary options. For distribution grid planning,
studies have found more success in applying heuristic optimisation
methods [35], such as tabu search, various genetic algorithms, and
particle swarm optimisation [36]. When selecting an algorithm, there is
a trade-off between scalability and accuracy. While MILP has been
demonstrated to perform well for large-scale optimisation problems
owing to the development of efficient solvers such as Gurobi [37], it is
limited by its linear nature, which makes it hard to capture the nonlinear
behaviour of power systems. Including nonlinear characteristics such as
losses in the optimisation function using piecewise linearisation is
possible, but it may lead to low accuracy and significantly increase the
computational complexity. Therefore, it is not commonly used in recent
literature as a general practice [38]. Some characteristics of the rural
electrification problem follow the assumptions made in the MILP mod-
ulation. For instance, in these areas, energy consumption is typically
low, and this makes it reasonable to neglect losses in the optimisation
function as a simplification.

Comprehensive models are usually able to address three of four steps
of the rural electrification framework: identification of the optimal
electrification solution; microgrid sizing; and design of the electric
network. This makes them very promising for addressing the issue of
energy access, besides the large amount of data required as input to
provide accurate solutions. However, some drawbacks and potential
areas for improvement can be highlighted: (i) Greedy approaches are
used to design the electric grid, while considering detailed data and
assumptions regarding power profiles, user types, and other factors that
may be more relevant in developed countries (ii) The optimal electrifi-
cation solution for the communities is not based on an integrated opti-
misation, and considering the area as a whole, but rather on iterative
approaches considering each community separately or in predefined
clusters. (iii) The majority of the tools consider limited options for
hybrid microgrids, mainly composed of diesel generators, PV modules
and batteries. (iv) Lastly, it was observed that most of these tools are
commercial and are not openly available, a condition that could hinder

their usability and further development.

The goal of this paper is to propose an open-source, comprehensive
analysis for large regions by formulating the electrification planning as
an optimisation problem. To reduce the computational burden and
enable analysis on vast territories, some case-specific and realistic ap-
proximations are made at the level of individual communities. The key
contributions of this paper can be summarized as follows: First, the
creation of realistic multi-parameter cost surfaces, validating the various
cost parameters through a cooperation with a DSO, typically in charge of
deploying lines. Second, a procedure to design the electric grid within
the communities based on an adaptation of the graph-oriented Lukes
algorithm, first described in Ref. [39]. Finally, the formulation of a
MILP-based optimisation for the overall electrification plan for the area
under consideration, which provides the optimal strategy of electrifi-
cation for each community, whether with a grid extension or a microgrid
solution.

3. Methodology

The procedure developed in this study aims to overcome the limi-
tations found in the literature and provide a holistic methodology that
can define a least-cost electrification plan for wide areas. This creates a
synergy between various themes that can be observed in the rural
electrification analysis paradigm, such as graph theory, GIS data uti-
lisation, and optimisation. This procedure is available as an open-source
tool accessible under APACHE 2.0 license [40]. As such, the default
solution is provided using publicly available data; however, to provide a
more accurate solution, planners can use more specific information,
such as population distribution, accurate load demands, and cost esti-
mation related to the area analysed, both in terms of grid extension and
detailed costs related to deploying off-grid solutions.

Fig. 1 presents a flowchart of the entire procedure and the data used
in each step. It is subdivided into four different blocks, each of which
outlines one or more tasks related to rural electrification planning. To
provide further detail: (1) energy demand assessment, where the task is
to subdivide the population into communities starting from the bound-
aries of a non-electrified rural area, and determine the electrification
status based on information from existing networks or nightlights, if the
first is not available. In a second step, the electricity needs of each un-
electrified community are estimated; (2) off-grid system sizing, where,
given the boundaries and load demand of the communities the optimal
sizes and generation portfolios of hybrid microgrids, capable of sup-
plying the load to each community, are identified after estimating the
RES potential of the area; (3) internal grid design, in which the LV and
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Fig. 2. Identification of communities.

potential MV distribution grids, capable of interconnecting users within
communities, are designed. In this step, an electric grid is designed for
each community and sites for secondary substations and routes for
electric lines are identified. (4) Integrated area optimisation is the last
task in this process. Here, all the outputs from the previous steps are
gathered to perform a MILP-based optimisation on the entire area,
design the grid interconnecting communities to the in-place national
grid and identify the communities to be supplied by off-grid systems.

The subdivision into blocks allows the planner to address a problem
which is otherwise too complex to define and even more complex to be
solved by a one-shot single optimisation algorithm. Based on the block
structure illustrated in Fig. 1, it can be inferred that the proposed
approach involves simplification in such a way that the electrical grid of
each community is either minimally affected or not affected at all by the
internal grid structure of nearby communities. This allows the use a
graph theory approach to route the electrical grid for each community
individually, before performing an integrated optimisation that con-
siders electrical constraints.

The proposed procedure requires input data such as the area to be
analysed, geo-referenced information regarding the population, and
possible connections to the national grid. The optimal electrification
solution for each community was obtained using an electrically con-
strained MILP procedure, ensuring that the voltages and loading of el-
ements were within the limits. The resulting output included a complete
grid expansion project for communities that are best served by national
grid expansion as well as a generation portfolio and distribution grid
routing for off-grid systems.

The procedure proposed in this study was developed based on the
approaches published in Refs. [41,42]. The main contributions and
novel aspects of the study are as follows:

e LV grid routing and secondary substation siting can also site the
infrastructure of the LV grid (substations and lines) as per the pro-
posed procedure.

e A novel MILP-based integrated optimisation capable of managing
electrical constraints is proposed, which is responsible for solving the
integrated area optimisation. Previous releases of the tool were
employing purely graph theory-based methods, providing a subop-
timal solution and unable of managing electrical constraints).

e Improvement of cost surface creation: Penalty factors associated with

line deployment have been refined to make estimates closer to the

real-life costs faced by DSOs.

Internalization of the microgrid sizing process: A MILP-based opti-

misation algorithm for hybrid microgrid sizing was fully integrated

into the procedure, avoiding reliance on commercial external
software.

3.1. Energy demand assessment

To propose an effective electrification strategy, a fundamental aspect
to be addressed is the energy assessment of communities. The starting

point is the identification of rural communities; that is, clusters of users
grouped and electrified together, either with off-grid systems or via
interconnection to the grid. Once the boundaries of the communities
were evaluated, it was imperative to differentiate between electrified
and unelectrified communities within the analysed area. To ensure a
thorough analysis, the energy demand assessment block was divided
into two modules, the first being the identification of unelectrified
communities within the area of interest, which is crucial when there are
already areas with partial access to electricity. The second module in-
volves assessing the electricity demand of each of these unelectrified
communities.

3.1.1. Population clustering and electrification status

To identify communities that require electrification, open-source
data can provide useful information to characterise the area under
study and determine the extent of interconnected energy systems. This
study aims to promote the use of such open-source data and provides
examples of the type of information that can be obtained, including::

e boundaries of existing villages and communities in the form of a
polygon vector layer or similar; in this case, each village can be
considered a separate energy system.

e Raster layer with population or building density: The population
distribution is an indicator of existing communities and load centres
and can be used to extrapolate the boundaries of possible energy
systems.

Information on the distribution of the population to be electrified
plays a key role in the overall procedure, not only for community
identification, but also as a proxy for load estimation. While raster layers
with population and building densities are available for the whole world
from different sources of data, this is usually not the case for the precise
boundaries of communities, which are often not mapped in dispersed
and rural areas. In case the boundaries of communities are not well
defined and geospatial data are not available, the first step in identifying
communities is the clustering of populated points to find densely
populated areas. The authors have identified the following population
databases as the most promising in terms of promoting open-source
analysis and the importance of geo-located information regarding the
population: (i) A raster database with the number of buildings in pixels
with a resolution of 100 m, available for the entire continent of Africa is
made available by (Tatem, 2017). (ii) (Facebook, 2020) provides a raster
layer obtained by a neural network locating buildings and census in-
formation about the population. The final output is the number of people
residing in pixels of 30 x 30 m. (iii) [43] offers an open-source database
with polygon shapes of buildings in South America and Africa. However,
it is still in the validation process. Moreover, each element in the dataset
is represented by a certain percentage of being accurately represented as
a building.

The overall procedure for identifying unelectrified communities and
the final loads to be electrified is presented in Fig. 2. If the boundaries of
communities are available, a pre-screening of their distance and size is
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Table 1
Description of main input parameter of RAMP procedure.
Parameter Description
User; Name of each user class j
N; Number of users within each user class j
Appliance; Name of appliance j associated with class of user i
Jj
ng; Number of appliances i within class j
Py Nominal power absorbed by appliance i of user j
ftij Functioning time: total time appliance i of user j is on during the day
feij Functioning cycle: minimum time appliance i of user j is on after
switch-on
fwij Functioning window: periods when each appliance i of user j can be on
Rfc;j Random variation of functioning cycle
Rfw;; Random variation of functioning window

performed to merge communities which are sufficiently close to be
considered a unique energy system and to exclude those that are smaller
than a certain threshold (popsresy)- Finally, if the location of the existing
distribution network is available, all communities that are within a
certain distance from the grid (disty.sn) are assumed to have been
electrified.

Among the different classes of clustering algorithms available in
literature, density-based clustering has been found to be the most suit-
able for identifying the extent of existing communities [30] for the
following reasons: a) it allows the creation of clusters with nonconvex
shapes that are closer to the real aspect of communities; b) it considers
the presence of outliers, which are points that do not belong to any
cluster; c) it is suitable for large datasets; and d) previous knowledge of
the exact number of communities is not required.

Within this class, DBSCAN has been identified as the most suitable
algorithm given its adaptability to large datasets, limited memory re-
quirements and computational complexity, scalability to different
problems, relatively simple parameter tuning, which allows for control
of the required population density, and result interpretation. This
approach was proposed and described in the first version of the pro-
cedure [42]. Different approaches for population clustering are found in
the literature: REM utilises a bottom-up greedy approach to consecu-
tively add users to a cluster while it is economically feasible to do so,
while in the approach adopted by Ref. [44], users closer than a certain
threshold for separation are merged into clusters. Finally, the authors of
[45] divided the area under analysis into pixels, which, however, did not
properly represent the real shape of communities and would not work
for sparse areas.

3.1.2. Load estimation

The goal of this step is to estimate the energy and peak power re-
quirements of each community through the creation of a yearly load
profile using a bottom-up approach. Given the low availability of his-
torical trends, utilised to infer possible load profiles for nonelectrified
communities, this type of approach is preferred over top-down proced-
ures. The load profiles were created using RAMP, a Python-based open-
source tool developed at Politecnico di Milano [46]. It creates synthetic
load profiles starting from classes of users, appliances, and usage habits.
The main inputs required by the tool are described in Table 1, where
classes of users are indicated by index j and classes of appliances by
index i.

The load profile of each user of a specific user class is provided by the
combination of the usage pattern of each appliance ij, computed by
defining, in a stochastic manner, the time ft;; that appliance j associated
with user i is switched on within the day. These times must be selected
from within the identified functioning windows fw; ;. Once the appliance
is on, it must remain on for at least the predefined functioning cycle (fc;
). The overall daily load profile results from the aggregation of the user
class profiles j. Each profile j will be different from that of the others of
the same user class because of the stochastic variability provided by the
input parameters and the randomised selection of appliance switching-
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on times.

The required data for the procedure could be obtained through on-
site data collection methods, such as conducting surveys among the
population of the communities. Alternatively, assumptions from litera-
ture could be used if time and budget constraints prevent a local
assessment. To facilitate the use of the tool by various stakeholders, the
authors created a pool of standard load profiles using a combination of
literature, data from the Global Survey on Energy Access program
launched by the World Bank, and actual measurements. The World Bank
survey campaign on energy access, launched with the support of the
ESMAP, aims to collect field data following a Multi-Tier Framework
(MTF). These data are now available for eight countries (Ethiopia,
Kenya, Liberia, Malawi, Niger, Nigeria, Rwanda, and Zambia) and, to
the authors’ knowledge, are the most complete sources of data related to
electricity consumption at the household and community levels [47].

The created standard profiles were related to different categories of
users belonging to the three main classes of customers typically found in
communities: households, business activities, and public and social fa-
cilities. More specifically, standard profiles for households belonging to
each energy access tier (according to the MTF) and profiles for schools,
worship, and health centres were created considering the type and
number of electric appliances identified by the World Bank in their
questionnaires. Typical profiles for business activities and the time of
use of appliances were derived from local surveys and literature data
[48].

3.2. Off-grid system sizing

This stage of the procedure is devoted to estimating the availability
of renewable energy sources in the area under study and optimising the
generation portfolio of RES-based hybrid microgrids which could ideally
supply each community.

The availability of solar and wind resource is estimated using data
from open-source global atlases [49], which, by means of satellite data,
reanalysis techniques, and local measurements, provide the annual en-
ergy output of standard types of PV modules and wind turbines. The
model adopted for microgrid sizing was inspired by the approach pro-
posed by Refs. [50,51]. The choice of model allows the design of hybrid
microgrids with multiple energy sources, including diesel generators
(DG), photovoltaic (PV), wind turbines (WT), and battery energy storage
systems (BESS). Looping through each community, the model receives
the data related to the annual load demand, specific power production
from renewables, and costs and technical specifications of the compo-
nents as inputs and outputs the sizes of the generation units that can
minimise the total net present cost (NPC) over the microgrid lifetime, as
well as their hourly dispatch.

The objective function is the minimisation of the NPC:

min NPC =~ (IC; + O&M; + RC; — SV;) €))

where index i represents the different types of generators, IC; is the in-
vestment cost, O&M; is the discounted annual operation and mainte-
nance (O&M) costs RC; is the replacement cost of each component, and
SV; is the salvage value, that is, the residual value of the components at
the end of the project lifetime.

The constraints are related to energy balances performed hourly over
a set of typical days, that can be represented in a simplified manner for
the entire year. At each hour, the microgrid should meet the load de-
mand with a certain percentage of loss of load, which is represented by
the unmet demand Dj.. The total amount of energy supply is given by the
sum of energy fluxes from renewables (P;"), the ones from the diesel
generator (Py™), (3, Pi‘fg), where g are the different types of generators
that could be installed, plus the amount of energy discharged from the
BESS multiplied by its efficiency (Pi,), minus the amount of energy
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Fig. 3. Terrain representation with a grid of points and roads.
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The amount of energy not supplied is limited in input by setting a
threshold. The minimum renewable energy penetration is also provided
as an input. The amount of energy provided by each power source is
limited by the installed capacity, and in the case of RES, by the avail-
ability of primary resources. The installable capacities of PV, WT, and
BESS are continuous variables, while the capacity of the diesel generator
is an integer variable, a multiple of a predefined unit size.
The BESS charge and discharge process is modelled as follows:

Onp=On-1p+ (P;:’b - PZ‘,?) -Ah 3)

The energy accumulated at hour h, (Qnp) is given by the sum of the
energy at the previous hour, the charging energy minus the discharging
energy. To avoid simultaneous charging and discharging of BESS a bi-
nary variable (wi%) is used as follows:

Pl <wim @

Py < (1= ®)

)

M is a large number, and wi< is 1 when the battery is discharging and
0 otherwise. There are additional constraints that need to be considered,
such as reserve requirements to handle load and renewable energy
source fluctuations, which are addressed by utilising diesel and BESS. In
addition, the diesel fuel consumption is modelled as a linear function of
energy production.

A complete formulation of the MILP, which contains detailed infor-
mation regarding the variables, parameters, and constraints, can be
found in Ref. [52]. The NPC for electrifying each community with a
hybrid microgrid was then used as the input to the final block of the
procedure for integrated area optimisation.

3.3. Cost surface creation

Referring back to Fig. 1, block 3 of the proposed procedure is devoted

to routing the electric lines connecting users within the communities,
and then creating possible least-cost links among the various commu-
nities. Routing relies on the creation of a geospatial-based cost surface
that represents the cost of installing new electric lines. This depends on
the characteristics of the terrain on which they are built. New medium-
voltage lines should preferably be built along roads as it would provide
easier access and potentially reduce costs associated with acquiring
private property rights.

The cost of line deployment, which include labour and equipment
installation costs, as well as operation and maintenance costs, depends
on the accessibility of the area, which increases with the distance from
the roads and in the presence of difficult terrain such as high slopes and
forests. Finally, there are areas in which it is nearly impossible or even
forbidden to install lines, such as lakes, large rivers, national parks, and
protected areas. This aspect was identified as one of the limitations in
some of the current literature, usually considering only forbidden areas
without any reference to land cover, slope, and roads.

The novel approach proposed in this paper is designed to include all
these aspects of electric grid routing by creating a cost surface, where a
different deployment cost is associated with each type of terrain [24,53].
This is achieved by combining the raster and vector models (the two
main approaches available in the literature to model cost surfaces) [54]
representing different aspects of the physical terrain through a grid of
points, obtaining a good compromise between accuracy and simplicity.

More specifically, the final cost surface provided as input to the MV
grid routing procedures is given by a point vector layer composed of (1)
a regular grid of points (GridPts) with a resolution Res, which is equiv-
alent to a raster surface, because each point represents the centroid of a
pixel of a raster layer, with a penalty factor (pfpoin:) associated with each
point; and (2) additional points sampled along the roads, with an
associated unitary cost (RoadPt). The utility of tracking the roads during
the planning phase of distribution feeders has already been recognized
in the state-of-art. For example, RNM adopts a similar approach for the
creation of synthetic electric grid models [55,56]. An example of the
spatial representation is presented on Fig. 3.

The penalty factor pf associated to each GridPts is the result of the
combination of different characteristics gathered by sampling informa-
tion from different geospatial layers (also referred to as geospatial
factors).
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Fig. 4. Flowchart of the internal grid routing procedure.

e Distance from roads: The weight increases linearly up to a certain
threshold when it reaches its maximum, and the distance is
computed as the Euclidean distance of each point from a road vector
layer.

Slope: The weight increases exponentially with the slope, which is
computed from the Digital Elevation Model (DEM) raster layer and
sampled at each point.

Protected Areas: To prevent the deployment of lines in forbidden
areas, that are typically found in the form of polygons, the weight
assigned to points within them is severely penalized.

Water bodies: Weight is much higher than that of others to avoid
crossing lakes or large rivers.

Land Cover: Weights differ according to the type of land cover (e.g.
dense forests have a higher weight than agricultural land); land cover
values at each point were sampled from land cover raster layers.

The inclusion of additional RoadPts, which are not regular GridPts,
allows for improvement in accuracy and refinement of the procedure. In
fact, deploying equipment on roads or in close proximity has clear
benefits in terms of terrain accessibility and state ownership. The sam-
pling resolution of roads was based on whether they were within or
outside the community. This concept is clearly shown in Fig. 3, wherein
the roads are sampled with a higher resolution that corresponds to the
distance between LV poles to promote a more detailed grid structure
within the communities; values of resolution between 40 and 60 m are
acceptable. Roads outside the communities were sampled with a reso-
lution equal to Res.

The approach proposed for estimating the costs of line deployment
splits the overall CapEx into five categories: conductor, poles, additional
material, labour, and permissions. Each of the geospatial factors has a
different impact on these five categories, and each category i € categories
is represented by a certain percentage of the overall base cost of line
deployment (inv;). Considering that the points that represent roads have
a value equal to 1, the weight assigned to each point is calculated as in

(6).

Z (inv[ . (1 + Z w[:/))Vpoint € GridPts 6)

i€cat j€factors

pfpnim =
1Vpoint € RoadPts

Weight w;; is the input to the procedure given in the form of a lookup
table, which can be observed in ANNEXURE A. It is advisable that for
better estimation of the real costs for deployment of lines, this lookup
table be created specifically for the case study that is under analysis,
because it considers specific parameters that can vary from country to

country.

Similar approaches have been proposed in the literature; however,
rather than splitting the costs into different categories, the weight is
multiplied with the entire cost of the deployment of the line, [42,57].
Thich could lead to inaccuracies because each cost category is affected
differently by the type of terrain. For example, costs related to
man-hours of work and fuel transportation is significantly reduced in the
presence of roads, while the cost for electrical lines could increase
drastically when deploying underwater cables.

Finally, to consider the operational expenditures or costs related to
0&M, the total NPC for the estimated lifetime of the equipment (Y) can
be calculated as:

- (O&Mo <l + > Wo&M,/>
JjEfactors

prPC. 0in :Pf oint + @)
point = o ; 5o

where r is the average discount factor of the project, and wogu; is the
weight associated with the increase in difficulty of performing O&M on
lines, depending on the spatial characteristic factors.

The weights assigned to each point directly affect the overall
deployment and maintenance costs of the built lines. Finally, a graph
Garea = (Vo Eq,wy) of the entire area is created, where the vertices are
composed of all the points representing the terrain, V, € (GridPts U
RoadPts), and the edges connecting the vertices are only the neigh-
bouring nodes based on Res, following the logic in (8). Finally, (9) de-
picts the weight associated with connection (i-j) as a multiplication
factor to deploy a connection between points i and j.

E = LVY(i-j) e dlSt(l,J? < V2 % Res ®
0, otherwise
Wiy =Li;* ’M o

It is assumed that, within communities, the effect of the terrain is
negligible for routing the LV lines; thus, the weighted graph G, is used
exclusively for MV grid routing.

3.4. Internal grid routing

The goal of this stage is the routing of the internal distribution grid
within each community. Two different solutions are obtained as outputs,
depending on whether the community is electrified with an off-grid
solution or via grid extension. For the former, the presumption is that
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Fig. 5. Example of internal grid routingon a single community. Pink dots are the final users, black dashed lines are the roads, red lines are the LV grid, and the blue

triangles are the secondary substations.

the microgrid will be deployed at the LV level; the hypothesis is sup-
ported by the limited size of the communities as well as the low energy
consumption in the areas analysed. These characteristics are commonly
related to areas proposed for off-grid solutions.

However, for grid extension, the output involves routing of the LV
and MV grids and the siting of the secondary substations, that is the MV/
LV interfaces. Looking back to the literature, the procedure for obtaining

the locations of secondary substations is an improved version of Luke’s
algorithm [39]. The analysis performed in this block was purely based
on graph theory and least-cost equipment deployment. The complete
flowchart of this block, with the procedure performed for each com-
munity separately, is shown in Fig. 4. The inputs to the process are as
follows: (1) the electrical load defined within Section 3.1.2 and (2) the
grid of points defined in Section 3.3.

Algorithm 1

Input: Loads, RoadPts
Output: MST connecting all the loads.

For com in communities:

If RoadPts within com:

Create a graph from the roads: G¢om = Graph(V, E,w); where V € RoadPts;w;_j = distance;_;

Translate each load to the closest road point: V load € Loads,V;(pop) =1 < jisclosest point to load

Find the MST connecting road points that are close to loads: Backbone = MST (G4, V(pop)=1]

Decrease the weight of the backbone in the new graph: w(E) = 0,V E € Backbone

Else:
Create an empty graph: G,,,, =Graph(empty)

Add loads to Geom: G’ com = Graph(V',E',w"), V' = RoadPts U Loads; E' = Delaunay(V'),

MST connecting all the electric loads: Tree q, = MST (G’ com, Loads)
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Algorithm 2

Input: Tree om, LVmax, Loads

Output: Substation siting and low voltage networks.

For com in communities:

Create a distance matrix based on Tree op: dist;_; = w;_j(Treec,,), i,j € Loads

Split the loads in clusters based on the distance threshold: cluster = Agglomerative (Loads, LV_max)

Drop each connection between 2 separate clusters: Vi_j = 0 © icpyster # jerusters ¥V (1,j) € V(Treecoy)

Obtain each separate LV network: LV ;s = Tree on,. subtree(clus),V clus € clusters

Obtain the secondary substations (substation ) in the centroid of LV .j,,¢

Fig. 5 illustrates an example of the entire procedure for one com-
munity with the input data presented in Fig. 5a. The proposed procedure
is a bottom-up non-greedy approach in which the first step is to connect
all population points in the least-cost manner. Electrical loads are rep-
resented by the associated specific load per capita. The first part,
detailed in Algorithm 1, obtains the minimum spanning tree of the loads
in the community. Creating a “backbone” for the LV network that tracks
the roads is necessary for obtaining a realistic solution. Thus far, the
procedure has relied on the assumption that roads play a crucial role, as
electrical lines and substations need to be installed in close proximity to
roads for ease of accessibility and deployment, especially within
inhabited areas. Not considering these factors could lead to an irrational
grid topology.

This is done by creating a graph Gcom = Graph(V,E,w), where YV €
RoadPts. Each populated point is translated to the closest road and the
Minimum Spanning Tree (MST), which is correlated with the least-cost
line deployment, is obtained by adopting the Steiner algorithm (example
in Fig. 5b). Certainly, some communities in rural areas do not have
roads. For these communities, the step of creating the backbone of the
network along the roads was omitted.

Subsequently, the complete MST of the electrical load is obtained.
This is performed with the aid of the Delaunay Triangulation (DT). The
DT is executed using the population and road points. Then, each edge of
the Delaunay triangle is added to graph G; the weight is equal to the
length, ensuring that in the final topology, the electrical lines do not
cross each other. The final graph G, is used to find the overall MST of
the community is obtained by discounting each edge in G.,m, which is
part of the backbone, using a discounting rate (disc). The discount rate
must be close to 100%.

In the case of a community without roads, DT is executed using only
the final loads, and the connections are added as edges to an empty
graph. Finally, the MST of the community is obtained by executing the
Steiner tree algorithm for graph Gy, using the load points as terminal
nodes (example presented on Fig. 5c). Based on the assumption that
microgrids are designed as LV systems, the MST represents LV grids in
the case of an off-grid solution.

However, in the case of on-grid solution, it is important to note that
energy distribution is performed at the MV level, which requires siting of
secondary substations and routing of the potential MV network within
the community. This procedure is described in Algorithm 2. Starting
from the MST obtained in the previous step, the populated points are
clustered using an agglomerative clustering algorithm. The main goal is
to ensure that the distance between any two nodes belonging to the same
cluster is not larger than a certain value, considering the distances be-
tween loads on MST - Tree.,,,, which was first introduced in Ref. [39]. In
this application, this value is represented by the maximum allowable
length of the LV network (LVp,ay), which is an index often used by DSOs
when deploying LV networks. Finally, returning to the MST of the
community, each edge-connecting point that belongs to a different
cluster is cut to obtain separate LV networks or separate subtrees in the
graph domain. The secondary substation for each LV network is placed
at its weighted centroid. The peak load of the LV network is calculated

Table 2
Sets of the integrated area MILP formulation.
N, Communities
N; Secondary substations
Njp Intersection points of the communities’ internal grid
Ny Load points (N5 UNjp)
Nep Points of connection to the existing grid
Aq4 Decision links
Ac Communities’ internal links
A All links (Aq UA.)

based on the sum of all loads by applying a logarithmic coincidence
factor (coincy). Based on the peak load of the LV network, a secondary
substation is selected from a list of commercially available transformers.

The final step is the routing of the MV network within the commu-
nity, which is determined as the MST of G,,,, which is an updated
version of the G, defined in Section 3.3, in which the secondary
substations are added as terminal nodes, with connections to the closest
point on Ggq. Moreover, an additional feature is inserted that incenti-
vises pole sharing between the MV and LV conductors. Mainly, the edges
of the previously obtained LV network are discounted by a factor of “c,;”.
The final internal structure is shown in Fig. 5d.

3.5. Integrated area optimisation

The objective of this block of the procedure is to perform an inte-
grated optimisation to minimise costs, considering not only the design of
the electrical grid but also the means of electrification of each commu-
nity. Consequently, each community can be connected to the national
grid or electrified via an off-grid system.

The optimisation problem is formulated as a MILP model with the
objective function of minimising the overall NPC costs for the expansion
project, considering the electrical equipment, cost of microgrid com-
ponents, and cost of electricity distributed through the national
network:

min Y © NPCuajxi+ D NPCpgeye+ Y NPCopzi+ > (1= ye)Deccoe

(ij)eAd ceNe seNcp ceC

+ > (1 =yNPC,,

ceC

(10)

To make grid extension and off-grid electrification as two

Table 3

Scalars of the integrated area MILP formulation.
coe Wholesale cost of electricity [€/kWh]
Vref Voltage level for expansion [kV]
r Per length line resistance [ohm/km]
x Per length line reactance [ohm/km]
Pa Maximum power [MVA]
Emin Minimum acceptable voltage [p.u.]
PF Loads’ power factor [p.u.]
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Table 4
Parameters of the integrated area MILP formulation.
D, Energy demand of community ¢ during ceN, MWh
microgrid’s lifetime
Py Peak demand of load points p adjusted for MV PEN [MVA]
coincidence
P, Peak demand of community ¢ c e N, [MVA]
NPCmg. Net present cost of microgrid for community ¢ ceN, [$]
NPCg. Net present cost for the MV grid elements ceN, [$]
community ¢
NPCad; ;) Net present cost for decision line (i,j) (1, [$]
j) € Ad
NPC,, Net present cost of connecting to s s€ Ny [$]
Lij Length of connection (i,j) (ij) €A [km]
Wi Weight of decision links (i,j) (i, Const
j) e Ad
E; Per unit voltage of connection point s s €Ny p.u.
Py Maximum power of connection point s s € Ngp [MVA]
Table 5
Variables of the integrated area MILP formulation.
Xij 1 if connection (I,j) is built; otherwise 0 (i,j) € Ad [0,1]
Ye 1 if community c is a microgrid; otherwise 0 ceN. [0,1]
Zs 1 if substation s is used/built; otherwise 0 s€Ng, [0,1]
P, Power flow of connection (i,j) (i,j)eA [MVA]
P Power provided by connection point s s €Ny [MVA]
E; Linearized voltage at node ii € (Njp UNg) [p.u.]

comparable solutions, a salvage value was considered for computing the
NPC electric lines. The salvage value is computed assuming a linear
depreciation of components, a lifetime of 40 years for electric lines and a
project lifetime of 10 years. The following is the complete formulation of
the optimisation problem, where the parameters represent values that
are correlated to a certain set, whereas the scalars are single values used
in the optimisation. A detailed formulation of MILP in terms of sets,
scalars, parameters, and variables is presented in Tables 2-5.

The optimisation problem is constrained by the maximum loading of
the lines and substations, as well as a linearized nodal voltage formu-
lation. The voltage drop in lines i-j is computed using the well-known
linear approximation [52] over a radial network presented in (11):

_RP+X-Q

AE
En

1n
where R and X are the line resistance and reactance, respectively; P and
Q are the active and reactive power flows on the lines, respectively; and
En is the nominal voltage.

Similar to the approach for the internal grid presented in Section 3.5,
the optimisation formulation is represented as a weighted graph with
nodes and lines. The load nodes (Nj,) are represented by the secondary
substations (N;) and intersection points of the internal MV networks
obtained using the procedure detailed in 3.4 (N;,), as well as the possible
points of connection to the existing grid (N,,). The weight of each load
node is represented by its power consumption (P.), which for secondary
substations is the value calculated in the previous block and adjusted
with an MV coincidence factor. The weight of the intersection points is
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zero, as shown in (12).

Py,= {

The inclusion of intersection points increases the computational
burden of optimisation; however, it is necessary to obtain a complete
representation of the MV grid within the communities. Moreover,
fictional points (N.) were included in the MILP model to represent the
communities and correlate them with the respective off-grid options. In
this case, the weight of P.; is the sum of the loads of the points within
community i, allowing proper convergence of the load flow (13).

P.i= Zplp,j (l ENL')

jei

Pn x MV _coin,n € Ns

0,n € Nip a2

13

This procedure is viable for both green and brownfield expansion
projects. As such, the points of connection to the grid are generalised,
that is, they can represent not only primary substations, but also points
belonging to the existing MV network. As such, NPCy can assume
different values depending on whether connection point s is an existing
substation, a proposed substation, or simply a connection point in the
existing MV grid.

Following the procedure explained in Section 3.5, it should be
specified that the internal structure of the MV network is known and is
considered as a parameter in the optimisation procedure, following the
assumption that the structure of the MV network inside one cluster is not
affected by the overall expansion. This assumption allows for the anal-
ysis of a detailed expansion model of the grid while also considering the
option for off-grid solutions. For this reason, the set of all lines in graph
(A) is split between decision lines (A;), which are the proposed lines
connecting communities and points of connection to the existing grid,
and internal lines (A.), which represent the internal structure of the
communities. This bifurcation is important because the binary variable
X;; is assigned only to the decision lines. Moreover, the optimisation
formulation allows the inclusion of two different types of lines to allow
the model to build a realistic grid topology with a larger conductor on
the main branch close to the point of connection. In this case, two
different binary variables are required for the decision lines and one
binary variable for the internal lines.

The last input required for optimisation is the set of decision lines
(Ag), as other inputs have already been calculated in the previous blocks
of the procedure. These decision lines represent the least-cost paths
between two communities or between a community and a connection
point. The cost and length of the links were calculated by adopting the
cost-surface representation of the area described in Section 3.3.
Considering the typical structure of electrical grids, it is not necessary to
include as decision variables all possible connections between commu-
nities, because it is certain that the lines that are built will not jump over
communities. Moreover, we can safely assume that if a MV line passes
within or near a community, the optimal means of electrification will be
grid extension (such an assumption could be different for high-voltage
lines). Therefore, the optimisation procedure is simplified by drasti-
cally reducing the number of possible connections by adopting DT. The
procedure for identifying the decision links (A4) to be used as inputs to
the optimisation process is detailed in Algorithm 3.

Algorithm 3

Input: Communities (N ), Secondary substations(N), Connection points (N, )

Output: Decision links (4,4)

Step 1: Perform DT on N, obtaining acceptable links between N and N, -> Cyi—jy i € N, j € (Ng U Np,)

Step 2: For option in Cd,;;:

Agi—j=min (Dijkstra(n,m) V n € i, m € j ) ->Closest links between communities considering substations

Lg(;—jy= Length (A4i—j)) s Waq-j) = Cost (Aaq-j))

10



A. Dimovski et al.

28.400°E

Energy Strategy Reviews 49 (2023) 101171

18,6007

I8.800°5

4 -

@ Substations
Netvork Voltage [kKv]
- 11
—_— 12

33

66
— 88
— 132

B Resdential areas

. ] 0 25,  _15km
- -{ _ ..-
:.Em nfakp 66/118V 5" - % TS * . =

Fig. 6. Input information for case study.

The output of this procedure is a set of decision lines (A,), together
with the associated lengths (Ls) and costs (W,). Finally, the complete
parameters L and W are obtained, representing the lengths and costs of
both the decision and internal lines.

Because of the low-consumption profiles, it is considered that the off-
grid solutions could be designed as LV microgrids. Thus, secondary
substations and internal MV grids can only be built in communities
where electrification is considered an extension of national grids. For
this purpose, another parameter (NPCg,) was included, which represents
the net present cost of the secondary substations and the MV network
within community c.

Constraining the optimisation with limits for thermal loading and
maximum voltage drop is conditioned by the calculation of these pa-
rameters. First, the power on each line i-j was calculated using the
formulation of the First Kirchoff’s Law. Because the power supplied by
the points of connection is variable, two separate equations are required,
as shown in (14) and (15).

Z P,=P.;Vc e Ncp (14)
J:(j.c)eA
D Paj— > Pay=Pi;VIENip,#] (15)

Jj:Gid)eA e

in (14), the direction of the power is known, because it is clear that the
power is supplied by the connection point, which is equal to the sum of
the powers on the lines connected to it. However, for the remaining lines
(15), the direction of the power flow is unknown. Therefore, it is
important to include both the lines entering and exiting the node.
Moreover, it is important to clarify that a power-flow equation for fictive
microgrid nodes would be redundant, as that line is already implicitly
included in (15). Further, it is crucial to constrain the maximum power
of the lines according to the respective electrical parameters of the
specific conductor, while also constraining lines that are not built to

11

have a power equal to 0. To properly formulate this constraint, differ-
entiation is required between the decision and internal links, as detailed
in (16) and (17).

—Pax; <Py <Pax;V(i,j) € Ag (16)

—Py <Py <Py ;Y(i,j) € A, a7

The maximum loading constraint is also defined for the maximum
power that can be supplied by the connection points, while fixing the
power at 0 if the connection point is not used (18).

P,<P,Z;s € Npc (18)

Similarly, the formulation of the voltage drop must be split between
the decision and internal links to ensure that the equations are viable for
both built and unbuilt lines. However, owing to the uncertainty of the
binary variable x;, the voltage drop must be modelled as a double
inequality constraint, as shown in (19) and (20). However, this uncer-
tainty does not exist for the elements in A., thus one equality constraint
is sufficient (21).

u

P
(Eni— Enj) — (1—x5) <2

7 (rL,»j +xL;; cos (p) V(i,j) € Ag (19)
(Evi—Enj) + (1—x) > Z"’/ (rLy +xLy cos @) ;9(i,]) € Aa (20)
(En_,- — E,,:,-) =4 (rL,-j +xLj; cos (/;) ;V(i,j) € A 21)

Zrzf

Note that conversion to the per-unit system is performed using the
logic detailed in (22).

1
Vieg = Vo [kV]; Arp =1 [MVA]; Z,p = Vi
ref

(22)
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Table 6

Secondary substations spreadsheet.
Rated power [kVA] Cost [$] Rated power [kVA] Cost [$]
25 1000 100 2100
50 1500 200 2800

Once the nodal voltages are calculated, they are constrained by the
minimum allowable voltage. The voltage of the connection points
should be set according to the predefined logic that the primary sub-
stations have a set point of 1 p.u., whereas the points along the MV
network have a reduced voltage which is a function of the distance to
their respective primary substations, unless accurate information is
available. This is the input for the procedure. Furthermore, the voltage
setpoint of the fictive microgrid nodes is set to 1 to allow for proper
convergence of the optimisation.

E<Ey,;Vie Nip (23)

Ey, <E,;Vie (NpsUNmg) (24)

The balance equation (25) is necessary to ensure that all commu-
nities are electrified. The final constraint was the definition of radiality
in the network structure (26). It is clear that the least-cost solution is
always radial. However, the authors found that setting this constraint
aids the solver in reaching the optimal solution.

ZPSJ - ZPS - ZPC =0 (25)

sseNip seNcp ceNc

> xy=n. (26)

(ij)eA
4. Case study: Butha-Buthe

The proposed approach was applied to an electrification study of the
partially electrified region of Butha-Buthe in Lesotho as part of a
collaboration with the local DSO (Lesotho Electricity Company (LEC)).
The case study presents a brownfield electrification application, which,
in this case, increases the computational burden of the optimisation due
to the various options for points of connection for each community. The
area is already partially electrified with a distribution network at the 33
kV and 11 kV levels, and the Lesotho Master Plan for Electrification
(2018) plans to further extend it to isolated communities. Butha-Buthe
covers an area of 1776 km? with approximately 118, 000 inhabitants.
As a consequence of its heavily mountainous terrain with forests, the
deployment and maintenance of electric lines are associated with high
costs, making roads crucial in reducing the overall expenses. Owing to
the availability of community shapes on OSM (grey shapes of residential
areas) and the existing distribution network, as displayed in Fig. 6, the
final unelectrified clusters were obtained using the procedure detailed in
Fig. 2. In cooperation with the local DSO, connection points for the new
lines were identified based on the existing distribution grid and the
existing 33/11 kV substations. More details on this will be provided in
Section 5 that discusses the results from the study.

In terms of secondary substations, the spreadsheet with rated powers
available for electrification in Butha-Buthe and their associated costs are
detailed in Table 6. The OpEx considered for each type is 2% from the
initial cost, per year. Finally, the characteristics of the conductor sug-
gested by the DSO for use in the case of grid expansion are presented in
Table 7, with a nominal voltage level for grid expansion of 11 kV.

Table 7
MYV conductor.
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Table 8 details the specific parameters used for the simulations, such
as the maximum allowable length for the LV feeders and the cost of
electricity (CoE), along with the specific block of the procedure in which
they are used.

The geospatial data used to create the cost surface are listed in
Table 9. They are a mix of raster and vector layers which provide in-
formation on the elevation from which the slope layer is computed,
average river flow rate, penalized crossing of large rivers, and land
cover, with 10 different land cover types provided at high resolutions
and road paths.

For the energy demand assessment, load profiles were generated
starting from the MTF data and adapted to the energy and peak load
values considered in the Lesotho Master Plan for Electrification
(Table 10). The categories of users and the associated RAMP input pa-
rameters are reported in ANNEXURE B.

The parameters used in the input to the off-grid sizing procedure
were mainly taken from literature data and are reported in ANNEXURE
C, Table 15.

5. Results

Fig. 7 shows the output of the clustering procedure, adopted starting
from the shapes of the residential areas (grey polygons in the figure), as
described in Section 3.1.1. The values of the three input parameters are
listed in Table 8. The study identified a total of 72 communities in Butha-

Table 8
Project parameters.
Block Parameter Value Block Parameter Value
Block 1 DODthreshval 120 Block Res 200 m
people 3
Block 1 diStihresh 1000 m Block disc 95%
3
Block 1 Cthresh 150 m Block Cpt 0.75
3
Block Microgrid project 10 years Block Emin 0.9 p.u.
2&4 lifetime 4
Block Power Factor 0.9 Block Grid 40 years
3&4 4 lifetime
Block 3 LVinax 1000 m Block CoE 150
4 €/km

Table 9

Sources for geo-spatial data for Butha-Buthe.
Data Type Source
Elevation Raster-30 m NASA SRTM Digital Elevation [58]
Landcover Raster-30 m ESA Landcover CCI [59]
Protected Areas Vector-polygons World Database on Protected Areas [60]
Roads Vector-lines [61]

Table 10
Energy needs of different categories of users (Butha-Buthe).

User Peak Power [kW] Energy [MWh/year]
Households 0.4 2.8

Schools 0.8 12.6

Health Centres 1.5 15.4

Churches 0.5 3.7

Other Businesses 0.8 5.9

Type r[Q/km] x[Q/km]

Imax [A]

Conductor cost [$/km] Deployment Cost [$/km]

Al-94mm2 0.306 0.33 350

5800 4200
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Fig. 8. Results of microgrid sizing procedure.

Buthe that need to be electrified, with population ranging from 120 to
3477, totalling 46536. These communities represent 39.4% of the total
population in Butha-Buthe. Each community is labelled with an integer
representing its ID and coloured based on its population size.

Due to the unavailability of specific data on the communities’ load
demand composition, a generic load profile in p.u. was estimated for the
case study. Then, for each community, this load profile was scaled ac-
cording to the respective population size. These load profiles are useful
for dimensioning the microgrid solutions for each community. The peak
load associated with each household for the purpose of dimensioning the
infrastructure in the case of a grid extension was instead defined starting
from data provided by the DSO and set equal to 0.5 kW, which is higher
than the peak power of the estimated energy profile. This is because,
during the grid expansion planning phase, the DSO must consider the
worst-case scenario, considering a larger load growth than forecasted.
However, over-dimensioning a microgrid can drastically increase the
initial investment, having a detrimental effect on its economic

13

200 400 B0 1000

[k€]

Fig. 9. Probability density function of microgrids’ NPC.

feasibility.

The community load profiles and availability of RES in the area, as
well as the techno-economic parameters reported in ANNEXURE C, were
used to run MILP optimisation for hybrid microgrid sizing. The results
for each community, in terms of the sizes of installed components, are
reported in Fig. 8. The solution with a diesel generator was not selected
in 54% of the communities, where the 100% renewable solution was
found to be more suitable. Wind technology, on the other hand, was not
found to be convenient for any of the communities. The microgrids’ NPC
ranged from a minimum of 32 k$ to a maximum of 954 k$, with the
probability distribution shown in Fig. 9.

As previously described, the solution obtained for the stakeholder is
both a geospatial distribution of the equipment to be deployed and a list
of the equipment and its related costs. A weighted point-based repre-
sentation of the terrain, that is, the cost surface is shown in Fig. 10.
Lesotho has a very challenging terrain, with numerous mountains and
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Fig. 11. LV grid routing.

dense forests, which makes deploying electrical lines difficult (repre-
sented by yellow points with weights up to 7.27). However, the road
network is well-developed, which enables more cost-effective deploy-
ment and maintenance of electrical lines. The algorithm recognizes this
fact, and thus the points representing the roads are darker and have
values approaching one.

The internal grid routing analysis revealed that 37 communities
required only one secondary substation owing to their small size, and
therefore, no MV grid was needed to interconnect users within the

Table 11

Connection points to the existing grid.
Type of connection Power [MVA] Voltage [p.u.] Cost [$]
Primary substation 5 1 1250
MYV connection point 2.5 0.97-0.99 750
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community. The remaining communities had between 2 and 10 sub-
stations, indicating a larger size and thus, an internal MV grid. The
probability density function of the length of the LV grids of each com-
munity is shown in Fig. 11a, while Fig. 11b shows the details of how the
grid is routed, following existing roads. The identified length of the MV
grids ranged from a minimum of 700 m to a maximum of 13 km.

The final step of the procedure is to input the location, estimated
available power, and per-unit voltage of the possible connection points
to the existing distribution grid. In the case study, eight connection
points were identified, four of which were primary substations and four
were connections to the 11 kV MV network. Due to lack of more accurate
values, the voltage at the primary substations was defined as 1 p.u.,
whereas the connections to the existing MV network have a voltage
between 0.97-0.99 p.u., depending on their proximity to the respective
primary substation. The complete list of the parameters used to
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Fig. 13. Zoomed-in off-grid communities.

Table 12

Final output.
Off-grid systems 4 NPC substations [k$] 270
Population electrified 46536 NPCyo LV [M$] 6.385
Secondary substations 180 NPCy49 MV [M$] 3.405
LV [km] 638.5 NPC;o MG [k$] 216.6
MV [km] 308.9 NPCy4o connections[k$] 82.5

represent the points of connection to the existing grid is presented in
Table 11.

Fig. 12 represents the overall electrification expansion plan for the
area, with the upper image presenting the overall view and the lower
showing a specific segment to appreciate the level of detail and output in
terms of the steady-state voltage for each secondary substation. The
eight connection points to the in-place MV grid are coloured according
to the per-unit voltage associated with them. In the magnified image, the
secondary substations are coloured according to the nominal power that
they must supply. Four communities were identified for electrification
with off-grid systems, whereas the others were connected to the existing
grid either directly or through other communities. The characteristics
that make the algorithm identify communities 6, 19, 31, and 49 as
suitable for off-grid electrification are manyfold and help explain the
importance of an integrated optimisation rather than an a priori analysis
(Fig. 13). They are small communities, with three having a population
below 150 inhabitants and one (community 19) having a population of
217 people; therefore, they are among the smallest in the area, as shown
in Fig. 7. Communities 6, 19, and 31 were also far from the in-place grid,
with distances of the first two of approximately 20 km and of the third
being 12 km. Community 49, on the contrary, is closer, at a distance of
just a couple of kilometres. Nevertheless, as in the other three off-grid
communities, it is poorly interconnected with the rest of the area and
is located in a valley without direct road connections. Finally, another
factor that influences the choice is the distance between communities; in
this case community 19, which is surrounded by difficult terrain, is at a
distance of 5 km from the closest one. In conclusion, none of these in-
dicators alone would be able to explain the choice of one strategy over
another, and it is only the integrated optimisation that allows capturing
complex interrelations among all aspects and provides a holistic
solution.

Finally, a complete overview of the costs and equipment used is
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presented in Table 12. The total investment required to electrify 46 536
inhabitants of Butha-Buthe is close to 10 million.

6. Conclusion and future directions

The procedure proposed in this study is a holistic cost-effective tool
for rural electrification planning aimed at assisting stakeholders in the
decision-making process, with the provision of detailed expansion plans
and cost estimates. It promotes the use of open-source data and is freely
available for adoption and improvement. While the state-of-art litera-
ture propose a criterion for determining the means of electrification
solely as a function of the distance to the electrification network [20], it
should be noted that each case is unique and that factors such as load
demand, terrain, and population sparsity play a significant role in the
optimal electrification plan.

With all the novelties and advancements that this approach brings to
the table, it is important to list some of the assumptions made, which are
similar to the state-of-the-art. For example, the formulation of the
optimisation lies within the hypothesis that there is no correlation be-
tween additional consumption and the price of electricity, which is
reasonable for a mid-sized expansion project such as the case study in
this study. However, when moving to a country-scale analysis, the status
of the generation portfolio and the HV network should also be consid-
ered. Moreover, the reliability of the national grid and the associated
energy costs were not considered, which could be addressed in future
studies. Finally, according to the authors, an even more challenging task
for future research in this area would be to consider a time-based
approach that also takes into account the time to electrification.
Including the time dimension in the electrification planning process
would be a challenging but crucial step, as it would enable stakeholders
to analyse the optimal electrification means for each community based
not only on a snapshot cost estimation but also on the time required to
deploy electrical infrastructure. Thus, the fact that distant communities
would remain unelectrified for a long time if a grid extension strategy
was chosen could be considered in the optimisation function as energy
not supplied. In this case, the options to first deploy a microgrid and then
connect it to the national grid can be analysed. However, this would
require a comprehensive analysis of the national grid code and the
ability of the system to foster generation units in the distribution
network. Ultimately, this would also be beneficial for improving the
reliability of the entire network and benefit the planning process as a
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ANNEXURE A.

Table 13
Coefficients used for the cost surface creation

Attribute Value Linear-coeff Material-conductor Material-poles Material-additional Works Permission O&M
Cost (fraction) 0.18 0.36 0.06 0.22 0.18 0.02
LandCover 1 Trees 0 0 0 4 0 4
LandCover 2 Shrubs 0 0 0 1 0 1
LandCover 3 Grassland 0 0 0 0 0 0
LandCover 4 Cropland 0 0 0 0 4 0
LandCover 5 Aquatic vegetation 0 2 0.1 4 0 4
LandCover 6 Sparse vegetation 0 0 0 1 0 1
LandCover 7 Bare areas 0 0 0 0 0 0
LandCover 8 Built up areas 0 0 0 0 1 0
LandCover 9 Snow and/or ice 0.2 2 0.1 2 0 2
LandCover 10 Open water 10 0 10 6 0 6
Road Distance <100 m 0 0 0 0.1 0 0.1
Road Distance <500 m 0 0 0 0.2 0 0.2
Road Distance intercept 0 0 0 0.2 0.2
Road Distance Angular coefficient 0 0 0 0.000833 0 0.000833
Slope <2° 0 0 0 0 0 0
Slope <5° 0 0.1 0 0.1 0 0.1
Slope <10° 0 0.5 0 0.5 0 0.5
Slope <20° 0 2 0 2 0 2
Slope >20 0 10 0 10 0 10
Protected areas 0 0 0 0 100 0
Rivers >100 0 10 2 10 0 10

ANNEXURE B.

Table 14

RAMP input parameters
Appliance nij Pij fwij Rfwij feij feij Rftij

w] [h] % [h1] [h] %

Health-urban
Internal Lights 36 20 8-12; 14-24 20 3 12 20
External Lights 15 25 16-24 20 13 13 20
Phone charger 10 5 0-24 20 0.5 5 20
Sterilizer 2 1500 6-22 20 0.5 1 20
TV 3 60 7-17 20 0.5 2 20
PC 10 50 8-12;17-24 20 0.1 5 20
Fridge 4 250 0-24 20 0.5 20
Fridge2 2 500 0-24 20 0.5 20
Microscope 3 200 7-17 20 0.5 3 20
Centrifuge 3 200 7-17 20 0.5 5 20
Monitor 3 50 7-17 20 0.5 5 20
School
External Lights 4 25 17-06 0 5 5 0
Internal Lights 18 20 7-17 0 5 5 0
PC 13 50 7-17 0 10 10 0
TV 3 60 7-17 0 10 10 0
Worship
External Lights 3 25 16-21 0 7 7
Internal Lights 8 20 16-21 0 7 7
TV 1 20 16-21 0 2 6 30

(continued on next page)
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Appliance nij Pij fwij Rfwij feij fiij Rftij
wi [h] % [h] [h] %
PC 1 5 16-21 0 1 3 90
Merchants
External Lights 2 25 16-22 0 6 6 0
Internal Lights 3 20 16-22 10 6 6 0
Freezer 1 300 10-18 0 8 8 0
Sound System 1 20 10-22 0 2 6 30
Phone Charger 1 5 10-22 0 1 3 90
Fan 1 80 10-22 0 3 6 10
Tailors
External Lights 1 25 16-19 0 3 3 0
Internal Lights 3 20 16-19 0 4 6 10
Phone Charger 1 5 10-19 0 1 3 90
Radio 1 5 10-19 0 3 6 25
Fan 1 60 10-19 0 3 6 30
Barbers
External Lights 1 20 16-19 0 7 7 0
Internal Lights 3 15 16-19 0 4 6 10
Radio 1 5 10-19 0 1 5 25
Phone Charger 1 5 10-19 0 1 3 90
Households Tier 3
Internal Lights 8 5 18-03 20 0.5 5 20
Phone charger 4 5 0-10; 13-16; 18-24 20 0.5 3 20
Radio 1 5 6-10; 17-24 20 0.5 5 20
External Lights 1 7 18-7 20 1 12 20
TV 1 90 8-15; 17-24 20 0.15 4 20
PC 2 60 8-24 20 0.15 4 20
Fan NN 2 60 424 20 0.15 6 20
Fridge -1 200 0-24 20 0.5 20
Food processor 2 350 18-20 20 0.15 0.5 20
Water pump NNN 2 60 1201 20 0.15 3 20
Rice cooker 2 60 12—-15; 20-01 20 0.15 1 20
Households Tier 4
Internal Lights 16 7 18-03 20 0.5 5 20
Phone charger 4 5 0-10; 13-16; 18-24 20 0.5 3 20
Radio 1 5 6-10:17-24 20 0.5 20
External Lights 2 7 18-7 20 1 12 20
TV 1 150 8-15; 17-24 20 0.15 4 20
PC 2 60 824 20 0.15 446 20
Fan 2 60 424 20 0.15 6 20
Fridge 2 300 0-24 20 0.5 20
Food processor 2 350 18-20 20 0.5 1 20
Iron 1 1000 620 20 0.5 1 20
Ari dryer 1 1000 17-24 20 0.15 0.5 20
Toaster 1 1000 6-9; 18-21 20 0.15 0.5 20
Microwave 1 700 6-9; 11-14; 18-21 20 0.15 1 20
ANNEXURE C.
Table 15
Input parameters of microgrid optimisation
Symbol Parameter Value U.M.
F Cost of fuel 0.75 [$/1]
y project lifetime 10 [years]
Na number of typical days 12 [day/year]
ENS maximum energy not supplied 5 [%]
RES minimum energy produced by RES 0 [%]
Yd load forecast error 0.1 [0-1]
Ypu PV forecast error 0.1 [0-1
WT forecast error 0.25 [0-1]
ir Interest Rate 0.06 [0-1]
PV modules
Cp Unitary capacity 1 [kwW]
CC2 Capital cost 1400 [$/unit]
Mp ylife O &M yearly cost Lifetime 1020 [$/unit/y][years ]
Wind turbine
Cu Unitary capacity 10 [kW]
CCW Capital cost 27000 [$/unit]
M O &M yearly cost 540 [$/unit/y]
Ylife Lifetime 20 [years]
Diesel generator
Symbol Parameter Value U.M.

18
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Table 15 (continued)
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Symbol Parameter Value U.M.

Cg Unitary capacity 16 [kW]

CCg Capital cost 11000 [$/unit]
M. Hlife O &M hourly cost Lifetime 0.215000 [$/unit/h J[hours ]
A cost coefficient 0.4672 [1/h]

B cost coefficient 0.3 [1/h/kW]
Pg Min Power of DG 0.3 [0-1]
BESS

Cb Unitary capacity 1 [kWh]
CCb Capital cost 400 [$/unit]
M O &M yearly cost 10 [$/unit/y]
Hlife Lifetime 3000 [kWh]
ylife Lifetime 15 [years]

nb efficiency 0.975 H

PQb maximum BESS power-to-energy ratio 1 [kW/kwh]
DOD maximum BESS depth of discharge 0.9 [0-1]
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