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Non-Hermitian (NH) quasicrystals have been a topic
of increasing interest in current research, particularly
in the context of NH topological physics and materi-
als science. Recently, it has been suggested and exper-
imentally demonstrated using synthetic photonic lat-
tices that a class of NH quasicrystals can feature topo-
logical spectral phase transitions. Here we consider a
NH quasicrystal with a uniformly-drifting (sliding) in-
commensurate potential and show that, owing to viola-
tion of Galilean invariance, the topological phase tran-
sition is washed out and the quasicrystal is always in
the delocalized phase with an entirely real energy spec-
trum. The results are illustrated by considering quan-
tum walks in synthetic photonic lattices.
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Quasicrystals are special structures that exhibit long-range4

order but lack translational symmetry [1]. Owing to the presence5

of non-crystallographic symmetry, quasicrystals have unique6

properties, such as metal-insulating phases and mobility edges,7

which can be described by Hermitian tight-binding Hamiltoni-8

ans with incommensurate potentials [2]. Non-Hermitian (NH)9

quasicrystals, describing systems with long-range order and10

with gain and loss or imaginary gauge fields, have attracted a11

considerable attention in recent research [3–26], particularly in12

the context of non-Hermitian topological physics and photon-13

ics [27, 28]. Non-Hermitian quasicrystals exhibit unique and14

exotic properties due to the combination of long-range order15

and non-Hermitian behavior. In particular, recent theoretical16

studies [3–7] have shown that certain NH variants of the Aubry-17

André model, a paradigmatic tight-binding model describing a18

one-dimensional quasicrystal, can feature a topological phase19

transition characterized by a spectral winding number. Re-20

markably, such a topological phase transition corresponds to a21

delocalization-localization transition and parity-time (PT) sym-22

metry breaking phase transition as well [3]. Such as a coinci-23

dence of metal-insulator, PT symmetry-breaking and point-gap24

spectral topological phase transitions have been experimentally25

demonstrated in recent experiments based on quantum walks26

of photons in synthetic lattices [29, 30].27

In non-relativistic wave equations, such as in the Schrödinger28

equation with continuous space and time, the physical phe-29

nomena are invariant under a Galilean transformation, which30

is reflected by the covariance of the Schrödinger equation31

for Galilean boosts [31]. This implies that any physical32

phenomenon, such as any phase transition, is not influenced by33

a relative motion of the underlying potential. However, on a34

lattice the discrete translational invariance of space, which re-35

sults in a non-parabolic energy-momentum dispersion relation,36

breaks Galilean covariance [32–34]. This means that a relative37

motion between the underlying lattice and any superimposed38

potential can deeply affect the system behavior [32]. For39

example, it has been shown that the upper limit of velocity40

spreading in the lattice can make any potential scatteringless41

when drifting at a sufficiently fast speed [35, 36], and that42

Anderson localization can be washed out by a sufficiently fast43

sliding disorder [37]. An open question is whether topological44

phase transitions in NH quasicrystals can be observed when the45

incommensurate potential drifts on the lattice.46

47

In this Letter we consider a NH quasicrystal, where the un-48

derlying NH incommensurate potential uniformly drifts at a49

speed v, and show that the topological phase transition is fully50

inhibited, even for arbitrarily small sliding velocities. Specifi-51

cally, we show that the system is always in the topological trivial52

phase, corresponding to the delocalized phase and entirely real53

energy spectrum. Suppression of the topological phase transi-54

tion in sliding NH quasicrystals can be explained by the inability55

of the drifting potential to dragg localized states. The results are56

illustrated by considering sliding photonic quasicrystals realized57

in fiber mesh lattices.58

We consider wave dynamics on a lattice with a superimposed59

sliding incommensurate potential, uniformly drifting at a speed60

v, which is described by the discrete Schrödinger equation (see61

e.g. [32])62

i
∂ψ

∂t
= −J[ψ(x+ a, t)+ψ(x− a, t)− 2ψ(x, t)]+V(x− vt)ψ(x, t)

(1)
for the wave function ψ = ψ(x, t), where a is the lattice period,63

J is the hopping amplitude and V(x) is the incommensurate64

potential. Specifically, we will consider a NH incommensurate65

sinusoidal potential defined by [3]66

V(x) = 2V0 cos(2παx/a + θ + ih) ≡ 2V0 cos(2παx/a + ϕ) (2)
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where V0 and ϕ = θ + ih are the amplitude and complex phase67

of the potential, respectively, and α is irrational Diophantine. As68

shown in Ref.[3], for the incommensurate potential at rest (v = 0)69

and for J > V0 a topological phase transition, corresponding to70

a change of a spectral winding number w [38] and to the simul-71

taneous delocalization-localization and PT symmetry breaking72

phase transitions, occurs as h is increased above the critical value73

hc = ln
(

J
V0

)
. (3)

Namely, for h < hc the energy spectrum is entirely real (unbro-74

ken PT phase) and all eigenstates are delocalized, corresponding75

to a trivial w = 0 spectral winding number, whereas for h > hc76

all eigenstates become exponentially localized and the energy77

spectrum becomes complex (broken PT phase), corresponding78

to a nontrivial winding number w = ±1 [3]. The non-vanishing79

winding number w in the broken PT phase is related to the for-80

mation of closed loops of the energy spectrum in complex plane;81

namely, w counts the number of times the complex spectral tra-82

jectory encircles any base point EB, internal to any closed loop,83

when the real phase θ varies from zero to 2π (see Supplemental84

document for more technical details).85

A main open and nontrivial question is whether such a phase86

transition persists for a sliding potential (v 6= 0). For a fast87

moving potential, we expect wave delocalization and thus sup-88

pression of the topological phase transition since the wave evo-89

lution on the lattice cannot follow the rapidly-oscillating incom-90

mensurate potential, which becomes scatteringless [35]. In fact,91

for v � 2Ja/α and taking into account that excitation on the92

lattice cannot spread at a speed faster than ∼ 2Ja, at a given93

spatial coordinate x the potential V(x, t) varies too fast in time94

to be followed by the wave on the lattice, so that on average it95

is washed out resulting in a potential-free lattice and delocal-96

ization: therefore, suppression of topological phase transition97

is expected for a fast sliding incommensurate potential. On98

the other hand, for a slowly-sliding potential one might expect99

that for h > hc the potential can adiabatically dragg all the100

exponentially-localized eigenstates of the system [37], in such101

a way that the topological phase transition is expected to be102

observable, may be at a shifted value of the critical parameter103

hc. The main and rather unexpected result of this work is that104

the phase transition is fully suppressed even for an arbitrar-105

ily small sliding speed v, namely the system is always in the106

delocalized phase with an entirely real energy spectrum regard-107

less of the value of the complex phase h. The main physical108

origin of phase transition suppression is ultimately rooted in109

the violation of Galilean invariance of the discrete Schrödinger110

equation (1) [32], i.e. the non-parabolic energy-momentum dis-111

persion relation E(px) = −2J[cos(pxa)− 1] in a lattice, and the112

inability of the moving incommensurate potential to dragg lo-113

calized wave functions. In fact, if Eq.(1) were covariant for a114

Galilean boost, which occurs for a parabolic dispersion relation115

[32–34], the phase transition would be observable for an ob-116

server moving with the sliding incommensurate potential, since117

the localization features of any eigenfunction is not modified118

when changing the reference frame. The Galilean invariance119

in Eq.(1) is broken for any finite value of lattice period a, i.e.120

because of space discreteness. Only in the continuous-space121

approximation, defined by the double limit a → 0 and J → ∞122

with Ja2 ≡ 1/(2m) finite (m is the effective mass in the parabolic123

approximation), the Galilean invariance is restored [32]; in this124

limiting case the energy-dispersion curve becomes parabolic,125

E(px) ' Ja2 p2
x = p2

x/(2m), and clearly the topological phase126

transition is never reached since J, hc → ∞ and the system is127

always in the delocalized phase.128

To prove that for a sliding incommensurate potential the sys-129

tem is always in the delocalized phase and the energy spectrum130

is entirely real, corresponding to a vanishing spectral winding131

number w = 0, let us rewrite Eq.(1) in the reference frame of132

the sliding potential. After letting X = (x − vt)/a, T = t and133

Φ(X, T) = ψ(aX + vT, T) in Eq.(1), one obtains134

i
∂Φ
∂T

= K̂Φ(X, T) + V(aX)Φ(X, T) ≡ ĤΦ(X, T) (4)

where the kinetic energy operator K̂ is given by K̂ =135

−2J(cos p̂X − 1)− (v/a) p̂X and where we have set p̂X = −i∂X .136

In the moving reference frame, the Hamiltonian Ĥ = K̂ +V(aX)137

is time independent, however unlike the continuous-space limit138

the additional term (v/a) p̂X in the kinetic energy operator can-139

not be removed by any gauge transformation, indicating break-140

down of the Galilean covariance of Eq.(1). The eigenfunctions141

φ(X) and corresponding energy spectrum E of Ĥ, shifted by 2J,142

are obtained from the spectral problem143

Eφ(X) = −J[φ(X + 1) + φ(X− 1)] + i
v
a

dφ

dX
+ V(aX)φ(X) (5)

with V(aX) = 2V0 cos(2παX + θ + ih). As shown in the Sup-144

plemental document, for any v 6= 0 the eigenfunctions to Eq.(5)145

are extended waves and the energy spectrum entirely real in-146

dependent of θ, regardless of the value of the complex phase h.147

This means that, even when h is much larger than hc given by148

Eq.(3), the sliding incommensurate potential is not able to dragg149

the exponentially-localized eigenstates of the Hamiltonian at150

rest, even for extremely small drift velocities, resulting in the151

delocalization of the wave functions. Here we briefly outline152

the main steps of the proof, leaving the technical details to the153

Supplemental document. Owing to the periodicity of V(aX)154

and since for v 6= 0 φ(X) should be a continuous differentiable155

function, we look for a solution to Eq.(5) of the Bloch form as a156

series expansion157

φ(X) = ∑
l

φl exp(−iµX− i2πiαlX), (6)

where µ is an arbitrary parameter that varies in the range158

(−πα, πα). This yields a set of difference equations for the159

spectral amplitudes φl . An extended state is found whenever160

|φl | → 0 fast enough as l → ±∞, so that the series (6) is con-161

vergent. As shown in the Supplemental document, the spectral162

amplitudes φl display a Wannier-Stark localization, i.e. higher163

than any exponential, for l → ±∞, regardless of the value of164

the complex phase h, and the energy spectrum is entirely real165

and independent of θ. This implies that the eigenfunctions are166

extended states and the winding number w trivially vanishes.167

We checked the predictions of the theoretical analysis by168

direct numerical simulations of the discrete Schrödinger equa-169

tion in the moving reference frame [Eq.(4)] using a standard170

pseudospectral split-step method. The solution to Eq.(4) for an171

infinitesimal propagation time step dT is written as Φ(X, T +172

dT) ' exp(−idTK̂) exp[−idTV(X)]Φ(X, T); in the numerical173

simulations, the kinetic energy propagator term exp(−idTK̂)174

is computed in the Fourier (momentum) domain, while the175

potential term exp[−idTV(X)] is computed in physical space.176

Figures 1 and 2 show typical numerically-computed evolution177

of the wave function amplitude |Φ(X, T)|, normalized at each178

time step to its norm, as obtained for a static (Fig.1) and slowly-179

drifting (Fig.2) potentials. The figures also depict the temporal180
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Fig. 1. Wave dynamics in the NH quasicrystal at rest. (a) Snap-
shots of wave evolution on a pseudocolor map (behavior of
normalized wave amplitude |Φ(X, T)|) for increasing values
of the complex phase h: (a1) h = 0.1; (a2) h = 0.5; (a3) h = 1.
Other parameter values are given in the text. The critical value
hc of the phase transition is hc = ln(J/V0) ' 0.223. In (a1) the
system is in the delocalized phase and the energy spectrum is
real; in (a2) and (a3) the system is in the localized phase with
complex energy spectrum. Panels (b), (c) and (d) show the
temporal behavior of (a) the norm P(T), (b) the wave packet
center of mass 〈X(T)〉, and (d) the second moment 〈X2(T)〉.
Curves 1,2 and 3 refer to the three increasing values of h of
panels (a).

behavior of the norm P(T) =
∫

dX|Φ(X, T)|2, wave packet cen-181

ter of mass 〈X(T)〉 =
∫

dXX|Φ(X, T)|2/P(T) and second mo-182

ment (variance) 〈X2(T)〉 =
∫

dX(X − 〈X〉)2|Φ(X, T)|2/P(T).183

Parameter values are J = a = 1, α = (
√

5− 1)/2, θ = 0 and V0 =184

0.8, corresponding to a critical value hc = ln(J/V0) ' 0.223 for185

the phase transition in the v = 0 case. As an initial condition, a186

narrow Gaussian wave function Φ(X, 0) ∝ exp(−X2/b2) of size187

b = 2 has been assumed in the numerical simulations. For the188

static potential (Fig.1), a clear delocalization-localization phase189

transition is observed as h crosses the critical value hc, with dy-190

namical delocalization and a bounded norm for h < hc, and191

dynamical localization with an unbounded norm for h > hc,192

in agreement with previous studies [3]. For a sliding potential,193

even for a relatively small drift velocity (v/a = 0.15) no phase194

transitions are observed as h in increased far above hc (Fig.2):195

wave delocalization is always observed with a norm which does196

not secularly grow. Figure 2(c) clearly indicates the inability197

of the sliding potential to dragg the wave function, since this198

would correspond to a locked (i.e. nearly time-independent)199

center of mass in the (X, T) reference frame.200

Suppression of the topological phase transition in a sliding201

NH quasicrystal could be observed in different physical plat-202

forms of synthetic matter, such as ultracold atoms in quasi one-203

dimensional lattices and photonic quasicrystals. Here we con-204

sider photonic quantum walks [29, 30, 39, 40] in optical mesh205

lattices [40], which have been recently used for experimental206

demonstrations of topological phase transitions and mobility207

edges in NH quasicrystals [29, 30]. Unlike other kinds of syn-208

thetic matter, in such synthetic photonic lattices moving poten-209

tials can be readily implemented (see e.g. [41]). The system210

consists of two fiber loops of slightly different lengths that are211

connected by a fiber coupler with a coupling angle β. Phase212

Fig. 2. Same as Fig.2, but for a slowly-drifting incommensu-
rate potential at the speed v/a = 0.15.

and amplitude modulators are placed in one of the two loops,213

which provide a desired control of the phase and amplitude of214

the traveling pulses [40] that realize the sliding NH incommen-215

surate potential. Light dynamics of optical pulses in the system216

is described by the set of discrete-time coupled-mode equations217

[29, 40–42]218

u(m+1)
n =

(
cos βu(m)

n+1 + i sin βv(m)
n+1

)
exp(−2iφ(m)

n ) (7)

v(m+1)
n =

(
cos βv(m)

n−1 + i sin βu(m)
n−1

)
(8)

Fig. 3. (a) Light dynamics in a quasicrystal at rest realized in
a synthetic mesh lattice for β = 0.98× π/2, V0 = 0.01, θ = 0,
α = (

√
5− 1)/2 and for a few increasing values of the complex

phase h: (a1) h = 0.3; (a2) h = 0.5, and (a3) h = 0.7. The critical
value hc of phase transition predicted in the continuous-time
limit of the quantum walk is hc ' 0.4514. Initial excitation of

the lattice is u(0)
n = δn,0 and v(0)n = 0. In (a1) the system is in

the delocalized phase with real energy spectrum, whereas in
(a2) and (a3) the system is in the localized phase with complex
energy spectrum. Panels (b), (c) and (d) show the temporal
behavior of (b) the beam power P(m), (c) the wave packet
center of mass 〈n(m)〉, and (d) the second moment 〈n2(m)〉.
Curves 1,2 and 3 refer to the three increasing values of h.

where u(m)
n and v(m)

n are the pulse amplitudes at discrete time219

step m and lattice site n in the two fiber loops, and 2φ
(m)
n com-220
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Fig. 4. Same as Fig.3, but for a sliding incommensurate poten-
tial with a drift velocity v = 0.005.

prises the phase and amplitude changes impressed by the mod-221

ulators. A sliding NH incommensurate potential is realized by222

assuming φ
(m)
n = 2V0 cos(2πα(n−mv) + ih) with |v| � 1. For223

a coupling angle β close to π/2 and for a weak modulation224

amplitude V0 exp(h)� 1, the light dynamics can be effectively225

described by the continuous-time model Eq.(1), with the dis-226

crete time m replaced by a continuous time variable t = m,227

x = n, a = 1 and with J = ±(1/2) cos β, V(x, t) = φ
(m)
n228

(for technical details see [42]). Wave spreading in the lattice229

is monitored by the time evolution of the second moment230

〈n2(m)〉 = ∑n(n − 〈n(m)〉)2(|u(m)
n |2 + |v(m)

n |2)/P(m), where231

P(m) = ∑n(|u
(m)
n |2 + |v

(m)
n |2) is the beam power at time step m232

and 〈n(m)〉 = ∑n n(|u(m)
n |2 + |v

(m)
n |2)/P(m) is the beam center233

of mass. For the quasicrystal at rest (v = 0), the onset of the234

phase transition as h is increased above the critical value hc can235

be experimentally observed by looking at the light dynamics236

for initial single-pulse excitation, u(0)
n = δn,0 and v(0)n = 0 [29].237

An example of light dynamics for v = 0 is shown in Fig.3 for238

parameter values β = 0.98× π/2, V0 = 0.01, α = (
√

5− 1)/2239

and θ = 0. For such parameter values, the effective hopping240

rate J in the continuous-time limit is J ' (1/2) cos(β) ' 0.0157,241

corresponding to a critical value hc = ln(J/V0) ' 0.4515 for the242

phase transition. The figure clearly shows a phase transition,243

from a delocalized phase to a localized phase and with a cor-244

responding qualitative different behavior of the beam power245

P(m) related to the transition from an entirely real to a complex246

energy spectrum, as h is increased above the critical value hc.247

For a sliding potential, the phase transition is suppressed and248

the system is always in the delocalized phase, as shown in Fig.4.249

In conclusion, we predicted suppression of topological250

phase transitions in slowly-sliding NH quasicrystals, which251

is ultimately rooted in the violation of Galilean invariance252

of the discrete-space wave equation. Our results shed new253

physical insights onto the main role of Galilean invariance in the254

appearance of topological phase transitions in NH quasicrystals255

predicted and observe in recent works [29, 30], and indicate256

that light dynamics in synthetic mesh lattices could provide an257

experimentally accessible platform for the observation of phase258

transition suppression due to Galilean invariance violation.259
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