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A B S T R A C T

With the rise of additive manufacturing technologies, artificial production of stochastic cellular materials is
becoming increasingly more feasible and convenient, exposing the need of accurate models able to predict their
mechanical properties. However, the construction of generalized predictive models for stochastic structures is
non-trivial: on the one hand, this is due to the several potential base materials, and on the other it is because
of the difficulty in implementing geometrically accurate numerical models. In light of these considerations,
the present work presents a systematic analysis of one the most known – and commonly used – stochastic
cellular structure, the Voronoi three-dimensional lattices; the aim is providing simple empirical relations
between the main properties of a generic base material and the compressive properties of the related additively
manufactured stochastic Voronoi reticulum as a function of its geometry. The investigation provides novel
insights on the mechanical properties of Voronoi reticula, highlighting superior efficiency with respect to
their natural counterpart, the open-cell foams, and exposing unsuitability of classical equations for accurate
prediction of their mechanical properties.
1. Introduction

Cellular materials have always risen interest in many fields of
science and engineering. Traditionally found in nature (trabecular
bones (Oftadeh et al., 2015), fungi (Nelson, 2021), honeycomb struc-
tures (Hales, 2001), etc.), natural cellular materials have evolved over
millions of years targeting achievement of specific functions, such as
providing strength and support, regulating temperature, and facilitating
gas exchange. Aided by the rise of effective manufacturing technologies
such as additive manufacturing and by the advancements in numerical
modelling methodologies, scientists have analysed and synthetically
reproduced such materials, reporting high specific performances (Gib-
son, 2003) such as strength, stiffness, impact resistance, thermal and
acoustic properties (Kumar et al., 2009; Fiedler et al., 2009; Wang
and Lu, 1999), and in general attractive multi-functional and ver-
satile behaviour (Rahman et al., 2022). Today, some of the several
applications are lightweight components for aerospace and automotive
engineering (Bornengo et al., 2005; Hohe et al., 2012; Patten et al.,
1998; Bisht et al., 2019), thermal/sound insulation (Ge and Zhai, 2018;
Arcaro et al., 2016), bio-medical and tissue engineering (Limmahakhun
et al., 2017; Wen et al., 2002), energy and impact absorption (Vesenjak
et al., 2008; Linul et al., 2014).
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Cellular structures may be classified in multiple manners. Amongst
those, one of the most widely accepted is the spatial arrangement
of the microstructure, non-stochastic or stochastic: the former, char-
acterized by regular topology consisting in periodic repetition of a
unit cell, are commonly orthotropic (Zhang and Ashby, 1992; Papka
and Kyriakides, 1998) with peculiar and often architected mechanical
properties different as a function of the loading direction (Maskery
et al., 2017); the latter, conversely, are characterized by randomatic or
quasi-randomatic geometries and consequent irregular patterns, typi-
cally reporting isotropy when sufficiently large to cancel out boundary
effects and when no directionality is caused by the production pro-
cess (Huber and Gibson, 1988). Another significant classification is
related to the topology of the cells, which may be closed (sheet-based)
or open (strut-based); the first category is commonly characterized
by higher densities and stiffness, while the second by lower densities
and higher flexibility (Chan and Nakamura, 1969; Azzi et al., 2004;
Andrews et al., 1999). For many applications isotropy is generally
desirable: for instance when loading condition could be not known a
priori and/or mechanical properties need to be valid in spite of the
loading direction. In these cases, stochastic cellular structures may be
looked at.
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Several studies on stochastic foams were published over the last
decades. Studies primarily focused on the experimental analysis of
open and closed-cell foams, which are found in nature (trabecular
bones) or can be generated artificially (polymeric, metallic foams):
the analyses provided wide knowledge on their thermal, acoustic and
mechanical behaviour (Davies and Zhen, 1983; Yu and Banhart, 1997),
later extended to strain-rate dependency for better understanding of
their energy absorption capabilities (Ouellet et al., 2006; Dannemann
and Lankford, 2000). Parallelly, two main strategies were considered
and studied for numerical reproduction of the foam behaviour. The
first, based on the studies of Lord Kelvin in the second half of the
XIXth century, exploits the so-called Kelvin cell, or tetrakaidecahedron,

convex polyhedron that showed for decades to be the best solution for
ptimal approximations of real foams (Sullivan et al., 2008; De Giorgi
t al., 2010) and still remains a valid tool for many applications (Sabet
t al., 2023; Kirpluks et al., 2023) thanks to its periodic nature allowing
elatively easy modelling buildups. The second strategy, more recent
nd driven by the will to better describe the stochastic nature of
he foams and analyse potentially better modelling solutions (Jang
t al., 2010), directly implements the randomness of the foams by re-
onstructing the geometry via Non-Destructive Inspections (NDI) such
s Computerized Tomography (CT) scans, by approximating it via
essellation procedures, and often by a combination of the two meth-
ds (Lautensack and Sych, 2006; Schladitz et al., 2012; Wejrzanowski
t al., 2013); in the last decade, this second strategy has rapidly
ecome the most used in scientific research, and allowed for accurate
econstruction and ultimately better understanding of the physics of
tochastic foams (Gaitanaros and Kyriakides, 2015; Stiapis et al., 2019;
hen et al., 2020; Wang et al., 2021; Al-Osman et al., 2023).

The aforementioned studies focused on the analysis, reproduction or
umerical modelling of natural and artificial foams, while as of today
ittle research has been provided for the modelling of three-dimensional
trut-based Voronoi lattices; in fact, even if the second have been
istorically used for the approximation of the first via the procedures
escribed above, the two geometries have fundamental topological
ifferences that is here hypothesized could potentially affect their
echanical behaviour: in particular, natural foams are characterized

y smooth and filleted geometry, while lattices are more similar to
heoretical structures such as truss-based or thin-walled engineering
onstructions. The need to dive into comprehensive numerical analyses
f ideal Voronoi reticula to confirm or confute such hypothesis has
ot emerged in the last two decades for the main reason that such
dealization has been used for approximating natural geometries, and
deal lattices were simply not of interest as not found in nature. With
odern manufacturing technologies however, it is today possible to

arget the most efficient structural configurations at the smallest scales,
nd the need of reliable predictive models for ideal stochastic structures
s becoming increasingly more evident.

First notable publications on the subject have been authored be-
ween 2015 and 2018, when G. Maliaris et al. studied experimentally
nd numerically the response of Voronoi lattices exploiting investment
asting techniques for A1100 aluminium and AISI304 steel (Maliaris
t al., 2016) and SLA (Stereolithography) additive technologies for
he Asiga PlasGRAY photopolymer (Maliaris and Sarafis, 2017); to
he authors’ knowledge, these studies remain today the only anal-
ses based on solid-meshed numerical models, even if it was later
hosen to abandon such technique in favour of homogenization solu-
ions (Maliaris et al., 2018). Later, comparison with regular topologies
as provided for the mechanical properties of additively manufac-

ured Al6101, Ti6Al4V and AlSi10Mg lattices (Mueller et al., 2019;
aghavendra et al., 2021; Shinde et al., 2022), while thermal behaviour
f Ti6Al4V specimens was analysed in another notable study (Zhang
t al., 2021). More recently, effects of irregularities in PA12 samples
ere investigated (Okubo et al., 2023). Essentially, all these studies
2

ave treated either the evaluation of the behaviour of a single material
as a function of the geometrical parameters or the analysis in com-
parison with other topologies, or both. As a consequence, as of today
literature still lacks a comprehensive predictive model for a sufficiently
wide range of base materials not based on classical studies on open-cell
foams, with geometrically accurate numerical models for evaluation
of the Voronoi topology compared to such foams, and considering
uncertainties over randomness and boundary effects.

Consequently, the present work focuses on three-dimensional
stochastic Voronoi reticula and systematically studies its static com-
pressive behaviour as a function of its main design and material
parameters via high-quality solid-meshed numerical models, comparing
the results with classical literature equations commonly used for the
approximation of open-cell foams. The purpose is on the one hand to
deepen the scientific knowledge on the behaviour of stochastic meta-
materials, on the other to provide simple empirical models capable
of predicting the structural parameters of Voronoi reticula for any
base material, useful especially for design engineers active in the field
of additive manufacturing. In contrast to most related literature, the
present work systematically exploits solid meshes for the construction
of generalized, predictive models for Voronoi lattices, as the authors
believe that the beam theory is not applicable with suited accuracy for
the scope of the work; such choice is justified later on in the document.
It is ultimately shown, and proved within reasonable uncertainty by
comparison to literature equations, that for three-dimensional strut-
based Voronoi lattices a limited density variation with respect to
their natural counterpart actually corresponds to notable variations of
mechanical properties.

The document is structured as follows. The next section (Section 2)
provides detailed description of the selected construction methodol-
ogy for the Voronoi reticula, with considerations on contributions
of boundary and stochasticity effects, geometrical and material pa-
rameters and FEM (Finite Element Method) modelling build-up. Then
(Section 3), parametric analyses are reported, with focus on density,
randomness and boundary effects and finally base material properties;
subsequently, validation of the results through simple experimental
tests on purposely-designed specimens is presented. Last, results are
discussed and conclusions are drawn.

2. Material and methods

2.1. Perfect and non-perfect voronoi foams and literature approximations

Three-dimensional Voronoi reticula have traditionally been treated
as open-cell foams, or Voronoi foams, and vice versa. Pioneering studies
on such reticula have been published, amongst others, by L. J. Gibson
and M. F. Ashby throughout the ’90s and mid ’00s (Gibson, 2003),
providing simplified analytical equations for relative density, stiffness
and collapse stress. Such authors grouped Voronoi foams based on their
macroscopic compressive behaviour: elastomeric, elastic–plastic and
brittle foams. The first show a large elastic phase typical of elastomers,
the second are characterized by a plastic yielding collapse stress, the
third present an oscillatory plateau caused by brittle crushing (Fig. 1).

Despite the evident differences, all the three show the typical com-
pressive behaviour appreciated in most of cellular materials: initial
elastic phase, collapse plateau and densification. Without diving quan-
titatively into the base material properties and peculiar collapse modes
of each subcategory, an optimal behaviour in terms of uniformity and
stability of the collapse phase can be identified in the elastic–plastic
case: in fact, while elastomeric foams present hardening due to elastic
buckling and brittle foams show highly unstable collapse, the plastic
yielding seem to guarantee quasi-constant collapse stress. As such,
the present work focuses on the analysis of Voronoi foams based on
ductile plastics and metals, in other words foams for which predicted

behaviour is elastic–plastic, theoretically described as a function of the
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Fig. 1. Compressive behaviour of stochastic foams.
Source: Plots are re-created from Gibson (2003).
Fig. 2. Natural and artificial foams (left, August and Nestler (2020)) vs perfect Voronoi reticula (right).
relative density (RD) by the Gibson–Ashby relations provided below
(Eqs. (1), (2), (3)):

𝑅𝐷
( 𝑡
𝑙

)

= 𝐶
( 𝑡
𝑙

)2
(1)

𝐸𝑟𝑒𝑡 = 𝐶 (𝑅𝐷)2 𝐸 ≈ (𝑅𝐷)2 𝐸 (2)

𝑌𝑟𝑒𝑡 = 𝐶 (𝑅𝐷)3∕2 𝑌 ≈ 0.3 (𝑅𝐷)3∕2 𝑌 (3)

where 𝑡 and 𝑙 are strut thickness and length, 𝐸 and 𝑌 elastic modulus
and yield stress of the base material, 𝑅𝐷, 𝐸𝑟𝑒𝑡 and 𝑌𝑟𝑒𝑡 relative density,
stiffness and collapse stress of the reticulum.

These equations, primarily based on experimental studies, can be re-
ferred to classical open-cell foams, characterized by three-dimensional
fillets present at each node (Fig. 2), inevitably found in natural foams
such as trabecular bones as nature strives to avoid stress-concentrating
sharp edges; analogously, artificial polymeric and metallic foams follow
the same physical laws. Natural foams and their artificial reproductions
could then be identified as geometrically imperfect reticula characterized
by composition of filleted beams, with substantial differences from
ideal stochastic reticula, free of any fillet and created by direct compo-
sition of three-dimensional beams, with highest proximity to an ideal
reticulum, composition of one-dimensional rods. In that sense, the latter
may be identified as perfect reticula, where such term is referred to
the proximity to an ideal reticulum, the configuration of maximum
structural efficiency. In another sense, they could be described as a
subcategory – optimal in terms of specific properties – of natural foams.
3

2.2. Voronoi generation

The construction of a generic cellular reticulum is, in principle,
fairly simple: it is a union of multiple elementary geometries such as
prisms, cylinders, cones. However, when practically approached, the
task requires to compute the boolean union of several base geometries
to get to the finalized structure and the simplicity of such base ge-
ometries is not sufficient to make the problem less costly. Moreover,
Voronoi reticula are stochastic geometries, based on the homonymous
tessellation scheme computed over a generic set of sample points; as
such, further difficulty in their three-dimensional modelling lies in
the absence of periodicity, which prevents to exploit cell-repetition
schemes.

With the ascent of additive manufacturing technologies and the
so-called Generative Design and Design for Additive Manufacturing
(DfAM), the problem of cellular geometries generation – valid not only
for beam reticula but for any cellular shape – has been approached
with the aid of implicit modelling (Nguyen et al., 2021), which allows
to strongly reduce the computational cost when the geometry is made
of several repetitions of elementary base geometries. Nonetheless, in
the present work implicit modelling solutions were set aside, as, to
the authors’ knowledge, all implicit modelling softwares targeted at
cellular structures’ design are today commercial and rather expensive:
first obvious consequence in the use of such softwares would be difficult
reproduction of the study results, or at least its dependency on those
softwares themselves; second one would be a partial control over
the geometry creation, fundamental to pursue a systematic analysis.

Consequently, it was decided to carry out the design and modelling
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Fig. 3. Poisson disk sampling in two dimensions: on the left, 285 random samples; on the right, 285 samples obtained through the Poisson disk algorithm with threshold set to
5 units.
phase only through open-source softwares. Voronoi reticula have been
generated starting from random three-dimensional point clouds, subse-
quently tessellated under the Voronoi scheme and bounded by cuboid
shapes. The generation mainly relies on Gmsh (Geuzaine and Remacle,
2009) and in particular its Python API (Application Program Interface)
for optimal control. Concurrently to the geometry generation, Gmsh is
exploited to compute high-quality tetrahedral mesh for subsequent FEM
analyses.

2.2.1. Point cloud generation
The point cloud generation is a first key step for the structure design:

in order to obtain a functional Voronoi structure, it is paramount
to maintain stochasticity while guaranteeing uniform strut distribu-
tion. Such two requirements are however colliding, as pure random
point distribution would be intrinsically non-uniform while uniform
distributions are in fact regular distributions. The problem is here
overcome by using quasi-random point clouds via the Poisson disk
sampling algorithm. Such algorithm, based on the work of Siméon
Denis Poisson (the Poisson distributions) and largely used especially
in the field of computer graphics (Crow, 1977; Cook, 1986), is today
general accepted as one of the best sampling patterns for a wide range
of applications (Lagae and Dutré, 2008).

In practice, the Poisson disk algorithm here used is implemented
through the classical dart-throwing scheme (Cook, 1986), indubitably
the simplest between the ones available today in terms of implemen-
tation efforts and consisting in randomatic generation of points, with
acceptance or rejection based on their distance to any other previously
generated point: if the newly generated point is farther from any other
previously accepted sample by more than a fixed threshold, the point
is accepted. Clarifying pictures of two-dimensional subcase can be
appreciated in Fig. 3, while effects on the reticulum structure is showed
in the subsequent paragraph 2.2.2, Fig. 5. The scheme can be practically
compared to the act of randomly throwing darts towards a circular
target centred to the nearest accepted sample point, with the peculiar
objective of striving to miss the target to gain a new successful throw;
thus explained the aforementioned name.

Within the Poisson disk algorithm only two parameters are needed
to completely define the sampling: one is the minimum distance be-
tween any points, the other is the termination condition. The first is
actually the first structural parameter, and if set constant through-
out the whole volume is a single scalar univocally determining the
reticulum. The minimum distance is treated later on in the present
section, paragraph 2.3. On the contrary, the termination condition
is not geometry-related nor topology related; it is instead natural,
inevitable heir of the sampling method. As such, in order to proceed
with a systematic parametric analysis it is important to cancel out its
effects, or – more likely – to push those effects to reasonably negligible
values. As no direct correlation is evident with the structural behaviour,
4

the problem is treated within the sampling phase, evaluating conver-
gence in terms of finalized number of sampled points after termination.
Sampling is performed on a 20 × 20 × 20 mm cube,1 with minimum
distance set at 4 mm. The termination condition is implemented by
limiting the maximum count of failed point generations per trial. Effects
of increasing thresholds, 102 through 106, are reported in Fig. 4.

Results provided in Fig. 4 show the total dart throws and the
finalized number of samples as a function of the termination condition:
the first curve, drawn in logarithmic scale, shows linear increase of the
computational costs as a function of the attempts threshold; the second
curve shows that convergence is obtained with reasonable error when
such threshold is set between 104 and 105, resulting in a number of
samples between 120 and 130 for the analysed case. In light of these
results, and in order to guarantee coherent data in terms of sampling,
limit condition for all subsequent sample generations is set to 105,
with an uncertainty error with respect to the converged value reported
at 5%. It is assumed that such 5% uncertainty over the converged
number of samples can be extended to any subsequent result reported
at Section 3.

2.2.2. Reticulum generation and mesh
Once point cloud generation method is established, the tessellation

is performed.
Briefly, the Voronoi diagram, output of such tessellation, is univo-

cally defined for a given set of 𝑁 points as the nearest-neighbour map
for that set of points. The tessellation partitions the n-dimensional space
in 𝑁 regions (Voronoi cells), each related to one of the points (nuclei)
such that any point inside each region is closer to its cell’s nucleus than
to any other nucleus. In two dimensions such tessellation translates in
a set of 𝑁 adjacent polygons, in three dimensions to a set of adjacent
polyhedra. In both cases, if edges are extracted a stochastic reticulum
is obtained.

The tessellation procedure can be carried out in multiple ways
and several algorithms have been created for efficient computation.2
In the present work tessellation is performed via the Python package
scipy.spatial.Voronoi, from the Scipy ecosystem (Virtanen et al., 2020)
calling the Qhull library (Barber et al., 1996). Voronoi edges are then
extracted and implemented in Gmsh (Geuzaine and Remacle, 2009)
through the Python API. Subsequently, still in the Gmsh environment,
the obtained reticulum is cut via OpenCascade Gmsh routines to fit into

1 Detailed information about bounding volumes for sampling and
tessellation are provided in paragraph 2.3.

2 It is here important to underline that as Voronoi tessellation is unique for
a given set of points, there is no manoeuvring space to variate the geometrical
parameters within tessellation phase, and as such the topology is univocally
determined once the point cloud is generated. The second, and last, topology
variation occurs in the choice of the strut properties, i.e. the cross sections.
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Fig. 4. Effect of Poisson disk sampling termination condition on the sample count. Semi-logarithmic scale is used for improved clarity.
Fig. 5. Voronoi tessellation in two-dimensions; point clouds are the same reported in Fig. 3.
a cuboid. Finalized geometry is obtained by creating cylinders for each
Voronoi edges, and finally performing a boolean union of all the struts.

When the geometry is obtained, the Gmsh API is used for a last
task, which is the tetrahedral meshing. Meshing is performed through
the most robust from the available algorithms in Gmsh, the ‘‘Delaunay’’
algorithm (Geuzaine and Remacle, 2003; Frey and George, 2007; Si and
TetGen, 2006). The choice of such solid meshing, which is known to
increase considerably computational costs with respect to simpler beam
meshes, is explained in paragraph 2.3, along with detailed overview of
the meshing parameters.

Scheme of the computational framework for the Voronoi design is
showed in Fig. 6.

2.3. Parameters’ definition and selection

The present section is dedicated to the definition of the Voronoi
structures and the parametrization which will determine the subse-
quent analyses’ steps.

2.3.1. Voronoi geometric parameters
Voronoi reticula built as described in the previous paragraph are

univocally defined by sampled points, bounding volume and strut cross-
section properties. In order to proceed with the analyses, these three
elements are here translated into two main parameters: Poisson min-
imum distance and strut diameter, respectively here named 𝜆 and 𝐷.
The first may be called characteristic length, as univocally determining
the reticulum: in a regular cellular geometry it would correspond to the
cell size (Fig. 7).
5

In order to provide a unique variable to describe the reticulum
topology, another parameter is then defined as follows:

𝛼 = 𝜆
𝐷

(4)

Such parameter is not only a mere density indicator but assumes
significant structural meaning, traceable to a slenderness ratio, providing
qualitative indication of the reticulum stiffness. The parameter 𝛼 is
useful to explain the need of a tetrahedral mesh and define the range
of interest.

In particular, if lengths of all the beams for a generic subcase are
analysed, it is reported that the aforementioned slenderness ratio is far
from being a representative parameter for every strut. In fact, by taking
one subcase, in particular one iteration of ‘‘L4D.8’’ (𝜆 = 4, 𝐷 = .8 mm),
it is shown (Fig. 8) that most of the struts present relative lengths (𝐿∕𝜆)
around 0.2 and 0.8, being 20%–80% of the minimum distance 4 mm.
It is worth noting that for a theoretical 𝛼 = 𝜆∕𝐷 = 5, local ratios reach
values down to 𝛼𝑙𝑜𝑐𝑎𝑙 = .2𝛼 = 1: translating in physical terms, a beam
with equal length and diameter.

The present result, especially evident at high relative densities but
valid for all slenderness ratios and peculiar of the Voronoi geometry,
is fundamental to understand that the applicability of the beam theory
for FEM analysis of Voronoi reticula could be rather problematic, and at
best would require a model-dependent validation phase to assure the
proper behaviour of each strut. Consequently, and being the present
study focused on the construction of predictive numerical models tar-
geted to parametric analyses, it was decided to proceed with a solid
tetrahedral mesh, not prone to such problem.

In terms of range of interest, preliminary analyses reported values of
𝑅𝐷 ∼ .3 for 𝛼 ∼ 2.5, meaning a minimum sampling threshold 2.5 times
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Fig. 6. Voronoi generation, computational framework.
Fig. 7. Characteristic length 𝜆, front and perspective view.
greater than the diameter: such value, conservatively beyond the limit
both for literature common thresholds (𝑅𝐷 = .2, Gibson (2003)) and for
assuring advantages in practical applications where mass minimization
is the primary objective, is taken in this study as the upper bound of
relative density for compliance to a Voronoi reticulum.

Subsequently, significant variables would be the characteristic dimen-
sions, which determine the cuboid dimensions in the three directions;
such variables may be defined as 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 in terms of units of cells:

𝑁𝑥 =
𝐿𝑥
𝜆

(5)

𝑁𝑦 =
𝐿𝑦

𝜆
(6)

𝑁𝑧 =
𝐿𝑧
𝜆

(7)

where 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 are the dimensions of the cuboid in 𝑥, 𝑦, 𝑧. For a
cubic shape: 𝑁 = 𝑁 = 𝑁 = 𝑁 . The parameter 𝑁 is significant
6

𝑥 𝑦 𝑧
for guaranteeing homogeneous behaviour avoiding boundary effects:
mechanical response of cellular solids is known to be sensitive to the
number of resisting cells, with strong variation of the properties when
such number is low. If conservative threshold for excluding this effects
is often accepted at 𝑁 = 10, for our purposes such value would lead
to enormous models and consequent unfeasible computational costs:
for this reason, for each of the analyses performed a preliminary cell
sensitivity study is carried out to find the lowest possible characteristic
dimension guaranteeing reasonably negligible boundary effects. It will
be showed later on through the document that for all the analysed
cases, 𝑁 = 5 turned out to be an acceptable threshold. For what
concerns the mesh sensitivity, analyses were acceptable for meshes
where maximum tetrahedral dimension was 1∕4𝑡ℎ of the diameter;
nonetheless, conservative choice of 1∕8𝑡ℎ was taken to safely neglect
consequences of mesh sensitivity. A fixed diameter of 0.8 mm was
chosen setting consequently 0.1 mm as mesh maximum dimension and
leaving 𝜆 as only variable for all the analysed cases. Overview of the
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Fig. 8. Distribution of strut relative lengths for subcase ‘‘L4D.8’’.
Fig. 9. FE models for geometries reported at Table 1 (left to right).
Table 1
FE models – mesh details.

N 𝜆 [mm] D [mm] 𝛼 [–] RD [%] avg. nodes [–] avg. elements [–]

5 3 .8 3.75 15.4 160,558 576,437
5 4 .8 5 9.3 535,422 2,176,548
5 6 .8 7.5 4.3 796,239 3,211,932
5 8 .8 10 2.3 1,133,336 4,560,546

mesh parameters for subcases with 𝑁 = 5 is provided in Table 1, while
front views of four models at different values of 𝛼 are shown in Fig. 9.

2.3.2. Material parameters
In terms of material properties, the purpose of the study is to

find generalized criteria for the prediction of stiffness (𝐸𝑟𝑒𝑡) and col-
lapse stress (𝑌𝑟𝑒𝑡) of Voronoi stochastic reticula for a generic material;
as such, selection of interesting materials is bound to the practical
usefulness and manufacturability of the structure itself. Traditionally,
the most used manufacturing technology for production of stochastic
open-cell foams has been the foaming process, effective in producing
components with extremely low relative densities down to 1%–2%,
both for plastics such as polyurethane or polypropylene, or metals as
aluminium; however, these processes are inevitably characterized by
limited control over the geometry. Investment casting with aluminium
and steel has also been successfully applied to manufacture complex
stochastic geometries, mostly for research purposes and for high rela-
tive densities. Today, the most effective manufacturing technology for
accurate production of reticula of such complexity is additive manu-
facturing, especially through plastic/metallic powder-based techniques
such as Selective Laser Sintering (SLS) or Binder Jetting (BJ) and
7

photopolymers-based techniques such as Stereolithography (SLA) and
Digital Light Processing (DLP). Useful materials may consequently be
grouped in two families: polymers and metals; families with variegate
mechanical properties not only between each other but also within the
same family, alloy, and often production batch.

Nonetheless, for the present work it was fundamental to provide
simple and predictive models without diving in detailed material analy-
ses, for two reasons: first, that few parameters are commonly available
in industry for standard purchases, especially for new or low perfor-
mant plastics and alloys; second, that modelling base materials with
accurate constitutive relations and failure implementations would ex-
ponentially increase the complexity of the models themselves, leading
to model-dependent results and suffocating the global perspective.

Consequently, a simplified constitutive relation, a bi-linear elastic–
plastic curve with zero slope plasticity trait, is considered sufficiently
suited for the purpose: only two main parameters are needed, young
modulus and yield stress. In terms of actual material properties, as
said, materials analysed are ductile polymers and metals. As such
the two aforementioned parameters are classified in six categories,
considering a fixed stiffness (𝐸) – commonly constant within the same
polymer/alloy – and a variable yield (𝑌 ). In particular, the following
ranges are considered:

1. low-performance polymers (LPP), 𝐸 = 1 GPa, 𝑌 = 10–70 MPa,
(polythene, polypropylene, . . . );

2. engineering polymers (EP), 𝐸 = 2 GPa, 𝑌 = 30–80 MPa
(polyamide, polycarbonate, ABS, . . . );

3. high-performance polymers (HPP), 𝐸 = 3 GPa, 𝑌 = 60–120 MPa
(PEEK, polyimide, . . . );

4. aluminium alloys (AL), 𝐸 = 68 GPa, 𝑌 = 100–500 MPa;



International Journal of Solids and Structures 284 (2023) 112501I. Colamartino et al.
Fig. 10. Stiffness vs. yield for common metals and thermoplastics and chosen ranges. Logarithmic scale is used for improved clarity.
5. titanium alloys (TI), 𝐸 = 140 GPa, 𝑌 = 150–600 MPa;
6. steel alloys (ST), 𝐸 = 200 GPa, 𝑌 = 200–800 MPa.

Values are chosen in order not to overcome physical boundaries,
in particular in terms of yield/stiffness relations. Fig. 10 shows such
relations for the categories involved.

Base material densities were chosen accordingly to average litera-
ture values, for instance 2.7 and 7.8 g/cm3 respectively for aluminium
and steel alloys.

2.3.3. Model setup and analyses outputs
Cellular solids described at the beginning of the current section

present, regardless of their base material but especially for elastic–
plastic cases, a bi-linear compressive behaviour with zero-slope collapse
stress. Such behaviour is completely defined by analogous parameters
as for the material base: stiffness (𝐸𝑟𝑒𝑡) and collapse stress (𝑌𝑟𝑒𝑡). No-
table is the fact that part of the curve is sufficient to define the whole up
to densification: assuming the behaviour reported at Fig. 1, compressive
analyses need only to be carried out up to collapse, or immediately
after. On the other hand, such approach prevents the appreciation of
the densification phase, which commonly triggers at strain values of
50%–70% (Li et al., 2006); however, densification phase is a drastically
different physical problem, where self-contacts and material failure are
much more significant. Given the necessity to keep simple modelling
strategies for the base materials and the purpose of providing simple
output relations, the issue is here considered beyond the scope of the
present work.

Neglecting contact and failure allowed to setup simulations with
the implicit scheme, much faster for static analyses. The bottom of
the reticula was constrained fixing the base nodes’ translations, while
the top nodes were imposed vertical translation at constant downward
velocity and null translations for the two horizontal degrees of free-
dom (Fig. 11(a)). Analysis outputs are then calculated as depicted in
Fig. 11(b): the reticulum stiffness (𝐸𝑟𝑒𝑡) is the tangent modulus, the
collapse stress (𝑌𝑟𝑒𝑡) is the maximum stress recorded. Example of a
compressive analysis is shown in Fig. 12.

3. Results and discussion

The present section reports the parametric analyses, the results
and the final discussion. Baseline are the findings collected by Gibson
8

Table 2
Density analyses – geometries.

Code 𝜆 [mm] D [mm] 𝛼 [–] N [–] avg. generations
per subcase

L2D.8 2 .8 2.5 3, 4, 5 3
L3D.8 3 .8 3.75 5 3
L4D.8 4 .8 5 3, 5, 6, 7 3
L6D.8 6 .8 7.5 5 3
L8D.8 8 .8 10 3, 4, 5 3

(2003), with the double purpose of validating the present models –
and the entire procedure – with that robust literature and dive into
the results to identify possible discrepancies.

First analysis is focused on density, producing fitted equations as
a function of 𝛼. Then, boundary and stochasticity effects are system-
atically studied in compression and tension and optimal values of
characteristic dimensions for subsequent analyses are found. The third
and most important phase is then the parametric analysis: compression
properties of reticula of various relative densities are reported, com-
pared and related to the literature relations valid for classical open-cell
foams. Last, validation is performed, with two different strategies for
plastics and metals.

3.1. Density

The first parameter under analysis is the relative density. Purpose
is to define a relation between the slenderness ratio 𝛼 and the rela-
tive density 𝑅𝐷 of the reticulum. In order to obtain reliable results,
paramount is the evaluation of cell sensitivity and boundary effects.

Consequently, a first analysis is performed on a selection of five
notable values of 𝛼, obtained fixing 𝐷 to 0.8 mm and variating 𝜆, as
reported in Table 2.

As seen in Fig. 13, the Voronoi reticulum has evident boundaries
which are non-conformal to the Voronoi tessellation but come from
the boolean cut; cut that produces a region where the struts are not
contributing to the structural response, as averagely linked to only one
of the sample points. In order to take the problem into account in
the density evaluation, such boundary is estimated to be half of the
characteristic length 𝜆, and the models are cut consequently, evaluating
their relative density before and after the cut.



International Journal of Solids and Structures 284 (2023) 112501I. Colamartino et al.
Fig. 11. Analysis setup and outputs.
Fig. 12. Example of compressive analysis.
It is important to note that such treatment is inevitably extended
to the calculation of any other global structural parameter: evaluation
of both global strain and stress for a cubic reticulum involves the
normalization of displacement (𝛥𝑧) and force (𝐹𝑧) with respectively
initial length (𝐿𝑧) and resisting area (𝐴0). Nonetheless, assuming that
the whole structure is contributing to the structural behaviour could
lead to misleading results, difficult to compare when different 𝛼 are
analysed. As such, all global parameters are calculated considering the
cut resisting cube, as follows (Eqs. (8), (9)):

𝜀𝑔𝑙𝑜𝑏𝑎𝑙 =
𝛥𝑧
𝐿𝑧

= 𝛥𝑧
𝜆(𝑁 − 1)

(8)

𝜎𝑔𝑙𝑜𝑏𝑎𝑙 =
𝐹𝑧
𝐴0

=
𝐹𝑧

𝜆2(𝑁 − 1)2
(9)

Subsequently, density is evaluated for increasing characteristic di-
mensions for all the subcases presented in Table 2. Measurement of
both the whole structure as it is once exited from the loop at Fig. 6 and
of the post-processed structure with adjusted boundaries are carried
out.

For the sake of brevity, full results of only one subcase are here
reported, in particular ‘‘L4D.8’’, 𝛼 = 5. Such results, reported in
Fig. 14, show hyperbolic trends with asymptotic relative density for
both measurement methods. Notable is the fact that the cut procedure
is characterized by a negative slope trend, while the other by a positive
slope; in other words, at low values of 𝑁 performing a cutting of the
boundaries as described above leads to overestimation of the density,
while measuring the density on the whole cubes leads to considerable
underestimation. Such peculiarity seems to suggest that an optimal
cutting value for density measurement may be present and worth
searching.
9

Analysing results in Fig. 14 from another perspective, it is clear that
the stochasticity effect reaches acceptable values when 𝑁 = 5, with
maximum standard deviation measured at 0.3%. The present result is
important as leads to a second analysis, a thorough evaluation of the
density for multiple values of 𝛼 at 𝑁 = 5, assuming negligible random-
ness effects for that characteristic dimension. It was decided to proceed
with the redundant double measurement methods and consequently
take as finalized values the averages: the choice is intended to project
the results to 𝑁 = ∞.

Final density results, reported in Fig. 15, follow an exponential trend
as a function of 𝛼, for which best fittings is reported below, Eq. (10):

𝑅𝐷 (𝛼) = 𝑎𝑒𝑏𝛼 + 𝑐𝑒𝑑𝛼 = (.28 ± .07) 𝑒(−.25±.03)𝛼 + (2.19 ± .7) 𝑒(1.01±.19)𝛼 (10)

Proposed fitting is compared to the fitted Gibson–Ashby relation
(Gibson, 2003) (Eq. (1)): respectively, Eqs. (11) and (12). Values are
reported with their uncertainties, 95% confidence bounds.

𝑅𝐷 (1∕𝛼) = 𝑎
( 𝑡
𝑙

)2
+ 𝑏

( 𝑡
𝑙

)

+ 𝑐 = (1.35 ± .15)
( 𝑡
𝑙

)2
+ (.30 ± .07)

( 𝑡
𝑙

)

+ (−.02 ± .005) (11)

𝑅𝐷 (1∕𝛼) = 𝐶
( 𝑡
𝑙

)2
= 𝐶

( 1
𝛼

)2
= (2.08 ± .07)

( 1
𝛼

)2
(12)

Comparison with the work from Gibson and Ashby shows suitabil-
ity of their equation for a first approximation, while more accurate
reproduction seems to need additional linear and constant terms.

Results obtained from the density analysis allowed to exploit
Eqs. (10) and (11) for all the subsequent density evaluations. Conse-
quently, values of relative density reported later on in the document as
well as the ones reported in Table 1 must be interpreted as predicted
relative densities evaluated by means of such equations.
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Fig. 13. Boundary treatment: on the left the whole cube, on the right its resisting sub-volume.

Fig. 14. Density evaluation on the whole and cut cubes, subcase ‘‘L4D.8’’.
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Fig. 15. Relative density as a function of 𝛼 (a) and 1∕𝛼, proposed fitting vs. Gibson–Ashby equation.
Table 3
Sensitivity analyses – geometries.

Code 𝜆 [mm] D [mm] 𝛼 [–] RD [%] N [–]

L2D.8 3 .8 2.5 31.2 3, 4, 5
L4D.8 4 .8 5 9.3 3, 4, 5
L8D.8 8 .8 10 2.3 3, 4, 5

3.2. Sensitivity analyses

As an intermediate step to assure the reliability of the subsequent
analysis, sensitivity study is performed to grasp the behaviour of the
Voronoi reticula as a function of the number of the resisting cells and
quantify the effect of the stochasticity on such behaviour.

To do so, three different combinations of the two main parame-
ters are considered, each of them with three point cloud generations
and three characteristic dimensions, for a total of 27 sample meshes
(Table 3). Such models are then implemented in Ansys LS-DYNA and
assigned simple material properties, typically traceable to a generic
aluminium alloy; it is assumed that the material properties do not
affect the sensitivity analysis results and as such the results reported
below are valid to any base material. The material is implemented
through a piecewise-linear plastic model: *MAT24 in LS-DYNA, chosen
for its modelling simplicity, versatility and robustness. Material failure
is set through a equivalent plastic strain threshold, fixed at 0.3; said
failure implementation, arguably rather unphysical, is chosen to limit
the structure behaviour to a failure point after which the curve is not
considered: it is important to remind that the present analyses aim to
study the sensitivity, and results have little physical meaning beside
such aim.

Analysis performed are compression-tension implicit simulations,
setup constraining two sets of nodes corresponding to 1∕8𝑡ℎ of the cell
characteristic dimension as described in paragraph 2.3.3. Results are
shown in Figs. 16–18.

Results show two clear traits: first, that both the stochasticity and
boundary effects fade away between 𝑁 = 4 and 𝑁 = 5. It is in
fact evident that compressive and tensile analyses made with 5 cells
give almost superimposable stress–strain curves, whilst 3-cells analyses
show pronounced variability and sub-optimal behaviours, especially
towards failure. To quantitatively describe the cell sensitivity and the
uncertainty due to stochasticity, two main parameters are extracted:
the first is the tangent modulus of the stress–strain curve, the second is
the total work up to the last available strains prior to failure. Results
are shown in Fig. 19.

It is here important to note that at 𝛼 = 5 the intrinsic randomatic
nature of the Voronoi reticula causes uncertainties over the mechanical
11
Table 4
Parametric analyses – geometries.

Code 𝜆 [mm] D [mm] 𝛼 [–] RD [%] N [–]

L3D.8 3 .8 3.75 15.4 5
L4D.8 4 .8 5 9.3 5
L6D.8 6 .8 7.5 4.3 5
L8D.8 8 .8 10 2.3 5

response which are below 2%, while at the two analysed boundaries
of the topology (𝛼 = 2.5, thick beams, and 𝛼 = 10, slender beams)
uncertainties, even if converging after 4–5 cells, maintain relatively
high values (4%–6%). Such peculiarity suggests that Voronoi reticula
present, in terms of repeatability, optimal values around 𝛼 = 5, and
as such highest isotropy around that combination of the geometrical
parameters.

In the end, sensitivity analyses showed that for both randomness
and boundary effects 5 cells are enough to filter out any of the two
within a maximum uncertainty reported at 6%.

3.3. Parametric analysis

The parametric analysis is setup with the four combinations of
𝐷 and 𝜆 reported in Table 4, each with 𝑁 = 5. Given the results
provided in the previous paragraph, only one sample generation for
each of the four combination was studied, being at 𝑁 = 5 stochasticity
and boundary effects established as negligible. Materials described
in paragraph 2.3.2 were implemented in LS-DYNA with *MAT24, a
piecewise-linear plastic model, without failure in order not to slip into
unphysical behaviour.

Analyses were performed via the LS-DYNA software LS-OPT, fixing
the material stiffness 𝐸 and variating the material yield 𝑌 . Output
parameters are defined as 𝐸𝑟𝑒𝑡 and 𝑌𝑟𝑒𝑡, respectively stiffness and col-
lapse stress of the reticulum. Results are plotted in Figs. 20 and 21, as
material stiffness vs. stiffness ratio and material yield vs. yield ratio. It
is here remarked that reticula stiffness and stress are both treated as
described in paragraph 3.1, complying to the concept of the resisting
cube.

Notable results are mainly three. First, relative density is not suffi-
cient to describe the reticula behaviour, as the yield ratio is not constant
for fixed relative density (Fig. 21). On the other hand, the reticulum
stiffness confirms its dependency on the sole relative density, as little
variation is shown as a function of the base material modulus, and only
for high relative densities (Fig. 20). Last, a strong mismatch between
the theoretical values calculated with the Gibson–Ashby relations at
Eqs. (2) and (3) and the numerical results here described is evident.
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Fig. 16. Compression-tension (left–right) analyses for 𝜆 = 2, 𝐷 = 0.8M; from the top: 𝑁 = 5, 4, 3.
Fig. 17. Compression-tension (left–right) analyses for 𝜆 = 4, 𝐷 = 0.8M; from the top: 𝑁 = 5, 4, 3.
Both for stiffness and collapse stress, it is clear that said relations
underestimate the reticula properties: in relative terms, the lower the
reticulum relative density, the larger is such underestimation. In order
to better appreciate this finding, results for a stainless steel alloy
largely used in additive manufacturing (AISI 316L, 𝑌 = 470 MPa) are
shown in Fig. 22. With respect to the results shown at the end of the
density analysis (Section 3.1), Gibson–Ashby analytical equations need
notable modifications to properly fit the numerical data, in particular
for the collapse stress approximation. Best approximations, reported in
Eqs. (13) and (14), are second order polynomials for both cases.

𝐸 (𝑅𝐷) = 𝑎 𝑅𝐷2 + 𝑏 𝑅𝐷 + 𝑐 = (1.68 ± 2.27) 𝑅𝐷2 + (−0.01 ± 0.23) 𝑅𝐷

+ (0.0 ± 0.01) (13)

𝑌 𝑅𝐷 = 𝑎 𝑅𝐷2 + 𝑏 𝑅𝐷 + 𝑐 = 2.67 ± 2.27 𝑅𝐷2 + 0.10 ± 0.41 𝑅𝐷
12

( ) ( ) ( )
+ (0.0 ± 0.01) (14)

3.4. Validation

Given the complex manufacturability, experimental validation is
inevitably performed in few points, with separate strategies for plastics
and metals.

3.4.1. Plastics
Plastics’ validation is carried out experimentally by producing and

testing a series of Voronoi samples in nylon, through the SLS technique.
Such specimens, of which specifics are reported in Table 5 and pictures
are shown in Fig. 23, have been produced by the additive manufac-
turing company cirp GmbH with a nylon powder whose mechanical
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Fig. 18. Compression-tension (left–right) analyses for 𝜆 = 8, 𝐷 = 0.8M; from the top: 𝑁 = 5, 4, 3.
Fig. 19. Stochasticity effects as function of the number of cells.
Table 5
PA12 compression test – samples.

Samples Dim. [mm × mm × mm] N𝑥 × N𝑦 × N𝑧 [–] 𝜆 [mm] D [mm] 𝛼 [–] RD [%]

1 35 × 35 × 25 9 × 9 × 6 4 0.8 5 9.3
2 35 × 35 × 25 7 × 7 × 5 5 0.8 6.25 6.2
3 35 × 35 × 25 6 × 6 × 4 6 0.8 7.5 4.3
properties, available in literature (Cobian et al., 2022), are the follow-
ing (vertical loading direction): elastic modulus of 1.4 GPa and yield
stress of 25.0 MPa.

Quasi-static compression tests were performed with an MTS 858
with speed set at 5 mm/min.

Reticulum properties are extracted from the graphs at Figs. 20 and
21: for specimens 1 and 3 direct information are available due to the
numerical simulations performed at 𝛼 = 5 and 𝛼 = 7.5, while for
specimen 2 the reticulum properties are linearly interpolated between
the two.

Results, shown in Fig. 24, present good correlation especially in
terms of collapse stress for all the three cases examined, with slight
overestimation of specimen 2 due to the linear interpolation proce-
dure. Such overestimation disappear when the quadratic nature of the
solution is considered and a more appropriate interpolation is carried
13
out accordingly. The elastic modulus is instead slightly overestimated
for each of the three cases, likely due to the simplified nature of the
material approximation, which actually present a non-linear elasticity.
Overall, the experimental curves are well-captured in all the three cases
analysed, especially in terms of total absorbed energy.

3.4.2. Metals
Validation for metals is problematic, primarily because accurate

additive manufacturing of a stochastic Voronoi geometry is difficult to
achieve with current technologies; foams on the other hand, even if
available in many different forms, are not geometrically compliant with
Voronoi geometries as explained in paragraph 2.1, and their use for
validation would need a separate study to properly take the topological
differences into account.
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Fig. 20. Parametric analysis results – stiffness. Dashed lines represent the theoretical values as per Eq. (2), labelled points the numerical results for the materials analysed.
Fig. 21. Parametric analysis results – collapse stress. Dashed lines represent the theoretical values as per Eq. (3). A semi-logarithmic scale is used for best clarity.
Consequently, the task is approached in two stages: first, numeri-
cally by constructing an accurate model of a S275JR steel, for which
comprehensive data and validated material implementations were in-
ternally available, second, by evaluating significant literature data, in
particular Maliaris’ studies (Maliaris et al., 2016).

For the numerical validation, again an elastic–plastic implementa-
tion of LS-DYNA *MAT24 was chosen, but in this case the full plastic
curve was provided to the software for best description of the alloy plas-
ticity. As for the main analyses at Section 3.3, implicit simulations were
performed for best accuracy and only the first trait of the stress–strain
curve is analysed, as sufficient to describe the foams’ behaviour up to
14
densification. Considered geometries are reported in Table 6. Even if
the full stress–strain curve of a standard tensile test was available – and
used to build the numerical model – a yield strength of 𝑌 = 275 MPa,
minimum guaranteed for the considered alloy is used; the choice is
related to the need to comply to an hypothetical evaluation based on
the mechanical properties commonly available when similar alloys are
purchased.

Results, shown in Fig. 25, are globally satisfactory, especially for the
intermediate and low values of slenderness ratio and relative density
(geometries 2,3,4). Sub-optimal correlation is however found for high
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Fig. 22. Stiffness and yield ratio for AISI 316L (𝑌 = 470 MPa), best Gibson–Ashby fit and results from parametric analysis.

Fig. 23. PA12 compression test – samples 1,2,3 (left to right). The thin square plate visible at the bottom of each specimen was added for optimal centring and for maximization
of friction with the base surface during compression.

Fig. 24. Compression curves for PA12 specimens 1,2,3 (top to bottom), experimental results and predicted curves.
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Fig. 25. Compression curves for S275JR specimens 1,2,3,4 (top to bottom), numerical results and predicted curves.
Fig. 26. Validation on Stainless Steel 304 lattice; 𝛼 is estimated as explained in the text, while the curve is directly extracted and processed from Maliaris’ work (Maliaris et al.,
2016).
densities, with notable overestimation of the collapse stress and under-
estimation of the stiffness. As for the nylon specimens, such issues are
likely consequence of the simple material approximation: in particular,
as a linear elastic plastic law with zero-slope plasticity is considered
hardening is not taken into account, thus explaining the difference
increase towards densification. Being evident for geometry 1 only, it is
clear that the problem becomes increasingly important as the geometry
steps away from optimal values of density and structural efficiency, and
the reticulum behaviour backs off in favour of an increasingly dominant
material contribution.

The second stage is based on literature data. Amongst the studies
cited in Section 1 directly focused on Voronoi lattices, most results
are not suitable for a validation either for geometry/topology reasons,
similarly to the open-cell foams, and for the high relative density of
the analysed samples, outside the domain for the present analysis.
However, the research published by Maliaris in 2016 (Maliaris et al.,
2016) showed one notable case, the quasi-static compression of a lattice
with 𝑅𝐷 = 12.6%, produced with investment casting techniques in
Stainless Steel 304. The density and strut diameter provided by the
authors are used to extract the characteristic dimension 𝜆 = 4.175 mm
through Eq. (10) and to estimate the slenderness ratio 𝛼 = 4.175. Fi-
nally, prediction of reticulum behaviour is carried out choosing average
mechanical properties for the tested alloy, 𝑌 = 215 MPa; it is worth
noting that the reticulum stress and strain are obtained in accordance
to the concept of the resisting cube through Eqs. (8) and (9), in order
to remain coherent with the constructed predictive model.

Analogously to the outcomes obtained for the numerical validation
of the S275JR at high relative densities, results shown in Fig. 26
highlight slight underestimation of the reticulum collapse stress and
overestimation of the stiffness. Again, such issues emerge at high
relative density, where the simple material implementation show its
16
Table 6
S275JR compression geometries.

Geometry Dim.
[mm × mm × mm]

N 𝜆 [mm] D [mm] 𝛼 [–] RD [%]

1 15 × 15 × 15 5 3 0.8 3.75 15.4
2 20 × 20 × 30 5 4 0.8 5 9.3
3 30 × 30 × 30 5 6 0.8 7.5 4.3
4 40 × 40 × 40 5 8 0.8 10 2.3

limitations. Evident is, however, the large underestimation resulting
from a classical approximation based on open-cell foams’ equations.

3.5. Discussion

The results rose a few matters which are briefly discussed below.
First, the density of perfect three-dimensional reticula is globally

well captured by literature analytical equations provided from exper-
imental fittings of measurements performed on open-cell stochastic
foams; as such, it is directly proportional to one parameter only, which
is the thickness–length ratio 𝑡∕𝑙 or the here defined slenderness ratio
𝛼. Best fittings are however identified in exponential equations as a
function of 𝛼 and second order polynomials as a function of 1∕𝛼 = 𝑡∕𝑙.

The second paragraph 3.2 analysed the effects of the stochastic
nature and of the boundaries of the Voronoi. First, it is found that
for three-dimensional Voronoi a count of cells over each dimension
equal or over 5 is sufficient to cancel out any boundary effect, with a
stochastic contribution quantified at 6% at the extremes of the relative
density domain, 2% at intermediate values. As N = 5 is later used for
all the parametric analysis, these two values, summed to the uncer-
tainty coming from the point generation method treated at paragraph
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2.2.1, define the uncertainty for all the subsequent results: 11% at the
boundaries of the domain, 7% at 𝛼 = 5.

The parametric analysis had a few notable outcomes. First, if stiff-
ess and collapse stress are confirmed to be globally dependent on
he relative density, with respect to Voronoi foams dependency is not
nique, and both yield and stiffness present important contributions
specially at high relative densities. Then, equations commonly used
o fit stiffness and stress ratios as a function of the relative density
esulted to be not suited for the analysed reticula; best fits are, for both
ases, second order polynomials. Last, from the evaluation of the AISI
16L emerged that both collapse stress and stiffness are underestimated
y the Gibson–Ashby equations, and as such underestimation present
egligible variations as a function of the relative density, it is apparent
n increase in the structural efficiency for highest slenderness ratios.
he underestimation is likely caused by the imperfections present at
he nodes in classical foams, where smooth fillets are commonly found
nd are main cause of an increase of relative density without parallel
ncrease of structural properties.

Last, the whole analysis was validated with two different strategies
or plastics and metals. The first were validated experimentally with
LS-produced nylon specimens; the second in two stages, numerically
ith further analyses on a validated model of a structural steel, exper-

mentally through a notable literature case of quasi-static compression
f casted stainless steel. Satisfactory results were achieved for both
he material families as well as some clear limitations caused by the
imple material implementation were reported, especially in terms of
tiffness prediction and for high relative densities; in particular, it
eems clear that the present analysis is valid for intermediate-to-low
alues of densities (< 10–15%), for which the structural behaviour can
e assumed predominant with respect to the material’s.

. Conclusions

The work presented a systematic analysis of the static compressive
roperties of three-dimensional stochastic Voronoi reticula, with main
urpose of constructing validated relations to be used within the ad-
itive manufacturing design loops, allowing prediction of the cellular
roperties for a generic base material. In detail, the work strived to
elate simple base material parameters, modulus and yield stress, to
he cellular behaviour, in terms of its stiffness and collapse stress. Base
aterials considered were ductile plastics and metals.

Voronoi reticula were built with a dedicated routine completely
ased on open-source and free software to allow repeatability, with
direct construction of both geometry files for manufacturing and

igh quality solid tetrahedral meshes. After proper analysis of bound-
ry and randomness effects, parametric finite element analyses were
erformed, providing direct relations between input and output param-
ters. Validation was then performed experimentally and numerically,
chieving satisfactory correlation with both strategies and confirming
he suitability of the material approximation and validity of the chosen
pproach.

The analyses provided novel insights in the study of stochastic
oronoi reticula, exposing unsuitability of classical analytical equations
istorically used for prediction of the compressive behaviour of similar
tructures, the open-cell foams. Such equations, based solely on the
elative density, showed a clear underestimation of the cellular me-
hanical properties, likely due to the geometrical imperfections present
n natural foams.

However, this discrepancy has not been fully investigated here and
eeds proper attention in future works to be satisfactorily quantified: in
articular, numerical models of filleted, imperfect reticula need to be
onstructed and their response evaluated and compared to ideal perfect
eticula as a function of the fillets’ topology, shape and dimensions.
ocus must be put in obtaining proper understanding of the fillet-
ng effects on the reticulum properties and in developing correction
trategies over density, stiffness, and collapse stress to translate the
17
vast available knowledge on open-cell foams to geometrically perfect
stochastic lattices.

Subsequently, developments of the work are gradual sophistication
of material approximations to improve final correlation and introduce
prediction of densification, study of strain rate dependency and impact
absorption performances, investigation of other stochastic geometries
and graded reticula.
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