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Abstract

Credit capital requirements in Internal Rating Based approaches require the calibration of two
key parameters: the probability of default and the loss-given-default. This letter considers the
uncertainty about these two parameters and models this uncertainty in an elementary way: it
shows how this estimation risk can be computed and properly taken into account in regulatory
capital.

We analyse two standard real datasets: one composed by all corporates rated by Moody’s
and one limited only to the speculative grade ones. We statistically test model hypotheses on
both marginal distributions and parameter dependency. We compute the estimation risk impact
and observe that parameter dependency raises substantially the tail risk in capital requirements.
The results are striking with a required increase in regulatory capital in the range 38%-66%.
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The measure of model risk

in credit capital requirements

1 Introduction

Following the Great Financial crisis of 2007, model risk in the capital requirement of financial insti-
tutions has emerged as a key public concern. The set of international banking rules require banks
to hold a minimum capital as a buffer against future loss exposures. The variability of these future
losses depends, on the one hand, on a model via some stochastic risk factors and, on the other hand,
on the uncertainty related to the selected model. In this letter we focus on the model risk associated
to credit regulatory capital.

Credit capital requirement (also known as capital adequacy) in banks is often determined via an
Internal Rating Based (IRB) approach under the Basel II capital accords and the modifications that
have followed.1 A peculiarity of the IRB approach is that the modeling framework is established
by the regulator while model calibration is left to the banks. In the IRB approach, regulators base
the capital requirement on the value-at-risk (VaR) of bank’s credit portfolio calculated using the
Asymptotic Single Risk Factor (ASRF) model, introduced by Gordy (2003). Thus, model risk in
credit capital requirements consists in the estimation noise of the parameters, i.e. the risk arising
from errors in model parameters when we cannot rely on the assumption that the parameters of
the model are known with certainty. The characteristics of credit exposures are captured by two
parameters for each obligor in bank’s portfolio: the obligor’s probability of default (PD) and his
loss-given-default (LGD). The other model parameter, the correlation between obligors’ assets, is
established in Basel requirements for IRB as a deterministic function of the default probability (cf.
Basel Committee 2005, p.13). Both parameters (PD and LGD) are the corresponding forecast over
a one-year time horizon; they are calibrated with Through-the-Cycle values, i.e. long term default
and recovery rates, often provided by rating agencies.2

Should capital requirement for credit risk account for parameter uncertainty? Albeit the relevance of
this question is well known, there is a relative paucity of empirical studies that measure model risk
in credit capital requirements. The problem has been introduced by Löffler (2003), even before the
details of the IRB approach were introduced by the Basel Committee: he has analysed the impact on
the α-quantile of two homogeneous reference portfolios, one rated BBB and another one B. After the
seminal paper of Löffler (2003), the main contribution is due to Tarashev (2010), who has formalized
the model risk approach in the ASRF, clarifying that the correct capital requirement reflects all
potential losses, whose uncertainty includes the imperfect information about risk parameters.
In both studies, the impact of parameter uncertainty on measures of tail risk is analysed on the basis
of a stylized credit portfolio that is homogeneous, i.e. characterized by the same exposure and the
same parameters (PD and LGD) for each obligor. We follow the same approach in this letter.

1The other approach, the Standardized one, presents no model risk.
2More precisely two are the IRB approaches (Foundation and Advanced). Under the Foundation IRB approach,

banks supply their own estimates of PD, while the other parameters are supervisory values set by the Basel Committee.
Under the Advanced IRB approach, banks supply both PD and LGD (see e.g. Hull 2012, Wernz 2020).
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We assume some probability density functions (hereinafter p.d.f.) of model parameters and statis-
tically test these distributional hypotheses on a real dataset. Having the parameters’ p.d.f., it is
possible to evaluate how much their uncertainty impacts capital requirements.

In Löffler (2003) PD and LGD were considered independent, while LGD was considered a constant
parameter in Tarashev (2010). However, it quite reasonable to observe a relationship between PD and
LGD (or equivalently recovery). The economic reason is rather simple: if an economy experiences a
recession, on the one hand, the observed frequency of corporate defaults increases and, on the other
hand, recoveries decrease because the assets of failed companies are sold when many other firms have
defaulted and when few buyers are available at extremely discounted prices (fire sale).3 In this letter,
we consider this dependency, estimate statistically it and identify the impact on capital requirement:
we show that this dependency is the most relevant source of model risk in credit capital requirements.

The contributions of this letter to the existing literature are threefold: i) we indicate some distri-
butional assumptions for model parameters in capital requirements and statistically test them on a
real dataset, ii) we consider model risk for credit capital requirements within the IRB approach and
analyse the impact of parameter dependency in capital requirements, and iii) we draw some policy
implications for credit capital requirements.

The rest of the letter is divided as follows. In Section 2 we briefly recall the credit regulatory capital,
describing a näıve approximation and the correct implementation of the requirements in the IRB
approach. In Section 3 we describe the estimation risk methodology: we introduce a distributional
assumption for model parameters and statistically test it. In Section 4 we discuss the consequences
on capital requirements. Section 5 concludes focusing on policy implications. Finally, at the end of
this letter, we recall the notation and the abbreviations we use.

2 The capital requirement in the IRB approach

In the IRB approach, the capital requirement is the 1-year unexpected loss VaR at the α confidence
level, i.e. it is the maximum portfolio unexpected loss that is exceeded within a year with probability
α (α-quantile). The capital adequacy per unit exposure at default (hereinafter regulatory capital or
RC) is

RC = V aRα[L]− E[L] ,

where L is the portfolio loss rate, i.e. the ratio of total losses to total portfolio exposure at default.4

The value of α is equal to 99.9% as established by the Basel Committee for credit risk (cf. Basel
Committee 2005, p.11).

Bank capital rules are based on the ASRF model (Gordy 2003). In this section we briefly recall the
main modeling results; the notation follows closely the one in Tarashev (2010).
We focus on model risk for a homogeneous portfolio as in Löffler (2003) and Tarashev (2010). The
ASRF model, applied to a homogeneous portfolio of n obligors, describes log-assets of a generic

3A dependency between PD and LGD has been first pointed out by Frye (2000) for non-financial issuers domiciled
in the USA in the time interval 1982-1997, then a positive correlation between PD and LGD has been identified and
measured by Altman et al. (2005) in the speculative grade USA bond market.

4In this letter the exposure at default is not considered a source of model risk. Furthermore, IRB maturity
adjustment is assumed equal to one.
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obligor i as

Xi =
√
ρM +

√
1− ρ εi i = 1, . . . , n

and M, εi are i.i.d. st.n. rvs.

The variable M is a common credit risk factor representing the market, εi is an obligor-specific risk
component, while ρ is the correlation between obligors’ assets. A default of an obligor in one year
occurs with a probability PD and produces a loss-given-default LGD. Obligor i defaults when Xi

is below some threshold k, that is often referred to as the default point (see, e.g. Tarashev 2010,
p.2066). The threshold k is then chosen s.t. P(Xi < k) = PD; this implies k = Φ−1(PD), with Φ
the standard normal (st.n.) cumulative distribution function.

The IRB approach considers the case with a large number of obligors n: the financial literature refers
to this limiting portfolio as an “asymptotic portfolio”. In this case, the expected loss conditional on
the common risk factor M and given the parameters PD and LGD, is

E[L|M,PD,LGD] = LGD · Φ
(
k −√ρM
√

1− ρ

)
. (1)

Moreover, ρ is a deterministic function of PD as established by the Basel Committee for IRB models
(cf. Basel Committee 2005, p.13). In the case of corporate, sovereign, and bank exposures this
function is

ρ(PD) = 0.12 · 1− e−50·PD

1− e−50
+ 0.24 ·

(
1− 1− e−50·PD

1− e−50

)
, (2)

and a similar relation holds in the other cases.

A näıve approximation of IRB (see Tarashev 2010) accounts for the credit risk factor M but treats
the PD and the LGD as known and equal to ˆPD and ˆLGD, the point estimates of the respective
parameters. In this special case, the above setup reduces to a single risk factor model and the capital
requirement becomes

RCnaive = ˆLGD · Φ

Φ−1( ˆPD)−
√
ρ( ˆPD) Φ−1(1− α)√

1− ρ( ˆPD)

− ELnaive (3)

where
ELnaive := ˆLGD · ˆPD

is the expected loss and ρ(PD) is given by (2). As already discussed by Tarashev (2010), the
simplicity of this analytical closed formula justifies the popularity of this näıve IRB approach among
practitioners.

In general, parameters could carry a significant estimation noise that cannot be neglected. Thus, the
correct capital requirement in IRB is

RC = V aRα [E[L|M,PD,LGD]]− E[L] , (4)

where E[L|M,PD,LGD] is reported in (1). This result can be proven as in Tarashev (2010, propo-
sition 1, p.2067).
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Moreover, as already pointed out by Tarashev (2010), M is independent from parameters. Since the
uncertainty about M refers to the ex-post realization of the credit risk factor, while parameters are
the best ex-ante estimation given past data, the assumed temporal independence of the risk factor
M implies that it is independent from parameter uncertainty.
Hence, there is no closed formula for the correct capital requirement (4) but it can be easily obtained
via a Monte Carlo simulation. It requires i) to simulate Nsim values for the unknown parameters
and the common risk factor, ii) to compute the loss for each simulation and iii) to determine the
α-quantile and the mean of the loss distribution. Let us mention that the expected loss E[L] is equal
to ELnaive if the two parameters are independent, but this result does not hold true in general.

The aim of this research is to consider a p.d.f. for the set of parameters in the Basel IRB approach,
to statistically test the distributional assumptions and to evaluate the impact of the uncertainty of
each parameter on the capital requirement and in particular the impact of PD-LGD dependency.
In this letter, we model the default point k and the loss-given-default as Gaussian rvs; a distributional
assumption that can be easily tested on a real dataset. We consider{

k ∼ N(k̂, σ2
k)

LGD ∼ N( ˆLGD, σ2
LGD)

.

As already mentioned, ˆPD := E[PD] and ˆLGD := E[LGD], while σ2
k and σ2

LGD are respectively the

variance of k and of LGD. The value of k̂ can be obtained inverting

ˆPD = E[Φ(k)] =

∫ ∞
−∞

dx
e−x

2/2

√
2π

Φ(k̂ + σk x) ' Φ(k̂)− σ2
k

2
· k̂√

2π
e−k̂

2/2 , (5)

where the right term is obtained via a Taylor expansion in σk up to the third order.

What really matters is the increase in capital requirement w.r.t. the näıve IRB approach.
As already mentioned, the regulatory capital refers only to the amount of capital an institution must
hold against unexpected loss. Regulators recognize that expected losses are usually covered by the
way a financial institution prices its products; thus, if the bank computes its RC according to the
näıve IRB, only ELnaive are the expected losses covered by reserves when pricing products.
In presence of estimation noise, the institution must hold an excess loss reserve to cover for an
increase in both the unexpected and the expected loss. This excess loss reserve is the additional
required capital in the case a bank has considered a näıve approach; it is the difference between
the VaR in the case with estimation noise and the one in the näıve IRB. In particular, the relevant
quantity is the (regulatory capital) add-on. It is defined as the ratio between the excess loss reserve
(inclusive of the expected loss correction) and the RC in the näıve approximation

add-on :=
(RC −RCnaive) + (E[L]− ELnaive)

RCnaive
. (6)

In this letter we focus on this percentage increase in RCnaive induced by parameter uncertainty:
we first consider the add-on generated by each parameter one at a time and then we analyse all
parameters together.
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3 The dataset

We analyse a dataset provided by Moody’s Investor Service on annual LGD rates for defaulted senior
unsecured corporate bonds and on annual corporate default rates (Ou et al. 2020, exhibit 29 & exhibit
41).5 Two are the default rates considered: the first set includes all corporates rated by Moody’s
(hereinafter “All Ratings” or “AR”) while the second is limited only to firms who have a speculative
grade at the beginning of the default year (hereinafter “Speculative Grade” or “SG”). The dataset
reports an annual value for the period 1983-2019 (37 years); it is used by several financial institutions
either in the determination of regulatory capital or in the definition of benchmarks for measuring
IRB parameters.

min max mean median std

LGD 36.25% 78.81% 55.26% 54.76% 10.25%
PDAR 0.35% 5.00% 1.59% 1.25% 1.01%
PDSG 0.94% 12.09% 4.30% 3.54% 2.62%

Table 1: Descriptive statistics for annual loss-given-default rates for senior unsecured corporate bond (LGD),
annual corporate default rates for all rated firms (PDAR) and for speculative grade firms (PDSG). The data
are collected at world level in the time window 1983-2019 (37 years). We report min, max, mean, median
and standard deviation (std).

In this letter, we estimate the empirical properties of one-year LGD and PD via the observed default
rates in this dataset. Table 1 contains descriptive statistics about annual LGD and PD data (both
AR and SG) for the whole time window.
As already mentioned in the introduction, we analyse the distribution for k = Φ−1(PD) and LGD.
The empirical distribution of LGD is shown in Figure 1. It looks well described by a normal dis-
tribution; moreover, modeling LGD with a Gaussian rv, the probability to observe “non-financial”
LGD values –either negative or greater than 1– appears negligible.

The Gaussian property of a sample can be verified in several ways: the simplest is probably the
Quantile-Quantile plot. The Quantile-Quantile plot of each parameter is shown in Figure 2. Because
all the three plots tend to be close to a straight line, it seems that the p.d.f. of each parameter
follows tightly a normal distribution.
It is also possible to verify from a quantitative perspective the normality hypothesis via a statistical
procedure. The Shapiro-Wilk test allows to determine if the null hypothesis of univariate normality is
a reasonable assumption regarding the population distribution of a random sample (see, e.g. Shapiro
and Wilk 1965, Royston 1982). Moreover, Royston (1983) has extended the Shapiro-Wilk hypothesis
test to the bivariate case to verify composite normality.
The results for the Shapiro-Wilk test statistic W and the p-value are reported in Table 2. We do
not reject the null hypothesis of normality with a 10% threshold. Notice that all p-values are above
50%. Thus, we can consider normal the marginal distribution of each parameter; furthermore, the
couple LGD-k follows a bivariate normal distribution in both cases.

5LGD rates are obtained via Trading prices recoveries. Trading prices recoveries are the trading prices of defaulted
bonds in the distressed debt market shortly after the default event: Moody’s Investor Service reports them as the
prices at which they trade about 30 days after default, as a percent of their face value. Only for distressed exchanges,
Trading prices recoveries correspond to the exchange value at the default date.
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Figure 1: Density for LGD in the dataset and for a normal distribution with same mean and std.

W p-value

LGD 0.983 0.840
kAR 0.987 0.941
kSG 0.979 0.706

composite LGD-kAR 0.973 0.509
composite LGD-kSG 0.984 0.856

Table 2: Shapiro-Wilk test outcome on LGD and default point k; W is the Shapiro-Wilk test statistics.
We never reject the null hypothesis of normality.

Parameter estimators k̂ and σk are reported in Table 3. The value of k̂ is obtained from the corre-
sponding ˆPD via equation (5); in both cases (AR and SG) it is identical to the sample mean up to
the third decimal digit.

AR SG

k̂ -2.208 -1.778
σk 0.237 0.268

Table 3: Parameter estimators k̂ and σk in the All Ratings and in the Speculative Grade cases. The values
for ˆLGD and σLGD are reported in Table 1.

We can easily verify whether LGD and k are correlated. In Figure 3 we show the scatter-plot of the
couples LGD-k and a linear regression that fits the data considering All Ratings. We can reject the
uncorrelated hypothesis with a p-value 6.12 · 10−07. The scatter plot in the Speculative Grade case
looks similar; the uncorrelated hypothesis is rejected with a p-value 8.85 · 10−05 in this case.
The estimated Pearson correlation ρLGD-k between LGD and k is reported (with the 95%-confidence
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(a) LGD

(b) kAR (c) kSG

Figure 2: Quantile-Quantile (Q-Q) plot for (a) LGD, (b) kAR and (c) kSG.

ρLGD-k CI

All Ratings (AR) 0.717 (0.511, 0.844)
Speculative Grade (SG) 0.599 (0.342, 0.773)

Table 4: Pearson correlation between LGD and k considering All Ratings and only Speculative Grade firms.
We report the estimator ρLGD-k and the 95%-confidence interval (CI).

interval) in Table 4. The value of Pearson correlation appears to be quite-high in both cases.
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Figure 3: Scatter-plot of LGD-kAR and a linear regression that fits the data (with an Adjusted R-squared
of 0.500). We observe that the two parameters are positively correlated.

4 The measurement of model risk in capital requirements

In this section we analyse the impact on capital requirements stemming from parameter uncertainty.

First, we compute the regulatory capital per unit exposure at default in the näıve approximation for
two homogeneous portfolios, respectively one AR and another one SG. The RC in the näıve IRB
approach (3) is obtained for a homogeneous portfolio considering the mean values ˆLGD and ˆPD.
The capital requirements in the two cases of interest are shown in Table 5.

AR SG

RCnaive 0.0866 0.1224

Table 5: Regulatory capital (RC) as a fraction of the total exposure at default in the näıve case for a
homogeneous credit portfolio with All Ratings and a credit portfolio with only Speculative Grade firms.

Then, the uncertainty due to the estimation of LGD and PD is taken into account measuring the
add-on (6) in different cases. We analyse one parameter at a time (and impose the other parameter
equal to its expected value) and both parameters at the same time, considering both the independent
and the correlated case. In this way we can “isolate” each contribution to the add-on.
Table 6 shows the results obtained considering either one parameter at time or the two parameters
simultaneously. When analysing the results obtained with one parameter at time, it is interesting to
observe that, in line with the literature, the largest contribution is due to the uncertainty in PD.
When considering the impact of both parameters, we observe that the independent case underes-
timates significantly the estimation risk. Parameter dependency, that cannot be neglected from a
statistical point of view, has the most relevant impact: it determines the most relevant contribution
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AR SG

LGD (only) 5.63% 9.12%
k (only) 12.22% 28.87%

LGD, k (independent) 18.67% 39.54%
LGD, k (correlated) 38.48% 65.97%

Table 6: Regulatory capital add-on due to parameter uncertainties, computed via a Monte Carlo with
Nsim = 107 simulations. First, we consider the add-on due to LGD and k separately, keeping the other
parameter constant. Then, on the one hand, we consider the two parameters independent and, on the other
hand, correlated with the Pearson correlation ρLGD-k estimated in previous section. The most important
contribution to the regulatory capital add-on is due to the dependency between the two parameters in both
cases (AR and SG). The contribution of parameter uncertainty to capital requirements appears startling
with an increase in the regulatory capital in the range 38%− 66%.

to the add-on in capital adequacy.6

The values of add-on appear very large: the correct RC, that takes into account estimation noise,
is significantly greater than the one computed with the näıve approach. We obtain an increase in
the required capital larger than 38%, if All Ratings are considered, and almost equal to 2/3, if we
consider a credit portfolio composed only by Speculate Grade corporates. This is the main result of
this study.

We also perform two robustness tests. First, we consider a confidence level α equal to 99%, as it
is considered in both Löffler (2003) and Tarashev (2010). Even if the regulatory capitals with this
different α are significantly lower, the add-ons look rather similar to the ones obtained with the α
imposed by regulators for credit risk.
Second, we verify the impact of granularity (see, e.g. Gordy and Lütkebohmert 2007), i.e. we check
whether we observe, for a finite number of obligors, a significant deviation from the asymptotic
portfolio case. We have considered a small credit portfolio composed by 50 obligors as in Löffler
(2003). We obtain slightly higher capital requirements, but the measure of model risk is similar to
the asymptotic case. Both robustness tests support our empirical findings: numerical results are
available upon request.

5 Conclusions and policy implications

It is common practice by risk managers to rely on a näıve IRB approach for capital requirement, where
parameters are estimated with the long term averages of historical rates. This näıve approximation
is necessarily a downward biased estimate of the correct regulatory capital, because estimation noise
is neglected.

In this letter, we show how to incorporate the inevitable uncertainty about the forecasted param-
eter values in measures of portfolio credit risk: such parameter forecasting depends on statistical
hypotheses that should be tested on real datasets. A correct quantification of capital requirements

6The expected loss correction gives a small, but not negligible, contribution to the add-on when the two parameters
are correlated, with a correction to the excess loss reserve equal to 6 · 10−4 for AR and to 14 · 10−4 for SG.
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reveals that ignoring estimation noise leads to a substantial understatement of the regulatory capital;
in particular, we show that parameters’ dependency plays the most relevant role in capital adequacy.
This study highlights the importance of the measure of model risk when a näıve approximation
is implemented in credit capital requirements. We propose to capture model risk via a succinct
measure, termed (regulatory capital) add-on, which is an incremental capital charge to RCnaive for
the estimation risk in IRB approaches.

This add-on ranges from 38% (All Ratings) up to 66% (Speculative Grade), where this second value
could be an important benchmark for model risk. We have shown that IRB models could be subject
to significant model risk; we expect that this risk could be particularly relevant during periods of
financial distress, which are when several obligors are downgraded (even to speculative grade) at the
same time. Unfortunately, these periods of financial distress are the ones when a capital adequacy
is most needed.

At first glance, this result could be a cause for concern due to the documented degree of model risk
in credit capital requirements.
However, this result should not take us by surprise, but it should allow drawing some policy impli-
cations for capital requirements. For market risk, an adjustment buffer is taken into account via a
a multiplication factor mc imposed by the regulators. Regulatory capital is calculated as mc times
the measured VaR, where the minimum value for mc is 3. It has been shown that such a multiple is
in line with the model risk adjustment buffer for several market risks (see, e.g. Boucher et al. 2014,
and references therein).
Also for credit risk the Basel II accord required, if the regulator found that the regulatory capital
was too low, to apply a multiplication factor (named scaling factor) –greater than 1– to the result of
the credit VaR calculations, factor that corresponds to a –greater than 0– add-on (see, e.g. Hull 2012,
p.275). In Basel III, the Committee has agreed to remove this scaling factor (cf. Basel Committee
2017, p.6). The main conclusion of this study from a financial policy perspective is that, to cope
with the associated model risk, regulators should reintroduce the scaling factor at least equal to 1.4,
when a bank prefers to stuck with a näıve regulatory computation.

Ultimately, this analysis has laid bare the weaknesses of the näıve approximation in capital require-
ment and it has provided a measure of model risk on regulatory capital. The non-negligible results
observed in terms of add-on induce us to consider carefully model risk impacts on regulatory capital
for banks’ portfolios. A better understanding of estimation risk in IRB approaches should lead to
more robust policymaking in credit risk capital requirements.
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Abbreviations

AR All Ratings, all corporates rated by Moody’s
ASRF Asymptotic Single Risk Factor model
cf. compare (Latin: confer)
CI 95%-confidence interval
e.g. for example (Latin: exempli gratia)
i.e. that is (Latin: id est)
i.i.d. independent identically distributed
IRB Internal Rating Based approach
p.d.f. probability density function
rv random variable
SG Speculative Grade corporates
s.t. such that
std standard deviation
st.n. standard normal
VaR value-at-risk
w.r.t. with respect to

Notation

Symbol Description

ε• obligor-specific risk component, modeled as a st.n. rv
E[•] expected value
ELnaive expected loss E[L] in the näıve approximation
Φ(•) cumulative distribution function of the st.n. rv
k default point, defined as Φ−1(PD)
L portfolio loss rate, i.e. total losses per unit exposure at default
LGD loss-given-default

ˆLGD mean loss-given-default
M market risk variable, modeled as a st.n. rv
N(µ, σ2) Gaussian distribution with mean µ and variance σ2

n number of obligors in the reference portfolio
Nsim number of simulations in the Monte Carlo method
PD annual probability of default, estimated with the annual default rate in a real database

ˆPD mean probability of default
ρ obligors’ asset correlation
ρLGD-k Pearson correlation between LGD and k
RC (correct) regulatory capital
RCnaive regulatory capital in the näıve approximation
σ2
k variance of the k parameter
σ2
LGD variance of the LGD parameter
Xi log-asset for the ith obligor
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