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Internet-enabled things and devices operating in the physical world are increasingly integrated in modern
distributed systems, supporting functionalities that require assurances that certain critical requirements are
satisfied by the overall system. We focus here on spatially-distributed Internet-of-Things systems such as smart
environments, where the dynamics of spatial distribution of entities in the system is crucial to requirements
satisfaction. Analysis techniques need to be in place while systems operate to ensure that requirements are
fulfilled. This may be achieved by keeping a model of the system at runtime, monitoring events that lead
to changes in the spatial environment, and performing analysis. This computationally-intensive runtime
assurance method cannot be supported by resource-constrained devices that populate the space and must be
offloaded to the cloud. However, challenges arise regarding resource allocation and cost, especially when the
workload is unknown at the system’s design time. As such, it may be difficult or even impossible to guarantee
application service level agreements, e.g., on response times. To this end, we instantiate spatial verification
processes, integrating them to the service layer of an IoT-cloud architecture based on microservices. We
propose several cloud deployments for such an architecture for assurance of spatial requirements — based on
virtual machines, containers, and the recent Functions-as-a-Service paradigm. Then, we assess deployments’
tradeoffs in terms of elasticity, performance and cost by using a workload scenario from a known dataset of
taxis roaming in Beijing. We argue that the approach can be replicated in the design process of similar kinds
of spatially distributed Internet-of-Things systems.

1 INTRODUCTION
The recent evolution towards an increasingly integrated world has at its basis novel types of
pervasive systems achieved through new technologies and paradigms such as the Internet-of-Things
(IoT). Such systems feature physically distributed devices and cloud computing infrastructure alike.
This emergence comes along with new types of requirements and a need for increased assurances
regarding the behavior of the overall physically-distributed systems [46], as they permeate more
and more important aspects of human activity.
IoT systems which operate within a dynamic spatial environment are becoming ubiquitous;

think of a taxi fleet within a smart city optimizing spatial distribution with respect to passenger
demand, or a manufacturing floor co-habited by humans and robots. Those represent an important
class of cyber-physical systems [8], which are faced with the manifold challenges that a dynamic
spatial environment brings. They demand operational management to observe, evaluate and react
to a constantly changing space. When the system is operational, analysis techniques situated at
runtime are an essential prerequisite to ensure that possible changes occurring in the space –for
example due to actions performed by active agents, or by the environment itself – do not lead
to requirements violations. Typically, this can be achieved through a MAPE approach [41]; by
(M)onitoring the spatial environment for changes, (A)nalyzing possible requirements violations,
(P)lanning required countermeasures (e.g., moving a device from one point of space to another)
and then (E)xecuting such actions and updating the shared model of space. We are not concerned
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with choice and execution of appropriate counteraction measures that may be triggered to satisfy 
requirements, but with the requirements analysis activity itself. The rationale behind this is that 
verification of the system’s requirements –in the form of model checking– is (perhaps) the most 
computationally intensive activity, and should be appropriately and adequately supported by the 
system’s computational facilities. In contrast, counteractions can be actuated on the devices making 
up the IoT system directly.
Requirements within IoT systems often depend on the global state of the system (that is, the 

position of all devices in the spatial plane) and may be formally expressed into properties and veri-
fied [53]. However, providing assurances at runtime over the global state, e.g., through model check-
ing, is computationally-intensive, making it unfeasible or impractical for the resource-constrained 
devices that populate the space in IoT scenarios [12]. A device may need to evaluate a property as 
part of the system’s business logic; a response with the property’s truth value may be required to, 
e.g., decide whether to perform some action or movement in the space. A naive approach would (i) 
place and (ii) populate instances of the model of space on each device and (iii) perform verification 
there – however, storage of the model within each device, communication of the global state on 
each device as well as the computational load that verification incurs on resource-constrained 
devices renders it impractical.

Since devices making up IoT systems are Internet-enabled, offloading the analysis computation to 
the cloud is a viable option [39; 57]. However, despite the general assumption of “infinite” resources 
on a cloud deployment, additional challenges arise regarding cost and resource allocation, specially 
when the workload is unknown at the system’s design time. In these cases, it may be difficult or 
even impossible to guarantee application’s Service Level Agreements (SLAs), e.g., on property 
evaluation response times. Besides, the cloud-based architecture should be elastic enough to handle 
such fluctuating workloads, while conciliating providers goals and client applications needs with 
efficient and scalable management of applications’ life-cycles. To this end, microservices [36] arise 
as the architectural weapon-of-choice, since they are small, modular, and independently deployable 
and scalable in an automated way. Additionally, with the rise of function-level compute instances 
through Function-as-a-Service (FaaS) models [38; 50], the fitness of generic cloud configurations 
needs to be re-evaluated for these applications.
Our approach lies within engineering of dependable systems operating in a discrete space 

arising from topological relations in the spatial environment, where the information abstraction 
of physical location or position of entities is inherently important [42; 52]. Change of such spatial 
position (mobility) in distributed IoT systems – e.g., for smart city, industrial or wireless sensor 
networks domains [46] – require to periodically re-evaluate the properties of the whole system. 
Firstly, assurance of such requirements may be critical, so techniques and methods for engineering 
dependable systems are applicable, such as formal verification. Secondly, spatial verification induces 
particular kinds of computational-intensive workloads, which should be supported by distributed 
software architectures. Finally, regarding system operation, leveraging microservices in a cloud 
infrastructure for spatial analysis while ensuring non-violations of SLA must be investigated.
As the cornerstone of our approach, we instantiate verification processes, integrating them 

within a cloud architecture for formally verifying requirements. Such requirements predicate on 
the topological distribution of devices comprising an IoT system at runtime, and formal verification 
is adopted to provide assurances of their satisfaction. Regarding system operation, we present the 
tradeoffs of the alternative deployments for such an architecture as microservices. The same type 
of tradeoff analysis and lessons learned can be applied to other systems in the class of systems 
discussed, and be easily extended to others. Specifically, the contributions of this paper are threefold.
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- We address a challenging application scenario within formal assurance of global requirements
of spatially-distributed IoT systems. We define the underlying model of space as a generic
graph structure – a closure space [35] – and express global properties of the overall system in a
topological spatial logic [26].

- We instantiate verification processes as (FaaS-ified [50]) microservices encapsulating spatial
model checkers and instances of space models, integrating them to the service layer of the
IoT-cloud architecture [46]. Finally, we position the microservices-based architecture into the
IoT system environment, involving resource-constrained devices connected to the Internet.

- We propose alternative cloud deployments for such a model checking microservices-based
distributed system, based on Virtual Machines (VMs), containers, and FaaS. We investigate
their tradeoffs in terms of performance, scalability, elasticity and cost when evaluating global
spatial properties at runtime. We further consider a novel hybrid deployment, combining
VMs/Containers and FaaS. We discover whether the different cloud deployments are able to
cope with given strict Service Level Agreements (SLAs) using a realistic workload scenario
from a known dataset of taxis roaming in Beijing, as an representative instance of the class of
systems we consider.

The rest of the paper is structured as follows. Section 2 presents a motivating example for
spatial analysis at runtime. Section 3 details our proposal for reasoning on spatial properties of
topological spaces. Section 4 discusses how to perform spatial verification at runtime as an IoT-cloud
architecture, based on microservices. Section 5 details the different deployment alternatives and
for such an architecture and their tradeoffs for offloading the reasoning machinery to the cloud.
Section 6 discusses the evaluation of our approach and the alternative deployments through a
well-known dataset of taxis in Beijing. Section 7 presents related work. Finally, Section 8 concludes
the paper.

2 MOTIVATING EXAMPLE: BIKE-SHARING IN A SMART CITY
In this section, we introduce a motivating scenario as a running example of a spatially-distributed
IoT system throughout the paper. We begin with a brief description of the scenario’s setting and
then consider SLA goals that the system should exhibit as well as the challenges that arise.

Consider a bike-sharing scenario in a smart city, where bicycles roam in the physical space. As is
common in such cases1, bikes –or their users– maintain a connection to the network, rendering the
system an instance of the IoT. A key issue in bike-sharing systems, is the concentration of bikes in
certain parts of the city, other parts remaining empty, a phenomenon referred to as clamping. This
may occur for instance around the start or end of the business day throughout the week, or due to
sporadic events such as public concerts. The city administrator as the bike-sharing operator, has a
significant interest to avoid this, as it leads to unavailability of bikes in other parts of the city when
clamping occurs elsewhere. In our scenario, to mitigate this, the city identifies certain bike usage
situations that describe optimal use of the bikes; a form of quality-of-service sub-goals that aim at
avoiding undesired distribution of bikes. To make such cases attractive to bicycle commuters, the
city offers rewards to bike-sharing users if a sub-goal is successfully satisfied for their bike. The
sub-goals may reflect intuitive mitigations to the clamping problem, e.g. leaving the bikes around
metro stations so that they can be readily re-used by others. However, clamping mitigations might
be complex, capturing cases obtained from transportation analysis of the city. As an example, we
consider the following two sub-goals –a simple and a complex one– of the bike-sharing system,
concerning every single bike:

1E.g., mobike: https://mobike.com/global/.

https://mobike.com/global/
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(G1) Bikes should not be located close to each other at any point. Specifically, no bike should be
located in a place nearby where another bike is.

(G2) Bikes should be located in places in the city from which one can reach certain important
landmarks –such as the main square– through the transportation network of bus and un-
derground, but without traversing bridges. Additionally, no bus stops should be traversed if
other bikes are located there.

Musem

Park

Bridge

Bus Stop

Metro Stop

Bus Stop Main Square

Metro Stop

Bike

Bike

Bike

Fig. 1. Topological accessibility in a city.

Inherent in the formulation of the scenario above
is a description of how various points in the city
are connected, meaning that one can use a bike to
go from a point to another. Such an accessibility
model can be leveraged from existing map data or
readily constructed by monitoring bike usage over
time. The result is a graph structure, which has nodes
corresponding to various points of the city and edges
connecting those which are directly reachable – a
topological map of the physical reachability of the
city. For our example city, such a topological graph
is depicted in Figure 1, where various city landmarks
such as a park, a museum and transportation stops
are connected due to being directly reachable from
each other by bikes.
Challenges inherent to the motivating scenario considered include both evaluating the truth 

values of sub-goals (G1) and (G2) for all bikes in the city at any moment, as well as architecturally 
supporting this analysis. Notice how the evaluation of sub-goals for each bike depends on the 
position of all other bikes in the city – the system’s global state– rendering the sub-goals global 
spatial properties [53]. Additionally, evaluation of such global properties is challenging because 
of computational and scalability concerns, requiring a dedicated architecture for the overall IoT 
system. A naïve approach would be to perform computation upon the devices constituting the IoT 
system themselves (assuming that they are communicated the global system state). In this case, 
the advantages are reduced latency and minimal persistent connectivity needs, as long as devices 
support the computation workload. However, the main disadvantage of this approach is the severe 
limitation on the computing resources of the IoT devices [49]. Even considering a top-of-the-range 
smartphone or tablet, SLA constraints and prohibitive battery drain make this approach unfeasible 
in practice [12] (see also Section 6 for workload comparisons).

3 REASONING ON SPATIALLY-DISTRIBUTED INTERNET-OF-THINGS SYSTEMS
In this section, we present our approach for reasoning about global spatial properties of (finite) 
models of topological space, captured by the spatial distribution of an IoT system. These models 
are closure spaces [35], a generalization of a standard topological space. Subsequently, we utilize a 
Spatial Logic for Closure Spaces (SLCS) [26], an extension of the topological semantics of modal 
logics to closure spaces, to support formal reasoning. In Section 3.1, we first provide a context for 
evaluating spatial predicates, by showing how a spatial evaluation model may be derived. This 
model is illustrated over the accessibility in the example city previously described. Given such an 
evaluation model, in Section 3.2 global properties can be verified.
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3.1 Evaluation Model of Space
Our evaluation model is based on the established notion of trajectories [63] in geographical space,
upon which many datasets and applications build. Such trajectories are often available as a domain
model; for our running scenario, trajectories of bikes can be obtained e.g. by monitoring the
bike-sharing system usage for a limited amount of time [7]. In the following, we demonstrate:
(i) how a topological accessibility graph may be obtained from such a trajectory dataset; and (ii)
how a discrete dataset consisting of traces of presences may be obtained. We obtain a topological
accessibility graph in two steps:
(1) Obtain the points-of-interest (POIs) in the city. These are nodes of the graph, each consists of

a name, various attributes and geographical coordinates of the point in geographical space,
sourced from some widely available repository (e.g. Open Street Map [1] or SPOI [21]).

(2) Map trajectories of active entities over the POIs. If, based on a predefined distance, a trajectory
passes through two points, these two points are considered accessible from one another, and
an edge between the respective nodes is created on the graph.

{musem, bike}

{bus_stop, bike} {park}
{metro_stop}

{main_square}

{bus_stop}

{bridge, bike}

{metro_stop}

Fig. 2. Propositions associated to connected
points form a closure model for the example city.

Back to the running example, if a bike starts from
the POI museum (Figure 1), goes through the bridge
and arrives near the subsequent metro stop, then the
three are considered (step-wise) connected, since
accessibility was demonstrated by at least one trajec-
tory. The resulting graph will have an edge linking
the museum with the bridge and another linking the
bridge to the metro stop. The predefined distance
aims to mitigate sensing errors in the data, as well
as resolution within the scale of which POIs are de-
fined. The result of the process is a graph capturing
accessibility of POIs in geographical space. Note how
time/distance may be introduced to this model by
time-stamping points of a trajectory when mapping over POIs and taking into account trajectory
traversal time. The additional time dimension leads to a model describing trajectories as traces of
presences – analogously, accounting distances enables quantitative reasoning.

The obtained accessibility graph bidirectionally connects POIs. This adjacency relation between
POIs may induce a closure space [35], a mathematical model which can be used for formal reasoning
with a spatial logic. A closure space is a notion originating from the field of mathematical topology,
built upon what can be informally referred as the “least possible enlargement” of a set and exhibiting
certain fundamental axioms. Formally, a closure space is a pair (X ,C) where X is a set, and the
closure operator C : 2X → 2X which assigns to each subset A of X its closure, such that for all
A,B ⊆ X :

C(∅) = ∅; A ⊆ C(A) and C(A ∪ B) = C(A) ∪ C(B).
The elements of X are called the points of the closure space (X ,C). For any subset A ⊆ X , we

define the complement of A in X as A = X \ A. For a closure space (X ,C), for each A ⊆ X , the
interior I(A) of A is the set C(A). Moreover, the boundary of a set informally refers to the set of
elements which can be approached both from inside it and from outside of it. Formally, in a closure
space (X ,C), the boundary of A ⊆ X is defined as B(A) = C(A) \ I(A). Two more variants of
boundary exist, the interior boundary B−(A) = A\I(A), and the closure boundary B+(A) = C(A)\A.
Finally, as shown in [26; 35], every graph for which the set of edges forms a binary relation induces
a closure space, called a quasi-discrete closure space, by interpreting closure as the adjacency of
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the nodes in our accessibility graph. Given a set of propositions P , a closure model [26] is a pair
M = (X ,C),V consisting of a closure space (X ,C) and a valuation V : P → 2X , assigning to each
proposition the set of points where the proposition holds.

In Figure 2, the binary relation of accessibility between locations (POIs or landmarks) gives rise
to a closure space. Thereupon, propositions associated with each point capture the POI name as
well as presence of a bike.

3.2 Verification in Space
Building upon the previously defined fundamental operators of closure and boundary, we proceed
to briefly outline the syntax and semantics of SLCS [26], a spatial logic for closure spaces. The
logic will be evaluated upon modelsM. The logic features boolean operators, a “one step” modality
turning closure into a logical operator, and a spatially interpreted surrounds operator2. Given that p
ranges over a set of propositions P , the syntax of SLCS is defined by the following grammar:

ϕ ::= p | ⊤ | ¬ϕ | ϕ ∧ψ | C ϕ | ϕ S ψ . (1)

In Formula 1, ⊤ denotes true, ¬ is negation, ∧ is conjunction, C is the closure operator, and S is the
spatial surrounds operator. SatisfactionM,x |= ϕ of formula ϕ at point x in modelM = ((V ,C),v)
is defined inductively on terms [25]. More complex logical operators can be defined based on the
fundamental operators of closure and spatial surrounds. In the following, we recall fundamental
ones [26; 53] being useful in the context of this paper and later used for the evaluation of our
approach in Sec. 6. First, we consider the intuitive notion of nearness; points that are near another in a
model can be found inside the set identified by (applications of) the closure operator upon this point.
Thus, nearness can be defined by nesting applications of the closure operator as Nn ϕ

def
= Cnϕ.

Operator N can be applied arbitrarily often to predicate about points being in a defined proximity
from each other. For example, based on the closure model of Figure 2, N({museum,bike}) will
yield the three points on the leftmost part of the graph.

We further consider an operator T based on the spatial surrounds operator [26] which captures
a notion of reachability, defined as ϕ T ψ

def
= ϕ ∧

(
¬
(
(¬ψ ) S (¬(ϕ ∨ ψ ))

) )
. ϕ Tψ is satisfied

for a point x if it satisfies ϕ and we can reach a point satisfying ψ while passing only by points
satisfying ϕ. Then, based on T , a more complex reach through operator ℜ defined as ϕ ℜ(ψ ) ζ def

=

ϕ T
(
(ψ T ζ ) ∧ (ψ T ϕ)

)
, is satisfied for a point x if x satisfies ϕ and there is a sequence of points

starting from x , all satisfyingψ , reaching a target point satisfying ζ . The interested reader is referred
to [26], as we consider defining complex operators as out of scope for this paper.

bike ℜ
(
(!bridge ∨

(
bus_stop ∧ bike

) )
main_square. (2)

For an example illustrating the use of the derived ℜ operator, consider the Formula 2 which 
specifies the main_square being reachable from a point which has the proposition bike.

4 SPATIAL ANALYSIS AT RUNTIME FOR THE INTERNET-OF-THINGS
In this section we discuss bringing spatial verification at runtime. After outlining essential compu-
tational properties of the model checking workload, we propose an application model where the 
workload is deployed on the cloud. Our proposal architecturally consists of software services and 
has as its main goals the satisfaction of SLAs and the optimization of the cloud resources used.

2Intuitively, closure and surrounds in a quasi-discrete closure space behave similarly to next and until in the temporal 
domain.
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4.1 Spatial Verification as a Computation-Intensive Workload
Evaluation of spatial properties expressed in the SLCS syntax of Formula 1 over a closure model
constitute a specific type of workload. The major computational component of this workload is
the actual verification procedure – other minor tasks such as data structure manipulation are
insignificant with respect to the computational burden of explicit-state model checking.
The model checking procedure evaluates SLCS properties over the closure model representing

the current state of the system. Recall that the model consists of a graph structure (POIs and their
adjacency relations, capturing accessibility in the model) as well as certain propositions that hold in
points (e.g. presence of bikes). Following the model checking approach presented in [25], evaluation
of a formula yields the set of points of the closure space where the formula is true. In our case,
we return a truth value which indicates if the obtained set is non-empty. That is, the existence or
absence of points in the closure model for which the evaluated formula is true. Thus, note that
Formula 2 is violated for the bike in the museum in the upper left corner of Figure 2, but satisfied
for the other two bikes located in the bus_stop and the bridge.

Given a spatially distributed system, representation of its discrete underlying structure as a set
of points and their adjacency can be considered as virtually constant throughout its operation.
With respect to the motivating example of Section 2, this corresponds to the topological structure
of the city. The closure model additionally records the current positions of the bikes through
propositions. Updating bike positions – changing the propositions assignment and subsequently
verifying a property such as the one of Formula 2, is performed in a near-constant time. The
actual verification burden induced depends on the size of the particular closure model, as well
as on the complexity of the properties checked. However, the overall operation has challenging
characteristics when considered as a computational workload. Spatial model checking as presented
is a very computation-intensive operation, since it requires verifying the truth value of a complex
formula. However, memory requirements are near-constant, since model checking requires keeping
the closure model in memory, the size of which is known beforehand (i.e., it is the model size of the
city). Such characteristics of the computational workload are exploited to design the microservices
architecture presented in the following section, enabling spatial model checking to be performed at
runtime while meeting strict SLAs.

Finally, we note that this renders the verification workload fundamentally different in contrast to
model checking approaches on the cloud verifying temporal logic properties [14; 18; 44]. Given the
above, we are not interested in partitioning or parallelizing verification computation, as our domain
is spatial model checking, and the size of the space is virtually fixed per problem instantiation – we
seek to evaluate properties that otherwise components in an IoT system would compute, given the
particularities of the spatial verification workloads induced.

4.2 Service-based IoT Spatial Analysis in the Cloud
Given the limitations to perform computation in the devices themselves, offloading and deploying
such computation to the cloud is a viable option [39; 57]. In the cloud, computing resources are
typically provided through virtualization and containerization [10; 43], and there is an illusion of
infinite resource availability thanks to horizontal scaling. However, accessing these resources may
involve multiple hops of network communication, adding prohibitive latency in the processing
of client requests. In this particular case of analysis however, computation is the major cause
of delays. Thus, we propose an application model that brings together stateless components
and immutable data, while stateful components are deployed separately. The proposed model
prevents data consistency problems that would arise if stateful components such as databases
were deployed in a distributed fashion. It also allows multiple service instances to coexist and be
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deployed independently without the need for state migration, which is particularly important to
cope with client mobility. Indeed, as devices will freely enter and exit geographical areas, even
cloud providers may see considerable variations to their aggregate demand over time. In such a
scenario it may be unfeasible to predict the origin and intensity of the workload [11].
When managing IoT services in the cloud, there are two conflicting goals: i) the satisfaction of

SLAs, and ii) the optimization of the resources consumed by these services in the cloud. In this paper
we focus in two kinds of application requirements, namely service latency and cost; simultaneously
we target efficient and scalable usage of computational resources from cloud providers – mainly
CPU, since our applications are computation intensive [10]. From the provider’s perspective, an
efficient and scalable allocation of its (virtualized) resources must be allocated to cope with the SLA
of each provided service. To be efficient, the allocation of resources should be able to mimic the
corresponding fluctuations of demand, i.e., be highly responsive. Consequently, it is important that
the mechanisms governing resource allocation be aware of the actual, and potential workload [11].

IoT system architectures bridge the gap between the physical and the virtual worlds, but entail
multiple challenging factors. IoT architecture design involves networking, communication, and
interoperability among heterogeneous devices [46], while the overall systemmust exhibit scalability.
These devices may be heavily resource-constrained, e.g., in terms of computational power and
battery constraints, while IoT applications have to meet stringent quality of-service requirements,
hindering the provision of computing and communication elements [60]. Due to the fact that
things may move in the physical space and need to interact with others in real-time, an IoT
architecture should be adaptive and decentralized, as well as support technology-agnostic event-
based communication between heterogeneous devices serving as the fundamental architecture
components. In this context, Service-Oriented Architectures (SOA) ensure interoperability among
the heterogeneous devices [46] and allows to treat such a complex system as a set of well-defined
simple services [9]. Due to these advantages, SOA has been widely applied as a mainstream
architecture, for example in the context of Wireless Sensors Networks (WSNs) [23]. SOA applied
to IoT provides extensibility, scalability, modularity and interoperability among heterogeneous
things; in addition, the functionalities and capabilities are abstracted into a common set of services.
Figure 3 provides a generic SOA view for IoT in the context of our problem, which consists of three
layers [46]:

• Sensing/Actuating layer, integrated with available devices, responsible for obtaining their
status and acting upon decisions based on analysis outcomes.

• Network layer, reflecting the infrastructure that supports wireless or wired connection among
things, and

• Service layer, which creates and manages services used by end users and applications.

In our approach, IoT services are indeed microservices [36; 45], as they are small, modular, 
communicate with lightweight mechanisms (often through an HTTP RESTful API) and are inde-
pendently deployable by fully automated machinery. Back to our running example, a bike’s location 
sensors (sensing layer) emit heartbeats with its coordinates, either periodically or upon certain 
events (e.g. locking/unlocking, or in proximity to certain landmarks or POIs). Such heartbeats should 
trigger the evaluation of the global model in order to determine whether the defined sub-goals hold 
for the current position of the bike (as well as the positions of all other bikes). The event travels 
across the network infrastructure towards the cloud (Network layer), reaching the cloud service 
in charge of processing it (Service Layer). Finally, the result of the evaluation travels back to the 
actuator layer, to undertake the corresponding actions e.g. through the mobile device of the user 
(e.g., providing feedback regarding penalties or rewards).



9

C
lo

u
d

 
In

fr
a
st

ru
c
tu

re
N

e
tw

o
rk

 
In

fr
a
st

ru
c
tu

re
Io

T
 D

e
vi

c
e
s 

S
e
n
sin

g
 &

 A
c
tu

a
tio

n

Device

Device
Device

Device

WLAN4G WSN …

N
e
tw

o
rk 

Device

API Gateway

A B C n

• • •

MicroservicesSpatial Analysis 

Microservices
S

e
rvic

e

Fig. 3. IoT and microservices architecture for materializing spatial reasoning on the cloud.

5 CLOUD DEPLOYMENTS FOR IOT SPATIAL REASONING
This section details the materialization of our proposal as a microservices architecture for IoT
(based on the SoA-IoT interplay discussed in Section 4.2), which allows to offload the reasoning on
space presented in Section 3. We instantiate verification processes integrating them to the service
layer of the IoT-cloud architecture [46] of a spatially-distributed IoT system involving resource-
constrained devices connected to the Internet. Applications with specific processing demands,
including the computation-intensive ones discussed through this paper, have historically required
special configurations such as compute- or memory-optimised virtual machine instances [50]. With
the recent rise of function-level compute instances through Function-as-a-Service (FaaS) models,
the fitness of cloud configurations needs to be re-evaluated for these applications. Subsequently, we
propose alternative cloud deployments for such a model checking microservices-based architecture,
based on Virtual Machines (VMs), containers, and FaaS, as well as a hybrid deployment setup.
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Fig. 4. Deployment diagram for the service layer.

The service-based architecture consists of two basic building blocks, materialized as two separate
microservices3 Stateless components reflecting solely computation (i.e., the model checking proce-
dure evaluating spatial properties of Section 3.2) and mostly immutable data (i.e., the topological
graph of space of Section 3.1) form the model checker microservice, which receives the current
system state and a property, and verifies if such property holds. The system state refers to the
current spatial distribution of entities in the city as a closure space, while the property captures
the QoS requirements that should be evaluated upon the current state of the system. Stateful
components form the location-cache microservice, which provides an interface to the current
3Complete source code as well as accompanying evaluation models are available at [2].
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global state of the space, i.e., the location of the devices at a given point in time. Needless to say, 
both microservices provide HTTP/RESTful interfaces. In this manner, those microservices can be 
reused, scaled and maintained individually; therefore, the software and hardware components in 
the IoT deployment can be reused and upgraded efficiently. In the following, we propose concrete 
deployments and instantiations of those microservices with the goal of enabling computation 
offloading to the cloud, and then discuss their advantages and disadvantages. Evaluation of the 
different deployments upon a real-world workload is provided in Section 6.

5.1 Elementary Cloud Deployments
Monolithic Deployment. The whole logic of the application (i.e., the two microservices and the 

database) lives within a single deployment unit. This is the straightforward option for the cloud as it 
can be deployed in a single monolithic server, typically a virtual machine (VM), which substantially 
reduces the operational burden [34]. However, scalability is constrained in two ways: first, given 
the limited computing resources of such a monolithic deployment, and second, because the scale 
unit is the whole application, even though different microservices have unequal loads and may 
need to scale separately. Alternatively, the monolith can be deployed in a multi-server environment, 
with a load balancer to distribute the load among multiple VMs. However, adding VMs to handle 
workload bursts may take several minutes [10], which can cause severe SLA violations. Again, the 
fact that all components scale together (despite their actual utilization) multiplies the resource 
overprovisioning, something not cost-effective.

Containerized Microservices Deployment. Each microservice may be developed separately using 
different technological stacks, deployed and scaled independently in a containerized manner. Con-
tainers are executed directly on top of the host operating system (typically a VM), optionally with 
the help of a container manager (e.g., Docker [5]). Each container typically hosts one microservice, 
with its own platform stack and application code. Containers have various advantages when com-
pared to VMs: they are more lightweight, and faster to boot and terminate [33]. This allows for 
faster and more reactive scalability: if scaling VMs takes several minutes, adding a container or 
changing its resources takes seconds. Since multiple applications that share the same virtualized 
resources may see different workloads, the finer granularity and the higher adaptation speed of 
working with containers allow us to use resources more efficiently [10]. The disadvantages of this 
approach may rely on the increased operational burden (since there are several deployment units 
to manage and scale) and, still, SLA violations that may occur during scaling-up actions.

Functions-as-a-Service Deployment. FaaS, also known as serverless [38; 48; 50]) has been recently 
proposed as an alternative cloud paradigm in which business functionality is provided without pre-
allocating computational resources. Instead, shared resources (e.g. containers) are used to provision 
and execute functions on demand, typically in a few milliseconds. Therefore, microservices are 
implemented as functions (often called lambdas [3]) allowing a straightforward deployment to 
the cloud. The horizontal scaling in FaaS is completely automatic, elastic, and more reactive 
than the typical solutions of scaling a virtual machine or spinning up containers against bursts 
of workload [38]. A disadvantage of this approach may be vendor lock-in, since specific cloud 
solutions (e.g. AWS Lambda[3], IBM/Apache Openwhisk[6], Azure Functions[4]) are tied to the 
service ecosystem from the same cloud provider. Additionally, functions are stateless by definition, 
which limits the applicability of the model – stateful microservices should store the state outside of 
the function itself, as done for the location-cache in our deployment. Since the computationally-
intensive model checking workloads we investigate require minimal state, a FaaS deployment fits 
such workload requirements particularly well.
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5.2 Spatial Analysis Workloads over a Hybrid Deployment
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Fig. 5. Sample Hybrid deployment featuring FaaS and
a monolith server behind a load balancer.

A deployment based on VMs or containers,
while reducing operational burden may fail to
perform with respect to SLAs due to slow scal-
ing actions. On the other hand, the elasticity
that FaaS offers should be leveraged. To this end,
we propose a novel hybrid deployment: a base-
line infrastructure based on VMs or contain-
ers to serve normal, expected workloads, plus
a FaaS fallback infrastructure to serve unex-
pectedworkload peaks. The rationale is to lever-
age lower cost of usual scaling options while
fluctuations are managed by highly elastic and
reactive FaaS components. Figure 5 shows our
proof-of-concept hybrid deployment featuring
a Monolithic server plus a FaaS pool. Instead of invoking directly microservices, a Load Balancer is
in charge of forwarding the request to the corresponding server or function, depending whether
the CPU load of the server is higher than a given threshold T. The request is then forwarded to a
lambda function when the server is overloaded and thus may fail to process the request. In the
following section, we evaluate this the alternative deployments with a sample workload scenario.

6 EVALUATION
For evaluating the proposed approach and deployments, we developed tool support and a proof-
of-concept implementation based on the SLCS topochecker [26], available online along with
accompanying material [2]. We deployed the prototype to the different cloud alternatives discussed
in Section 5. Our evaluation goals target realization and applicability of our approach for spatial
service-based analysis for IoT applications. Concretely, we aim to:

• Investigate feasibility of the approach through concrete deployments in the cloud;
• Compare different deployments in terms of latency and SLA in the context of a normal
workload, i.e., one known beforehand, to provide a baseline for the required computational
resources and cost on each alternative, and

• Perform stress tests over the different deployments by increasing the workload rate, to assess
scalability of each alternative.

Our evaluationmodel andworkload is sourced from theMicrosoft T-Drive trajectory dataset [61; 62],
which contains trajectories of 10,357 taxis in Beijing spanning one week. The number of coordinate
points and total trajectories distances in the dataset is in the order of millions. Based on the T-
Drive dataset, we derive a closure model as per Section 3.1. We source POIs of Beijing from the
OpenStreetMap repository [1]. To obtain discrete trajectory data from the trajectory dataset, we
record presences of entities (taxis) over time and space – i.e., over the points of the accessibility
graph previously defined. Specifically, for every single taxi in the dataset, its trajectory – as a line
– is placed over the POIs of Beijing. If the distance from a point in the trajectory to a POI is less
than a predefined length (10 meters for our evaluation purposes), a time-stamped presence of the
taxi in that POI is recorded. The result is a discrete, timestamped sequence of presences of entities
in POIs, which ultimately leads to a graph capturing accessibility of such POIs in geographical
space. For example, if a taxi starts from a POI "Tsinghua University", goes through a bus stop
and arrives at "Peking University", then the three are considered (step-wise) connected, since
accessibility was demonstrated by at least one trajectory. The predefined distance aims to mitigate
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sensing errors in the data, as well as resolution within the scale of which points-of-interest are
defined. For the T-Drive dataset, an example trace would record {taxiA,date,TsinдhuaUniversity}·
{taxiA,date,BusStopA} · {taxiA,date, PekinдUniversity}. Evaluation datasets and derived models
are available in accompanying material [2].

We present traditional deployments setup on Section 6.1, and the experimental results obtained
in Section 6.2. Then, we evaluate the hybrid deployment alternative in Section 5.2, and subsequently
discuss threats to validity.

6.1 Experiments Setup
Given a closure model and a trace of presences as previously defined, we proceed to consider
the workload induced by the active entities in the space – in this case the Beijing taxis – given
the scenario presented. We assume that each registered presence of a taxi in a POI, also implies
the evaluation of certain spatial properties (similarly to Section 2) by calling the model checker
microservice. The evaluation of the property is based on the global state of all taxis in the Beijing
dataset at that time.

Fig. 6. Beijing traces [62] dataset evaluation work-
load [2] as taxi presences (y-axis) near points-of-
interest [1] over the course of hours of the days of
Feb 5-6 2008 (x-axis).

We limit our evaluation clock-time to a win-
dow of 24 hours in Beijing. Figure 6 depicts
single requests (i.e. taxi presence heartbeats)
over time for a representative weekday, where
one can observe that the workload exhibits a
sine wave following the working hours. We
consider a closure model of 36805 edges, with
15456 propositions over 5152 nodes [2].

The performed experiments were threefold.
We defined an SLA of 30 seconds for the re-
sponse time of the properties evaluation service.
For the first experiment, we executed the sam-
ple window of 24 hours of Figure 6 and profiled
the necessary infrastructure (for each deploy-
ment) in order to satisfy the SLA within the
whole period. This allowed us to determine the
baseline infrastructure and cost to serve a typ-
ical workload based on the evaluation model.
Then, in the second experiment we proceeded
with a stress test, by reproducing one hour of workload with different time multipliers, i.e., sim-
ulating that the events arrive with a faster rate. This allowed us to assess the scalability of each 
deployment, in a scenario in which the workload rate is increased with time multipliers. Finally, 
the third and last experiment assesses the performance of our hybrid approach with respect to 
using only VMs or FaaS. The hybrid combines the best of the previous alternatives: a baseline 
infrastructure with preallocated resources (in the form of VMs or Containers) to serve normal 
workloads, plus a FaaS fallback infrastructure to serve unexpected peaks in the workload.

The example properties to be checked (Formulae 3-5) are system-wide goals in line to the scenario 
of Section 2, that aim to assign penalties or rewards to taxis in order to avoid clamping in the 
city. Specifically, P1 encodes the requirement that a taxi shall be able to reach department stores 
traversing points of subway or bus stops. However, traversal may not go through a hospital. P2 
encodes that the taxi is always in the vicinity of a hospital or a hotel (by two steps away), but not 
immediately next to restaurants. P3 specifies that a taxi should be within an area characterized 
by proximity to tourist attractions (e.g. the Forbidden Palace) and subways, up to zoo’s (e.g. the
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Beijing Zoo). Such a property, utilizing the T operator of Section 3.2 could be used to reward
taxis implementing a temporary city-wide policy of attracting tourists which are located in the
center of the city to go to the zoo, since they will be able to find more taxis within this area. Note
that specification formulae utilize the complex operators previously defined – the corresponding
elementary formulae are sizable. The propositions used in the specifications are found in the
generated dataset available in accompanying material [2].

(P1)taxi ℜ
(
(!HEALTHHOSPITAL ∨

( (
TRANSPORTSUBWAY ∨ TRANSPORTBUSSTOP

)
∧ taxi

) )
DEPARTMENTSTORE.

(P2)taxi ∧ N2
(
ACCOMMOHOTEL ∨ HEALTHHOSPITAL

)
∧ N

(
FOODRESTAURANT

)
.

(P3)taxi ∧ N2
(
TOURISTATTRACTION ∧ TRANSPORTSUBWAY

)
T TOURISTZOO.

(3)

(4)

(5)

We deployed the microservice architecture described in Section 4.2 (Figure 4) in four differ-
ent environments. We note that the workload, being a model checking procedure, is heavily
computation-intensive, but its memory requirements are minimal, so we ignore RAM specifications
of the infrastructures for clarity.
Device: Local execution of the model checking load in an IoT resource-constrained device (e.g. a

mobile phone), featuring am ARMv6 A53 1GHz CPU.
Monolith: Large VM instance containing the two microservices in a single deployment package.

The VM ranges from 16 CPUs (c5.4xlarge AWS instance) for light workloads, up to 64 CPUs
(c5.18xlarge) for heavy workloads.

Containers: AWS Elastic Container Services (ECS4), where each microservice is containerized,
deployed and scaled independently. The infrastructure ranges from 10 to 25 instances with 2
CPUs each (t2.medium), depending on the workload.

Lambdas: Functions-as-a-Service as AWS Lambda functions were configured with 2 vCPUs each5,
scaling automatically from zero to the level of parallelism required, according to the workload.

The services deployed correspond to a location-cache microservice as an in-memory key-
value store, while the checker microservice as an encapsulation of the model checker [25], which
receives the current state and a property, and verifies if the property holds. The IoT device, featuring
similar processing power to a mobile phone, encapsulates a model checker procedure compiled
accordingly per its software architecture stack. The relevant implementations are available in [2].

6.2 Cost and Scalability Evaluation Results
Table 1 shows the infrastructure and cost results for the first experiment, considering 24 hours of
execution (resulting in 8864 model checker invocations) sliced in periods of three hours. The third
column (Cores) shows the approximate number of cores needed to serve such a workload within
the SLA of 30 seconds per call. Then, each deployment is scaled to be close to that number during
each period.
Results show that, when the workload is known beforehand, the Containerized Microservices

solution is the most cost effective: $456.96/month, considering a month as 21.73 working days (the
workload considered decreases significantly during weekends). Subsequently, the FaaS deployment
costs $771.67/month, calculated upon the amount of memory assigned to the function, and the exact
number of invocations and execution time (12 seconds on average), which eases its fine-tuning. The
less cost effective solution is the Monolithic Server deployment, at a cost of $932.63/month. This is
due to the fact that the Monolithic Server incurs resource over-provisioning most of the time, even

4https://aws.amazon.com/ecs/
5CPUs are assigned proportionally to the RAM (2GB in this case) – https://aws.amazon.com/lambda/
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Table 1. Baseline infrastructure and cost for the cloud deployments considering 24h workload.

Hour Calls
Cores

(aprox)

Containerized
Microservices

Monolithic
Server

FaaS
Deployment

VMs* cost VM cores memory cost sec/call cost
6–9 312 20 10 1.4 c5.4xl 16 32 2.04 12 1.25
9–12 1283 40 20 2.8 c5.9xl 32 64 4.6 12 5.13
12–15 1663 50 25 3.5 c5.18xl 64 128 9.18 12 6.65
15–18 1676 50 25 3.5 c5.18xl 64 128 9.18 12 6.70
18–21 1668 50 25 3.5 c5.18xl 64 128 9.18 12 6.67
21–00 1202 40 20 2.8 c5.9xl 32 64 4.6 12 4.80
00–03 705 30 15 2.1 c5.4xl 16 32 2.04 12 2.82
03–06 355 20 10 1.4 c5.4xl 16 13 2.04 12 1.42
Day 8864 21 42.86 35.46
Month** 192614 456.96 932.63 771.67
*t2.medium AWS instance, 2 CPUs, 4GB memory
**Month = 21.73 working days

though we are adjusting the size of the VM for each period. Finally, we also profiled the execution 
in the mobile device, which represents a single taxi in the dataset. Rather than testing with the 
workload (multiple taxis), we performed sequential calls. This captures the case where instead of a 
cloud solution, one chooses a deployment where properties are evaluated on the devices making 
up the IoT system. Execution results shown that single invocations take 99 seconds on average 
to complete, which violates our SLA of 30 seconds, making it unfeasible in practice (barring e.g. 
battery drain effects). Nevertheless, we additionally included the mobile device in the subsequent 
experiment for completeness.

For the second experiment we considered a representative lapse of one hour of workload, from 
11am to 12am of February 5 (Figure 6), which is the beginning of a daily peak comprising 536 data 
points. We executed stress tests over the different Cloud deployments, by multiplying the rate in 
which requests arrive (one per each data point). Each request triggers one invocation of the model 
checking procedure. We stretched the 536 invocations in 12 minutes (5x faster rate), 6 minutes 
(10x), 3 minutes (20x), 1.5 minutes (40x) and 1 minute (60x). Then, we measured the total time per 
invocation, considering the SLA of 30 seconds defined before, and disaggregated it by computation 
time and wait time, i.e., when the request is queued waiting for computation resources.
Figure 7a depicts the median time per invocation for the different rates and deployments. Ad-

ditionally, we plotted the mobile device (rightmost column), which executes sequential requests 
independently of the rate: as soon as one request is processed, another one is fired. The Container-
ized Microservices in the ECS cluster presented the worst performance overall, with requests timing 
out (error 504) with 20x rate or more, which explains the absence of the yellow column for 40x 
and 60x rates. Since a scaling-up action (that can demand several seconds [10]) triggers when 
more containers are needed to handle the workload, requests timeout in the meantime. The FaaS 
alternative held an (almost) constant performance with 12 seconds per invocation for all workloads. 
Even though commercial FaaS solutions can give the impression of "infinite" scalability, the tradeoff 
between resource availability and cost (Table 1) has to be carefully considered. The Monolithic 
deployment performed better (between 9 and 12 seconds per invocation) up to 20x rate, then 
started to decrease its performance due to resource unavailability. As discussed in Section 5.1, the 
monolith could also scale in a multi-server environment, although adding VMs to handle workload
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bursts as in this experiment may take several minutes [10], which can cause severe SLA violations
in the meantime. Finally, the Mobile Device computes the requests sequentially with a constant
performance of an average of 99 seconds per invocation. Needless to say, such processing time
is prohibitive as it violates the defined SLA. Figures 7b and 7c show the actual computation and
waiting time respectively. Recall that waiting occurs when no computation resources are available at
the moment the service is invoked. One can observe that for all the deployments, computation time
remains almost constant, the underlying issue being the wait time which substantially increases
for faster workload rates. In such cases, requests are queued waiting for available computational
resources, which decreases the overall system performance.

(a) Total time per request (a) (b) Computation time (logarithmic
scale)

(c) Wait time (logarithmic scale).

Fig. 7. Average time per request for different deployments and workflow rates.
From the two first experiments we can highlight the following. First, the solution based on the

mobile device, even though it processes only its own requests, has a prohibitive computation time of
99 seconds on average, making it unsuitable in practice. The unfeasibility of performing computation
locally calls for computation offloading to the cloud, with all its different flavors. The two solutions
that performed better were FaaS and Monolithic. The FaaS deployment using AWS Lambda held
a constant performance even under dense workloads, being more reactive and scalable than the
Containerized and Monolithic alternatives. The option of the Monolithic deployment in traditional
AWS VMs, performed well for medium workloads, but not against peaks or faster rates, specially
when the latter are unknown beforehand. Finally, the Containerized Microservices deployment,
materialized through an AWS ECS Cluster did not seem suitable for this scenario, mainly because
of scaling-up delays (even when containers take only seconds to bootstrap). Regarding the overall
cost, when the workload is more or less known (e.g., a normal workday in our taxis scenario) FaaS
become more costly in comparison to other deployments that allow one to preallocate resources in
advance. This opens the challenge to consider the hybrid approach, as follows.

Hybrid vs. monolithic and FaaS deployment. For the third experiment, we implemented the
hybrid deployment of Section 5.2 (Figure 5) and assessed its performance with respect to other
cloud deployments – namely monolith and FaaS. Our proof-of-concept hybrid deployment features
a Monolithic server plus a FaaS pool, transparent for the end user thanks to the API Gateway,
which provides a single REST endpoint to reach any of the checker microservices. Instead of calling
directly the microservice, the API Gateway fires a lambda function which acts as the Load Balancer
that forwards the request to the corresponding server/function, depending on the load of the server
being higher than the configurable threshold T.
Figure 8 depicts the total, computation and wait time per invocation for the different request

rates, considering the hybrid deployment, plus lambda and monolith as the two best alternatives
according to the previous experiments (see Section 6.2). Note that the plotted values correspond to
20x rates (3 requests/second) and higher, since for lighter workloads the hybrid deployment is not
necessary (100% requests being forwarded to the monolithic server). For 40x rates, the monolith
served 72% of requests and FaaS 28%. For 50x rates, 67% and 33% respectively, and for 60x the
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distribution was 65% and 35%. For 20x rates all deployments performed equally. For faster rates,
the monolith server exponentially decreases its performance mainly due to wait times (insufficient
computational resources). Meanwhile, lambda and hybrid held an almost constant performance of
12 and 20 seconds per call respectively.

(a) Total time per call (seconds) (b) Computation time per call (seconds) (c) Wait time per call (seconds)

Fig. 8. Time (y-axis) comparison for different deployments and workflow rates (x-axis).

Figure 9 shows the maximum, minimum and median times per call for FaaS, Monolith and Hybrid
deployment, regarding the 30 seconds SLA previously defined. FaaS holds a constant performance
without incurring SLA violations. The Monolithic alternative incurs SLA violations for 40x rates or
higher, not only for the maximum but also for the median times. Meanwhile, the hybrid deployment
shows SLA violations only for the maximum times, but not for the median. This is due to the
requests that arrive at the beginning of a peak, that is, when the server starts to be overloaded, but
the LB has not yet detected it. Conclusively, the hybrid deployment combines the best of the two
worlds: preallocated resources to serve normal workloads, while lambda functions allow to serve
unexpected peaks on the workload in a reactive and cost-effective fashion. In all cases, the lambda
load balancer introduces little overload, less than 300ms per request on average.

(a) FaaS Deployment. (b) Monolithic Deployment. (c) Hybrid Deployment.

Fig. 9. Total times (max, min, median) and SLA violations for FaaS, Monolithic and hybrid deployments.

Finally, in terms of threats to validity is it worth mentioning that the experiments targeted 
only one sample model checker [26], and three spatial properties. Further tests may be needed, 
considering other properties and implementations that may affect processing times. Additionally, 
one may argue that the defined SLA of 30 seconds is arbitrary. This should be considered only 
as a reference value in the context of our experiments, whilst an actual SLA may be even lower. 
In those cases, the model checker implementation and deployment configuration (e.g., timeouts, 
location cache lifetime, data locality) should be optimized to meet the requirements of a real-time 
application. Regarding the workload behavior, the cloud deployment alternatives that perform 
resource preallocation (i.e., monolith server, containers) require to know the workload beforehand. 
When this is not possible, it may be better to rely on more flexible deployments such as FaaS 
and hybrid (the latter with a minimal amount of preallocated resources), which can prove more
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expensive in the long term. It should be also taken into account that the hybrid deployment used
for the third experiment constitutes a proof-of-concept. Fine-tunning the deployment can result in
further improvements, in particular regarding the threshold value T for CPU usage, and caching
policies for the load balancer. Last but not least, using containers and/or edge servers for deploying
the hybrid alternative could substantially improve its performance [10–12], these options being
considered as a significant avenue of future work.

7 RELATEDWORK
We presented an approach for model checking requirements predicating on the spatial distribution
of devices comprising an internet-of-things system at runtime, leveraging a cloud architecture
based on microservices. Consequently, we classify related work into three categories. First, we
review foundational work on spatial reasoning, positioning our work. Then, we discuss relevant
approaches that have considered model checking and computational intensive tasks using cloud
infrastructures. Later, we discuss related engineering approaches that aim at systems utilizing
spatial verification for various purposes, in context of which our technical framework may be used.
Topological relations have been traditionally considered in the context of database systems,

query languages [40] and logics for spatial data analysis in geographical information systems [15],
focusing on the elements of a geometric model [30; 31]. In addition, spatial logics have also been
studied in the context of process calculi [20], where the typical theme is predication against the
structure of agents, also with applications to graph databases [19]. Our choice of a spatial logic over
closure spaces [25] as a basis for our spatial reasoning support is that closure spaces are a generic
mathematical concept serving as the interface between arbitrary binary relations. We further
note that quantitative reasoning in our application domain appears promising [17], something we
identify as future work.

The recent extensive availability of cloud processing platforms has fueled notable approaches for
classical model checking [14; 44], proposing a technological transition to exploit the new available
architectures. Approaches target classical, foundational verification of temporal logics such as CTL
and LTL [29]. The prevalence and availability of the cloud has created an increasing interest in
parallelizing and distributing verification techniques. Generally, the explotation of cloud resources
aims at increasing the memory available and reducing the overall time required by verification by
employing distributed techniques [13; 32] or by splitting the given state space into several partial
state spaces [18]. We note that the model checking processes that we instantiate, do not partition or
parallelize verification computation, as our domain is different – we seek to evaluate properties that
otherwise devices in an IoT would compute, given the particularities of spatial verification. To the
best of our knowledge, spatial model checking within our cloud context has not been considered
before; spatial verification exhibits particular kinds of computational workloads, as we observed in
Section 4.1. Moreover, the potential offered to engineer applications in novel domains such as the
IoT, has not been exploited, as discussed in the following.

We position our approach within engineering of dependable systems operating in a discrete space
arising from topological relations in the spatial environment, where the information abstraction
of physical location or position of entities is inherently important [42; 52]. Topological relations
have found application in various domains, where formal reasoning has proved beneficial, such
as in foundational approaches [26; 28]. In previous work [53] we considered spatio-temporal
model checking of evolving spaces and advocated that the topology can provide a system with
awareness of multiple characteristics [52; 54; 55]. Closure space-based reasoning with the SLCS
logic has been considered for data correctness in vehicle location data, in the context of collective
adaptive systems [24]. Moreover, a combination of CTL and SLCS is developed [27] to study
bike sharing systems. In [51], a combination of metric and spatial logics has been proposed for
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verification of safety properties in cyber-physical systems, while run time verification of spatio-
temporal behaviours of complex systems is studied in [47], extending Signal Spatio-Temporal Logic
with SLCS. For our evaluation purposes, we utilize a trajectory dataset, so we succinctly discuss
relevant approaches. Trajectory-based reasoning has been studied extensively in scientific literature,
where trajectories are typically modeled as streams of spatio-temporal points. Recently the focus
has been on the use of semantic abstractions of raw mobility data, including not only geometric
information but also knowledge extracted jointly from themobility data and the application domains
information [59]. We note advanced data mining techniques which tackle related problems of low
sampling-rate and uncertain features of trajectory data [22], their context [56], or forecasting [58].

8 CONCLUSIONS
In this paper, motivated by the need for requirements assurance of spatially-distributed IoT systems,
we proposed a technical framework for their spatial formal verification at runtime, leveraging a
microservices architecture for the cloud. We defined the underlying model of space as a topological
graph structure paving the way for expressing and verifying spatial logic properties. We devised a
microservices architecture where we instantiated spatial model checking processes in a service
layer, and proposed alternative cloud deployments; Virtual Machines, containers and the recent
Functions-as-a-Service. After investigating their tradeoffs when evaluating global spatial properties
at runtime, we proposed a novel hybrid deployment, where preallocated resources are augmented
with an additional FaaS fallback infrastructure serving unexpected peaks in the workload. Our
evaluation with a realistic workload scenario investigates feasibility, performance, scalability and
elasticity of different deployments.

Regarding future work, we aim to first challenge analysis assumptions of IoT-cloud coupling as
well as enable the specification and verification of more complex spatial properties. Today’s IoT-
cloud architectures assume that cloud resources are always available, and where software services
then provide the analyses, business logic and data for devices to take action. However, novel
requirements driven by technological advancements such as timeliness, locality of computation or
privacy may dictate analysis to take place closer to IoT devices, at the edge of the network [37].
For example, the round-trip network latency for spatial analysis (for smaller spatial models) may
be prohibitive when analysis is performed on the cloud [12], or fault-tolerance requirements may
suggest that the central point of failure that the IoT-cloud coupling exhibits is not acceptable. As
such, we aim to support analyses on the edge [11] where the challenge is decentralizing verification
as well as the appropriate data to support it, putting more focus on edge devices [16] such as IoT
gateways, network devices, cloudlets, and small clouds. On the analysis side, we have demonstrated
that relevant qualitative spatial requirements may be expressed with the SLCS logic. We plan to
extend this predication to include quantitative [47] and metric [51] aspects.
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