
Detection of Single-base Mismatches in DNA Sequences by using

Electrochemically-gated Graphene Microwave Waveguides

Patrik Gubeljak†1, Tianhui Xu†2,3, Lorenzo Pedrazzetti3,4, Oliver J. Burton3, Luca Magagnin4, Stephan
Hofmann3, George G. Malliaras3, and Antonio Lombardo*1,2,5

1Cambridge Graphene Centre, Department of Engineering, University of Cambridge, United Kingdom
2Department of Electronic and Electrical Engineering, University College London, London, United

Kingdom
3Department of Engineering, University of Cambridge, United Kingdom

4Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Italy
5London Centre for Nanotechnology, University College London, United Kingdom

† These authors contributed equally to this work. *Corresponding author: a.lombardo@ucl.ac.uk

Abstract

Identification of non-amplified DNA sequences and single-base mutations is essential for molecular biol-
ogy and genetic diagnostics. This paper reports a novel sensor consisting of electrochemically-gated graphene
coplanar waveguides coupled with a microfluidic channel. Upon exposure to analytes, propagation of electro-
magnetic waves in the waveguides is modified as a result of interactions with the fringing field and modulation of
graphene dynamic conductivity resulting from electrostatic gating. Probe DNA sequences are immobilised on the
graphene surface, and the sensor is exposed to DNA sequences either perfectly matching the probe or containing
a single-base mismatch. By monitoring the scattering parameters at frequencies between 50 MHz and 50 GHz,
unambiguous and reproducible discrimination of single-base mismatch strands is achieved at concentrations as
low as 1 attomole per litre (1 am). By controlling and synchronising frequency sweeps, electrochemical gating,
and liquid flow in the microfluidic channel, the sensor generates multidimensional datasets, leveraging the use
of advanced data analysis techniques. By applying different machine learning methods, a classification accuracy
> 95% between single-base mismatches and perfect matches is achieved, even in the presence of simulated noise
and low signal-to-noise ratios. The sensor exceeds state-of-the-art sensitivity for the identification of single-base
mismatches of field-effect transistors and microwave sensors.

1 Introduction

Biosensors capable of identifying non-amplified DNA sequences with high sensitivity and selectivity are essential
for applications ranging from fundamental molecular biology, genetic disease diagnostic and precision medicine.
Electronic detectors, such as field effect transistors (FETs), are of particular interest as they can combine label-free
detection, high sensitivity, small footprint and integrability with conventional electronics for signal processing [1].
Graphene attracted significant research and commercial interest for biosensing due to its electrical and chemical
properties, high surface-to-volume ratio, biocompatibility, and ease of functionalisation [2,3]. Exposure to chemical
species, such as gases [4], ionic solutions [5], enzymes [6], glucose [7], large biomolecules [8], viruses [9], and
bacteria [10], modifies graphene electronic properties, typically as a result of the modulation in the density and
scattering rates of charge carriers. By incorporating graphene in a transistor structure, usually referred to as
Graphene Field Effect Transistor (GFET) [11], the results of these interactions can be measured on a macroscopic
scale, typically by monitoring changes of the charge neutrality point (CNP) in the transfer characteristics [4, 5,
12, 13]. Biomaterials are usually dispersed in a suitable medium, typically an electrolyte buffer solution. When
in contact with ionic media, electrical double layers (EDLs), also known as Debye layers, form at the graphene-
electrolyte interface, resulting in a large interface capacitance CEDL, due to the small thickness (Debye length) of
the EDL [14]. This effect is used in electrochemically-gated GFETs, where the graphene channel is exposed to the
ionic solution and a voltage is applied to a counter electrode, modulating the EDL and, in turn, the charge carrier
density in the graphene channel. An EDL also forms at the electrode-solution interface, leading to a capacitance
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in series with CEDL. However, counter-electrodes are usually designed to have areas significantly larger than
the graphene channel, resulting in a very large capacitance whose effect is negligible in the series. Under such
conditions, the voltage applied to the counter electrode drops almost entirely at the graphene-solution interface,
i.e. across the EDL [7, 12, 13]. The total gate capacitance of electrochemically-gated GFETs, therefore, consists
of graphene quantum capacitance (due to its finite density of states [15]) CQ and EDL capacitance in series,
CG = [C−1Q + C−1EDL]−1 [12]. As CG is very large, even small changes in the solution are reflected in significant
changes in the transistor transfer characteristic, resulting in very high sensitivity and low limits of detection [16]. To
enhance the selectivity of GFET sensors, the graphene surface can be non-covalently functionalised with different
groups, which increases the specificity while preserving the electrical conductivity [7, 12,13].

The combination of electrochemically-gated GFETs and surface functionalisation has been applied for the iden-
tification of DNA sequences and single-base mismatches [12,13,17]. By using a binder molecule (1-pyrenebutanoic
acid succinimidyl ester, PBASE), which attaches non-covalently to the graphene channel, single strands of DNA
were immobilised on the GFET. When target DNA strands are introduced to the functionalised sensing surface,
the hybridisation with the immobilised probe DNA modifies the potential across the EDL, resulting in shifts of
the CNP [12, 13, 17]. Xu et al. [12] used this to distinguish single-base mutations quantitatively in real-time with
a target DNA concentration of 5 nM based on an electrolytically gated GFET array. Campos et al. [13] improved
their work and demonstrated a limit of detection (LOD) of 25 am of the lowest target DNA concentration for which
the sensor can discriminate between perfect-match sequences and nucleotides having a single base mismatch.

A major limitation of the sensitivity of field effect transistors for biosensing in physiological solutions is the
ionic (Debye) shielding, which limits the detection of molecules to only those within the Debye length, i.e. usually
between 0.7 and 8 nm, depending on the ionic strength of the solution. This, in turn, reduces the sensitivity, and
often complex approaches are required to mitigate the screening [18]. However, the Debye shielding only affects
devices operated at DC and low frequency and becomes negligible at microwave frequencies as the ionic conductivity
vanishes [19]. Microwaves interact with matter causing frequency-dependent reorientation of molecular dipoles and
translation of electric charges [19,20]. Different molecules and compounds are characterized by different relaxation
processes (collectively captured by their dielectric permittivity) and therefore interact differently with oscillating
electromagnetic fields [20]. Microwave sensors use such interaction to identify or discriminate different analytes,
and have been successfully used to identify cancer cells [21], volatile compounds in breath [22], study antibiotic
resistance in bacteria [23] and electroporation in human epithelial cells [24]. Different types of sensors have been
reported, including reflectometers, resonators, interferometers and waveguides [20]. Waveguide sensors, such as
coplanar waveguides (CPWs), are of particular interest as they combine broadband operation with simple design,
ease of miniaturisation and integrability with conventional planar technology and microfluidics [19,20]. In a CPW,
part of the field extends outside of the circuit due to incomplete shielding of the conductors [19,20] and therefore
interacts with analytes deposited on the waveguide surface. Yang et al. [25] developed a multilayered polymeric
radio frequency (RF) for DNA sensing using a CPW sensing surface, which reached a LOD of target DNA of 10
pM through DNA hybridisation, and Kim et al. [26] proposed an RF biosensor based on an oscillator at 2.4 GHz
and obtained an estimated LOD of about 1 ng/mL (114 pm).

Graphene is of particular interest for RF and microwave sensing owing to its good conductivity and field
effect tunability [27–29]. Moreover, its AC conductivity is frequency-independent and equal to DC conductivity
for frequencies up to ≈ 500 GHz [30]. This unique combination of properties has been used to demonstrate
proof-of-concept electrolytically gated waveguides sensors, capable of identifying pmDNA and generating multi-
dimensional datasets by independently controlling gate voltage and frequency [28]. Recently, Zhang et al. [29]
reported a GFET operated around its resonant frequency (i.e., 1.83 GHz) in reflectometry mode, achieving limit-
of-detection (LOD) of 1 nanomole per litre for the detection of streptavidin, an extensively used protein. Machine
learning (ML) techniques play key roles in the field of biological sequencing, including DNA, RNA, and protein [31].
However, there is not much previous work using ML to analyze raw RF signals after being exposed to biological
samples [32]. Principal component analysis (PCA) and quadratic discriminant analysis (QDA) have been applied
to THz spectral data and achieved a classification rate of 90.3% in the prediction set of four single-base-mutation
DNA oligonucleotides at a concentration of 38.85 µmol L−1 [33].

Here we present a novel DNA sensor consisting of electrochemically-gated graphene coplanar waveguides cou-
pled with a microfluidic channel. The sensor harnesses the combined effect of dynamic conductivity modulation
in graphene resulting from (chemical) electrostatic doping and modification of wave propagation resulting from
the interaction of the fringing field with the analyte. The two effect are occurring simultaneously, leading to a
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unique double sensing mechanism which combines two traditionally separate sensing approaches, i.e. field effect
transistors sensing and microwave dielectric spectroscopy. By immobilizing probe DNA sequences on the graphene
surface, the waveguide scattering parameters are studied when the sensor is exposed to DNA sequences either
perfectly matching the probe or containing a single-base mismatch, achieving unambiguous and reproducible dis-
crimination of single-base mismatch target strands at DNA concentrations as low as 1 attomole per litre (1 am).
Multidimensional datasets are obtained by controlling and synchronising frequency sweeps, electrochemical gat-
ing, and liquid flow in the microfluidic channel. Such rich datasets are analyzed using different machine learning
methods, achieving a classification accuracy > 95% between single-base mismatches and perfect matches even in
the presence of simulated noise.

Figure 1: (a) - (c) Illustration of the steps required for a completed device. (d) Measurement setup ready for
measurement. (e) Close up of the devices enclosed in the microfluidic channel and the surrounding gate electrode,
doubling as an RF cage. (f) Details of the graphene section of the waveguide, with the graphene outlined in a
dashed line. The overlap between the dashed line and metal is the area of the graphene-metal contacts. (g) - (k)
The different chemical functionalisation and measurement stages.

2 Results and Discussion

2.1 Sensor design and sensing principle

The DNA sensor consists of a graphene channel integrated within a CPW and coupled with a microfluidic channel.
The structure of the device and the main fabrication steps are schematically shown in Figure 1 (a) - (c). Graphene
is deposited onto high-resistivity Si substrates covered in 300nm of SiO2 integrated in the signal track of a metallic
CPW, whereas the ground conductors are entirely metallic. Arrays of sensors having different graphene lengths
(ranging from 10 to 25 µm) are fabricated on the same chip and share the same microfluidic channel. A planar gold
counter-electrode having dimensions significantly (> 700 times) larger than the graphene channels is fabricated on
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the chip, enabling electrolytic gating similar to DC sensors [12,13]. This structure is designed to achieve a double
sensing mechanism. First, electromagnetic waves propagating in the waveguide interact with the liquid in the
microfluidic channel via the fringing field, i.e. the portion of the electric and magnetic field extending outside of
the waveguide due to incomplete shielding of the conductors [20]. The choice of high frequencies (50 MHz - 50 GHz)
ensures robustness against Debye screening, which degrades sensitivity in DC and low-frequency sensors exposed
to ionic solutions such as PBS [20,29]. Second, similar to GFET sensors, the graphene’s (DC and AC) conductivity
is modified by the proximity with the liquid via the electrostatic effect resulting from the formation of an EDL at
the graphene/solution interface [12, 13]. This further influences wave propagation, enhancing the response of the
sensor. This dual sensing mechanism is fully captured by the waveguide scattering (S) parameters, which represent
the ratios of the transmitted (S21 parameter) or reflected (S11 parameter) voltage wave and a known ”stimulus”
wave launched in the waveguide. Figure 1 (d) shows the chip mounted on a probe station setup, while Figure 1
(e) depicts a closer view of the system, showing individual devices and the microfluidic channel. Figure 1 (f)
shows an optical micrograph of the fabricated device prior to the deposition of the microfluidic channel. The
dashed area corresponds to the graphene layer, including the part underneath the contact areas. DNA sequences
are immobilised onto the graphene surface by using PBASE as a linker molecule, following the protocol from
Ref. [13]. The pyrene group of PBASE binds non-covalently to graphene via π − π orbital stacking, whereas its
succinimide group binds to the 5’ end of a purposely modified single-stranded DNA, which is used as the probe,
i.e. as the complementary sequence of the DNA to be detected. In order to saturate any non-reacted succinimide
group, the sensor is exposed to an ethanolamine solution. The sensor containing the probe DNA is then exposed to
dispersions containing either perfectly matching (pmDNA) oligonucleotides or having only a single-base mismatch
(smDNA), both dispersed in 1% PBS at a concentration of 1 am per litre. The 1% PBS concentration is chosen
for consistency with previous studies on GFET-based DNA sensors [12,13], and corresponds to a Debye length of
≈ 7 nm [18], matching the length of the hybridised DNA.

Figure 1 (g) - (i) summarises the functionalisation of the sensing surface to immobilise the probe single
DNA strand on the graphene surface for target DNA hybridisation, whereas (j) and (k) show hybridisation of the
probe DNA with a pmDNA or smDNA, respectively. The isoelectric point of DNA is ≈ 5, while the pH of our
dispersion is 7.2, resulting in the oligonucleotides being negatively charged. Upon hybridisation, i.e. when pmDNA
or smDNA binds with the probe DNA by forming hydrogen bonds between complementary bases (cytosine-guanine
and adenine-thymine), the additional negative change modifies the electrical double layer formed at the graphene-
solution interface, leading to a lowering of the graphene’s Fermi level (equivalent to p-doping) and an increase of
the scattering time τ [34]. This results in a modulation of graphene dynamic conductivity, which can be described
by the Kubo formula for intraband transitions [30]:

σintra (ω,EF , τ, T ) =
ie2kBT

π~2 (ω + iτ−1)

[
EF
kBT

+ 2ln

(
1 + e

− EF
kBT

)]
(1)

where: ω = 2πf is the angular frequency, EF is the Fermi energy, τ the scattering time (assumed to be indepen-
dent of energy), T is the temperature expressed in Kelvin, e = 1.6 · 10−19 C is the electron charge, ~ = h

2π is the
reduced Planck’s constant and kB = 1.38 · 10−23 J

K the Boltzmann’s constant.

The double helix DNA resulting from hybridisation has different electrical and mechanical properties from
single-strand oligonucleotides. In particular, single-base mutations disrupt the long-range electron transfer within
the DNA double-helix [35], which results in different responses to the fringing field of the propagating wave.
Differences in capacitance corresponding to such mutations are also reflected in the electrostatic gating via the
EDL [12, 13]. Wave propagation in the graphene waveguide captures both effects, leading to a novel sensing
paradigm combining field effect sensing and dielectric spectroscopy.

2.2 DC measurements

In order to benchmark the sensors against GFET DNA detectors previously reported [12,13], the devices are first
tested at DC by using the planar counter electrode as an electrolytic gate at DNA concentrations ranging from 1
am to 100 pm. Figure 2 shows the DC transfer characteristic of a representative sensor exposed to buffer only and
after exposure to a solution of pmDNA (Figure 2a) and smDNA (Figure 2b) at concentrations varying 1 am to
pm. The devices show the typical right-shift of the charge neutrality point (CNP) with increasing concentration
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for both pmDNA and smDNA [12, 13], with a possible onset of saturation at ≈ 10−12 m and limit of detection
< 1 am. The right-shift of the CNP for both pmDNA and smDNA confirms that the modulation of graphene
conductivity is caused by electrostatic gating via accumulation of charges at the EDL rather than charge transfer
between DNA and graphene, which would instead result in a left-shift [36]. The DC characteristic of the sensors
evidences that the sensor responds to pmDNA and smDNA at all the concentration considered, outperforming
state-of-the-art planar GFET sensors [13]. In the following RF and microwave investigation we focus our attention
only on the smallest (and therefore most challenging) concentration, 1am.

(a) (b)

Figure 2: DC transfer characteristic of the graphene sensors upon hybridization of the probe DNA with pmDNA
(a) and smDNA(b) at different DNA concentrations. 0.01× PBS corresponds to the sensor exposed to buffer
solution without DNA.

2.3 S-parameter measurements with no gate voltage applied

The S − parameter curves of 0.01× PBS (i.e. only buffer solution with no DNA), pmDNA and smDNA at a
concentration of 1 am of a representative device are plotted in Figure 3. We can see distinct differences between
the curves of the three solutions, especially in the case of the transmission coefficient S21 that contains more
information on the dielectric properties of the solutions than S11. To validate the reliability of the sensor for the
sequence-specific detection, we investigate the performance of 13 different devices, which have the same architecture
but differ in the length of the graphene channel. Figure 4 is the bar graph of the S− parameter differences at 30
GHz between buffer solution and smDNA, pmDNA, respectively. From Figure 4 we can see that different devices
present consistent discriminations between the two different DNA strands. Specifically, smDNA always increases
Im(S21), Amp(S11) and decreases Re(S21), Im(S11), Re(S11), Phase(S11), while on the contrary, pmDNA always
presents opposite behaviours. Amp(S21) increases in both smDNA and pmDNA, with the increment from pmDNA
being larger than the increment from smDNA. The hybridisation of the pmDNA target with the immobilised probe
introduces p-doping and result in shifting the CNP of graphene to more positive values. On the other hand, the
produced duplex DNA upon hybridisation may affect the disorder of carriers and change the scattering rates of
the charge carriers of graphene. In terms of smDNA, the DNA duplexes can still be formed, however they are
unstable [13], leading to reduced electrostatic gating and electron transport in the oligonucleotide. As a result,
pmDNA and smDNA modify the carrier density and the dielectric properties at the interface differently, leading
to the differences in the changes of the electrical conductance of graphene and the total capacitance of the channel.
These differences impact the transmission and reflection of microwave, which are fully captured by S−parameters.

Therefore, the observed differences in the S − parameters indicate that the sensor is highly selective of the
two kinds of DNA strands, and this result possesses high reliability among multiple devices. In addition, a linear
fitting between the graphene channel lengths and the logarithmic (dB) S21 at 30 GHz is shown in Figure 5. The
logarithmic S21 for each graphene length is calculated as the average of the dB values of 3 different devices with
the same graphene lengths. The good linearity between the logarithmic S21 and the graphene channel lengths
demonstrates the uniformity of the graphene and of the contact resistance. In addition, p-values [37], which
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(a) (b)

(c) (d)

Figure 3: A representative set of S− parameter curves for a specific device for 0.01× PBS, pmDNA and smDNA.
(a) Imaginary part of S21 (b) Real part of S21 (c) Imaginary part of S11 (d) Real part of S11. DNA concentration
is 1 am. The different colours represent different solution classes.

can present the probability that the differences between pmDNA data and smDNA data occur by chance, are
calculated to quantitatively evaluate the distinctions in the signal between the two classes. The mean p-value of
13 different devices for the S21 (dB) at 9 different DNA concentrations (1 am, 10 am, 100 am, 1 fm, ..., 100 pm) at
one frequency between the two DNA classes is 0.042 < 0.05, which demonstrates a significant difference between
the data vectors of the two classes at a confidence level of 95%. Therefore, this quantitative result also showcases
the sensor’s robust selectivity between the two DNA strand classes. Especially, one of the devices with a graphene
length of 25 µm has a superior selectivity between the two classes at 35.45 GHz, with a p-value of 0.000216 <
0.0001 (a confidence level of 99.99%).

2.4 Multidimensional approach

To analyse the effects of different gate voltage biases, we observe the S − parameters measured with gate voltage
VGS sweep. Figure 6b and Figure 6a exhibit the S21 curves against different gate voltage VGS at 6 discrete
frequencies for smDNA and pmDNA, respectively. It can be observed that, as expected, the S21 (dB) presents
a V-shaped trend simular to the DC transfer curves of the device, and the VGS at which the S21 (dB) reach
minima for smDNA and pmDNA is different due to the differences in ∆VCNP upon DNA binding. Also, the S21
curves against different frequencies at 5 different gate voltages in Figure 6d and Figure 6c demonstrate similar
trends but distinctions in fluctuations and different amplitudes at each gate voltage for smDNA and pmDNA. Our
design allows independent sweeping of electrolyte gating and wave frequency, which results in information-rich
VGS−Frequency surfaces of S−parameters. Figure 6f and Figure 6e present the VGS−Frequency 3D plots of
the S21 for pmDNA and smDNA at a concentration of 1 am of one device. Gate voltage sweep and frequency sweep
introduce richer information that combines the above variations of the measurements at only one frequency or with
no gate voltage biases. As a result, differing from single GFET sensing and single microwave sensing, the response
is a combined effect of the changes in graphene conductivity, channel capacitance, and the dielectric properties of
the solutions. The resulting variations in the maxima, minima and gradients of the surfaces offer insights into the
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(a) (b)

(c) (d)

Figure 4: Bar graphs of the differences in the real, imaginary, amplitude, phase of S21 and S11 between the PBS
baseline and pmDNA, smDNA, respectively, for each device (numbered from 1 to 13) in the array. The frequency
is 30 GHz, at which the Im(S21) in Figure 3 presents a clear difference between the three different solutions. DNA
concentration is 1 am. The different colours represent different S − parameter parts. For better visualisation, the
y-axis on the left corresponds to the blue, yellow, and purple components, while the y-axis on the right is for the
orange component.

(a) (b)

Figure 5: Scatter plots and linear-fit curves of S21 (dB) against graphene channel lengths for pmDNA and smDNA.
(a) 50 MHz (b) 30 GHz. DNA concentration is 1 am. The good linearity corresponds well with theoretical
expectations, which validates the reliability of the sensor measurements.
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electrochemical behaviour of different DNA solutions. Therefore, these observations indicate a good sensitivity
of the sensor in detecting the DNA strands at a concentration of 1 am, and the clear distinctions between the
two 3D plots visually illustrate the good selectivity of the sensor between the pmDNA and smDNA under test.
Furthermore, the information dimensionality can be even higher due to the complex values of S − parameters,
specifically, [Re(Sxy) Im(Sxy)] or [|Sxy| ∠Sxy]. As a result, the high-dimensional information and the non-linear
behaviors of the sensor encourage the usage of advanced data analysis techniques to obtain quantifiable results
and practical solutions for practical biosensing purposes.

2.5 Classification between single-base mismatch DNA and perfect-match DNA with ML

When considering the whole data obtained with different gate voltage biases, the VGS − Frequency 3D plots
of the S21 (dB) for the two different DNA classes in Figure 6 exhibit rich but complex variations, which are
non-trivial to analyse with conventional analogue, statistical or mathematical methods. In this case, we utilise
ML as a data analysis method, and we consider the binary classification task between the smDNA and pmDNA.
Multiclass classification is also considered, separating the nine pmDNA solutions that have nine different concen-
trations. The dataset for ML is constructed with the four components of S11 and S21; [Re(S11) Im(S11)] and
[Re(S21) Im(S21)] over the whole frequency range and the whole gate voltage range at a specific DNA concen-
tration. Specifically, each set of S− parameter parts at each gate voltage for each device is a sample. In total, we
use 41×7 samples at 41 different electrolytic gate biases from 1 V to 0 V and 7 different devices for each class, and
each sample has 1001×4 features obtained from the 4 S−parameter parts at 1001 different frequency points from
50 MHz to 50 GHz. To reduce feature dimensions, PCA is utilised, and nine principal components are constructed
with a variance of 99%. The final dataset has a dimension of 574×9. This dataset is split into a training set (80%)
and a testing set (20%), and a validation set is created during training based on different criteria for different
algorithms. Popular classification models are implemented on the dataset using MATLAB Classification Learner.
The Linear Discriminant Analysis (LDA) has a linear coefficient threshold of 0 and no regularisation. The Support
Vector Machine (SVM) has a linear kernel with a box constraint value of 1. The Decision Tree has a maximal
number of 100 decision splits. The number of neighbours of the k-nearest neighbours (KNN) is set to 1, with
euclidean distance and no distance weight. All the models finish training within 6 s of running on a single core of
an Intel i7-10750H CPU. Table 1 presents the testing result of different ML models. The accuracy is the average
of nine accuracy for nine different DNA concentrations. In addition to the original signal, Gaussian noise with
a signal-to-noise ratio (SNR) of 10 dB is added to the signal to test the robustness of the models. We can see
that all the models present high testing accuracy > 97% for the original signal. After adding noise to the signal,
all the accuracy decreased but is still reasonably good, except for KNN and Gaussian Naive Bayes, which may
be attributed to the high variance of model predictions. The testing result of the classification of pmDNA with
nine different solution concentrations is similar to the binary classification task for the original signal and for the
added-noise signal with a smaller noise level of 30 dB SNR. The Artificial Neural Network (ANN) has an input
layer of 4004 and two hidden layers with 20 neurons, each followed by a ReLU activation function, and a Softmax
layer is added at last for cross-entropy loss calculation. The network is trained with SGDM Optimiser, with a
learning rate of 0.005 and a mini-batch size of 64. The model is implemented using MATLAB Deep Network
Designer. Figure 7 demonstrates the accuracy and loss curves of training and validation of the ANN model.
After around 5 seconds of training, the training accuracy converges to 100% at around 50th iteration; a similar
trend is presented in the validation curve, with a final accuracy of 100% and loss equal to 0.023, which attests to
the model’s low variance.

The concept of uncertainty has been understudied in the ML context [38], but is highly relevant for developing
measurement methods. Generally, the variance of outputs is used as a measure of uncertainty [39]. Due to the
Softmax probability output, data uncertainty can be quantified for the classification tasks, and the correlation
between cross-entropy loss and the entropy of Softmax output can be calculated to evaluate the uncertainty
estimates of the results. A well-calibrated metric should predict credibility (uncertainty) approximate to accuracy
(error) [40]. The mean uncertainty estimated by the entropy of Softmax output of the binary classification results
at nine concentrations is 0.118 bit, with a high mean correlation value of 0.978. Figure 8a indicates that the
two quantities correlate well with each other. Hence, the uncertainty estimate can be useful for monitoring
the performance of the model [41]. However, we see variations in the uncertainty estimation at different DNA
concentrations, for instance, a higher correlation between uncertainty and loss for the predictions at 1 am than 10
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(a) (b)

(c) (d)

(e) (f)

Figure 6: S21 (dB)− gate voltage VGS curves at different frequencies for (a) smDNA and (b) pmDNA. S21 (dB)−
Frequency curves at different gate voltages for (c) smDNA and (d) pmDNA. S21 (dB) − VGS − Frequency 3D
plots for (e) smDNA and (f) pmDNA. The axes in (e) and (f) have the same limits. Variations can be observed
as different features at different frequencies and gate voltages on each surface, as well as the differences between
the two complete surfaces.

pm. Therefore, it is worth pursuing uncertainty quantification approaches with a better generalisation that can
evaluate both data and model uncertainty [42]. In addition to adding Gaussian noise to the signal, a method based
on uncertainty evaluation is also conducted to examine the performance of the ANN model. A robust model should
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(a) Training curves (b) Validation curves

Figure 7: Accuracy and Loss curves of Training and Validation of ANN. Both validation and training accuracy
increase with iterations and converge to 100%.

Table 1: ML model classification performance

Algorithms Accuracy (%) Accuracy with noise (%)

Logistic Regression 99.81 94.74
LDA 98.73 95.05
ANN 99.31 91.23
SVM 99.90 89.17
Tree 99.32 84.55
Gaussian Naive Bayes 98.35 73.25
KNN 97.90 32.36

output high predictive uncertainty if the input is unknown [43]. The histogram of the Softmax entropy uncertainty
score on test examples from known classes (pmDNA and smDNA) and the unknown class (post-ethanolamine) is
shown in Figure 8b. We can observe a clear increase in the output entropy when the model handles the unknown
data, which validates the credible predictions for the known two classes of DNA. The ability of ML models to
distinguish out-of-distribution examples is critical for applications in practical systems. By using ML we achieve
high accuracy and reliability in the detection of single-base mismatch based on the RF signal measured with
the graphene microwave sensor, and the models are applicable to the data measured with different gate voltage
biases from 0 V to 1 V. We note that experimental data does not require precise and complicated calibrations
and de-embedding before being fed to ML models for training and predictions, which reduce experimental work
and artifacts and thus increase efficiency and accuracy. Moreover, the short training time of ML models and the
advantage in predicting new data using the trained models instantly make ML well-suited for real-time applications.

3 Conclusions

We presented a novel DNA sensor consisting of electrochemically-gated graphene coplanar waveguides coupled
with microfluidic channels. By immobilising probe DNA sequences on the graphene surface and exposing the
sensor to either pmDNA or smDNA, we achieve consistent and reproducible identification of single-base mismatch
at DNA concentrations as low as 1 am. The possibility of independently controlling gate voltage and frequency
sweeps lead to multidimensional datasets, which are analysed using ML learning methods, achieving a classification
accuracy > 95% between single-base mismatch and perfect match, even in the presence of simulated noises. The
device concept presented here goes beyond DNA sensing, paving the way for a generally-applicable approach to
biosensing, where chemical field-effect sensing and microwave impedance spectroscopy are combined in a single
platform.
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(a) (b)

Figure 8: Uncertainty evaluation of ANN predictions. (a) Correlation scatter plot between the entropy of Softmax
output (uncertainty) and the cross-entropy loss. Each dot represents a sample. (b) Histogram of the predictive
entropy on testing datasets from known DNA data and unknown post-ethanolamine data.

4 Methods

4.1 Graphene synthesis and transfer

Graphene layers are grown via Chemical Vapour Deposition (CVD) on Cu foil, following the protocol developed
by Burton et al [44]. The foil is heated to a high temperature, and hydrogen and methane gases are introduced.
The copper foil acts as both the catalyst and the substrate for the deposition. Graphene is transferred onto high-
resistivity Si substrates (ρ > 10, 000Ωcm) covered in 300 nm-thick thermally-grown oxide by using a sacrificial
layer of polymethyl methacrylate (PMMA) 495K (8% in anisole, MicroChem), deposited onto the graphene-
coated Cu foil via spin-coating. After exposing the bottom side of the Cu foil to oxygen plasma (10 W, 60 s), the
PMMA/graphene/Cu stack is then floated on a 0.5 m% solution of (NH4)2S2O8 overnight. This etches away the
metal layer, leaving the graphene-PMMA stack floating on the surface. This stack is then picked up and re-floated
on top of DI water to remove metal and etchant residue. To ensure good adhesion between the graphene and
the substrate as well as reduce the interaction with the Si-O-H groups on the surface, any trapped water and the
graphene, the wafer was primed using Hexamethyldisilazane (HMDS). The wafer is then used to lift the graphene-
PMMA stack of the DI water surface and left to dry naturally overnight. The sacrificial PMMA is removed by two
consecutive acetone baths and an isopropanol bath. After the PMMA removal, the graphene on the Si substrate
is heated to 150 °C for 5 minutes to drive out any residual moisture trapped between the substrate and graphene.

4.2 Design and fabrication

The largest part of the CPW, which feeds the signal to the graphene channel, is designed to match Ground-
Signal-Ground (GSG) probes with 150 µm pitch per manufacturer specification [45]. For better adhesion of the
microfluidic polydimethylsiloxane (PDMS) channel, the metal part of the waveguide is extended to maximise the
contact area between PDMA and the substrate. The GFET is incorporated by tapering the central trace of the
waveguide and adjusting the separation between the G and S conductors so that the characteristic impedance is
close to 50 Ω, matching the rest of the measurement system. Most graphene FET devices, including state-of-the-art
sensors, use a graphene-on-top design. The advantage of our approach is the ability to pre-treat the graphene-metal
contact area prior to deposition to improve the contact resistance, especially important for RF devices [46, 47].
The increased length of the contact area beyond that of typical DC devices also increases the capacitive coupling
between the metal leads and the graphene channel, resulting in lower insertion loss in comparison with previous
efforts [28]. The dried graphene is patterned using direct-write laser lithography, and the excess material is etched
by reactive ion etching using 3 W oxygen plasma for 30 seconds. The metal layer is patterned with a long overlap
between the exposed graphene. Directly prior to metal deposition, we expose the contact area using a 0.5 W argon
plasma for 20 seconds to improve our contact resistance. We use 5 nm Cr as the adhesion layer and deposit a
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further 100 nm of gold using an e-beam evaporator followed by liftoff in acetone. The microfluidic channel was
made using PDMS from an SU-8 epoxy mould and mounted to the patterned CPW structures. To connect the
device assembly to the microfluidic controller, feedlines were introduced and the entry points were sealed using
liquid PDMS. To bond the PDMS to the wafer better and cure the fluid inlet seals, we cured the entire assembly
at 80 °C overnight.

4.3 Functionalisation

We use the microfluidic assembly to passivate and functionalise the metal and graphene areas of the CPWs,
respectively. First, the Au is passivated using a solution of 1-dodecanethiol, as oligonucleotides have an affinity
for Au. Then, the linker molecule, PBASE, is introduced and left for 2 hours to interact with the graphene, after
which the channel is rinsed using methanol. This allows us to immobilise a probe single DNA strand consisting
of 20 bases (P20) on the graphene surface using the added amine (NH2-) group by exposing the graphene channel
to a slow flow (0.5 µL/min) of a 10 pM dispersion of P20 in a 1% phosphate buffer solution (0.01× PBS) for
12 hours. To prevent any unreacted PBASE sites from reacting with our target oligonucleotides (pmDNA and
smDNA), we passivate them using a 0.1 M ethanolamine solution in 0.01× PBS for 30 min. The post-ethanolamine
measurement thus forms our baseline for comparing all other data.

4.4 Measurements

For DC and RF characterisation, we mount the sample on a Cascade Microtech Summit 12000B semi-automatic
probe station. An Agilent PNA-X 5245 vector network analyser (VNA) is connected to a pair of Cascade Microtech
i50 GSG 150 Infinity probes, which we calibrate using a manufacturer-provided impedance standard substrate
(ISS) via the mTRL method. For DC measurements and electrolytic gating, we use an Agilent B1500A Parameter
Analyser, connected to the RF probes using a biasing network and to the gate electrode using a Cascade Microtech
DCP100 probe, as shown in Figure 1 (d) & (e). We used an RF power of −12 dBm and an IF of 1 kHz, with 1001
points collected between 50 MHz and 50 GHz. The fluid flow is controlled by an ElveFlow OB1+ Mk3 microfluidic
controller. Each analyte, i.e. dispersions of different concentrations of pmDNA or single smDNA, is introduced
by setting the flow to 1 µL/min and reacting for 60 minutes, after which the channel is rinsed with 0.01× PBS for
10 minutes. All measurements are performed with 0.01× PBS flowing into the channel at 1 µL/min. We started
by measuring all concentrations of the perfect match DNA dispersions from lowest to highest, followed by a 0.1 M
NaOH solution and buffer rinse, to recover the pristine probe DNA sites, as per [12]. The matching concentrations
of smDNA were then introduced and measured in the same manner. As GFETs often exhibit hysteresis, we swept
the gate voltage from 0 V to 1 V 10 times to stabilise the transfer curves, after which the S-parameters are
measured. To accurately and repeatably measure the array of devices, we developed automated control scripts
to perform DC measurements, synchronise S-parameter measurements with the applied electrolytic gate bias and
characterise the entire wafer.
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