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A B S T R A C T   

In the last decade, several methods have been developed for Local Climate Zone (LCZ) mapping, encompassing 
Remote Sensing and Geographic Information Systems (GIS) −based procedures. Combined approaches have also 
been proposed to compensate for intrinsic limitations that characterized their separate application. Recent work 
has disclosed the potential of hyperspectral satellite imagery for improving LCZ identification. However, the use 
of hyperspectral data for LCZ mapping is yet to be fully unfolded. A combined Remote Sensing and GIS-based 
method for LCZ mapping is proposed to exploit the integration of hyperspectral PRISMA and multispectral 
Sentinel-2 images with ancillary urban canopy parameter layers. Random Forest algorithm is applied to the 
feature sets to obtain the LCZ classification. The method is tested on the Metropolitan City of Milan (Italy), for the 
period from February to August 2023. A spectral separability analysis is carried out to investigate the 
improvement in LCZ identification using PRISMA in comparison to Sentinel-2 data, as well as improvements in 
LCZ spectral separability on PRISMA pan-sharpened images. The resulting maps’ quality is evaluated by 
extracting accuracy metrics and performing inter-comparisons with maps computed from the LCZ Generator 
benchmark tool. Inter-comparisons yield promising results with a mean Overall Accuracy increase of 16% using 
PRISMA for each LCZ class. Furthermore, we find that PRISMA improves the detection of LCZs compared to 
Sentinel-2, with a mean Overall Accuracy increase of 5%, in line with the higher spectral separability of PRISMA 
spectral signatures computed on the training samples.   

1. Introduction 

United Nations Sustainable Development Goal (SDG) 11 points out 
the urgent need to make cities and urban areas safe, resilient, and sus-
tainable. Cities are particularly sensitive to the negative effects of 
climate change since they gather people and infrastructure while host-
ing crucial economic activities (Kumar, 2021). The increasing fre-
quency, intensity, and duration of heat waves, coupled with growing 
urbanization, are intensifying the urban heat island (UHI) effect globally 
(Ward et al., 2016; Almeida et al., 2021). The UHI occurs where tem-
perature values are persistently higher in urban zones compared to the 
surrounding environment, due to physical reasons connected with 
building and asphalt heat-trapping, waste heat from factories, buildings, 
and vehicles, and reduced surface moisture of impervious surfaces. UHI 
affects human health and ecosystems while heightening the energy de-
mand for air conditioning during summer (Vujovic et al., 2021). 

In the last decades, the scientific community has developed physical 
and conceptual models to measure the intensity of this phenomenon, 
which is key for implementing evidence-based mitigation strategies. In 
this context, the Local Climate Zone (LCZ) model is a well-established 
classification system which divides the urban landscape into distinct 
area types based on the morphological characteristics and land cover 
composition of their surface, directly affecting air temperature at screen 
height (Stewart and Oke, 2012). The subdivision of urban landscapes 
into LCZs is well supported by in-situ, screen-height temperature ob-
servations and results of numerical modelling (Stewart et al., 2014). This 
explains why the LCZ system has been increasingly exploited in urban 
climatology studies (Huang et al., 2023). 

Some standard methods are commonly leveraged to produce LCZ 
maps, namely Geographic Information System (GIS) and Remote 
Sensing (RS) based approaches, each one taking advantage of a wide 
range of geodata, e.g. satellite imagery, high-resolution land cover, 
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topographic databases, and meteorological sensor observations (Aslam 
and Rana, 2022). Regarding satellite images, optical multispectral and 
Synthetic-Aperture Radar (SAR) data, as well as a combination of the 
two, are largely exploited (Tavares et al., 2019). However, although a 
large interest has developed in novel technologies and hyperspectral 
satellite data for environment monitoring, the use of this kind of data for 
LCZ mapping is yet to be fully unfolded (Liang et al., 2023). Recent work 
has uncovered the potential of using hyperspectral satellite images for 
LCZ mapping, promising higher accuracy compared to multispectral 
data due to the more detailed description of the spectral properties of 
urban surfaces (Vavassori et al., 2023b). The combination of multi-
spectral and hyperspectral images may improve the detection of urban 
surface features and thus the identification of LCZ. Nevertheless, man-
aging heterogeneous satellite and geospatial data sources with different 
spatial and temporal resolutions, which is required for LCZ mapping, 
may not be a trivial task, especially for non-expert users. Furthermore, 
different approaches may be required to obtain maps with adequate 
spatial and temporal resolution, accessibility, and distribution format, 
depending on the different applications. 

Given the above considerations, in this work we present the hybrid 
RS/GIS-based approach for LCZ mapping that was developed during the 
“Local Climate Zone & Open Data Cube” (LCZ-ODC) project, by inte-
grating multispectral Sentinel-2 and hyperspectral PRISMA satellite data 
along with multiple geospatial layers for the description of the urban 
morphological characteristics (e.g., building height and density). The 
approach was designed and tested accounting for future implementation 
of output LCZ maps in urban applications by final users. This choice 
addressed the specific goal of “Innovation for Downstream Preparation 
for Science (I4DP_Science)” program, i.e. the program funded by the 
Italian Space Agency (ASI) to promote demonstration of novel scientific 
algorithms and satellite-based product workflows to support applica-
tions in the space downstream sector (Tapete and Coletta, 2022). The 
selected testbed is the Metropolitan City of Milan (Northern Italy), 
which is characterized by extensive urbanization and where territorial 
features (e.g., poor wind circulation) may foster the persistence of the 
UHI (Bacci et al., 1992; Pichierri et al., 2012). LCZ-ODC primarily aimed 
to produce multi-temporal LCZ maps and assess their correlation with 
air temperature observations, while addressing the user community 
needs by developing open and user-friendly application tools (e.g., 
software) and products. A key asset of the project was the use of free and 
open-source tools for data management, data processing, and software 
development, allowing for potential future improvements of the 
implemented tools. 

2. State-of-art of LCZ mapping 

Stewart and Oke (2012) conceived and formalized the LCZ concept 
to overcome the limitations of the basic urban–rural dichotomy, which is 
insufficient for investigating the UHI distribution and space–time pat-
terns. Based on urban morphology and land cover composition, the LCZ 
classification system distinguishes 17 area types. Specifically, the urban 
landscape is classified into 10 built-up and 7 land cover categories based 
on surface structure (i.e., height and density of trees and buildings), and 
land cover (i.e., pervious and impervious materials). The physical 
properties of each zone essentially include geometric and surface cover 
features (e.g., Sky View Factor, Aspect Ratio, Building Surface Fraction, 
and Impervious Surface Fraction) as well as thermal properties (e.g., 
Surface Admittance, Albedo, and Anthropogenic Heat Output), whose 
values have been defined (Stewart and Oke, 2012) and can be measured 
or computed, thus providing a framework to determine LCZs based on 
physical and geometrical quantities. 

The interest in LCZ mapping has significantly increased over the last 
decade. In particular, the development of the World Urban Database and 
Access Portal Tools (WUDAPT) protocol fostered the building of a large 
database, that can be freely exploited and enriched (Bechtel et al., 
2015). In 2022, the first two global, freely available LCZ datasets with 

100 m resolution were developed (Zhu et al., 2022; Demuzere et al., 
2022), representing a benchmark for the user community (accessible 
from: https://mediatum.ub.tum.de/1633461; https://doi.org/10.5281/ 
zenodo.6364594; last access 18/04/2024). 

Several methodologies have been defined for LCZ mapping which 
can be grouped into three categories, namely RS-based, GIS-based, and 
combined methods. Between 2012 and 2021, most scientific publica-
tions dealt with RS-based approaches (66.2 %), followed by GIS-based 
(24.1 %) and combined strategies (9.6 %), as indicated in (Huang 
et al., 2023). RS-based methods take advantage of the supervised clas-
sification of satellite imagery (Bechtel et al., 2015), with classification 
being performed at pixel-level, object-level, or scene-level. In this 
context, the WUDAPT protocol defines a straightforward workflow 
relying on a pixel-based supervised classification of multispectral sat-
ellite imagery. The WUDAPT workflow suggests the selection of training 
samples with Google Earth, based on expert knowledge, and the classi-
fication of Landsat data through the Random Forest (RF) algorithm 
(Bechtel et al., 2015). The WUDAPT methodology may be easily applied 
by employing an online platform, the LCZ Generator, which simplifies 
the process by leveraging Google Earth Engine (GEE) cloud-based 
infrastructure (Demuzere et al., 2021), and it only requires the user to 
provide a training dataset. The classification leverages a fixed set of 
features extracted from Landsat 8, Sentinel-1, and Sentinel-2 data, and 
ancillary geospatial layers, as listed in (Demuzere et al., 2021), which 
cannot be changed by the user. 

Landsat (8) (Puche et al., 2023) and Sentinel (1 and 2) data (Hu et al. 
2018, Qiu et al. 2019) appear to be the most exploited. However, many 
other satellites have been used, including RapidEye (Oxoli et al., 2018), 
PALSAR-2 (Chen et al., 2021), and ASTER (Xu et al., 2017). Among the 
numerous classification algorithms employed for RS-based LCZ map-
ping, it is worthwhile mentioning the RF, naïve Bayes, support vector 
machine, and neural networks (Bechtel et al., 2016; Bechtel and Daneke, 
2012). Two key features can be pointed out for RS-based methods. First, 
the spatial resolution of the map should not be too high. In fact, a pixel 
size around 100–150 m is an appropriate range considering typical 
urban block scales (Bechtel et al., 2015). Finally, training samples must 
be collected appropriately, avoiding class and spatial imbalances, that 
may negatively affect classification accuracy. Despite the good perfor-
mance of RS-based methods, the need for ancillary geospatial data (e.g., 
the building database) for the description of urban morphology and the 
lack of a global high-quality training sample represent shortcomings to 
their application (Ma et al., 2021). 

In this context, a few applications of hyperspectral data can also be 
found in the literature. Specifically, in (Liang et al., 2023), the combined 
use of Zhuhai-1 hyperspectral images, ALOS DEM data, and nighttime 
light Luojia-1 data has been tested, achieving an overall accuracy (OA) 
of 87 %. The LCZ classification performance of hyperspectral PRISMA 
and multispectral Sentinel-2 images has been compared in (Vavassori 
et al., 2023b), aiming to assess the improvements in accuracy using 
different combinations of bands and the building height layer. The re-
sults of this work showed that the two data types yield comparable 
values of accuracy, with a slight increase in the accuracy considering a 
proper number (to be evaluated for each case study) of PRISMA Prin-
cipal Components (PCs), which represent uncorrelated, linear combi-
nations of the original image bands, allowing us to retain a smaller set of 
variables, still preserving most of the information in the original band 
set. 

On the other hand, GIS-based approaches aim to determine LCZs by 
computing their physical parameters from a wide range of geospatial 
data such as Digital Surface Models (DSMs), building data, and land 
cover. RS multispectral images are also used to compute surface material 
parameters, e.g. surface albedo (computed as the average of atmo-
spherically corrected reflectance values over a certain spectral range) 
(Lelovics et al., 2014). In GIS-based methods, LCZ maps are typically 
produced at two basic spatial units, either parcel or grid units. The 
former refers to lot area polygons, urban islets, or urban blocks, with a 
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minimum size of 200–500 m (Stewart and Oke 2012). Conversely, the 
appropriate size of grid units is determined based on empirical knowl-
edge (Geletič and Lehnert 2016), spatial autocorrelation of the building 
height (Zheng et al 2018), or by testing several possible sizes (Hu et al. 
2019). Nonetheless, most studies proposed spatial sizes equal to or 
higher than 200 m (Cai et al., 2019; Hu et al., 2019; Zheng et al., 2018). 
The layers of LCZ parameters are finally combined using decision- 
making algorithms, such as standard or modified standard rule-based 
classifiers (Wang et al. 2018), or classification algorithms, e.g. the RF. 
GIS-based methods may appear as more suitable for LCZ mapping due to 
the direct computation of the physical properties of LCZs; however, as 
for the RS-based methods, the availability of necessary geospatial data, 
including building height, is not always guaranteed, which may prevent 
the application of these methods to several urban contexts. 

Combined approaches can help in overcoming the above limitations. 
In practice, LCZs are preliminarily classified using an RS-based 
approach, and the classification is finally refined through a GIS-based 
approach. Alternatively, LCZ parameters are directly integrated into 
the classification of satellite imagery (Zhou et al. 2020). Other combined 
methods perform the classification of built-up and natural classes 
separately, using an RS-based method for identifying land cover types 
and a GIS-based method for classifying built-up types (Du et al. 2020). 

Considering the intrinsic limitations characterizing the separate 
application of RS and GIS-based methodologies, the present work pro-
poses a combined RS/GIS-based method and a procedural workflow 
taking advantage of a fixed feature set, namely the original Sentinel-2 
bands and the first 10 PRISMA PCs, as suggested in (Vavassori et al., 
2023b), in combination with multiple UCP layers. UCPs are integrated 
into the spectral information to account for the urban morphological 
characteristics and thus improve the distinction of LCZs. Also, the pre-
sent study aims to assess the possible increase in LCZ spectral separa-
bility leveraging PRISMA data, as well as through PRISMA pan- 
sharpening. 

3. Case study and data 

The case study selected to test the implemented methodology is the 
Metropolitan City of Milan, sited in the Po River valley (Northern Italy). 
According to the Köppen-Geiger Classification, the area climate can be 
defined as warm temperate, fully humid with hot summer (Cfa zone). 
Owing to the increasing frequency of heatwaves across Europe (Chris-
tidis et al., 2015), maximum summer temperatures higher than 35 ◦C are 
becoming more and more frequent in this area (ARPA Lombardia, 2023). 
Also, the poor wind circulation and consequent air stagnation charac-
terizing the Po River valley fosters the persistence of humid heat con-
ditions during summer as well as the UHI effect (Bacci and Maugeri, 
1992). In addition, the study area is densely built-up (~44 % of ur-
banized areas in the Metropolitan City and ~81 % in the City of Milan, in 
2022) (ISPRA, 2023). Such environmental and urban peculiarities are 
also common to other cities in Italy and Southern Europe, which makes 
Milan a suitable testbed for the analysis. 

The datasets exploited in the present work encompass satellite im-
agery and other geospatial layers as follows. Regarding satellite imag-
ery, Table 1 lists the hyperspectral images collected over the 
Metropolitan City of Milan by means of PRISMA (PRecursore IperSpet-
trale della Missione Applicativa) mission, i.e. the cutting-edge ASI’s 
hyperspectral optical system, based on a single small class spacecraft, 
flying on a frozen Sun-Synchronous Low Earth Orbit at 615 km altitude 
and equipped with electro-optical devices (Loizzo et al., 2019; Capor-
usso et al., 2020). Each PRISMA scene integrates a panchromatic image 
at 5 m spatial resolution and 239 spectral layers from Visible- 
NearInfraRed to Short-Wave InfraRed (total VNIR-SWIR range: 
400–2500 nm) with Ground Sampling Distance (GSD) of 30 m over a 
standard image size of 30 km × 30 km. This PRISMA dataset capitalized 
existing archive images and ad hoc tasking made during the LCZ-ODC 
project to ensure coverage of winter, spring, and summer seasons of 
the same year 2023. This dataset allows for annual monitoring of LCZ 
maps and seasonal comparisons. Table 1 also highlights the spatio- 
temporal match with the closest in time Sentinel-2 images with the 
least cloud coverage that were sourced from the Copernicus SciHub 
catalogue. In each epoch, two adjacent frames of Sentinel-2 were needed 
to overlap with the PRISMA footprint. 

Multiple regional and global geospatial layers were also exploited to 
compute the Urban Canopy Parameters (UCPs). Table 2 reports the 
dataset name, source, resolution, reference date, and the list of UCPs 
derived from it. The latest release of each dataset was considered. 
Additional details about the computation of the UCPs are provided in 
Section 4. Regarding the regional geo-topographic database, the build-
ing layer was solely used in the present work, providing crucial data on 
building distribution and height. Apart from the building layer of the 
geo-topographic database, whose availability and characteristics 
depend on the specific regional and urban context, the other layers listed 
in Table 2 either cover the European region (Imperviousness Density) or 
have global coverage (Canopy Height and ALOS DEM). This allows 
replicability of the computation to other geographic regions. 

Table 1 
Satellite imagery used for LCZ mapping. For PRISMA (cloud coverage always >
1.6%), the tile name is indicated. For Sentinel-2, T32TMR and T32TNR granules 
are used. Time is expressed in UTC.  

PRISMA dataset Sentinel-2 dataset 
Acquisition Date and Time Acquisition Date and 

Time 
09–02-2023 10:24 a.m. 

[PRS_L2D_STD_20230209102412_20230209102416_0001] 
10–02-2023 10:20 a. 
m. 

22–03-2023 10:30 a.m. 
[PRS_L2D_STD_20230322103037_20230322103042_0001] 

22–03-2023 10:16 a. 
m. 

08–04-2023 10:24 a.m. 
[PRS_L2D_STD_20230408102359_20230408102403_0001] 

26–04-2023 10:16 a. 
m. 

17–06-2023 10:30 a.m. 
[PRS_L2D_STD_20230617103042_20230617103046_0001] 

25–06-2023 10:16 a. 
m. 

10–07-2023 10:27 a.m. 
[PRS_L2D_STD_20230710102719_20230710102724_0001] 

10–07-2023 10:16 a. 
m. 

08–08-2023 10:27 a.m. 
[PRS_L2D_STD_20230808102725_20230808102730_0001] 

19–08-2023 10:16 a. 
m.  

Table 2 
Datasets used to compute the Urban Canopy Parameters (UCPs).  

Dataset name Scale/spatial 
resolution 

Reference date Source UCPs 

Geo-topographic database 
(building layer) 

1:2000 (across urban 
surfaces) 

2023 (last 
revision) 

Lombardy Region Geoportal (https://www.geoportale.regione.lomb 
ardia.it/) 

Building Heights, Building 
Surface Fraction 

Copernicus Imperviousness 
Density (10m) 

10m 2018 Copernicus Land Monitoring Service (https://land.copernicus.eu 
/en/products/high-resolution-layer-imperviousness) 

Impervious Surface Fraction 

ETH Global Sentinel-2 (10m) 
Canopy Height 

10m 2020 Google Earth Engine Catalog (https://gee-community-catalog. 
org/projects/canopy/) 

Tree Canopy Height 

ALOS DSM: Global (30m) v3.2 30m 2006 Google Earth Engine Catalog (https://developers.google.com/earth-e 
ngine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2) 

Sky View Factor  
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4. Methodology 

The combined RS/GIS-based procedure relies on the supervised 
classification of PRISMA and Sentinel-2 imagery through the RF algo-
rithm. RF was chosen since it has been the most widely used in pixel- 
level LCZ classification, as indicated in (Huang et al., 2023), and it is 
suggested within the WUDAPT protocol (Bechtel et al., 2015). The UCP 
layers are integrated as additional feature sets within the classification 
step, to account for the urban morphological characteristics and 
reasonably improve the detection of LCZs. The main steps of the pro-
cedure are depicted in Figure 1 and can be summarized as follows. 

Step #1: Pre-processing of satellite imagery, namely Level-2A 
Sentinel-2 and Level-2D PRISMA products (Bottom-of-Atmosphere 
reflectance). Given the known georeferencing accuracy of PRISMA data 
(nominally better than 200 m), PRISMA images are co-registered to the 
corresponding (closest in time) Sentinel-2 image using the free and 
open-source Python package GeFolki, which implements a Lucas- 
Kanade Iterative algorithm based on optical flow computation (Brigot 
et al. 2016). The displacement field is estimated on the 575.49 nm 
wavelength band of PRISMA, considering the 560 nm wavelength band 
of Sentinel-2 (resampled to 30 m using bilinear interpolation) as a 
reference, and then applied to the VNIR and SWIR PRISMA cubes. A 
Principal Component Analysis (PCA) (Gewers et al., 2022) is applied to 
the pre-processed PRISMA image by taking advantage of the dedicated 
scikit-learn Python library. The PCA is performed for PRISMA data 
dimensionality reduction to lower the computational time of the 
following image classification step while preserving the uncorrelated 
information contained in the original PRISMA bands. Regarding 
Sentinel-2, bands from B02 to B07, B8A, B11, and B12 (provided at 20 m 
spatial resolution by Copernicus) are exploited. 

Step #2: Computation of the UCPs, namely Sky View Factor, 
Impervious Surface Fraction, Building Surface Fraction, Tree Canopy 
Height, and Building Heights (reported in the Appendix). These layers 
are computed in QGIS (Muhammad et al. 2022) at two spatial resolu-
tions (i.e., 20 m and 30 m) and used to classify both Sentinel-2 (at 20 m) 
and PRISMA (at 30 m) images. The Sky View Factor is computed from 
the the ALOS DSM, using the dedicated module in SAGA GIS (Conrad 
et al. 2015). The Impervious Surface Fraction is computed from the 

Copernicus Imperviousness Density layer, while the building layer of the 
regional geo-topographic database is used to compute both the Building 
Surface Fraction and the Building Heights. Finally, the Global Sentinel-2 
Canopy Height layer is exploited to derive the Tree Canopy Height. The 
layers are normalized to values in the [0–1] range to make them com-
parable with the reflectance data. Additional details on the methodology 
followed for computing the UCP layers are provided within the Ap-
pendix (see Table 6). Note that, the UCP layers are computed only once, 
considering the short time interval of the satellite acquisitions exploited 
within the project (i.e. 7 months). 

Step #3: Collection of training and testing samples for performing 
the classification and assessing the result quality. The following ancil-
lary data are used for this purpose: the 30 m RGB PRISMA image (central 
wavelengths: R, 664.89 nm; G, 575.49 nm; B, 482.55 nm) for the land 
cover detection through visual interpretation, the 5 m panchromatic 
PRISMA image for refining the polygon boundaries, and the building 
height layer for discriminating the built-up classes. Different samples 
have been collected for each PRISMA acquisition date both to account 
for the seasonal evolution of vegetated areas (that are included, e.g., in 
Scattered and Dense Trees and Low Plants LCZs) and to adapt the dis-
tribution of samples to the extent of the PRISMA image covering the 
study area. The samples are selected in such a way that they are as 
equally distributed as possible in space and within the LCZ classes, and 
possibly containing a similar number of pixels. The same polygons are 
used for the selection of training and testing samples in the corre-
sponding Sentinel-2 images and provided as input to the LCZ Generator. 
It is worthwhile mentioning that the training sample is the only input 
required to the LCZ Generator which leverages a fixed set of images and 
ancillary layers for the classification. 

Step #4: Assessment of the LCZ class spectral separability, by 
computing the Jeffries-Matusita (JM) distance (Richards, 2013). The JM 
distance is asymptotic to 2 when spectral signatures are completely 
separable and tends to 0 when signatures are identical. Spectral sepa-
rability is evaluated on the signatures of training samples. However, 
owing to the high correlation between the PRISMA bands, the covari-
ance matrices appearing in the JM distance formula turn out to be sin-
gular. To mitigate this problem, the spectral signatures computed from 
PRISMA are sampled with 10-band steps. 

Fig. 1. Workflow of the proposed RS and GIS-based method for LCZ mapping.  
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Step #5: Classification into LCZs through the RF algorithm, which is 
applied to each PRISMA and Sentinel-2 image using the same training 
samples. Regarding PRISMA, the algorithm is applied to the first 10 PCs, 
accounting for ~100 % of the variance in the original PRISMA bands, to 
speed up the computation and improve the classification performance. 
As for Sentinel-2, the algorithm is applied to all the selected bands listed 
above. The UCP layers are incorporated into the image bands (in the 
case of Sentinel-2) or PCs (in the case of PRISMA) as additional feature 
sets. Hyperparameter tuning is performed to select the combination of 
parameters yielding the highest accuracy score. To accomplish this task, 
several combinations of parameters are tested by splitting the training 
sample into training set (80 % of training sample) and validation set (20 
% of training sample). Specifically, parameters are optimized through a 
repeated 5-fold cross-validation approach, based on the GridSearchCV 
class of the scikit-learn library. The parameters being tested are the 
number of estimators, the maximum number of features, and the crite-
rion used to evaluate the quality of a split (between Gini impurity and 
entropy). The classification is finally carried out using the best combi-
nation of parameters. 

Step #6: Application of post-processing median filter, with window 
size 3x3 pixels, to smooth the noisy output of the classification, by 
merging isolated LCZs into adjacent larger LCZ classes. 

Step #7: Accuracy assessment of the LCZ map on the collected testing 
samples. Common accuracy metrics are derived from the confusion 
matrix, including OA, precision, recall, and F1-score. An inter- 
comparison is performed between the LCZ maps obtained leveraging 
PRISMA and Sentinel-2 images as well as the LCZ Generator (https://lcz- 
generator.rub.de) to assess the agreement of LCZ maps generated with 
different satellite sensors (i.e., PRISMA and Sentinel-2) and workflows 
(i.e., the LCZ-ODC project and LCZ Generator approaches). The maps are 
up-sampled to 10 m (common maximum resolution) by using a nearest- 
neighbour interpolator, and the LCZ Generator map is aligned to the 
common grid of PRISMA and Sentinel-2. The inter-comparison between 
each pair of maps is then performed by randomly picking pairs of cor-
responding (i.e., with the same coordinates) pixels on the two maps, 
following a stratified random sampling, thus selecting more pixels across 
more extended classes. The total number of pixels selected for each 
comparison is fixed to 1500 according to the Cochran’s formula for large 
populations (Cochran, 1940). The maps being compared are obtained 
using the first 10 PRISMA PCs and the Sentinel-2 bands (along with the 
UCP layers), and the maps obtained with the LCZ Generator. 

The procedure described above was applied to all the PRISMA and 
Sentinel-2 images listed in Table 1, resulting in multi-temporal (and 
multi-seasonal) LCZ maps, specifically 6 LCZ maps at 20 m resolution 

Fig. 2. Median spectral signature of the training samples and JM distance between the spectral signature of training samples, for each couple of LCZ classes. Spectral 
signatures and JM distance are computed on the 9th Feb PRISMA image (a and c) and on the 10th Feb Sentinel-2 image (b and d). 
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(derived from Sentinel-2) and 6 LCZ maps at 30 m resolution (derived 
from PRISMA). Despite the different spatial extent of the resulting maps 
that depends on the footprint of the PRISMA acquisitions over the 
selected study area, the city of Milan is included in every LCZ map. For 
the sake of completeness, all LCZ maps are provided within the Ap-
pendix. In the following Section 5, a detailed description of the work 
outcomes is provided relatively to the LCZ maps computed for February 
and June 2023, which are representative of winter and summer time 
conditions, respectively. 

A further experiment was carried out to investigate the effect of 
hyperspectral pan-sharpening on the spectral separability of LCZ classes. 
Specifically, the Adaptive Gram-Schmidt (GSA) decomposition method, 
based on Component Substitution (Loncan et al., 2015), was imple-
mented and applied to the VNIR bands of one PRISMA image (acquired 
on 8th August 2023), encompassing the same spectral region as the 
panchromatic band (i.e. 400–700 nm). Although the image of 8th 
August was selected for running the test on pan-sharpening, the exper-
iment can be easily replicated with the other PRISMA images listed in 
Table 1. The computation was restricted to the City of Milan area (~144 
km2 extent) and produced a super-resolved hyperspectral image, having 
66 bands and 5 m resolution. The JM distance was computed on the 
spectral signature of training samples falling within the selected area, 

before and after pan-sharpening. The spatial distribution of training and 
testing samples, relative to February, June, and August, is reported in 
the supplementary material. 

The methodologies employed in this work were implemented 
through the creation of a collection of Python Jupyter notebooks 
(https://github.com/gisgeolab/LCZ-ODC/tree/Processing-Notebooks). 
These notebooks were designed to execute all computational steps 
described above. The procedures leverage exclusively free and open- 
source software and libraries by ensuring the reproducibility of out-
comes. The entire codebase has been organized and made publicly 
accessible through GitHub (https://github.com/gisgeolab/LCZ-ODC) to 
ease future revision and replications behind the case study tackled in 
this paper. 

To manage and integrate the diverse datasets, a unified endpoint 
built on the Open Data Cube (ODC) free and open-source data man-
agement platform was used (https://www.opendatacube.org). The ODC 
platform facilitated a cohesive approach to dataset handling. Satellite 
imagery, pre-processed and rendered analysis-ready, was registered 
within the ODC platform, together with the selected ancillary data. 
These datasets were programmatically accessed using the ODC API 
through the Jupyter notebooks. 

Finally, to enhance the practical utility and accessibility of the 

Fig. 3. Median spectral signature of the training samples and JM distance between the spectral signature of training samples, for each couple of LCZ classes. Spectral 
signatures and JM distance are computed on the 17th Jun PRISMA image (a and c) and on the 25th Jun Sentinel-2 image (b and d). 
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research findings, a demonstration version of the system was created 
and deployed using Docker technology. The source code was made 
available on GitHub (https://github.com/gisgeolab/LCZ-ODC/tree/ 
Docker-ODC) for further replications of the system. This was instru-
mental to the dissemination and user engagement activities envisaged 
by the LCZ-ODC project. Such a project’s activity is out of the scope of 
this paper. Further details were documented by the authors in separate 
publications (Vavassori et al. 2023a; Oxoli et al. 2023). 

5. Results and discussion 

5.1. Comparison of spectral separability and classification accuracy using 
PRISMA and Sentinel-2 bands 

The median spectral signatures, computed from the training samples, 
and the spectral separability of LCZ classes are represented in Figure 2 
(for February) and Figure 3 (for June). The values of JM distance (mostly 
close to 2) indicate a high spectral separability between the classes. 
However, two main considerations may be highlighted. Firstly, spectral 
separability is lower within the impervious/built-up LCZs. In fact, the 
distinction between built-up LCZ types is mostly linked to the urban 
canopy characteristics (e.g., building height and density) rather than the 

spectral properties of their materials which are detected by optical sat-
ellite imagery. This is the reason why ancillary geospatial data 
describing urban morphology is needed to improve the distinction of 
built-up LCZs. Secondly, spectral separability between each pair of 
classes is higher for the spectral signatures computed from the PRISMA 
image, suggesting that the use of hyperspectral data can improve the 
distinction of LCZs. 

Figure 4 represents the median spectral signatures (bounded to the 
VNIR range) of training samples for each LCZ class and the corre-
sponding spectral separability, before and after the application of the 
GSA pan-sharpening algorithm. For all LCZs, the median spectral sig-
natures are preserved after pan-sharpening, with very limited changes of 
reflectance (<0.02), meaning that a higher spatial resolution (5 m) was 
achieved without significant spectral distortion. This result points out 
the good performance of the GSA algorithm; however, a quantitative 
evaluation of the pan-sharpening quality has still to be carried out. 
Similar results (not reported in this paper) were obtained when applying 
the pan-sharpening algorithm to the February PRISMA image. The 
conservation of spectral signatures yields, in turn, similar values of JM 
distance (i.e. spectral separability of LCZs) when computed on the 
original and pan-sharpened PRISMA images. 

Based on these findings, a first classification test was run on the 9th 

Fig. 4. (a) Median spectral signature of the training samples and (b and c) JM distance between the spectral signature of training samples, for each couple of LCZ 
classes. Spectral signatures and JM distance are computed on the 8th Aug PRISMA image, (b) before and (c) after pan-sharpening. 
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February PRISMA and 10th February Sentinel-2 images, without adding 
the UCP layers to the spectral information. The confusion matrices and 
corresponding accuracy metrics, computed on the testing samples, are 
provided in Figure 5 and Table 3, respectively. The comparison indicates 
the increase in accuracy using PRISMA, especially for the built-up LCZs 
and the Bare Rock or Paved class, as well as a lower confusion between 
the built-up classes, in line with the higher spectral separability of their 
signatures when computed on the hyperspectral data. 

5.2. Comparison of classification accuracy using PRISMA and Sentinel-2 
along with UCPs 

The results described henceforth refer to the maps obtained by 
adding the UCP layers to the PRISMA PCs and Sentinel-2 spectral bands. 
Specifically, Figure 6 compares the LCZ maps computed from PRISMA 
(at 30 m), Sentinel-2 (at 20 m), and using the LCZ Generator (at 100 m 
resolution), for February and June. The quantitative evaluation of the 
product accuracy was performed by leveraging testing samples, 
collected upstream of the classification. The same testing sample was 
exploited to assess the quality of the LCZ maps computed with the two 
satellite sensors and the LCZ Generator. The confusion matrices are 
shown in Figure 7 whereas the corresponding accuracy metrics are re-
ported in Table 4 (February) and Table 5 (June). Given the different 
resolutions of the maps, the values reported in the confusion matrices 

are expressed as a percentage of the total number of pixels of the testing 
samples (i.e. relative frequencies). 

The best combinations of hyperparameters, used for the RF classifi-
cation, are reported in the supplementary material, along with the 
feature importance, expressed in terms of the mean decrease in impurity 
within each tree and mean decrease in accuracy. These indices suggest 
the UCP layers have a large importance in the classification, particularly 
the Imperviousness, Sky View Factor, and Canopy Height layers. It 
would be interesting to carry out a correlation analysis of the UCPs to 
interpret the results obtained out of the RF classification about the 
feature importance. This analysis is left for future work. Regarding the 
spectral information, the first 3 PRISMA PCs have higher importance 
than the other PCs, while the Sentinel-2 bands have a similar value of 
mean decrease in impurity and accuracy scores. These outcomes are 
corroborated by the comparison of accuracy metrics of LCZ maps ob-
tained with (Table 4) and without (Table 3) the UCP layers, for 
February. Indeed, considering PRISMA, the UCPs yield a mean increase 
of F1-score equal to 0.08 for built-up classes (up to 0.16 for Open Mid- 
Rise) and 0.04 for land-cover classes (up to 0.13 for Bare Rock or Paved). 
The same happens for Sentinel-2, with a mean F1-score increase of 0.16 
for built-up LCZs (up to 0.29 for Open Mid-Rise) and 0.05 for land-cover 
classes (up to 0.18 for Bare Rock or Paved). The smaller increase in 
accuracy recorded for the maps computed from PRISMA, after adding 
the UCP layers, is proof that the hyperspectral data partially compen-
sates for the lack of ancillary layers describing urban morphological 
features, despite its lower spatial resolution. 

The high values of the OA (>0.80) recorded for the maps computed 
from PRISMA and Sentinel-2, prove that the tested workflow provides 
very promising results compared to the LCZ Generator which achieves 
lower OA (0.70 and 0.75) on the same testing samples. This outcome 
holds for each LCZ class, for both February and June, indicating that the 
LCZ-ODC approach is generally better than the one implemented by the 
LCZ Generator in detecting both built-up and land cover LCZs. The most 
relevant improvement, in terms of F1-score, achieved using PRISMA 
(compared to the LCZ Generator) is for the classes Bare Rock or Paved 
(+0.48 for February and + 0.43 for June) and Bare Soil or Sand (+0.31 
for February and + 0.52 for June). Nevertheless, an increase up to 0.21 
is also recorded for the built-up classes (i.e. Large Low-rise, June). The 
relatively low F1-score of Bare Rock or Paved for the LCZ Generator 
maps, 0.48 and 0.52 respectively, may be attributed to the low spatial 
resolution of these maps which may negatively affect the detection of 
roads and railways. 

Fig. 5. Confusion matrices computed from the testing samples, relative to the LCZ maps computed from (a) the PRISMA image of 9th Feb, and (b) Sentinel-2 image of 
10th Feb, without adding the UCPs to the spectral bands. Values are expressed as percentage of the total number of pixels in the testing sample, equal to 11,687 
(computed on the map at 30 m). 

Table 3 
Precision, recall, F1-score, and Overall Accuracy (OA) of LCZ maps computed for 
June 2023, without adding the UCPs to the spectral bands.  

February 2023 PRISMA Sentinel-2 
Precision Recall F1 Precision Recall F1 

Compact Mid-rise  0.80  0.84  0.82  0.76  0.68  0.72 
Compact Low-rise  0.71  0.68  0.70  0.56  0.51  0.53 
Open Mid-rise  0.63  0.70  0.66  0.50  0.43  0.46 
Open Low-rise  0.74  0.64  0.69  0.52  0.64  0.57 
Large Low-rise  0.96  1.0  0.98  0.83  0.98  0.90 
Dense Trees  0.95  0.79  0.86  0.88  0.94  0.91 
Scattered Trees  0.75  0.92  0.83  0.72  0.80  0.76 
Low Plants  0.97  0.94  0.96  0.98  0.81  0.89 
Bare Rock or Paved  0.89  0.78  0.83  0.75  0.64  0.69 
Bare Soil or Sand  1.0  0.98  0.99  0.98  0.97  0.97 
Water  1.0  1.0  1.0  1.0  1.0  1.0 
OA  0.84  0.76  
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Fig. 6. LCZ maps obtained using the first 10 PRISMA PCs (30 m) and the Sentinel-2 bands (20 m) along with the UCP layers, and the LCZ Generator (100 m). LCZ 
maps are derived from (a) PRISMA image of 9th Feb, (b) PRISMA image of 17th Jun, (c) Sentinel-2 image of 10th Feb, (d) Sentinel-2 image of 25th Jun 2023, (e) LCZ 
Generator (training samples of 9th Feb), (f) LCZ Generator (training samples of 17th Jun). 
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Fig. 7. Confusion matrices computed from the testing samples, relative to the LCZ maps computed from: (a) PRISMA image of 9th Feb, (b) PRISMA image of 17th 
Jun, (c) Sentinel-2 image of 10th Feb, (d) Sentinel-2 image of 25th Jun, (e) LCZ Generator (training samples of 9th Feb), (f) LCZ Generator (training samples of 17th 
Jun). Values are expressed as percentage of the total number of pixels in the testing sample, equal to 11,687 for February and 12,054 for June (computed on the map 
at 30 m). 
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Comparing the maps computed according to the LCZ-ODC workflow, 
higher accuracy is obtained using PRISMA (OA ~0.88), especially for 
June. This outcome is in good agreement with the results of the spectral 
separability analysis, which highlighted a higher separability between 
the spectral signatures computed with PRISMA (compared to Sentinel-2) 
for the June image (compared to the February image). Concerning this 
point, the following consideration can be pointed out. The lower accu-
racy of built-up LCZs is associated with a higher confusion between such 
classes (see the confusion matrix in Figure 7), which is in line with their 
lower spectral separability. Within the land cover types, a slightly higher 
confusion is found among the vegetated classes (Dense Trees, Scattered 
Trees, and Low Plants). Note that, the confusion is anyway reduced 
compared to the results obtained using the PRISMA and Sentinel-2 
spectral bands only. 

An inter-comparison among the LCZ maps was also carried out 
(Figure 8), providing further pieces of information about the result 
quality. In this case, the accuracy metrics that can be extracted from the 
confusion matrices, is a proxy of the agreement (or consistency) between 
the products. 

Not surprisingly, a higher consistency was found between the maps 
generated with PRISMA and Sentinel-2 (OA equal to 0.79 and 0.74 for 
February and June, respectively) which were computed according to the 
same workflow and using the same ancillary geodata. In this case, lower 
F1-score is obtained for Dense Trees (0.62 for February and 0.50 for 
June) and Scattered Trees (0.64 and 0.65). The comparison between the 
PRISMA (or, equivalently, Sentinel-2) and LCZ Generator products re-
sults in a lower consistency (OA equal to 0.60 and 0.56 for February and 
June). This outcome is expected, given that the LCZ Generator exploits a 
different workflow, satellite images, and ancillary datasets for 
computing the LCZ maps. On the contrary, the same methodology and 
UCPs were leveraged for the classification of PRISMA and Sentinel-2 
imagery into LCZs. Focusing on the inter-comparison between the 

PRISMA and LCZ Generator maps computed for February, F1-scores 
lower than 0.50 were calculated for the classes Bare Rock or Paved 
(0.39) and Compact Low-Rise (0.47). Nonetheless, the maps computed 
for June showed low F1-score for Bare Rock or Paved (0.33) and Bare 
Soil or Sand (0.36). To understand these results, the differences between 
the maps generated with PRISMA, Sentinel-2, and LCZ Generator were 
computed (and reported in the supplementary material) for the classes 
Bare Rock or Paved (both February and June), Compact Low-Rise 
(February), and Bare Soil or Sand (June), providing us with the 
following insights. 

Regarding Bare Rock or Paved, it appears quite clearly that the dif-
ferences between the maps are related to their spatial resolutions, thus 
confirming the hypothesis described above. In fact, the small differences 
between PRISMA and Sentinel-2 maps mostly appear at the boundaries 
of roads and railways. The LCZ Generator does not properly detect them 
due to the low spatial resolution or, in some cases, it confuses this class 
with Compact Low-Rise and Bare Soil or Sand. As for the class Compact 
Low-Rise, the main differences are around the City of Milan, where the 
dense urban texture is gradually substituted by lower, more sparse 
buildings, and a mixture of urban classes is present. Finally, large por-
tions of the rural area south of Milan show disagreement between the 
PRISMA (or Sentinel-2) and LCZ Generator maps relatively to the class 
Bare Soil or Sand. The misalignment mostly appears with the class Low 
Plants, and the photointerpretation of the PRISMA image suggests that 
the PRISMA map is more reliable than the LCZ Generator map, which is 
also proved by the higher accuracy of the former on the testing samples. 
Furthermore, the differences between PRISMA and Sentinel-2 classifi-
cations for the class Bare Soil or Sand can be attributed to the temporal 
misalignment between the satellite images (8 days), during which crop 
fields have partially undergone grass cutting or harvesting. 

A final remark is noteworthy. The visual interpretation of the spatial 
differences between the maps revealed that the disagreements mainly 

Table 4 
Precision, recall, F1-score, and Overall Accuracy (OA) of LCZ maps computed for February 2023.  

February 2023 PRISMA Sentinel-2 LCZ Generator 
Precision Recall F1 Precision Recall F1 Precision Recall F1 

Compact Mid-rise  0.84  0.92  0.88  0.80  0.90  0.85  0.77  0.80  0.79 
Compact Low-rise  0.77  0.73  0.75  0.72  0.63  0.67  0.59  0.65  0.62 
Open Mid-rise  0.80  0.84  0.82  0.74  0.76  0.75  0.66  0.65  0.66 
Open Low-rise  0.86  0.75  0.80  0.73  0.72  0.73  0.63  0.65  0.64 
Large Low-rise  0.98  1.00  0.99  0.96  0.95  0.96  0.95  0.85  0.90 
Dense Trees  0.95  0.78  0.86  0.90  0.85  0.87  0.88  0.79  0.83 
Scattered Trees  0.81  0.93  0.86  0.82  0.83  0.82  0.77  0.77  0.77 
Low Plants  1.0  0.99  1.00  0.99  0.96  0.98  0.72  0.79  0.75 
Bare Rock or Paved  0.94  0.98  0.96  0.82  0.92  0.87  0.45  0.52  0.48 
Bare Soil or Sand  1.0  0.99  1.00  1.0  1.0  1.0  0.73  0.66  0.69 
Water  1.0  1.00  1.00  0.99  1.0  1.0  0.99  0.99  0.99 
OA  0.89  0.86  0.75  

Table 5 
Precision, recall, F1-score, and Overall Accuracy (OA) of LCZ maps computed for June 2023.  

June 2023 PRISMA Sentinel-2 LCZ Generator 
Precision Recall F1 Precision Recall F1 Precision Recall F1 

Compact Mid-rise  0.82  0.89  0.85  0.78  0.85  0.81  0.79  0.82  0.80 
Compact Low-rise  0.77  0.73  0.75  0.70  0.64  0.67  0.59  0.63  0.61 
Open Mid-rise  0.77  0.78  0.78  0.72  0.76  0.74  0.67  0.67  0.67 
Open Low-rise  0.82  0.78  0.80  0.74  0.73  0.74  0.64  0.66  0.65 
Large Low-rise  0.98  0.99  0.99  0.96  0.83  0.89  0.92  0.68  0.78 
Dense Trees  0.98  0.73  0.84  0.80  0.71  0.75  0.79  0.70  0.74 
Scattered Trees  0.83  0.93  0.88  0.76  0.81  0.78  0.71  0.77  0.74 
Low Plants  0.98  0.92  0.95  0.89  0.91  0.90  0.62  0.87  0.72 
Bare Rock or Paved  0.93  0.97  0.95  0.69  0.94  0.80  0.45  0.60  0.52 
Bare Soil or Sand  0.90  0.99  0.94  0.89  0.84  0.86  0.59  0.32  0.42 
Water  1.0  1.0  1.0  0.99  1.0  1.0  1.0  0.99  0.99 
OA  0.88  0.81  0.70  
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Fig. 8. Confusion matrices representing the inter-comparison between the LCZ maps obtained with PRISMA, Sentinel-2, and LCZ Generator: (a) PRISMA/Sentinel-2 
Feb, (b) PRISMA/Sentinel-2 Jun, (c) PRISMA/LCZ Generator Feb, (d) PRISMA/LCZ Generator Jun, (e) Sentinel-2/LCZ Generator Feb, (f) Sentinel-2/LCZ Generator 
Jun. Values are expressed as percentage of the total number of pixels (i.e., 1500). 
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occurred where a unique LCZ type is difficult to define even through an 
expert visual inspection. This primarily happens in zones constituted by 
a mixture of regularly distributed vegetation (both grass and trees) and 
concrete or asphalt paths (occurring, e.g., in parking lots or graveyards), 
mainly due to the different sizes of these objects and thus impact on the 
capability of being resolved and spectrally separated from satellites. As a 
result, PRISMA classifies these areas as Bare Rock or Paved, despite the 
presence of vegetation, whereas Sentinel-2 tends to assign them to the 
class Open Low-Rise, even though buildings are generally not present. 
Therefore, misclassification errors can be attributed to a lack of infor-
mation rather than to the classification algorithm. This is especially true 
for pixel-based classification algorithms (like the RF) that classify each 
pixel independently of the surrounding landscape features. Neverthe-
less, the accuracy assessment presented in this paper was carried out on 
testing samples corresponding to areas where the interpretation of the 
LCZ type was straightforward, allowing for a reliable evaluation of the 
map quality. 

6. Conclusions 

In this paper, we explore the contribution and possible benefits of 
hyperspectral PRISMA images to the generation of LCZ maps. This 
required the definition of a complete workflow, from the pre-processing 
steps to the validation of the obtained results, which was implemented 
through free and open-source software. The main conclusions can be 
outlined as follows: (i) the hyperspectral PRISMA data improves the 
accuracy of the resulting LCZ map compared to multispectral Sentinel-2 
data thanks to a better separability of the LCZ classes’ spectral signa-
tures; (ii) further improvements can still be obtained by integrating the 
UCP layers to the spectral information through a hybrid RS/GIS-based 
approach; (iii) PRISMA pan-sharpening does not significantly affect 
the spectral separability of LCZ classes, thus opening the possibility to 
exploit the resulting higher spatial resolution for LCZ mapping appli-
cations; (iv) the proposed hybrid approach proves to be more accurate 
than the state-of-art workflow implemented within the LCZ Generator 
tool. 

More specifically, the proposed hybrid approach is based on the 
combined exploitation of hyperspectral PRISMA or multispectral 
Sentinel-2 imagery and geospatial layers for the computation of the 
UCPs, which are normalized and integrated into the PCs (in the case of 
PRISMA) or satellite bands (in the case of Sentinel-2) as additional 
feature bands. 

The presented experiments primarily focus on the LCZ maps 
computed for February and June 2023 (representative of winter and 
summer time conditions, respectively) in the Metropolitan City of Milan. 
We carried out a preliminary spectral separability analysis by computing 
the JM distance on the median spectral signatures (of the training 
samples) for each pair of classes. This experiment disclosed the general 
improvement of spectral separability provided by PRISMA with respect 
to Sentinel-2 imagery which is reflected in the better class-specific ac-
curacy scores obtained from the classification of PRISMA bands. The 
lower spectral separability and the higher confusion of built-up LCZs 
justify the integration of the UCP layers into the classification step to 
improve their distinction. A further test was performed with the aim of 
evaluating the effect of PRISMA image pan-sharpening (through the GSA 
algorithm) on the spectral separability, revealing that spectral signa-
tures are preserved after pan-sharpening, thus qualitatively proving the 
good performance of the algorithm. The quantitative assessment of pan- 
sharpening accuracy is left as a future development of this work. 

We also provide a thorough evaluation of the result quality by 
assessing the map’s accuracy on a set of testing samples and through an 
inter-comparison with the maps computed using the LCZ Generator tool. 
The results clearly indicate that the LCZ-ODC approach yields more 
accurate maps compared to the LCZ Generator, both in terms of overall 
and class-specific accuracies, thus suggesting that the proposed 

workflow is better in detecting both built-up and land cover LCZ types. 
Focusing on the maps computed with the LCZ-ODC workflow, higher 
accuracy is obtained using PRISMA (with respect to Sentinel-2). The 
UCP layers contribute to reducing the confusion among the built-up 
LCZs, especially when integrated into the Sentinel-2 bands, indicating 
that the hyperspectral data partially compensates for the lack of ancil-
lary layers describing the urban morphological features. Finally, the 
differences between the maps can be attributed to either actual mis-
classifications (and, in some cases, to the different spatial resolution) or 
the presence of “mixed” classes which are difficult to interpret even 
through an expert visual inspection. 

In line with the purposes of the LCZ-ODC project, a relevant outcome 
of the work consists in the development of completely free and open- 
source software that can be directly exploited, allowing any potential 
user to process raw PRISMA and Sentinel-2 images, analyse spectral 
signatures (in terms of separability and statistics), apply a PCA, perform 
an LCZ classification and assess the accuracy of the generated maps. 
Therefore, the user can improve each step of the workflow, and tailor the 
processing to different case studies. 

Besides the obtained results, some open issues may be highlighted 
and put off for future work. These include (i) the investigation of 
possible benefits of object-based classification algorithms for dealing 
with hard-to-define LCZ types, and (ii) experiments on the scalability of 
the proposed procedure, by applying it to other case studies, e.g., cities 
with significantly different urban structures compared to Milan. 
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Appendix  

Table 6 
Input data and processing steps for computing the UCP layers.  

UCP Source of the dataset used to compute the UCP Processing steps in QGIS 

Building Height  
• Geo-topographic databas; layer “UN_VOL”; attribute “UN_VOL_AV”. 
• Provider: Lombardy Region. 
• Data type: vector (geopackage). 
• Scale: 1:2000 (across urban areas).  

• Conversion to raster (5m) (*). 
• Down-sampling to 20/30m using the function “r.resamp.stats” (aggregation 
method: average). 
• Values scaled to the range [0–1] with the raster calculator. 

Tree Canopy 
Height  

• ETH Global Sentinle-2 10m Canopy Height (2020); tile relative to the 
Milan area: N45E006. 
• Provider: Google Earth Engine (GEE). 
• Data type: raster. 
• Resolution: 10m (global coverage).  

• Down-sampling to 20/30m using the function “r.resamp.stats” (aggregation 
method: average). 
• Values scaled to the range [0–1] with the raster calculator. 

Sky View Factor  
• ALOS DSM (Global 30m v3.2) 
• Provider: GEE. 
• Data type: raster. 
• Resolution: 30m (global coverage)  

• ALOS DMS (30m) used as an input to the SAGA-GIS module “Sky View Factor”. 
Input parameters (default): maximum search radius: 100; number of sectors: 16. 
• Values already returned in the range [0–1] by SAGA-GIS. 

Impervious 
Surface 
Fraction  

• Imperviousness Density 2018 (raster 10m), Europe, 3-yearly; tile relative 
to the Milan area: IMD_2018_010m_E42N24_03035_v020. 
• Provider: Copernicus Land Monitoring Service (CLMS). 
• Data type: raster (GeoTIFF). 
• Resolution: 10m (Europe).  

• Down-sampling to 20/30m using the function “r.resamp.stats” (aggregation 
method: average). 
• Values divided by 100 with the raster calculator, to scale the range to [0–1]. 

Building Surface 
Fraction  • Building Height raster layer at 5m resolution (*).  

• Reclassification to: “1″ (=building is present) for the pixels with height value 
>0; “0” (=building is absent) for the pixels with height values =0. 
• Down-sampling to 20/30m using the function “r.resamp.stats” (aggregation 
method: average). Note that, since the reclassified layer has values “0”/”1”, 
computing the mean is equivalent to computing the percentage of “1” values, and 
thus the area percentage covered with buildings.  
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Fig. 9. Urban Canopy Parameters: (a) Sky View Factor, (b) Building Surface Fraction, (c) Impervious Surface Fraction, (d) Building Height, (e) Tree Canopy Height. 
Layers are clipped to the extent of the PRISMA image of 9th Feb. All parameters are normalized to values in the range [0–1].  
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Table 7 
Optimum values of the Random Forest parameters: ‘criterion’ (‘entropy’, ‘gini’), ‘max_features’ (‘auto’, ‘log2’, ‘sqrt’), ‘n_estimators’ (‘150’, ‘200’, ‘500’); accuracy 
resulting from the cross-validation: ‘best_score’; accuracy resulting from the validation set: ‘accuracy’.  

Satellite PRISMA Sentinel-2 PRISMA Sentinel-2 PRISMA Sentinel-2 
Date 9 Feb 2023 10 Feb 2023 22 Mar 2023 22 Mar 2023 8 Apr 2023 26 Apr 2023 
criterion entropy entropy entropy entropy entropy gini 
max_features auto log2 auto auto auto auto 
n_estimators 100 500 500 500 500 200 
best_score 0.938 0.884 0.944 0.900 0.942 0.889 
accuracy 0.938 0.889 0.952 0.905 0.946 0.897 
Date 17 Jun 2023 25 Jun 2023 10 Jul 2023 10 Jul 2023 8 Aug 2023 19 Aug 2023 
criterion entropy gini entropy entropy entropy entropy 
max_features sqrt sqrt sqrt log2 auto sqrt 
n_estimators 200 500 500 200 150 500 
best_score 0.946 0.949 0.949 0.904 0.951 0.898 
accuracy 0.946 0.953 0.953 0.901 0.958 0.905  
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Fig. 10. LCZ maps obtained following the combined RS/GIS based approach of the LCZ-ODC project, using the first 10 PRISMA PCs (left panels) and the Sentinel-2 
bands (right panels) along with the UCP layers. 
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Fig. 11. LCZ maps obtained following the combined RS/GIS based approach of the LCZ-ODC project, using the first 10 PRISMA PCs (left panels) and the Sentinel-2 
bands (right panels), along with the UCP layers. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jag.2024.103944. 
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