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Foreword

Human-computer interaction (HCI) is acquiring an ever-increasing scientific and
industrial importance, as well as having more impact on people’s everyday life, as an
ever-growing number of human activities are progressively moving from the physical to
the digital world. This process, which has been ongoing for some time now, has been
dramatically accelerated by the COVID-19 pandemic. The HCI International (HCII)
conference series, held yearly, aims to respond to the compelling need to advance the
exchange of knowledge and research and development efforts on the human aspects of
design and use of computing systems.

The 24th International Conference on Human-Computer Interaction, HCI
International 2022 (HCII 2022), was planned to be held at the Gothia Towers Hotel
and Swedish Exhibition & Congress Centre, Göteborg, Sweden, during June 26 to
July 1, 2022. Due to the COVID-19 pandemic and with everyone’s health and safety in
mind, HCII 2022 was organized and run as a virtual conference. It incorporated the 21
thematic areas and affiliated conferences listed on the following page.

A total of 5583 individuals from academia, research institutes, industry, and
governmental agencies from 88 countries submitted contributions, and 1276 papers
and 275 posters were included in the proceedings to appear just before the start of
the conference. The contributions thoroughly cover the entire field of human-computer
interaction, addressing major advances in knowledge and effective use of computers in
a variety of application areas. These papers provide academics, researchers, engineers,
scientists, practitioners, and students with state-of-the-art information on themost recent
advances in HCI. The volumes constituting the set of proceedings to appear before the
start of the conference are listed in the following pages.

The HCI International (HCII) conference also offers the option of ‘Late Breaking
Work’ which applies both for papers and posters, and the corresponding volume(s) of
the proceedings will appear after the conference. Full papers will be included in the
‘HCII 2022 - Late Breaking Papers’ volumes of the proceedings to be published in
the Springer LNCS series, while ‘Poster Extended Abstracts’ will be included as short
research papers in the ‘HCII 2022 - Late Breaking Posters’ volumes to be published in
the Springer CCIS series.

I would like to thank the Program Board Chairs and the members of the Program
Boards of all thematic areas and affiliated conferences for their contribution and
support towards the highest scientific quality and overall success of the HCI
International 2022 conference; they have helped in so many ways, including session
organization, paper reviewing (single-blind review process, with a minimum of two
reviews per submission) and, more generally, acting as goodwill ambassadors for the
HCII conference.



vi Foreword

This conference would not have been possible without the continuous and
unwavering support and advice of Gavriel Salvendy, founder, General Chair Emeritus,
and Scientific Advisor. For his outstanding efforts, I would like to express my
appreciation to AbbasMoallem, Communications Chair and Editor of HCI International
News.

June 2022 Constantine Stephanidis
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Preface

Software representations of humans, including aspects of anthropometry, biometrics,
motion capture and prediction, as well as cognition modelling, are known as Digital
HumanModels (DHM), and are widely used in a variety of complex application domains
where it is important to foresee and simulate human behavior, performance, safety, health
and comfort. Automation depicting human emotion, social interaction and functional
capabilities can also be modeled to support and assist in predicting human response in
real world settings. Such domains include medical and nursing applications, education
and learning, ergonomics and design, as well as safety and risk management.

The 13th Digital Human Modeling & Applications in Health, Safety, Ergonomics &
Risk Management (DHM) Conference, an affiliated conference of the HCI International
Conference 2022, encouraged papers from academics, researchers, industry and
professionals, on a broad range of theoretical and applied issues related toDigital Human
Modelling and its applications.

The research papers contributed to this year’s volume spans across different fields
that fall within the scope of the DHM Conference. In the context of anthropometry,
human behavior, and communication, the physical aspects emphasized build on human
modeling lessons of the past, whereas attentional aspects are providing evidence for
new theories and applications. The study of DHM issues in various application domains
has yielded works emphasizing task analysis, quality and safety in healthcare, as well
occupational health and operations management. Digital human modeling in interactive
product and service design is also discussed in this year’s contributions. There are
applications of interest shown across many industries, while multi-disciplinary and
systems-related challenges remain for validation and generalizability in future work.
Sensors-based modeling, information visualization, collaborative robots, and intelligent
interactions are among the human-technologymodeling and results reporting efforts this
year.

Two volumes of the HCII 2022 proceedings are dedicated to this year’s edition of
the DHM Conference, entitled Digital Human Modeling and Applications in Health,
Safety, Ergonomics and Risk Management: Anthropometry, Human Behavior, and
Communication (Part I), and Digital Human Modeling and Applications in Health,
Safety, Ergonomics andRiskManagement:Health,OperationsManagement, andDesign
(Part II). The first volume focuses on topics related to ergonomic design, anthropometry,
and humanmodeling, aswell as collaboration, communication, and human behavior. The
second volume focuses on topics related to task analysis, quality and safety in health-
care, as well as occupational health and operations management, and Digital Human
Modeling in interactive product and service design.
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Papers of these volumes are included for publication after a minimum of two single–
blind reviews from the members of the DHM Program Board or, in some cases, from
members of the Program Boards of other affiliated conferences. I would like to thank all
of them for their invaluable contribution, support and efforts.

June 2022 Vincent G. Duffy



13th International Conference on Digital Human
Modeling and Applications in Health, Safety, Ergonomics

and Risk Management (DHM 2022)

Program Board Chair: Vincent G. Duffy, Purdue University, USA

• Mária Babicsné Horváth, Budapest University of Technology and Economics,
Hungary

• Joan Cahill, Trinity College Dublin, Ireland
• André Calero Valdez, RWTH Aachen University, Germany
• Yaqin Cao, Anhui Polytechnic University, China
• Damien Chablat, CNRS and LS2N, France
• Genett Isabel Delgado, Institución Universitaria ITSA, Colombia
• H. Onan Demirel, Oregon State University, USA
• Martin Fleischer, Technical University of Munich, Germany
• Martin Fränzle, Oldenburg University, Germany
• Afzal Godil, NIST, USA
• Fu Guo, Northeastern University, China
• Michael Harry, Loughborough University, UK
• Sogand Hasanzadeh, Purdue University, USA
• Mingcai Hu, Jiangsu University, China
• Sandy Ingram, University of Applied Sciences of Western Switzerland, Switzerland
• Alexander Mehler, Goethe University Frankfurt, Germany
• Sonja Miesner, KAN - Commission for Occupational Health and Safety and
Standardization, Germany

• Fabian Narvaez, Universidad Politecnica Salesiana, Ecuador
• Peter Nickel, Institute for Occupational Safety and Health of the German Social
Accident Insurance (IFA), Germany

• T. Patel, North Eastern Regional Institute of Science and Technology, India
• Manikam Pillay, RESMEERTS, Australia
• Qing-Xing Qu, Northeastern University, China
• Caterina Rizzi, Università of Bergamo, Italy
• Joni Salminen, Qatar Computing Research Institute, Qatar
• Beatriz Santos, University of Aveiro, Portugal
• Deep Seth, Mahindra University, India
• Leonor Teixeira, University of Aveiro, Portugal
• Renran Tian, IUPUI, USA
• Alexander Trende, OFFIS - Institute for Information Technology, Germany
• Dustin Van der Haar, University of Johannesburg, South Africa
• Kuan Yew Wong, Universiti Teknologi Malaysia, Malaysia
• Shuping Xiong, Korea Advanced Institute of Science and Technology, South Korea
• James Yang, Texas Tech University, USA



xvi 13th International Conference on Digital Human Modeling and Applications

The full list with the Program Board Chairs and the members of the Program Boards of
all thematic areas and affiliated conferences is available online at

http://www.hci.international/board-members-2022.php



HCI International 2023

The 25th International Conference on Human-Computer Interaction, HCI International
2023, will be held jointly with the affiliated conferences at the AC Bella Sky Hotel
and Bella Center, Copenhagen, Denmark, 23–28 July 2023. It will cover a broad
spectrum of themes related to human-computer interaction, including theoretical
issues, methods, tools, processes, and case studies in HCI design, as well as
novel interaction techniques, interfaces, and applications. The proceedings will
be published by Springer. More information will be available on the conference
website: http://2023.hci.international/.

General Chair
Constantine Stephanidis
University of Crete and ICS-FORTH
Heraklion, Crete, Greece
Email: general_chair@hcii2023.org

http://2023.hci.international/ 
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Abstract. Providing reliable information on human activities and behaviors is an
extremely important goal in various application areas such as healthcare, enter-
tainment, and security. Within the working environment, a correct identification
of the actual performed tasks can provide an effective support in the assessment of
the risk associated to the execution of the task itself, and thus preventing the devel-
opment of work-related musculoskeletal diseases. In this perspective, wearable-
based Human Activity Recognition systems have been representing a prominent
application. This study aimed to compare three different classification approaches
appointed fromsupervised learning techniques, namely k-NearestNeighbors, Sup-
port Vector Machine and Decision Tree. Motion data, related to several working
activities realized in the large-scale retail distribution, were collected by using a
full-body systembased on 17 InertialMeasurementUnits (MVNAnalyze,XSens).
Reliable features in both time- and frequency-domainwere first extracted from raw
3D accelerations and angular rates data, and further processed by Principal Com-
ponent Analysis, with 95% threshold. The classificationmodels were validated via
10-fold cross-validation on a defined training dataset. k-Nearest Neighbors clas-
sifier, which provide the best results on the training session, was eventually tested
for generalization on additional data acquired on few specific tasks. As a result,
considering 5 main macro activities, k-Nearest Neighbors provided a classifica-
tion accuracy of 80.1% and a computational time of 1865.5 s. To test the whole
assessment process, the activities labelled by the classification model as handling
of low loads at high frequency were automatically evaluated for risk exposure via
OCRA Checklist method.
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1 Introduction

During the last decade, the astounding development that microelectronics has been hav-
ing in terms of computational power, performance, size, and costs, has been allowing
more andmore people to easily and seamlessly interact with “smart” devices and systems
that can be evenworn and used during their daily life activities [1, 2]. In parallel, the large
amount of data deriving from the use of these technologies has led to the new rebirth of
artificial intelligence through the implementation of machine learning and deep learning
algorithms, applied - for example - to the recognition of the activities carried out during
the day [3–5].

The Human Activity Recognition (HAR) mainly started with the analysis of video
sequences, and complex image analysis algorithms have been the focus of extensive
research for many years due to their great range of possible applications, even including
the identification of hand gestures for the development of “natural” user interfaces [6].
Indeed, the shift towards wearable-based HAR solutions is considered a key requirement
inmanydaily life applications, including health andwellness, and presents a fundamental
impact in many scientific fields such as biomechanics, ergonomics, remote monitoring,
safety, sports science, etc. [5, 7].Therefore, to ensure the expected outcomes for these
fields of interest, it is necessary to design and implement accurate and reliable solutions
able to correctly capture human motion, track the body movement and recognize each
specific task.

The most paradigmatic examples of wearable sensors used in HAR applications are
accelerometers, gyroscopes, and magnetometers, usually integrated in inertial measure-
ment units (IMUs) or magneto-inertial measurement units (M-IMUs). Scientific litera-
ture reports different solutions which include the use of different kind of sensors usually
in an integrated fashion and textiles; therefore, not only the movements are acquired
but also physiological parameters (e.g., heart rate), global position and environmental
conditions (e.g., temperature and relative humidity) result to be detected and analyzed,
providing additional information that can be used even for ontological reasoning [8–
10].). IMUs have been representing the gold standard solution embedded in several
wearable technologies, including smartphones, and smartwatches or smartbands, and
widely exploited for the recognition of several daily activities, such as standing, walk-
ing, sitting, running, cycling, lying, etc. [11, 12] IMUs have been adopted also for proper
human motion analysis applications [13, 14], where several sensors are usually fixed on
different landmarks of the human body and – thanks to specific calibration phases – joint
angles are available for defined further assessments.

However, this approach (and the related tools) is apparently not generally applicable
to unstructured daily life to observe long-term and multi-task activities, due to the lim-
iting setup, which could somehow annoy the subject, or because wearing such devices
can alter the comfort of the person and the naturalness of performing any gesture. On
the other hand, this approach can be used in the recognition of human activities in well-
defined contexts, such as the clinics, sports, and industry [10]. Focusing on industrial
context, the use of wearable technologies and dedicated analytical algorithms have been
demonstrated to be able to provide information for the risk assessment addressing the
activities performed by the employees, in a perspective of risk mitigation and prevention
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of the development of work-related diseases [15, 16]. In this picture, wearable technolo-
gies can be used to quantitatively support the standard assessment of the risk, usually
performed via technical standards [17–19]; a quantitative measurement of the performed
task in terms of posture, duration, joint angles, velocities, and frequencies may provide
even real-time indications on the exposure to a specific risk [16, 22] and preventing
work-related diseases.

In addition to sensors, it is fundamental to focus on both the type and the quality
of the data acquired and, above all, the algorithms and models that can be used for the
recognition of the specific activities. From the data perspective, an activity recognition
system can be broadly defined as a structured “organizer” that can be used to classify
individual tasks with respect to similar characteristics. Also in wearable-based HAR,
recognition can be performed by exploiting machine learning classification paradigms
and many approaches are present in scientific literature covering several types of appli-
cations and input data [7, 10]; in general, two main methodologies based on machine
learning techniques have been exploited for these applications: supervised and unsu-
pervised approaches [23]. Supervised learning models included, for instance, k-Nearest
Neighbors (kNN), Support VectorMachine (SVM) andDecision Tree; on the other hand,
unsupervised learning models covered the use of Gaussian Mixture Models (GMM) and
Hidden Markov Models (HMM). Focusing on these solutions, in general the features
extracted from the raw data (i.e., transformations of accelerations and/or angular rates
in time, frequency or time-frequency domains) are used as input for the classification
algorithms; in case of HAR, the patterns of input data are associated with the activities
under consideration (i.e., classes).

Due to the aforementioned reasons, we hypothesized that by exploiting the use of
wearable IMUs is possible to recognize the activities realized by an employee dur-
ing a specific working shift, and thus support the assessment of the risk exposure by
means of quantitative information. The main aim of the current work was therefore to
compare different classification models able to automatically identify the working activ-
ities specifically realized in the large-scale retail distribution, by exploiting motion data
acquired by means of a full-body IMU-based system, and then provide useful infor-
mation to automatically support the definition of the OCRA (Occupational Repetitive
Action) Checklist method, used for specific risk assessment [20].

2 Materials and Methods

2.1 Subjects

Addressing the necessity to identify the working activities performed by the employees
involved in large-scale retail distribution, we performed a preliminary ethnographic
analysis keeping into account the anthropometric distribution (5°, 50° and 95° height
percentile) and the sex (males and females) of the workers, and the active wards [21].
To cover all the possible working tasks, we specifically chose to have at least 6 people
for each ward (3 height percentile for each sex) and to identify any possible shared
activity among the different departments, to optimize the acquisition protocol. Several
activities could not be inherently monitored due to the presence of stab-gloves or aprons
reinforced in stainless steel, or water which could have led to critical issues for the
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sensors. Furthermore, for the aim of this preliminary analysis, we specifically selected
the activities by considering the characteristics defined in the technical standard ISO
11228.

2.2 On-Field Acquisition Setup

The acquisition of the movements realized by the involved employees was performed
by using a commercial full body motion capture system exploiting magneto-inertial
measuring units (MVN Analyze, XSens). The system allowed to have both the raw
data acquired by each single unit in terms of 3D accelerations, 3D angular rates and
3D inclinations, and – through proper modelling and calibration phase–all the 3D joint
angles. Data were transmitted wirelessly between each motion tracker and the base
station with a sampling frequency of 60 Hz.

The full-body protocol was based on the use of 17 wireless motion trackers fixed to
the body bymeans of elastic Velcro band and customized clothes. Following the protocol
defined by themanufacturer, the sensors were specifically placed on feet, lower legs (i.e.,
shanks), upper legs (i.e., thighs), pelvis (i.e., sacrum), shoulders (i.e., scapulae), sternum,
head, upper arms, forearms, and hands.

Before acquiring the working task, an anatomical measurements of the users and a
two-step calibration phase (static N-pose and dynamic level walking) were realized to
determine sensor-to-body alignment and size of each body segment, according to the
monitoring system’s functioning. After the calibration, an accurate biomechanicalmodel
of the subject was available for motion tracking. An example of the on-field acquisition
and provided real-time feedback is reported in Fig. 1.

Fig. 1. Example of on-field acquisition and the corresponding biomechanical model, within the
user interface (MVN studio, Xsens).

The used tracking system was able to estimate position, velocity, acceleration, ori-
entation, angular velocity and angular acceleration of each body segment implemented
in the biomechanical model. By means of custom-made functions developed in a high-
level development environment (Matlab 2020, Mathworks Inc.), we were then able to
import all the acquired information for the following processing and analysis steps. For
the defined classification approach, we specifically used only the information related to
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the 3D acceleration and 3D angular rate expressed in the sensor frames, whereas for
the risk assessment we used joint angles estimated through the calibrated biomechanical
model.

2.3 Classification

Pre-processing and Windowing. To proceed with the working task classification, the
data obtained from the acquisition system were manually segmented and labelled with
the identifier of the corresponding task. Segmentation was manually realized by using
the same acquisition software to mark each start and stop times through visual analysis,
and then to export raw data, which therefore included a specific label associated to each
defined task.

As previously reported, for the classification phase, we specifically considered only
3D accelerations and 3D angular rates acquired by each sensor for a total of 102 time
series (17 sensors × 3 dimensions × 2 types of data). No conditioning approach was
used to filter the time-domain information.

In order to support the correct extraction of the features to use in the classification
phase, we implemented a 2s fixed-length sliding Hamming window with 25% of over-
lapping, so as to keep into account the overall dynamics of the tasks we acquired and
the eventual transitions among the different activities [23, 24].

Features. To optimize classification performance andminimize computational time and
complexity, several features were defined starting from what was reported in literature
[25]. A total of 17 features were considered, as reported in Table 1.

Since the extracted features could have different offsets and scale factors, we nor-
malized them by subtracting the mean value and scaling with respect to the variance,
both calculated on the whole dataset [25].

After the features selection, to reduce the dimensionality of the problem, without
losing discriminative capability, we applied the principal component analysis (PCA)
approach, considering a threshold level corresponding to the 95% of the variance.

Classification Models. Starting from the analysis of literature [23], and considering
the available type of data and the dimensionality of our problem, we implemented three
main supervised classification models, namely a weighted k-Nearest Neighbors (kNN)
with an Euclidean distance metric and k = 18, a Support Vector Machine (SVM) with
an automatically scaled quadratic kernel function with a box constrain level of 1 and a
Decision Tree (DT) with a maximum number of split of 20 based on Gini’s diversity
index. These models were preliminary tested considering several types of implementa-
tions (e.g., different SVM kernels) and hyperparameters (e.g., number of k neighbors),
by exploiting a dedicated toolbox (ClassificationLearner, Mathworks Inc.).

Accuracy Assessment. The accuracy of the classificationmodelswas assessed by using
a training dataset via 10-fold cross-validation approach. The possibility to generalize the
models was then tested by using a test dataset based on working tasks performed by the
same subjects but not included in the training dataset.
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Table 1. List of the extracted features in both time- and frequency domain.

7 Variance Time 

8 Mean Absolute Deviation Time 

9 First Quartile Time 
Splitting off the lowest 25% of data 

from the highest 75% 

10 Third Quartile Time 
Splitting off the highest 25% of data 

from the lowest 75% 

11 Skewness Time 

12 Kurtosis Time 

13 Spectral Energy Frequency 

14 Median Frequency Frequency 

15 Mean Frequency Frequency 

16 Peak Magnitude Frequency Pm = max(Yi)
17 Peak Frequency Frequency Pf = freq|Pm

ID Feature Domain Definition 

1 Mean Value Time 

2 Maximum Value Time 

3 Minimum Value Time 
4 Range Time 

5 Number of zero crossing Time 

6 Standard Deviation Time 

2.4 Automatic Risks Assessment

As highlighted in the Introduction, the analysis of postures and movement assumed by
workers is critical to correctly define the level of risk to develop any kind of disorders,
associated to their specificworking activities. This study focused on theOCRAChecklist
method, a simplify version of the more complex OCRA approach, as defined by the ISO
11228 technical standard [17–19]. To correctly understand this method, it is important
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to underline that the percentage of time is considered cumulatively for the movements
realized by a specific joint; further, a time span is defined as “the time in which the
worker maintain an incorrect posture (whenever the corresponding angle overcomes
one of the thresholds, as reported in Table 2)”. The percentage of time corresponding to
the maintaining of an awkward posture is computed as t% = terror/ttot, where terror is
the effective time span and ttot is the length of the assessment period [16].

As previously reported, thanks to the biomechanical model, we were able to extract
the joint angles throughout all the temporal segments [22] here identified by using the
optimal classification model.

Table 2. Angular displacement thresholds as defined by the OCRA checklist method.

Joint Movement Thresholds

Shoulder Flexion/extension >80°

Pronation/supination (as dynamic movement) >60°

Elbow Flexion/extension (as dynamic movement) >60°

Wrist Palmar flexion/Dorsal extension >45°

Ulnar deviation >20°

Radial deviation >15°

3 Results and Discussion

3.1 Population and Tasks

From the ethnographic analysis, six wards were identified for the realization of this
study, specifically: fruits and vegetables, grocery, delicatessen, butchery, bakery, and
dairy products’ wards. The on-field acquisitions were performed by using the full-body
protocol during 27 working days, involving almost 10 different stores [21] - charac-
terized by different size and number of employees which affect work activities and
performances. Fifty-two subjects participated voluntarily and were then enrolled in the
general study. In this preliminary analysis, without losing generality, we focused our
assessment on specific sessions realized by the only subjects employed in the grocery
ward.

Concerning the common activities (and therefore the corresponding labelled classes)
we initially identified 5main tasks: 1) handling of high loads (label “HIGH”), 2) handling
of low loads at high frequency (label “LOW”), 3) walking (label “WALK”), 4) using a
cart (label “CART”) and 5) standing (label “STAND”). To highlight the capability of
the classification models the low loads activities were then split into more specific tasks.
Further, during the analysis, we grouped tasks 3), 4) and 5) under a generalmacro activity
label, as to balance the dataset, and to focus better on the manual handling problem.
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3.2 Classification Models

The comparison between the three identified classification models (i.e., DT, SVM and
kNN) highlighted that the best performance in terms of accuracy and computational time
was provided by the kNN model. The results of this comparison are reported in Table 3.

Table 3. Comparison among Decision Tree (DT), Support Vector Machine (SVM) and kNN.

Classifier Accuracy [%] Computational time [s]

Decision Tree 76.1 254.1

Quadratic SVM 76.7 48612.0

Weighted kNN 80.1 1865.5

From the previous table is evident that SVMmodel required very long computational
time for training (in some declination, even > 50′000 s); despite the overall classifica-
tion performances – that were very similar to those achieved by the DT and however
lower with respect to kNN -, we considered both these models not suitable for this spe-
cific application. kNN represents one of the most well-known and used nonparametric
classification models in machine learning and data mining tasks. Despite its simplicity,
kNN demonstrated to be one of the most effective algorithms in pattern recognition and
it has been considered one of the top 10 methods in data mining [26]. As previously
underlined, the type of kNN (i.e., weighted) and the value of k (= 18) were defined
according to literature and preliminary assessment [27].

3.3 Overall Classification Accuracy

We started the analysis of classification performances by considering each individual
task and the corresponding classes; in particular - besides high loads handling, low loads
handling at high frequency, walking, using a cart and standing - we introduced further
detailed labels about: unboxing, loading, packaging, labelling, replenishment, arrange-
ment of products, displacement of boxes, arrangement of boxes and other activities. The
confusion matrix related to the classification of all these tasks is reported in Fig. 2.

Considering all the 14 tasks, the overall performance of the identified classifier
interm of accuracy was quite low (44.3%) with a computational time of 1530.4 s. This
low performance was mainly due to the great unbalance of the dataset used in this first
analysis, i.e., several activities contained many samples (e.g., replenishment) whereas
others presented a reduced number of samples (e.g., displacement of the boxes); indeed,
the number of samples for training and assessing different activity was not evenly dis-
tributed. This problem was mainly related to the distribution of the tasks along the daily
shift and a general approach on the manual labelling process; to enhance the detailed
classification of all the task a proper and well-defined labelling phase is required.

As next step in the analysis, we used to group to obtain the overall 5 main labels,
namely “HIGH”, “LOW”, “WALK”, “CART”, “STAND”, corresponding to handling of
high loads, handling of low loads at high frequency, walking, using a cart, and staying
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Fig. 2. Confusion matrix related to kNN classification by using 14 classes.

still, respectively.Clearly this choice allowed to correctly identifymore activities, leading
to an overall accuracy of 80.1% and a computational time of 1865.5s. The corresponding
confusion matrix is reported in Fig. 3.

Fig. 3. Confusion matrix related to kNN classification by using three classes.

With this specific labelling, the mean Area under the Curve (AUC) value for the
corresponding Receiver Operating Characteristic (ROC) was 0.73, that means that there
was 73%chance thatmodelwill be able to distinguish betweenpositive class andnegative
classes.
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To focus on the only manual handling tasks, we tried to improve the classification
performance groping the main tasks into 3 high level macro activities, namely “HIGH”,
“LOW” and “OTHER”, which represented handling of high loads, handling of low
loads at high frequency and any other activities, respectively. With only three classes the
overall accuracy reached 81%with a computational time of 4068.7s. The corresponding
confusion matrix is reported in Fig. 4.

Fig. 4. Confusion matrix related to kNN classification by using three classes.

To generalize the performances obtained with the training dataset, the model was
tested by using specific data extracted from four different sections recorded in dif-
ferent days. In particular, the identified working were: cash activity, hooks replenish-
ment/supply, high shelves replenishment/supply and low shelves replenishment/supply.
The accuracy obtained by using the kNN classification was 63.92% computed by
averaging the results presented in Table 4.

Table 4. Performance obtained by using weighted kNN on the test dataset.

Task Time duration [s] Accuracy [%]

Cash activity 562 s 78.3

Hooks replenishment/supply 97 33.3

High shelves replenishment/supply 886 63

Low shelves replenishment/supply 671 57

Even in this real case, the performance of the classification model was limited by
the presence of a reduced samples corresponding to the hooks’ replenishment/supply,
whereas the best performance was achieved when considering the activities performed
by the cashiers.
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3.4 Risk Assessment

Once classified the tasks in the correct way, it was possible to implement an automatic
assessment of the risk associated to each specific activity and for the different percentile.
Without losing generality, we reported here the possibility to implement the OCRA
Checklist method, as previously described. The considered sequences were extracted
from the testing dataset and in the table Table 5 are reported the % of time, when the
joint angle is beyond the thresholds as defined in Table 2.

Table 5. Percentage of time in which the worker is in an awkward posture, as defined by OCRA
checklist method.

Subject Joint Time [%]

S001 Left elbow 22.72

Right elbow 22.72

Left ehoulder 6.36

Right ehoulder 0.00

Left wrist 8.03

Right wrist 53.42

S006 Left elbow 6.28

Right elbow 12.12

Left shoulder 1.14

Right shoulder 0.00

Left wrist 39.38

Right wrist 33.28

S007 Left elbow 4.20

Right elbow 4.96

Left shoulder 0.00

Right shoulder 0.61

Left wrist 5.30

Right wrist 12.84

4 Conclusions

In this preliminary study, the obtained performances, in terms of accuracy, seem to be
lower with respect to the results reported in several related studies [9, 24, 28] However,
comparing algorithms performance across different studies present in scientific literature
is a quite difficult task for several reasons, including the differences in the experimen-
tal protocols, the application behind the HAR problem, the type of sensors used and
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their location on the body, the metrics used for the performance assessment and model
validation, and the overall number of the activities to classify.

The here obtained reduced performance was basically due to the unbalance of avail-
able information within the dataset. As evident in the previous paragraphs, the activities
labelled as “LOW” were the 90% of all the available dataset and among these activities
there was high variability. By using the chosen classification model, the available dataset
was not well dimensioned and balanced, since the disparity in terms of dimensions of
classes did not allow the classifier to learn in a good way how to recognize the classes
with the “smallest” size, and this was also affected by possible overtraining issues, that
reflected on the lower performances obtained when the testing dataset was used.

A possible future implementation could be obtained by following an iterative appli-
cation of the proposed method [28]. After the separation into main classes, the same
approach could be applied to each single class to reduce the unbalance that could limit
the accuracy. Therefore, the class “LOW” could be split into several subclasses, where
the distribution is maintained more or less the same. To correctly perform this approach,
it is necessary to acquire and segment/label precisely each single activity, in a way to
create classes with well-balanced dimensionality. A further potential solution could be
realized by using unsupervised learning methods, which could lead to the use of “deep
learning” approaches, where there is no need of manual labelling of the dataset, and
the algorithms are able to learn the inherent structure of the dataset from the input data.
However, as main drawback of these approaches is the need of a huge amount of quality
data.

Acknowledgement. Prof. Lopomo and all the authors would like to thank Simone Bertè for the
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