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Abstract: This paper studies the secrecy capacity of an n-dimensional Gaussian wiretap channel
under a peak power constraint. This work determines the largest peak power constraint R̄n, such that
an input distribution uniformly distributed on a single sphere is optimal; this regime is termed the
low-amplitude regime. The asymptotic value of R̄n as n goes to infinity is completely characterized
as a function of noise variance at both receivers. Moreover, the secrecy capacity is also characterized
in a form amenable to computation. Several numerical examples are provided, such as the example
of the secrecy-capacity-achieving distribution beyond the low-amplitude regime. Furthermore, for
the scalar case (n = 1), we show that the secrecy-capacity-achieving input distribution is discrete
with finitely many points at most at the order of R2

σ2
1

, where σ2
1 is the variance of the Gaussian noise

over the legitimate channel.

Keywords: wiretap channel; MIMO; amplitude constraints

1. Introduction

Consider the vector Gaussian wiretap channel with outputs

Y1 = X + N1, (1a)

Y2 = X + N2, (1b)

where X ∈ Rn, N1 ∼ N (0n, σ2
1 In) and N2 ∼ N (0n, σ2

2 In), and with (X, N1, N2) being
mutually independent. The output Y1 is observed by the legitimate receiver, whereas the
output Y2 is observed by the malicious receiver. In this work, we are interested in the
scenario where the input X is limited by a peak power constraint or amplitude constraint,
and assume that X ∈ B0(R) = {x : ‖x‖ ≤ R}, i.e., B0(R) is an n-ball centered at the origin
and of radius R. For this setting, the secrecy capacity is given by

Cs(σ
2
1 , σ2

2 , R, n) = max
X∈B0(R)

I(X; Y1)− I(X; Y2) (2)

= max
X∈B0(R)

I(X; Y1|Y2), (3)

where the last expression holds due to the (stochastically) degraded nature of the channel.
It can be shown that for σ2

1 ≥ σ2
2 the secrecy capacity is equal to zero. Therefore, in the

remainder, we assume that σ2
1 < σ2

2 .
We are interested in studying the input distribution PX? that maximizes (3) in the low

(but not vanishing) amplitude regime. Since closed-form expressions for secrecy capacity
are rare, we derive the secrecy capacity in an integral form that is easy to evaluate. For
the scalar case (n = 1), we establish an upper bound on the number of mass points of PX? ,
valid for any amplitude regime. We also argue in Section 2.3 that the solution to the secrecy
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capacity can shed light on other problems seemingly unrelated to security. The paper also
provides a number of numerical simulations of PX? and Cs, the data for which are made
available at [1].

1.1. Literature Review

The wiretap channel was introduced by Wyner in [2], who also established the secrecy
capacity of the degraded wiretap channel. The results of [2] were extended to the Gaussian
wiretap channel in [3]. The wiretap channel plays a central role in network information
theory; the interested reader is referred to [4–8] and references therein for a detailed
treatment of the topic. Furthermore, for an in-depth discussion on the wiretap fading
channel, refer to [9–12].

In [3], it was shown that the secrecy-capacity-achieving input distribution of the
Gaussian wiretap channel, under an average power constraint, is Gaussian. In [13], the
authors investigated the Gaussian wiretap channel consisting of two antennas, both at the
transmitter and receiver sides, and of a single antenna for the eavesdropper. The secrecy
capacity of the MIMO wiretap channel was characterized in [14,15], where the Gaussian
input was shown to be optimal. An elegant proof, using the I-MMSE relationship [16], of
the optimality of Gaussian input, is given in [17]. Moreover, an alternative approach in the
characterization of the secrecy capacity of a MIMO wiretap channel was proposed in [18].
In [19,20], the authors discuss the optimal signaling for secrecy rate maximization under
average power constraints.

The secrecy capacity of the Gaussian wiretap channel under the peak power constraint
has received far less attention. The secrecy capacity of the scalar Gaussian wiretap chan-
nel with an amplitude and power constraint was considered in [21], where the authors
showed that the capacity-achieving input distribution PX? is discrete with finitely many
support points.

The work of [21] was extended to noise-dependent channels by Soltani and Rezki
in [22]. For further studies on the properties of the secrecy-capacity-achieving input
distribution for a class of degraded wiretap channels, refer to [23–25].

The secrecy capacity for the vector wiretap channel with a peak power constraint was
considered in [25], where it was shown that the optimal input distribution is concentrated
on finitely many co-centric shells.

1.2. Contributions and Paper Outline

In Section 2, we introduce the mathematical tools, assumptions, and definitions used
throughout the paper. Specifically, in Section 2.1, we introduce the oscillation theorem. In
Section 2.2, we give a definition of low-amplitude regimes. Moreover, in Section 2.3, we
show how the wiretap channel can be seen as a generalization of point-to-point channels
and the evaluation of the largest minimum mean square error (MMSE), both under the
assumption of amplitude-constrained input. In Section 2.4, we provide a definition of the
Karush–Kuhn–Tucker (KKT) conditions for the wiretap channel.

In Section 3, we detail our main results. Theorem 2 provides a sufficient condition
for the optimality of a single hypersphere. Theorem 3 and Theorem 4 give the conditions
under which we can fully characterize the behavior of R̄n, that is, the radius below which
we are in the low-amplitude regime, i.e., the optimal input distribution is composed of a
single shell. Furthermore, Theorem 5 gives an implicit and an explicit upper bound on the
number of mass points of the secrecy-capacity-achieving input distribution when n = 1.

In Section 4, we derive the secrecy capacity expression for the low-amplitude regime
in Theorem 6. We also investigate its behavior when the number of antennas n goes to
infinity.

Section 5 extends the investigation of the secrecy capacity beyond the low-amplitude
regime. We numerically estimate both the optimal input pmf and the resulting capacity via
an algorithmic procedure based on the KKT conditions introduced in Lemma 2.
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Sections 6–9 provide the proof for Theorem 3 and Theorem 4–6, respectively. Finally,
Section 10 concludes the paper.

1.3. Notation

We use bold letters for vectors (x) and uppercase letters for random variables (X). We
denote by ‖x‖ the Euclidean norm of the vector x. Given a vector x ∈ Rn and a scalar a,
with a little abuse of notation, we denote ‖a · e1 + x‖ by ‖a + x‖, where e1 = [1, 0, . . . , 0]
is the first vector in the standard basis of the Euclidean vector space Rn. Given a random
variable X, its probability density function (pdf), pmf, and cumulative distribution function
are denoted by fX , PX , and FX , respectively. The support set of PX is denoted and defined as

supp(PX) = {x : for every open set D 3 x we have that PX(D) > 0}. (4)

We denote by N (µ, Σ) a multivariate Gaussian distribution with mean vector µ and co-
variance matrix Σ. The pdf of a Gaussian random variable with zero mean and variance
σ2 is denoted by φσ(·). We denote by χ2

n(λ) the noncentral chi-square distribution with
n degrees of freedom and with noncentrality parameter λ. We represent the n× 1 vector
of zeros by 0n and the n× n identity matrix by In. Furthermore, we represent by D the
relative entropy. The minimum mean squared error is denoted by

mmse(X|X + N) = E
[
‖X−E[X|X + N]‖2

]
. (5)

The modified Bessel function of the first kind of order v ≥ 0 is denoted by Iv(x), x ∈ R. The
following ratio of the Bessel functions is commonly used in this work:

hv(x) =
Iv(x)

Iv−1(x)
, x ∈ R, v ≥ 0. (6)

Finally, the number of zeros (counted in accordance with their multiplicities) of a function
f : R→ R on the interval I is denoted by N(I , f ). Similarly, if f : C→ C is a function on
the complex domain, N(D, f ) denotes the number of its zeros within the region D.

2. Preliminaries
2.1. Oscillation Theorem

In this work, we often need to upper bound the number of oscillations of a function,
i.e., its number of sign changes. This is useful, for example, to bound the number of zeros
of a function or the number of roots of an equation. To be more precise, let us define the
number of sign changes as follows.

Definition 1 (Sign Changes of a Function). The number of sign changes of a function ξ : Ω→ R
is given by

S (ξ) = sup
m∈N

{
sup

y1<···<ym⊆Ω
N {ξ(yi)}m

i=1

}
, (7)

where N {ξ(yi)}m
i=1 is the number of sign changes of the sequence {ξ(yi)}m

i=1.

Definition 2 (Totally Positive Kernel). A function f : I1× I2 → R is said to be a totally positive
kernel of order n if det

(
[ f (xi, yj)]

m
i,j=1

)
> 0 for all 1 ≤ m ≤ n, for all x1 < · · · < xm ∈ I1, and

y1 < · · · < ym ∈ I2. If f is a totally positive kernel of order n for all n ∈ N, then f is a strictly
totally positive kernel.

In [26], Karlin noticed that some integral transformations have a variation-diminishing
property, which is described in the following theorem.
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Theorem 1 (Oscillation Theorem). Given domains I1 and I2, let p : I1 × I2 → R be a strictly
totally positive kernel. For an arbitrary y, suppose p(·, y) : I1 → R is an n-times differentiable
function. Assume that µ is a measure on I2, and let ξ : I2 → R be a function with S (ξ) = n. For
x ∈ I1, define

Ξ(x) =
∫

ξ(y)p(x, y)dµ(y). (8)

If Ξ : I1 → R is an n-times differentiable function, then either N(I1, Ξ) ≤ n, or Ξ ≡ 0.

The above theorem says that the number of zeros of a function Ξ, which is the output
of the integral transformation, is less than the number of sign changes of the function ξ,
which is the input to the integral transformation.

2.2. Low-Amplitude Regime

In this work, a low-amplitude regime is defined as follows.

Definition 3. Let XR ∼ PXR
be uniform on C(R) = {x : ‖x‖ = R}. The capacity in (3) is said to

be in the low-amplitude regime if R ≤ R̄n(σ2
1 , σ2

2 ), where

R̄n(σ
2
1 , σ2

2 ) = max
{

R : PXR
= arg max

PX : X∈B0(R)
I(X; Y1|Y2)

}
. (9)

If the set in (9) is empty, then we assign R̄n(σ2
1 , σ2

2 ) = 0.

The quantity R̄n(σ2
1 , σ2

2 ) represents the largest radius R, for which PXR
is secrecy-

capacity-achieving.
One of the main objectives of this work is to characterize R̄n(σ2

1 , σ2
2 ).

2.3. Connections to Other Optimization Problems

The distribution PXR
occurs in a variety of statistical and information-theoretic appli-

cations. For example, consider the following two optimization problems:

max
PX : X∈B0(R)

I(X; X + N), (10)

max
PX : X∈B0(R)

mmse(X|X + N), (11)

where N ∼ N (0n, σ2In). The first problem seeks to characterize the capacity of the point-to-
point channel under an amplitude constraint, and the second problem seeks to find the largest
minimum mean squared error under the assumption that the signal has bounded amplitude; the
interested reader is referred to [27–29] for a detailed background on both problems.

Similarly to the wiretap channel, we can define the low-amplitude regime for both
problems as the largest R such that PXR

is optimal and denote these by R̄
ptp
n (σ2) and

R̄MMSE
n (σ2). We now argue that both R̄

ptp
n (σ2) and R̄MMSE

n (σ2) can be seen as a special case
of the wiretap solution. Hence, the wiretap channel provides an interesting unification and
generalization of these two problems.

First, note that the point-to-point solution can be recovered from the wiretap by simply
specializing the wiretap channel to the point-to-point channel, that is,

R̄
ptp
n (σ2) = lim

σ2→∞
R̄n(σ

2, σ2
2 ). (12)

Second, to see that the MMSE solution can be recovered from the wiretap, recall that by the
I-MMSE relationship [16] we have that

max
PX : X∈B0(R)

I(X; Y1)− I(X; Y2)
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= max
PX : X∈B0(R)

1
2

∫ ∞

σ2
1

mmse(X|X +
√

sZ)
s2 ds− 1

2

∫ ∞

σ2
2

mmse(X|X +
√

sZ)
s2 ds (13)

= max
PX : X∈B0(R)

1
2

∫ σ2
2

σ2
1

mmse(X|X +
√

sZ)
s2 ds (14)

where Z is standard Gaussian. Now, note that if we choose σ2
2 = σ2

1 + ε, then by the mean
value theorem we arrive at

max
PX : X∈B0(R)

I(X; Y1)− I(X; Y2) = max
PX : X∈B0(R)

ε

2

mmse(X|X +
√

σ2
1 Z)

σ4
1

+ o(ε), (15)

where limε→0+ o(ε)/ε = 0. Consequently, for a small enough ε > 0,

R̄MMSE
n (σ2) = R̄n(σ

2, σ2 + ε). (16)

2.4. KKT Conditions

Let us define the secrecy density for the vector Gaussian wiretap channel as

Ξ(x; PX?) = D( fY1|X(·|x)‖ fY?
1
)−D( fY2|X(·|x)‖ fY?

2
), (17)

where D(·‖·) is the relative entropy.
For the scalar case (n = 1), the KKT conditions are necessary and sufficient to ensure

that PX? is capacity-achieving [21].

Lemma 1. PX? maximizes (3) if, and only if,

Ξ(x) = Cs(σ
2
1 , σ2

2 , R, 1), x ∈ supp(PX?), (18)

Ξ(x) ≤ Cs(σ
2
1 , σ2

2 , R, 1), x ∈ [−R, R], (19)

where for x ∈ R

Ξ(x) = D( fY1|X(·|x)‖ fY?
1
)−D( fY2|X(·|x)‖ fY?

2
) (20)

= E[g(Y1)|X = x] + log
(

σ2

σ1

)
, (21)

and where

g(y) = E
[

log
fY?

2
(y + N)

fY?
1
(y)

]
, y ∈ R, (22)

with N ∼ N (0, σ2
2 − σ2

1 ).

Proof. The first part of Lemma 1 was shown in [21]. The proof of (21) goes as follows:

D( fY1|X(·|x)‖ fY?
1
)−D( fY2|X(·|x)‖ fY?

2
)− log

(
σ2

σ1

)
(23)

=
∫ ∞

−∞
log

1
fY?

1
(y)

φσ1(y− x)dy−
∫ ∞

−∞
log

1
fY?

2
(y)

E[φσ1(y− x− N)]dy (24)

=
∫ ∞

−∞
log

1
fY?

1
(y)

φσ1(y− x)dy−
∫ ∞

−∞
E
[

log
1

fY?
2
(y + N)

]
φσ1(y− x)dy (25)

=
∫ ∞

−∞
E
[

log
fY?

2
(y + N)

fY?
1
(y)

]
φσ1(y− x)dy (26)

=
∫ ∞

−∞
g(y)φσ1(y− x)dy, (27)
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where N ∼ N (0, σ2
2 − σ2

1 ) and (24) hold by noticing that φσ2(y− x) can be reformulated
as the convolution of Gaussian pdfs E[φσ1(y− x− N)]; in (25) we applied the change in
variable y 7→ y + N. This concludes the proof.

The convexity of the optimization problem is also guaranteed for the vector wiretap
model in (1) with n > 1. Then, the results of Lemma 1 can be extended to the vector case
as follows.

Lemma 2. PX? maximizes (3) if, and only if,

Ξ(x; PX?) = Cs(σ
2
1 , σ2

2 , R, n), x ∈ supp(PX?), (28a)

Ξ(x; PX?) ≤ Cs(σ
2
1 , σ2

2 , R, n), x ∈ B0(R), (28b)

where for x ∈ Rn

Ξ(x; PX?) = D( fY1|X(·|x)‖ fY?
1
)−D( fY2|X(·|x)‖ fY?

2
) (29)

= E[g(Y1)|X = x], (30)

and where

g(y) = E
[

log
fY?

2
(y + N)

fY?
1
(y)

]
+ n log

(
σ2

σ1

)
, y ∈ Rn, (31)

with N ∼ N (0n, (σ2
2 − σ2

1 )In).

Proof. This is a straightforward vector extension of Lemma 1.

Thanks to the spherical symmetry of the additive noise distributions and of PX, the
secrecy density Ξ(x; PX) can be expressed as a function of ‖x‖ only. Therefore, we denote
the secrecy density in spherical coordinates by Ξ̃(‖x‖; P‖X‖), and give a rigorous definition
in (A9).

3. Main Results
3.1. A New Sufficient Condition on the Optimality of PXR

Our first main result provides a sufficient condition for the optimality of PXR
.

Theorem 2. If

R < σ2
1

√√√√n

(
1
σ2

1
− 1

σ2
2

)
, (32)

then PXR
is secrecy-capacity-achieving.

Proof. Let us consider the equivalent definition of the secrecy density in spherical coordi-
nates (A9). Note that if the derivative of Ξ̃(‖x‖; P‖XR‖) makes at most one sign change, from
negative to positive, then the maximum of ‖x‖ 7→ Ξ̃(‖x‖; P‖XR‖) occurs at either ‖x‖ = 0
or ‖x‖ = R.

From Lemma A1 in the Appendix B, the derivative of Ξ̃ is as given below

Ξ̃′(‖x‖; P‖XR‖) = ‖x‖E
[

M̃2(σ1Qn+2)−M1(σ1Qn+2)
]

(33)
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where Q2
n+2 is a noncentral chi-square random variable with n + 2 degrees of freedom and

noncentrality parameter ‖x‖
2

σ2
1

, and

Mi(y) =
1
σ2

i

(
R

y
h n

2

(
R

σ2
i

y

)
− 1

)
, i ∈ {1, 2} (34)

M̃2(y) = E[M2(‖y + W‖)], (35)

where W ∼ N (0n+2, (σ2
2 − σ2

1 )In+2). A calculation related to (33) was erroneously per-
formed in [27]. However, this error does not change the results of [27] as only the sign of
the derivative is important and not the value itself. Note that Ξ̃′(0; P‖XR‖) = 0 and that
Ξ̃′(‖x‖; P‖XR‖) > 0 for a sufficiently large ‖x‖; in fact, we have

Ξ̃′(‖x‖; P‖XR‖) > ‖x‖
(

1
σ2

1
− 1

σ2
2

)
− ‖x‖

σ2
1
E
[

R

σ1Qn+2

]
(36)

= ‖x‖
(

1
σ2

1
− 1

σ2
2

)
− ‖x‖

σ2
1
E
[

R

‖x‖h n
2

(‖x‖
σ1

Qn

)]
(37)

≥ ‖x‖
(

1
σ2

1
− 1

σ2
2

)
− R

σ2
1

, (38)

where (36) follows from 0 ≤ h n
2
(x) ≤ 1 for x ≥ 0; (37) follows by noticing that R

σ1
√

t
fQ2

n+2
(t) =

R
‖x‖h n

2

( ‖x‖
σ1

√
t
)

fQ2
n
(t); and finally, (38) holds by h n

2
(x) ≤ 1.

Then, to show that Ξ̃(‖x‖; P‖XR‖) is maximized in ‖x‖ = R, we need to prove that
Ξ̃′(‖x‖; P‖XR‖) changes sign at most once. To that end, we need Karlin’s oscillation theorem
presented in Section 2.1. By using (33), the fact that the pdf of a chi-square is a positive
defined kernel [26], and Theorem 1, the number of sign changes of Ξ̃′(‖x‖; P‖XR‖) is upper-
bounded by the number of sign changes of

Gσ1,σ2,R,n(y) = M̃2(y)−M1(y), (39)

for y ∈ R+. Note that

Gσ1,σ2,R,n(y) ≥ −
1
σ2

2
+

1
σ2

1
− R

σ2
1 y

h n
2

(
R

σ2
1

y

)
(40)

≥ − 1
σ2

2
+

1
σ2

1
− R2

σ4
1 n

, (41)

where the inequality in (40) follows from h n
2
(x) ≥ 0 for x ≥ 0, and (41) follows from

h n
2
(x) ≤ x

n for x ≥ 0 and n ∈ N. We conclude by noting that (41) is nonnegative, hence has
no sign change, for

R < σ2
1

√√√√n

(
1
σ2

1
− 1

σ2
2

)
(42)

for all y ∈ R+, thus guaranteeing that PXR
is secrecy-capacity-achieving.

Remark 1. As a consequence of the proof of Theorem 2, for any R ≥ 0, σ2 ≥ σ1 ≥ 0 and n ∈ N, if
Gσ1,σ2,R,n(y) has at most one sign change, then PXR

is secrecy-capacity-achieving if, and only if, for
all ‖x‖ = R

Ξ(0; PXR
) ≤ Ξ(x; PXR

). (43)
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Because of the difficulty in evaluating analytical properties of (39), proving that Gσ1,σ2,R,n has at
most one sign change does not seem easy. However, in Appendix A, we show via extensive numerical
evaluations that Gσ1,σ2,R,n changes sign at most once for any n, R, σ1, σ2 that we tried.

3.2. Characterizing the Low-Amplitude Regime

Let us characterize the low-amplitude regime as follows.

Theorem 3. Consider a function

f (R) =
∫ σ2

2

σ2
1

E
[

h2
n
2

( ‖√sZ‖R
s

)
+ h2

n
2

( ‖R+√sZ‖R
s

)]
− 1

s2 ds (44)

where Z ∼ N (0n, In). If Gσ1,σ2,R,n of (39) has at most one sign change, the input XR is secrecy-
capacity-achieving if, and only if, R ≤ R̄n(σ2

1 , σ2
2 ), where R̄n(σ2

1 , σ2
2 ) is given as the solution of

f (R) = 0. (45)

Remark 2. Note that (45) always has a solution. To see this, observe that f (0) = 1
σ2

2
− 1

σ2
1
< 0

and f (∞) = 1
σ2

1
− 1

σ2
2
> 0. Moreover, the solution is unique because f (R) monotonically increases

for R ≥ 0.

The solution to (45) needs to be found numerically. To avoid any loss of accuracy
in the numerical evaluation of hv(x) for large values of x, we used the exponential scal-
ing provided in the MATLAB implementation of Iv(x). Since evaluating f (R) is rather
straightforward and not time-consuming, we opted for a binary search algorithm.

In Table 1, we show the values of R̄n(1, σ2
2 ) for some values of σ2

2 and n. Moreover, we
report the values of R̄

ptp
n (1) and R̄MMSE

n (1) from [27] in the first and the last row, respectively.
As predicted by (12), we can appreciate the close match of the R̄

ptp
n (1) row with the one of

R̄n(1, 1000). Similarly, the agreement between the R̄MMSE
n (1) row and the R̄n(1, 1.001) row

is justified by (16).

Table 1. Values of R̄MMSE
n (1), R̄n(1, σ2

2 ), and R̄
ptp
n (1).

MMSE
σ2

2 ptpn
1.001 1.5 10 1000

1 1.057 1.057 1.161 1.518 1.664 1.666
2 1.535 1.535 1.687 2.221 2.450 2.454
3 1.908 1.909 2.098 2.768 3.061 3.065
4 2.223 2.224 2.444 3.229 3.575 3.580
5 2.501 2.501 2.750 3.634 4.026 4.031
6 2.751 2.752 3.025 3.999 4.432 4.438
7 2.981 2.982 3.278 4.334 4.805 4.811
8 3.195 3.196 3.513 4.646 5.151 5.158
9 3.395 3.396 3.733 4.937 5.475 5.483
10 3.585 3.586 3.941 5.213 5.781 5.789
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Table 1. Cont.

MMSE
σ2

2 ptpn
1.001 1.5 10 1000

11 3.765 3.766 4.139 5.475 6.072 6.080
12 3.936 3.938 4.328 5.725 6.350 6.359
13 4.101 4.102 4.509 5.964 6.616 6.625
14 4.259 4.260 4.683 6.195 6.872 6.881
15 4.412 4.413 4.851 6.417 7.119 7.128
16 4.560 4.561 5.013 6.632 7.357 7.367
17 4.702 4.704 5.170 6.839 7.588 7.598
18 4.841 4.842 5.323 7.041 7.812 7.823
19 4.976 4.977 5.471 7.238 8.030 8.041
20 5.107 5.109 5.616 7.429 8.242 8.254
21 5.235 5.237 5.756 7.615 8.449 8.461
22 5.360 5.362 5.894 7.797 8.651 8.663
23 5.483 5.484 6.028 7.974 8.848 8.860
24 5.602 5.603 6.159 8.148 9.041 9.054
25 5.719 5.720 6.288 8.318 9.230 9.243
26 5.834 5.835 6.414 8.485 9.416 9.428
27 5.946 5.948 6.538 8.649 9.597 9.610
28 6.056 6.058 6.659 8.809 9.775 9.789
29 6.165 6.166 6.778 8.967 9.951 9.964
30 6.271 6.273 6.895 9.122 10.123 10.136
31 6.376 6.378 7.010 9.274 10.292 10.306
32 6.479 6.481 7.124 9.424 10.458 10.472
33 6.580 6.582 7.235 9.571 10.622 10.636
34 6.680 6.682 7.345 9.717 10.783 10.798
35 6.779 6.780 7.453 9.860 10.942 10.957

3.3. Large n Asymptotics

We now use the result in Theorem 3 to characterize the asymptotic behavior of
R̄n(σ2

1 , σ2
2 ). In particular, it is shown that R̄n(σ2

1 , σ2
2 ) increases as

√
n.

Theorem 4. For σ2
1 ≤ σ2

2

lim
n→∞

R̄n(σ2
1 , σ2

2 )√
n

= c(σ2
1 , σ2

2 ), (46)

where c = c(σ2
1 , σ2

2 ) is the solution of

∫ σ2
2

σ2
1

c2(√
s

2 +
√

s
4+c2

)2 +
c2(c2+s)(

s
2+

√
s2
4 +c2(c2+s)

)2 − 1

s2 ds = 0. (47)

Proof. See Section 7.

In Figure 1, for σ2
1 = 1 and σ2

2 = 1.001, 1.5, 10, 1000, we show the behavior of
R̄n(1, σ2

2 )/
√

n and how its asymptotic converges to c(1, σ2
2 ).
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c(1, σ2
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R̄n (1,σ2
2 )√

n

Figure 1. Asymptotic behavior of R̄n(1, σ2
2 )/
√

n versus n for σ2
1 = 1 and σ2

2 = 1.001, 1.5, 10, 1000. In
red, we show c(1, σ2

2 ) defined in (46).

3.4. Scalar Case (n = 1)

For the scalar case, the optimal input distribution PX? is discrete. In this regime, we
provide an implicit and an explicit upper bound on the number of support points of the
optimal input probability mass function (pmf) PX? .

Theorem 5. Let Y?
1 and Y?

2 be the secrecy-capacity-achieving output distributions at the legitimate
and malicious receivers, respectively, and let

g(y) = E
[

log
fY?

2
(y + N)

fY?
1
(y)

]
, y ∈ R, (48)

with N ∼ N (0, σ2
2 − σ2

1 ). For R > 0, an implicit upper bound on the number of support points of
PX? is

|supp(PX?)| ≤ N([−L, L], g(·) + κ1) < ∞ (49)

where

κ1 = log
(

σ2

σ1

)
− Cs, (50)

L = R
σ2 + σ1

σ2 − σ1
+

√√√√√ σ2
2−σ2

1
σ2

2
+ 2Cs

1
σ2

1
− 1

σ2
2

. (51)

Moreover, an explicit upper bound on the number of support points of PX? is obtained by using

N([−L, L], g(·) + κ1) ≤ ρ
R2

σ2
1
+ O(log(R)), (52)
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where ρ = (2e + 1)2
(

σ2+σ1
σ2−σ1

)2
+
(

σ2+σ1
σ2−σ1

+ 1
)2

.

The upper bounds in Theorem 5 are generalizations of the upper bounds on the
number of points presented in [30] in the context of a point-to-point AWGN channel with
an amplitude constraint. Indeed, if we let σ2 → ∞, while keeping σ1 and R fixed, then the
wiretap channel reduces to the AWGN point-to-point channel.

To find a lower bound on the number of mass points, a possible approach consists of
the following steps:

Cs(σ
2
1 , σ2

2 , R, 1) = I(X?; Y1)− I(X?; Y2) (53)

≤ H(X?)− I(X?; Y2) (54)

≤ log(|supp(PX?)|)− I(X?; Y2), (55)

where the above uses the nonnegativity of the entropy and the fact that entropy is maxi-
mized by a uniform distribution. Furthermore, by using a suboptimal uniform (continuous)
distribution on [−R, R] as an input and the entropy power inequality, the secrecy capacity
is lower-bounded by

Cs(σ
2
1 , σ2

2 , R, 1) ≥ 1
2

log

1 +

2R2

πeσ2
1

1 + R2

σ2
2

. (56)

Combining the bounds in (55) and (56), we arrive at the following lower bound on the
number of points:

|supp(PX?)| ≥

√√√√√1 +

2R2

πeσ2
1

1 + R2

σ2
2

eI(X? ;Y2). (57)

At this point, one needs to determine the behavior of I(X?; Y2). A trivial lower bound
on |supp(PX?)| can be found by lower-bounding I(X?; Y2) by zero. However, this lower
bound on |supp(PX?)| does not grow with R, while the upper bound does increase with
R. A possible way of establishing a lower bound that increases in R is by showing that

I(X?; Y2) ≈ 1
2 log

(
1 + R2

σ2
2

)
. However, because not much is known about the structure of

the optimal input distribution PX? , it is not immediately evident how one can establish
such an approximation or whether it is valid.

4. Secrecy Capacity Expression in the Low-Amplitude Regime

The result in Theorem 3 can also be used to establish the secrecy capacity for all
R ≤ R̄n(σ2

1 , σ2
2 ), as is performed next.

Theorem 6. If Gσ1,σ2,R,n of (39) has at most one sign change and if R ≤ R̄n(σ2
1 , σ2

2 ), then

Cs(σ
2
1 , σ2

2 , R, n) =
1
2

∫ σ2
2

σ2
1

R2 − R2E
[

h2
n
2

( ‖R+√sZ‖R
s

)]
s2 ds. (58)

Proof. See Section 9.

Large n Asymptotics

It is important to note that as R̄n(σ2
1 , σ2

2 ) grows as
√

n, according to Theorem 4, when
we keep R constant and increase the number of antennas to infinity, the low-amplitude
regime becomes the only regime. The next theorem characterizes the secrecy capacity in
this ‘massive-MIMO’ regime (i.e., where R is fixed and n goes to infinity).
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Theorem 7. Consider the expression in (58) and fix R ≥ 0 and σ2
1 ≤ σ2

2 , then

lim
n→∞

Cs(σ
2
1 , σ2

2 , R, n) = R2

(
1

2σ2
1
− 1

2σ2
2

)
. (59)

Proof. See Appendix C.

Remark 3. The result in Theorem 7 is reminiscent of the capacity in the wideband regime [31,
Ch. 9], where the capacity increases linearly in the signal-to-noise ratio. Similarly, Theorem 7
shows that in the large antenna regime, the secrecy capacity grows linearly with the difference in the
single-to-noise ratio between the legitimate user and the eavesdropper.

In Theorem 7, R was held fixed. It is also interesting to study the case when R is
a function of n. Specifically, it is interesting to study the case when R = c

√
n for some

coefficient c.

Theorem 8. Suppose that c ≤ c(σ2
1 , σ2

2 ). Then,

lim
n→∞

Cs(σ2
1 , σ2

2 , c
√

n, n)
n

=
1
2

log

(
1 + c2/σ2

1
1 + c2/σ2

2

)
. (60)

Proof. See Appendix D.

Notice that (60) is equivalent to the secrecy capacity of a vector Gaussian wiretap
channel subject to an average power constraint. Gaussian wiretap channels under average
power constraints have been extensively investigated [3,32] and, for an average power
constraint E[‖X‖2] ≤ P, the resulting secrecy capacity is given by [3]

CG(σ
2
1 , σ2

2 , P, n) =
n
2

log
1 + P/σ2

1
1 + P/σ2

2
. (61)

Thus, the result in (60) can be restated as

lim
n→∞

Cs(σ2
1 , σ2

2 , c
√

n, n)
CG(σ

2
1 , σ2

2 , c2, n)
= 1. (62)

In other words, for the regime considered in Theorem 8, for a large enough n the secrecy
capacity under the amplitude constraint Rn = c

√
n behaves as the secrecy capacity under

the average power constraint c2.

5. Beyond the Low-Amplitude Regime

To evaluate the secrecy capacity and find the optimal distribution PX? beyond R̄n we
rely on numerical estimations. We remark that, as pointed out in [25], the secrecy-capacity-
achieving distribution is isotropic and consists of finitely many co-centric shells. Keeping
this in mind, we can find the optimal input distribution PX? by just optimizing over P‖X‖
with ‖X‖ ≤ R.

5.1. Numerical Algorithm

In the case of scalar Gaussian wiretap channels, the secrecy capacity and the optimal
input pmf can be estimated via the algorithm described in [33], i.e., a numerical procedure
that takes inspiration from the deterministic annealing algorithm sketched in [34]. Let us
denote by Ĉs(σ2

1 , σ2
2 , R, n) the numerical estimate of the secrecy capacity, and by P̂‖X?‖, the

estimate of the optimal pmf on the input norm. To numerically evaluate Ĉs(σ2
1 , σ2

2 , R, n)
and P̂‖X?‖, we extend to the vector case the algorithm in [33]. Our extension is defined in
Algorithm 1. The input parameters of the main function are the noise variances σ2

1 and
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σ2
2 , the radius R, the vectors ρ and p being, respectively, the mass points positions and

probabilities of a tentative input pmf, the number of iterations in the while loop Nc, and
finally, a tolerance ε to set the precision of the secrecy capacity estimate.

Algorithm 1 Secrecy capacity and optimal input pmf estimation

1: procedure MAIN
(
σ2

1 , σ2
2 , R, ρ, p, Nc, ε

)
2: repeat
3: k← 0
4: while k < Nc do
5: k← k + 1
6: ρ← GRADIENT ASCENT(ρ, p)
7: p← BLAHUT–ARIMOTO(ρ, p)
8: end while
9: valid← KKT VALIDATION(ρ, p, ε)

10: if valid = False then
11: (ρ, p)← ADD-POINT(ρ, p)
12: end if
13: until valid = True
14: P̂‖X?‖ ← (ρ, p)

15: Ĉs
(
σ2

1 , σ2
2 , R, n

)
← Is(‖X‖; P̂‖X?‖)

16: return P̂‖X?‖, Ĉs
(
σ2

1 , σ2
2 , R, n

)
17: end procedure

At its core, the numerical procedure iteratively refines its estimate of P‖X?‖ by running
a gradient ascent algorithm to update the vector ρ and a variant of the Blahut–Arimoto
algorithm [35] to update p.

The GRADIENT ASCENT procedure uses the secrecy information as the objective
function and stops either when ρ has reached convergence or at a given maximum number
of iterations. Let us denote by Is(‖X‖; P‖X‖) the secrecy information as a function of the
input norm. Notice that, given a tentative pmf P̂‖X‖ of mass points ρ, probabilities p, and
|supp(P̂‖X‖)| = K, we have

Is(‖X‖; P̂‖X‖) =
K

∑
i=1

pi · Ξ̃
(

ρi ; P̂‖X‖
)

, (63)

where Ξ̃(t; P̂‖X‖) is the secrecy density, with respect to the input norm, defined in (A9) and
where pi and ρi are, respectively, the ith element of p and ρ. Then, the GRADIENT ASCENT

updates are given by

ρi = ρi + α · ∂

∂ρi
Is(‖X‖; P̂‖X‖), i = 1, . . . , K, (64)

where the partial derivatives are defined in Appendix E and α is the step size in the gradient
ascent. We remark that, to ensure convergence to a local maximum, we use the gradient
ascent algorithm in a backtracking line search version [36]. By suitably adjusting the step
size α at each iteration, the backtracking line search version guarantees us that each new
update of ρ provides a nondecreasing associated secrecy information, compared to the
previous update of ρ.

The BLAHUT–ARIMOTO function runs a variant of the Blahut–Arimoto algorithm.
For the scalar case, an example of the Blahut–Arimoto optimization, applied to wiretap
channels, is given in [37]. Similar results can be extended to the case of vector wiretap
channels. Given the current probabilities pi’s, the updates are obtained by evaluating

p′i = pi exp
(

Ξ̃
(

ρi; P̂‖X‖
))

, i = 1, . . . , K, (65)
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and finally, by normalizing each p′i and assigning them to the entries of the vector p

pi =
p′i

∑K
k=1 p′i

, i = 1, . . . , K. (66)

Similarly to GRADIENT ASCENT, the BLAHUT–ARIMOTO procedure stops either when the
values of p have reached a stable convergence or after a set number of updates.

Since the joint optimization of ρ and p is not numerically feasible, we need to reiterate
both the BLAHUT–ARIMOTO and the GRADIENT ASCENT procedures a given number of
times, namely Nc. The parameter Nc is chosen empirically in such a way that ρ and p
become fairly stable, and therefore we can expect to have reached joint convergence for
both of them.

Then, the KKT VALIDATION procedure ensures that the values of ρ and p are indeed
close to the optimal ones. We check the optimality of P̂‖X‖ by verifying whether the KKT
conditions in Lemma 2 are satisfied. Since the algorithm has to verify the KKT conditions
numerically, i.e., with finite precision, we find it more convenient to check the negated
version of (28), where a tolerance parameter ε is introduced that trades off accuracy with
computational burden. Specifically, P̂‖X‖ is not an optimal input pmf if any of the following
conditions are satisfied:∣∣∣∣Ξ̃(t; P̂‖X‖)− Is(‖X‖; P̂‖X‖)

∣∣∣∣ > ε, for some t ∈ supp(P̂‖X‖) (67a)

Is(‖X‖; P̂‖X‖) + ε < Ξ̃(t; P̂‖X‖), for some t ∈ [0, R]. (67b)

Note that in (67), in place of the secrecy capacity Cs(σ2
1 , σ2

2 , R, n), which is unknown, we
used the secrecy information given by the tentative pmf P̂‖X‖, i.e., Is(‖X‖; P̂‖X‖). Condi-
tion (67a) is derived by negating (28a): there exists a t ∈ supp(P̂‖X‖), such that Ξ̃(t; P̂‖X‖) is
ε-away from the secrecy information Is(‖X‖; P̂‖X‖). Condition (67b) is the negated version
of (28b): there exists a t ∈ [0, R] such that Ξ̃(t; P̂‖X‖) is at least ε-larger than the secrecy
information Is(‖X‖; P̂‖X‖). With some abuse of notation, we refer to (67) as to the ε-KKT
conditions. If the tentative pmf P̂‖X‖ does not pass the check of the ε-KKT conditions, then
the algorithm checks whether a new point has to be added to the pmf.

The ADD POINT procedure evaluates the position of the new mass point

ρnew = arg max
t∈[0,R]

Ξ̃(t; P̂‖X‖). (68)

The point ρnew is appended to the vector ρ and the probabilities p are set to be equiprobable.
The whole procedure is repeated until KKT VALIDATION gives a positive outcome,

and at that point the algorithm returns P̂‖X?‖ as the optimal pmf estimate and Ĉs(σ2
1 , σ2

2 , R, n)
as the secrecy capacity estimate.

Remark 4. In this work, we focus on the secrecy capacity and on the secrecy-capacity-achieving
input distribution. However, it is possible to study other points of the rate-equivocation region of the
degraded wiretap Gaussian channel by suitably changing the KKT conditions, as reported in [21],
Equations (33) and (34). With the due modifications, the proposed optimization algorithm can find
the optimal input distribution for any point of the rate-equivocation region.

5.2. Numerical Results

In Figure 2, we show with black dots the numerical estimate Ĉs(σ2
1 , σ2

2 , R, n) versus
R, evaluated via Algorithm 1, for σ2

1 = 1, σ2
2 = 1.5, 10, n = 2, 4, and tolerance ε = 10−6.

For the same values of σ2
1 , σ2

2 , and n we also show, with the red lines, the analytical low-
amplitude regime secrecy capacity Cs(σ2

1 , σ2
2 , R, n) versus R from Theorem 6. In addition,
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we show with blue dotted lines the secrecy capacity under the average power constraint
E
[
‖X‖2] ≤ R2:

CG(σ
2
1 , σ2

2 , R2, n) =
n
2

log
1 + R2/σ2

1
1 + R2/σ2

2
≥ Cs(σ

2
1 , σ2

2 , R, n), (69)

where the inequality follows by noting that the average power constraint E
[
‖X‖2] ≤ R2 is

weaker than the amplitude constraint ‖X‖ ≤ R. Finally, the dashed vertical lines show R̄n,
i.e., the upper limit of the low-amplitude regime, for the considered values of σ2

1 , σ2
2 , and n.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n = 4

σ2
2 = 10

n = 2

σ2
2 = 10

n = 4

σ2
2 = 1.5

n = 2

σ2
2 = 1.5

R

Se
cr

ec
y-

C
ap

ac
it

y
(b

pc
u)

CG(1, σ2
2 ,R2, n)

Cs(1, σ2
2 ,R, n)

Ĉs(1, σ2
2 ,R, n)

Figure 2. Secrecy capacity in bit per channel use (bpcu) versus R for σ2
2 = 1.5, 10 and n = 2, 4. The

secrecy capacity under average power constraints CG(σ
2
1 , σ2

2 ,R2, n) is defined in (69), while under
peak power constraints, i.e., Cs(σ2

1 , σ2
2 ,R, n), is defined in (58).

In Figure 3, we consider discrete values for R and for each value of R we plot the
corresponding estimated pmf P̂‖X?‖, evaluated via Algorithm 1, for σ2

1 = 1, σ2
2 = 1.5,

n = 2, 8, and tolerance ε = 10−6. The figure shows, at each R, the normalized amplitude of
support points in the estimated pmf, while the size of the circles qualitatively shows the
probability associated with each support point. Similarly, Figure 4 shows the evolution
of the pmf estimate for σ2

1 = 1, σ2
2 = 10, n = 2, 8, and ε = 10−6. It is interesting to notice

how in both Figures 3 and 4 when a new mass point is added to the pmf, it appears in zero.
Moreover, the mass point of radius R always seems to be optimal.

Finally, Figure 5 shows the output distributions of the legitimate user and of the
eavesdropper in the case of σ2

1 = 1, σ2
2 = 10, n = 2, and for two values of R. At the top

of the figure, the distributions are shown for R = 2.25, which is a value close to R̄2(1, 10).
At the bottom of the figure, the distributions are shown for R = 7.5. For both values
of R, the legitimate user sees an output distribution where the co-centric rings of the
input distribution are easily distinguishable. On the other hand, as expected, the output
distribution seen by the eavesdropper is close to a Gaussian.



Entropy 2023, 25, 741 16 of 36
Entropy 2023, 1, 0 16 of 37

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

R̄2(1, 1.5)

R

‖X
?
‖/

R

(a)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

R̄8(1, 1.5)

R

‖X
?
‖/

R

(b)

Figure 3. Evolution of the numerically estimated P̂‖X?‖ versus R for σ2
1 = 1, σ2

2 = 1.5, (a) n = 2, and
(b) n = 8.
Figure 3. Evolution of the numerically estimated P̂‖X?‖ versus R for σ2

1 = 1, σ2
2 = 1.5, (a) n = 2, and

(b) n = 8.
Entropy 2023, 1, 0 17 of 37

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

R̄2(1, 10)

R

‖X
?
‖/

R

(a)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

R̄8(1, 10)

R

‖X
?
‖/

R

(b)

Figure 4. Evolution of the numerically estimated P̂‖X?‖ versus R for σ2
1 = 1, σ2

2 = 10, (a) n = 2, and
(b) n = 8.Figure 4. Evolution of the numerically estimated P̂‖X?‖ versus R for σ2

1 = 1, σ2
2 = 10, (a) n = 2, and

(b) n = 8.



Entropy 2023, 25, 741 17 of 36

−5
0

5 −5
0

5
0

2

·10−2

y1 y2

f Y
(y

1,
y 2
)

(a) Legitimate User

−10
0

10 −10
0

10

0

0.5

1

·10−2

y1 y2

f Y
(y

1,
y 2
)

(b) Eavesdropper

−10
0

10 −10

0
10

0

5

·10−3

y1 y2

f Y
(y

1,
y 2
)

(c) Legitimate User

−20
0

20 −20

0

20
0

2

4

6

·10−3

y1 y2

f Y
(y

1,
y 2
)

(d) Eavesdropper

Figure 5. Output pdf of the legitimate user and of the eavesdropper for σ2
1 = 1, σ2

2 = 10, n = 2,
(a,b) R = 2.25, and (c,d) R = 7.5. An animation showing the evolution of the output pdf as R varies
can be found in [1].

6. Proof of Theorem 3
Estimation Theoretic Representation

By Remark 1, if Gσ1,σ2,R,n has at most one sign change, PXR
is secrecy-capacity-achieving

if, and only if, for all ‖x‖ = R

Ξ(0; PXR
) ≤ Ξ(x; PXR

). (70)

We seek to re-write the condition (70) in the estimation theoretic form. To that end, we need
the following representation of the relative entropy [38]:

D(PX1+
√

tZ‖PX2+
√

tZ) =
1
2

∫ ∞

t

g(s)
s2 ds, (71)

where

g(s) = E
[
‖X1 − `2(X1 +

√
sZ)‖2

]
−E

[
‖X1 − `1(X1 +

√
sZ)‖2

]
(72)
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and where

`i(y) = E[Xi|Xi +
√

sZ = y] (73)

=
∫

xi fXi |Xi+
√

sZ(xi | y)dxi, i ∈ {1, 2}. (74)

Another fact that will be important for our expression is

E
[
XR | XR +

√
sZ = y

]
=

Ry
‖y‖h n

2

(‖y‖R
s

)
, (75)

see, for example [27], for the proof.
Next, using (71) and (75) note that for any ‖x‖ = R we have that for i ∈ {1, 2}

D(Px+
√

σ2
i Z‖PXR+

√
σ2

i Z) =
1
2

∫ ∞

σ2
i

E
[∥∥∥x− R(x+

√
sZ)

‖x+√sZ‖ h n
2

( ‖x+√sZ‖R
s

)∥∥∥2
]

s2 ds (76)

=
1
2

∫ ∞

σ2
i

E
[
‖x‖2

]
−E

[∥∥∥R(x+√sZ)
‖x+√sZ‖ h n

2

( ‖x+√sZ‖R
s

)∥∥∥2
]

s2 ds (77)

=
1
2

∫ ∞

σ2
i

R2 − R2E
[

h2
n
2

( ‖x+√sZ‖R
s

)]
s2 ds, (78)

where (77) follows from

mmse(XR|Y) = E
[
‖XR −E[XR|Y]‖2

]
(79)

= E
[
‖XR‖2

]
−E

[
‖E[XR|Y]‖2

]
. (80)

Moreover, for ‖x‖ = 0, it holds

D(P0+
√

σ2
i Z‖PXR+

√
σ2

i Z) =
1
2

∫ ∞

σ2
i

R2E
[

h2
n
2

(
R‖Z‖

s

)]
s2 ds. (81)

Now, note that by using the definition of Ξ(x; PXR
) in (30), (78), and (81) we have that

for ‖x‖ = R

Ξ(x; PXR
) = D(Px+

√
σ2

1 Z‖PXR+
√

σ2
1 Z)−D(Px+

√
σ2

2 Z‖PXR+
√

σ2
2 Z) (82)

=
1
2

∫ σ2
2

σ2
1

R2 − R2E
[

h2
n
2

( ‖x+√sZ‖R
s

)]
s2 ds, (83)

and

Ξ(0; PXR
) = D(P0+

√
σ2

1 Z‖PXR+
√

σ2
1 Z)−D(P0+

√
σ2

2 Z‖PXR+
√

σ2
2 Z) (84)

=
1
2

∫ σ2
2

σ2
1

R2E
[

h2
n
2

( ‖√sZ‖R
s

)]
s2 ds (85)

Consequently, the necessary and sufficient condition in Theorem 2 can be equivalently
written as

∫ σ2
2

σ2
1

E
[

h2
n
2

( ‖√sZ‖R
s

)
+ h2

n
2

( ‖x+√sZ‖R
s

)]
− 1

s2 ds ≤ 0. (86)
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Now R̄n(σ2
1 , σ2

2 ) will be the largest R that satisfies (86), which concludes the proof of
Theorem 3.

7. Proof of Theorem 4

The objective of the proof is to understand how the condition in (45) behaves as n→ ∞.
To study the large n behavior, we need to the following bounds on the hν [39,40]: for ν > 1

2

hν(x) =
x

2ν−1
2 +

√
(2ν−1)2

4 + x2
· gν(x), (87)

where

1 ≥ gν(x) ≥
2ν−1

2 +
√

(2ν−1)2

4 + x2

ν +
√

ν2 + x2
. (88)

Now let R = c
√

n for some c > 0. The goal is to understand the behavior of

E
[

h2
n
2

(‖√sZ‖R
s

)
+ h2

n
2

(‖x +
√

sZ‖R
s

)]
(89)

as n goes to infinity. First, let

Vn =
‖Z‖√

n
, (90)

and note that

lim
n→∞

E
[

h2
n
2

(‖√sZ‖c√n
s

)]
= lim

n→∞
E


 cVn√

s

n−1
2n +

√
(n−1)2

4n2 +
(

cVn√
s

)2
· g n

2

(
cVn√

s
n
)

2 (91)

= E

 lim
n→∞

 cVn√
s

n−1
2n +

√
(n−1)2

4n2 +
(

cVn√
s

)2
· g n

2

(
cVn√

s
n
)

2 (92)

=
c2(√

s
2 +

√
s
4 + c2

)2 , (93)

where (92) follows from the dominated convergence theorem, and (93) follows since, by
the law of large numbers we have, almost surely,

lim
n→∞

V2
n = lim

n→∞

1
n

n

∑
i=1

Z2
i = E[Z2] = 1. (94)

Second, let

Wn =
‖x +

√
sZ‖√

n
, (95)

where, without loss of generality, we take x = [R, 0, . . . , 0]

lim
n→∞

E
[

h2
n
2

(‖x +
√

sZ‖c√n
s

)]
= lim

n→∞
E


 cWn

s · g n
2

(
cWn

s n
)

n−1
2n +

√
(n−1)2

4n2 +
(

cWn
s

)2


2 (96)
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= E

 lim
n→∞

 cWn
s · g n

2

(
cWn

s n
)

n−1
2n +

√
(n−1)2

4n2 +
(

cWn
s

)2


2 (97)

=
c2(c2 + s)(

s
2 +

√
s2

4 + c2(c2 + s)
)2 , (98)

where (97) follows from the dominated convergence theorem and where (98) follows since,
by the strong law of large numbers we have, almost surely,

lim
n→∞

W2
n = lim

n→∞

1
n
(
√

sZ1 + c
√

n)2 + s lim
n→∞

1
n

n

∑
i=2

Z2
i (99)

= c2 + s. (100)

Combining (93) and (98) with (45), we arrive at

∫ σ2
2

σ2
1

c2(√
s

2 +
√

s
4+c2

)2 +
c2(c2+s)(

s
2+

√
s2
4 +c2(c2+s)

)2 − 1

s2 ds = 0. (101)

8. Proof of Theorem 5
8.1. Implicit Upper Bound

A consequence of the KKT conditions of Lemma 1 is the inclusion

supp(PX?) ⊆ {x ∈ [−R, R] : Ξ(x)− Cs = 0} (102)

which suggests the following upper bound on the number of support points of PX? :

|supp(PX?)| ≤ N
(
[−R, R], Ξ(x)− Cs(σ

2
1 , σ2

2 , R, 1)
)

(103)

= N
(
[−R, R],E

[
g(Y1) + log

(
σ2

σ1

)
− Cs

∣∣∣X = x
])

(104)

≤ S

(
g(·) + log

(
σ2

σ1

)
− Cs

)
(105)

≤ N
(
R, g(·) + log

(
σ2

σ1

)
− Cs

)
(106)

= N
(
[−L, L], g(·) + log

(
σ2

σ1

)
− Cs

)
(107)

< ∞, (108)

where (104) follows from using (21); (105) follows from applying Karlin’s oscillation
Theorem 1 and the fact that the Gaussian pdf is a strictly totally positive kernel, which was
shown in [26]; (107) is proved in Lemma A3 in the Appendix B; and (108) follows because
g(·) is an analytic function in (−L, L). The implicit upper bound (49) of Theorem 5 follows
from (107) and (108).

8.2. Explicit Upper Bound

The key to finding an explicit upper bound on the number of zeros will be the following
complex-analytic result.
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Lemma 3 (Tijdeman’s Number of Zeros Lemma [41]). Let L, s, t be positive numbers, such
that s > 1. For the complex valued function f 6= 0, which is analytic on |z| < (st + s + t)L, its
number of zeros N(DL, f ) within the disk DL = {z : |z| ≤ L} satisfies

N(DL, f ) ≤ 1
log s

(
log max
|z|≤(st+s+t)L

| f (z)| − log max
|z|≤tL

| f (z)|
)

. (109)

Furthermore, the following loosened version of the implicit upper bound in (49) will
be useful.

Lemma 4.

|supp(PX?)| ≤ N([−L, L], h(·)) + 1 (110)

where

h(y)
σ2

1 fY1(y)
=

EN [E[X?|Y2 = y + N]]− y
σ2

2
− E[X?|Y1 = y]− y

σ2
1

(111)

=
E
[
N log fY2(y + N)

]
σ2

2 − σ2
1

− E[X?|Y1 = y]− y
σ2

1
, (112)

and where N ∼ N (0, σ2
2 − σ2

1 ).

Proof. Starting from (107), we can write

|supp(PX?)| ≤ N
(
[−L, L], g(·) + log

(
σ2

σ1

)
− Cs

)
(113)

≤ N
(
[−L, L], g′(·)

)
+ 1 (114)

= N
(
[−L, L], σ2

1 fY1(·)g′(·)
)
+ 1 (115)

where in step (114), we applied Rolle’s theorem, and in step (115), we used the fact that
multiplying by a strictly positive function (i.e., σ2

1 fY1 ) does not change the number of zeros.
The first derivative of g can be computed as follows:

g′(y) = E
[

d
dy

log fY2(y + N)

]
− d

dy
log fY1(y) (116)

=
EN [E[X?|Y2 = y + N]]− y

σ2
2

− E[X?|Y1 = y]− y
σ2

1
, (117)

where in the last step, we used the well-known Tweedie’s formula (see for example [42,43]):

E[X?|Yi = y] = y + σ2
i

d
dy

log fYi (y). (118)

An alternative expression for the first term in the right-hand side (RHS) of (116) is as follows:

E
[

d
dy

log fY2(y + N)

]
=
∫ ∞

−∞
fN(n)

d
dy

log fY2(y + n)dn (119)

= −
∫ ∞

−∞

(
d

dn
fN(n)

)
· log fY2(y + n)dn (120)

=
∫ ∞

−∞

n
σ2

2 − σ2
1

fN(n) · log fY2(y + n)dn (121)

=
1

σ2
2 − σ2

1
E
[
N log fY2(y + N)

]
, (122)



Entropy 2023, 25, 741 22 of 36

where fN(n) = φ√
σ2

2−σ2
1
(n). The proof is concluded by letting

h(y) , σ2
1 fY1(y)g′(y). (123)

To apply Tijdeman’s number of zeros Lemma, upper and lower bounds to the maxi-
mum module of the complex analytic extension of h over the disk DL = {z : |z| ≤ L} are
proposed in Lemmas A4 and A5 in the Appendix B. Using those bounds, we can provide
an upper bound on the number of mass points as follows:

N([−L, L], h(·))
≤ N

(
DL, h̆(·)

)
(124)

≤ min
s>1, t>0


log

max|z|≤(st+s+t)L |h̆(z)|
max|z|≤tL |h̆(z)|

log s

 (125)

≤ log

e

(2e+1)2 L2

2σ2
1√

2πσ2
1

(
a1(2e + 1)2L2 + a2(2e + 1)L + a3

)
(c1L− c2R)

exp
(
− (L+R)2

2σ2
1

)
√

2πσ2
1

(126)

=
(2e + 1)2L2

2σ2
1

+
(L + R)2

2σ2
1

+ log
a1(2e + 1)2L2 + a2(2e + 1)L + a3

c1L− c2R
(127)

=
(2e + 1)2(d1R + d2)

2

2σ2
1

+
((d1 + 1)R + d2)

2

2σ2
1

+ log
a1(2e + 1)2(d1R + d2)

2 + a2(2e + 1)(d1R + d2) + a3

(c1d1 − c2)R + c1d2
(128)

≤ b1
R2

σ2
1
+ b2 + log

b3R2 + b4R + b5

b6R + b7
(129)

≤ b1
R2

σ2
1
+ O(log(R)), (130)

where (124) follows because extending to a larger domain can only increase the number
of zeros; (125) follows from the Tijdeman’s Number of Zeros Lemma; (126) follows from
choosing s = e and t = 1 and using bounds in Lemmas A4 and A5; (128) follows from
using the value of L in (A38); (129) using the bound (a + b)2 ≤ 2(a2 + b2) and defining

b1 = (2e + 1)2d2
1 + (d1 + 1)2 (131a)

= (2e + 1)2
(

σ2 + σ1

σ2 − σ1

)2
+

(
σ2 + σ1

σ2 − σ1
+ 1
)2

(131b)

b2 =
((2e + 1)2 + 1)d2

2
σ2

1
(131c)

=
((2e + 1)2 + 1)

σ2
1

σ2
2−σ2

1
σ2

2
+ 2Cs

1
σ2

1
− 1

σ2
2

(131d)

= ((2e + 1)2 + 1)

(
1 + 2

σ2
2

σ2
2 − σ2

1
Cs

)
(131e)

b3 = 2(2e + 1)2a1d2
1 (131f)
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= 2(2e + 1)2 3σ2
1

σ2
2

√
σ2

2 − σ2
1

(
σ2 + σ1

σ2 − σ1

)2
(131g)

b4 = (2e + 1)d1a2 (131h)

= (2e + 1)
σ2 + σ1

σ2 − σ1

 √
2σ2

1√
σ2

2

√
σ2

2 − σ2
1

+ 2

 (131i)

b5 = 2(2e + 1)2a1d2
2 + (2e + 1)a2d2 + a3 (131j)

= 2(2e + 1)2 3σ2
1

σ2
2

√
σ2

2 − σ2
1

 σ2
2−σ2

1
σ2

2
+ 2Cs

1
σ2

1
− 1

σ2
2



+ (2e + 1)

 √
2σ2

1√
σ2

2

√
σ2

2 − σ2
1

+ 2


√√√√√ σ2

2−σ2
1

σ2
2

+ 2Cs

1
σ2

1
− 1

σ2
2

+
σ2

1√
σ2

2 − σ2
1

·
√
| log(2πσ2

2 )|2 +
24(σ2

2 − σ2
1 )

2

σ4
2

+ π2 (131k)

b6 = c1d1 − c2 (131l)

=
σ2

2 − σ2
1

σ2
2

σ2 + σ1

σ2 − σ1
− σ2

2 + σ2
1

σ2
2

= 2
σ1

σ2
(131m)

b7 = c1d2 (131n)

=
σ2

2 − σ2
1

σ2
2

√√√√√ σ2
2−σ2

1
σ2

2
+ 2Cs

1
σ2

1
− 1

σ2
2

; (131o)

and (130) follows from the fact that the b1, b3, b4, and b6 coefficients do not depend on R
and the fact that the coefficients b2, b5, and b4, while they do depend on R through Cs, do
not grow with R. The fact that Cs does not grow with R follows from the bound in (69).

Finally, the explicit upper bound on the number of support points of PX? in (52) is a
consequence of (130).

9. Proof of Theorem 6

Using the KKT conditions in (28), we have that for x = [R, 0, . . . , 0]

Cs(σ
2
1 , σ2

2 , R, n) = Ξ(x; PXR
) (132)

= D( fY1|X(·|x)‖ fY?
1
)−D( fY2|X(·|x)‖ fY?

2
) (133)

=
1
2

∫ σ2
2

σ2
1

R2 − R2E
[

h2
n
2

( ‖R+√sZ‖R
s

)]
s2 ds (134)

where the last expression was computed in (83). This concludes the proof.

10. Conclusions

This paper has focused on the secrecy capacity of the n-dimensional vector Gaussian
wiretap channel under the peak power (or amplitude constraint) in a so-called low (but
not vanishing) amplitude regime. In this regime, the optimal input distribution PXR

is
supported on a single n-dimensional sphere of radius R. The paper has identified the
largest R̄n, such that the distribution PXR

is optimal. In addition, the asymptotic of R̄n has
been completely characterized as dimension n approaches infinity. As a by-product of the
analysis, the capacity in the low-amplitude regime has also been characterized in a more or
less closed form. The paper has also provided a number of supporting numerical examples.
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Implicit and explicit upper bounds have been proposed on the number of mass points for
the optimal input distribution PX? in the scalar case with n = 1.

There are several interesting future directions. For example, one interesting direction
would be to determine a regime in which a mixture of a mass point at zero and PXR

is
optimal. It would also be interesting to establish a lower bound on the number of mass
points in the support of the optimal input distribution when n = 1. We note that such a
lower bound was obtained for a point-to-point channel in [30]. We finally remark that the
extension of the results of this paper to nondegraded wiretap channels is not trivial and
also constitutes an interesting but ambitious future direction.
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Appendix A. Examples of the Function Gσ1,σ2,R,n

In this section, we give supporting numerical arguments that the function Gσ1,σ2,R,n
defined in (39) has at most one sign change. Figure A1 demonstrates the behavior of the
function Gσ1,σ2,R,n. In addition, the code that generates the function Gσ1,σ2,R,n for various
values of n, σ1, and σ2 is provided in [1].

Figure A1. Examples of the function Gσ1,σ2,R,n defined in (39). (a) n = 3, σ1 = 1, and σ2 = 2.
(b) n = 11, σ1 = 1, and σ2 = 2. (c) n = 4, σ1 = 3, and σ2 = 3.1. (d) n = 11, σ1 = 3, and σ2 = 3.1.
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Appendix B. Derivative of the Secrecy-Density

Lemma A1. The derivative of the secrecy density for the input PXR
is

Ξ̃′(‖x‖; P‖XR‖) = ‖x‖E
[

M̃2(σ1Qn+2)−M1(σ1Qn+2)
]

(A1)

where Q2
n+2 is a noncentral chi-square random variable with n + 2 degrees of freedom and noncen-

trality parameter ‖x‖
2

σ2
1

and

Mi(y) =
1
σ2

i

(
R

y
h n

2

(
R

σ2
i

y

)
− 1

)
, i ∈ {1, 2} (A2)

M̃2(y) = E[M2(‖y + W‖)], (A3)

where W ∼ N (0n+2, (σ2
2 − σ2

1 )In+2).

Proof. We start with the secrecy density expressed in spherical coordinates. A quick way
to obtain the information densities in this coordinate system is to note that:

I(X; Yi)

= h(Yi)− h(Ni) (A4)

= h(‖Yi‖) + (n− 1)E[log ‖Yi‖] + hλ

(
Yi
‖Yi‖

)
− h(Ni) (A5)

= h(‖Yi‖2) +
(n

2
− 1
)
E[log ‖Yi‖2] + log

π
n
2

Γ
( n

2
) − n

2
log(2πeσ2

i ) (A6)

= h

(
σ2

i

∥∥∥∥X
σi

+ Ñi

∥∥∥∥2
)
+
(n

2
− 1
)
E
[

log

(
σ2

i

∥∥∥∥X
σi

+ Ñi

∥∥∥∥2
)]

+ log
π

n
2

Γ
( n

2
) − n

2
log(2πeσ2

i ) (A7)

= h

(∥∥∥∥X
σi

+ Ñi

∥∥∥∥2
)
+
(n

2
− 1
)
E
[

log
∥∥∥∥X

σi
+ Ñi

∥∥∥∥2
]
− log

(
(2e)

n
2 Γ
(n

2

))
, (A8)

where (A5) holds by [47], Lemma 6.17, and by independence between ‖Yi‖ and Yi
‖Yi‖ ; the

term hλ(·) is a differential entropy-like quantity for random vectors on the n-dimensional
unit sphere ([47], Lemma 6.16); (A6) holds because Yi

‖Yi‖ is uniform on the unit sphere and
thanks to [47], Lemma 6.15; the term Γ(z) is the gamma function; and in (A7) we have
Ñi ∼ N (0n, In). It is now required to write the secrecy density as follows:

Ξ̃(‖x‖; P‖X‖) = i1(‖x‖; PX)− i2(‖x‖; PX) (A9)

where

ij(‖x‖; PX) = −
∫ ∞

0
f
χ2

n(
‖x‖2

σ2
j

)
(y) log

∫ R
0 f

χ2
n(

t2

σ2
j
)
(y)dP‖X‖(t)

y
n
2−1

dy− log
(
(2e)

n
2 Γ
(n

2

))
, (A10)

for j ∈ {1, 2}. The term fχ2
n(λ)

(y) is the noncentral chi-square pdf with n degrees of freedom
and noncentrality parameter λ.

Given two values ρ1, ρ2 with ρ1 > ρ2, write

ij(ρ1; PX)− ij(ρ2; PX) =
∫ ∞

0

 f
χ2

n(
ρ2

1
σ2

j
)
(y)− f

χ2
n(

ρ2
2

σ2
j
)
(y)

 log
y

n
2−1

f‖ Y
σj
‖2(y; PX)

dy (A11)
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=
∫ ∞

0

F
χ2

n(
ρ2

2
σ2

j
)
(y)− F

χ2
n(

ρ2
1

σ2
j
)
(y)

 d
dy

log
y

n
2−1

f‖ Y
σj
‖2(y; PX)

dy (A12)

where we have integrated by parts and where Fχ2
n(λ)

(y) is the cumulative distribution
function of χ2

n(λ). Now notice that

∫ ∞

0

F
χ2

n(
ρ2

2
σ2

j
)
(y)− F

χ2
n(

ρ2
1

σ2
j
)
(y)

dy =
ρ2

1 − ρ2
2

σ2
j

. (A13)

Since χ2
n(

ρ2
1

σ2
j
) statistically dominates χ2

n(
ρ2

2
σ2

j
), the integrand function in (A13) is always

positive. We can introduce an auxiliary output random variable Qj, for j ∈ {1, 2}, with pdf

fQj(y; ρ1, ρ2) =
σ2

j

ρ2
1 − ρ2

2

F
χ2

n(
ρ2

2
σ2

j
)
(y)− F

χ2
n(

ρ2
1

σ2
j
)
(y)

, (A14)

for y > 0, to rewrite (A12) as follows:

ij(ρ1; PX)− ij(ρ2; PX) = −
ρ2

1 − ρ2
2

σ2
j

∫ ∞

0
fQj(y; ρ1, ρ2)

d
dy

log
f‖ Y

σj
‖2(y; PX)

y
n
2−1

dy. (A15)

We evaluate the derivative in (A15) as:

d
dy

log
f‖ Y

σj
‖2(y; PX)

y
n
2−1

=
y

n
2−1

f‖ Y
σj
‖2(y; PX)

∫ R

0

d
dy

f
χ2

n(
t2

σ2
j
)
(y)

y
n
2−1

dP‖X‖(t) (A16)

=
y

n
2−1

f‖ Y
σj
‖2(y; PX)

∫ R

0


f
χ2

n−2(
t2

σ2
j
)
(y)

2y
n
2−1

−
(

1
2
+

n
2 − 1

y

) f
χ2

n(
t2

σ2
j
)
(y)

y
n
2−1

dP‖X‖(t) (A17)

= E

1
2

f
χ2

n−2(
‖X‖2

σ2
j

)
( ‖Y‖

2

σ2
j
)

f
χ2

n(
‖X‖2

σ2
j

)
( ‖Y‖

2

σ2
j
)
−

1
2
+

n
2 − 1
‖Y‖2

σ2
j

| ‖Y‖2

σ2
j

= y

 (A18)

= E

1
2
‖X‖
‖Y‖

I n
2−2(

‖X‖‖Y‖
σ2

j
)

I n
2−1(

‖X‖‖Y‖
σ2

j
)
−

1
2
+

n
2 − 1
‖Y‖2

σ2
j

| ‖Y‖2

σ2
j

= y

 (A19)

= E
[

1
2
‖X‖
‖Y‖h n

2

(
‖X‖‖Y‖

σ2
j

)
− 1

2
| ‖Y‖

2

σ2
j

= y

]
(A20)

where, in (A16), we used

f‖ Y
σj
‖2(y; PX) =

∫ R

0
f
χ2

n(
t2

σ2
j
)
(y)dP‖X‖(t); (A21)
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in (A17), we used the relationship

d
dy

fχ2
n(ρ2)(y) =

1
2

fχ2
n−2(ρ

2)(y)−
1
2

fχ2
n(ρ2)(y); (A22)

and (A20) follows from the recurrence relationship

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z). (A23)

Putting together (A15) and (A20), we find

ij(ρ1; PX)− ij(ρ2; PX) = −
ρ2

1 − ρ2
2

2σ2
j

E
[
E
[
‖X‖
‖Y‖h n

2

(
‖X‖‖Y‖

σ2
j

)
− 1| ‖Y‖

2

σ2
j

= Qj

]]
. (A24)

We are now in the position to compute the derivative of the information density as

i′j(ρ; PX) = lim
h→0

ij(ρ + h; PX)− ij(ρ; PX)

h
(A25)

= − ρ

σ2
j
E
[
E
[
‖X‖
‖Y‖h n

2

(
‖X‖‖Y‖

σ2
j

)
− 1| ‖Y‖

2

σ2
j

= Q′
]]

, (A26)

where Q′ ∼ χ2
n+2(

ρ2

σ2
j
) thanks to Lemma A2.

The final result is obtained by letting

Ξ̃′(‖x‖; P‖x‖) = i′1(‖x‖; PX)− i′2(‖x‖; PX) (A27)

and by specializing the result to the input PXR
.

Lemma A2. Consider the pdf fQj(y; ρ1, ρ2) defined in (A14). For any ρ ≥ 0 we have

lim
h→0

fQj(y; ρ + h, ρ) = f
χ2

n+2(
ρ2

σ2
j
)
(y), y > 0. (A28)

Proof. Thanks to the definition (A14), we have

lim
h→0

fQj(y; ρ + h, ρ)

= lim
h→0

σ2
j

h(2ρ + h)

F
χ2

n(
ρ2

σ2
j
)
(y)− F

χ2
n(

(ρ+h)2

σ2
j

)
(y)

 (A29)

= lim
h→0

σ2
j

h(2ρ + h)

∫ y

0

 f
χ2

n(
ρ2

σ2
j
)
(t)− f

χ2
n(

(ρ+h)2

σ2
j

)
(t)

dt (A30)

=
σ2

j

2ρ

∫ y

0

∞

∑
i=0

lim
h→0

1
h


e
− ρ2

2σ2
j

(
ρ2

2σ2
j

)i

i!
−

e
− (ρ+h)2

2σ2
j

(
(ρ+h)2

2σ2
j

)i

i!

 fχ2
n+2i

(t)dt (A31)

=
σ2

j

2ρ

∫ y

0

∞

∑
i=0

d
dρ


e
− ρ2

2σ2
j

(
ρ2

2σ2
j

)i

i!

 fχ2
n+2i

(t)dt (A32)
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=
1
2

∫ y

0

∞

∑
i=0

−
e
− ρ2

2σ2
j

(
ρ2

2σ2
j

)i

i!
+

e
− ρ2

2σ2
j

(
ρ2

2σ2
j

)i−1

(i− 1)!
1(i ≥ 1)

 fχ2
n+2i

(t)dt (A33)

=
1
2

∫ y

0

− f
χ2

n(
ρ2

σ2
j
)
(t) + f

χ2
n+2(

ρ2

σ2
j
)
(t)

dt (A34)

=
∫ y

0

d
dt

f
χ2

n+2(
ρ2

σ2
j
)
(t)dt (A35)

= f
χ2

n+2(
ρ2

σ2
j
)
(y), (A36)

where 1(·) is the indicator function; in (A31) we used the Poisson-weighted mixture repre-
sentation of the noncentral chi-square pdf, and in (A35), we used (A22).

Lemma A3. There exists some L = L(σ1, σ2, R) < ∞ such that

N
(
R, g(·) + log

(
σ2

σ1

)
− Cs

)
= N

(
[−L, L], g(·) + log

(
σ2

σ1

)
− Cs

)
< ∞. (A37)

Furthermore, L can be upper-bounded as follows:

L ≤ Rd1 + d2 (A38)

where

d1 =
σ2 + σ1

σ2 − σ1
, (A39)

d2 =

√√√√√ σ2
2−σ2

1
σ2

2
+ 2Cs

1
σ2

1
− 1

σ2
2

≤

√√√√√ σ2
2−σ2

1
σ2

2
+ 2CG

1
σ2

1
− 1

σ2
2

, (A40)

with

CG(σ
2
1 , σ2

2 , R2, 1) =
1
2

log
1 + R2/σ2

1
1 + R2/σ2

2
. (A41)

Proof. First, note that Cs ≤ CG thanks to (69). Second, for |y| ≥ R, we can lower-bound
the function g as follows:

g(y) = E
[
log fY?

2
(y + N)

]
− log fY?

1
(y) (A42)

= E[logE[φσ2(y + N − X?)|N]]− logE[φσ1(y− X?)] (A43)

≥ E[log φσ2(y + N − X?)]− logE[φσ1(y− X?)] (A44)

≥ log
σ1

σ2
−E

[
(y + N − X?)2

2σ2
2

]
+

(|y| − R)2

2σ2
1

(A45)

= log
σ1

σ2
−E

[
(y− X?)2

2σ2
2

]
− σ2

2 − σ2
1

2σ2
2

+
(|y| − R)2

2σ2
1

(A46)

≥ log
σ1

σ2
− (|y|+ R)2

2σ2
2

− σ2
2 − σ2

1
2σ2

2
+

(|y| − R)2

2σ2
1

, (A47)
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where (A44) follows from applying Jensen’s inequality and the law of iterated expectation
to the first term; (A45) follows from

E[φσ1(y− X?)] ≤ φσ1(|y| − R), |y| ≥ R; (A48)

and (A47) follows from (y− X?)2 ≤ (|y|+ R)2 for all |y| ≥ R ≥ |X?|. The RHS of

g(y) + log
(

σ2

σ1

)
− Cs ≥ −

(|y|+ R)2

2σ2
2

− σ2
2 − σ2

1
2σ2

2
+

(|y| − R)2

2σ2
1

− Cs (A49)

is strictly positive when

|y| >
R

(
1

σ2
1
+ 1

σ2
2

)
+

√
4R2

σ2
1 σ2

2
+

(
1

σ2
1
− 1

σ2
2

)(
σ2

2−σ2
1

σ2
2

+ 2Cs

)
1

σ2
1
− 1

σ2
2

. (A50)

By using the bound
√

a + b ≤ √a +
√

b, we arrive at

|y| ≥ R
σ2 + σ1

σ2 − σ1
+

√√√√√ σ2
2−σ2

1
σ2

2
+ 2Cs

1
σ2

1
− 1

σ2
2

. (A51)

This concludes the proof for the bound on L.

Lemma A4. Let h̆ : C → C denote the complex extension of the function h in (123). Then, for
B ≥ R, we have that

max
|z|≤B

|h̆(z)| ≤ 1√
2πσ2

1

e
B2

2σ2
1

(
a1B2 + a2B + a3

)
(A52)

where

a1 =
3σ2

1

σ2
2

√
σ2

2 − σ2
1

, (A53)

a2 =

√
2σ2

1√
σ2

2

√
σ2

2 − σ2
1

+ 2, (A54)

a3 =
σ2

1√
σ2

2 − σ2
1

(√
| log(2πσ2

2 )|2 +
24(σ2

2 − σ2
1 )

2

σ4
2

+ π2

)
. (A55)

Proof. Let us denote z = zR + izI , where zR and zI are real numbers and i =
√
−1 is the

imaginary unit. Then, by triangular inequality, we have:

|h̆(z)| =
∣∣∣∣∣σ2

1 fY1(z)E
[
N log fY2(z + N)

]
σ2

2 − σ2
1

−E[X?φσ1(z− X?)] + z fY1(z)

∣∣∣∣∣ (A56)

≤
∣∣ fY1(z)

∣∣( σ2
1

σ2
2 − σ2

1
E
[
|N| · | log fY2(z + N)|

]
+ |z|

)
+E

[
|X?| · |φσ1(z− X?)|

]
. (A57)

Next, let us upper-bound each contribution of (A57). For |z| ≤ B, we have∣∣log fY2(z + n)
∣∣2
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=
∣∣log

∣∣ fY2(z + n)
∣∣+ i arg( fY2(z + n))

∣∣2 (A58)

= log2 | fY2(z + n)|+ arg2( fY2(z + n)) (A59)

= log2|E[φσ2(z + n− X?)]|+ arg2(E[φσ2(z + n− X?)]) (A60)

≤ log2

 1√
2πσ2

2

E
[

exp

(
− (zR + n− X?)2 − z2

I
2σ2

2

)]+ arg2

(
∑
x

αx exp(iθx)

)
(A61)

≤
 z2

I
2σ2

2
− 1

2
log(2πσ2

2 ) + logE

e
− (zR+n−X?)2

2σ2
2

2

+ π2 (A62)

≤ 2

(
z2

I
2σ2

2
− 1

2
log(2πσ2

2 )

)2

+2 log2 E

e
− (zR+n−X?)2

2σ2
2

+π2 (A63)

≤ 2

(
z2

I
2σ2

2
− 1

2
log(2πσ2

2 )

)2

+ 2
E2[(zR + n− X?)2]

4σ4
2

+ π2 (A64)

≤ 2

(
z2

I
2σ2

2
− 1

2
log(2πσ2

2 )

)2

+ 2

(
(zR + n)2 + R2)2

4σ4
2

+ π2 (A65)

≤ 2B2

σ2
2

+ | log(2πσ2
2 )|2 +

8(B4 + n4) + R4

σ4
2

+ π2, (A66)

where step (A61) holds by triangular inequality; step (A62) holds by noticing that

−π < arg

 ∑
x∈supp(PX? )

αx exp(iθx)

 ≤ π, (A67)

where {αx} and {θx} are real numbers that depend on x; (A63) follows from using the
bound (a + b)2 ≤ 2(a2 + b2); (A64) holds because x 7→ log2(x) is a decreasing function

for x < 1 and because E

e
− (zR+n−X?)2

2σ2
2

 ≥ e
− E[(zR+n−X?)2]

2σ2
2 , which follows from Jensen’s

inequality; (A65) follows from E[X?] = 0 and E[(X?)2] ≤ R2; and (A66) follows from the
bound |a + b|k ≤ 2k−1(|a|k + |b|k) for k ≥ 1. Furthermore, given that |zR| ≤ B and |zI | ≤ B,
we arrive at the bound (

(zR + n)2 + R2
)2
≤ 2

(
8(B4 + n4) + R4

)
. (A68)

Consequently,

E
[
|N| · | log fY2(z + N)|

]√
σ2

2 − σ2
1

≤

√
E
[
|N|2

]
E
[
| log fY2(z + N)|2

]√
σ2

2 − σ2
1

(A69)

≤
√

2B2

σ2
2

+ | log(2πσ2
2 )|2 +

8(B4 +E[N4]) + R4

σ4
2

+ π2 (A70)

=

√
2B2

σ2
2

+ | log(2πσ2
2 )|2 +

8B4 + 24(σ2
2 − σ2

1 )
2 + R4

σ4
2

+ π2, (A71)
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where (A69) follows from Cauchy–Schwarz inequality; (A70) follows from E[N4] = 3(σ2
2 −

σ2
1 )

2. Moreover, we have

| fY1(z)| ≤ E[|φσ1(z− X?)|] (A72)

=
1√

2πσ2
1

E
[

exp

(
− (zR − X?)2 − z2

I
2σ2

1

)]
(A73)

≤ 1√
2πσ2

1

exp

(
B2

2σ2
1

)
, (A74)

and finally

E
[
|X?| · |φσ1(z− X?)|

]
≤ R E

[
|φσ1(z− X?)|

]
(A75)

≤ R
1√

2πσ2
1

exp

(
B2

2σ2
1

)
. (A76)

Putting all contributions together, we get

|h̆(z)|
√

2πσ2
1 e
− B2

2σ2
1 ≤

σ2
1

√
2B2

σ2
2
+ | log(2πσ2

2 )|2 +
8B4+24(σ2

2−σ2
1 )

2+R4

σ4
2

+ π2√
σ2

2 − σ2
1

+ B + R (A77)

≤ a1B2 + a2B + a3, (A78)

where, in the last step, we have used that
√

∑i xi ≤ ∑i
√

xi and the fact that R ≤ B.

Lemma A5. Let h̆ : C→ C denote the complex extension of the function h in (123). Then, for

B ≥ R
σ2

2 + σ2
1

σ2
2 − σ2

1
, (A79)

we have that

max
|z|≤B

|h̆(z)| ≥ (c1B− c2R)

exp
(
− (B+R)2

2σ2
1

)
√

2πσ2
1

> 0, (A80)

where c1 = 1− σ2
1

σ2
2

and c2 = 1 + σ2
1

σ2
2

.

Proof. First, note that

EN [E[X?|Y2 = B + N]]

σ2
2

− E[X?|Y1 = B]

σ2
1

≥ − R

σ2
2
− R

σ2
1

. (A81)

Second, note that the condition in (A79) implies that

0 ≤ B

(
1
σ2

1
− 1

σ2
2

)
− R

σ2
2
− R

σ2
1

. (A82)

Therefore, by using (111) together with (A81) and (A82), we arrive at

max
|z|≤B

|h̆(z)| ≥
∣∣∣h̆(B)∣∣∣ (A83)
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=

∣∣∣∣∣E[E[X?|Y2 = B + N]]− B

σ2
2

− E[X?|Y1 = B]− B

σ2
1

∣∣∣∣∣σ2
1 fY1(B) (A84)

≥
(

B

(
1
σ2

1
− 1

σ2
2

)
− R

σ2
2
− R

σ2
1

)
σ2

1 fY1(B) (A85)

≥
(

B

(
1
σ2

1
− 1

σ2
2

)
− R

σ2
2
− R

σ2
1

)
σ2

1√
2πσ2

1

exp

(
− (B + R)2

2σ2
1

)
, (A86)

where in last bound we have used Jensen’s inequality to arrive at

fY1(B) = E[φσ1(B− X?)] (A87)

=
1√

2πσ2
1

E
[

exp

(
− (B− X?)2

2σ2
1

)]
(A88)

≥ 1√
2πσ2

1

exp

(
− (B + R)2

2σ2
1

)
. (A89)

This concludes the proof.

Appendix C. Proof of Theorem 7

To study the large n behavior, we need the following bounds on the function hν [39,40]:
for ν > 1

2

hν(x) =
x

2ν−1
2 +

√
(2ν−1)2

4 + x2
· gν(x), (A90)

where

1 ≥ gν(x) ≥
2ν−1

2 +
√

(2ν−1)2

4 + x2

ν +
√

ν2 + x2
. (A91)

Moreover, let
Un = ‖R +

√
sZ‖ (A92)

with Z ∼ N (0n, σ2In). Consequently,

lim
n→∞

E
[

h2
n
2

(‖R +
√

sZ‖R
s

)]
= E

[
lim

n→∞
h2

n
2

(‖R +
√

sZ‖R
s

)]
(A93)

= E

 lim
n→∞

U2
n
R2

s2(
n−1

2 +
√

(n−1)2

4 + U2
n
R2

s2

)2 · g
2
n
2

(
Un

R

s

) (A94)

= E

 lim
n→∞

1
n U2

n
R2

s2

n ·
(

1
2 +

√
1
4 +

(
1
n Un

R
s

)2
)2 · g

2
n
2

(
Un

R

s

)
 (A95)

= 0, (A96)
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where (A93) follows from the dominated convergence theorem, since |hν| ≤ 1; (A94)
follows from using (A90); (A96) follows from using the strong law of large numbers to note
that

lim
n→∞

1
n

U2
n = lim

n→∞

‖R +
√

sZ‖2

n
= s. (A97)

Now, combining the capacity expression in (58) and (A96), we have that

lim
n→∞

Cs(σ
2
1 , σ2

2 , R, n) =
1
2

∫ σ2
2

σ2
1

R2

s2 ds = R2

(
1

2σ2
1
− 1

2σ2
2

)
. (A98)

Appendix D. Proof of Theorem 8

Let Rn = c
√

n

lim
n→∞

Cs(σ2
1 , σ2

2 , Rn, n)
n

=
c2

2

∫ σ2
2

σ2
1

1− limn→∞ E
[

h2
n
2

( ‖Rn+
√

sZ‖Rn
s

)]
s2 ds (A99)

=
c2

2

∫ σ2
2

σ2
1

1− c2(c2+s)(
s
2+

√
s2
4 +c2(c2+s)

)2

s2 ds (A100)

=
1
2

log

(
σ2

2 (c
2 + σ2

1 )

σ2
1 (c

2 + σ2
2 )

)
, (A101)

where (A100) follows from the limit established in (98). This concludes the proof.

Appendix E. Partial Derivatives for the Gradient Ascent Algorithm

The partial derivatives of the secrecy information, with respect to any mass point
ρl ∈ supp(P‖X‖), are defined as

∂

∂ρl
Is(‖X‖; P‖X‖) =

K

∑
k=1

pi ·
∂

∂ρl
Ξ̃
(

ρk ; P̂‖X‖
)

, l = 1, . . . , K. (A102)

By (A9), we have that Ξ̃
(
‖x‖ ; P̂‖X‖

)
= i1(‖x‖; PX) − i2(‖x‖; PX), where ij(‖x‖; PX), for

j = 1, 2, is defined in (A10). Therefore, to compute (A102), we define the following
derivatives

∂

∂ρl
ij(ρk; PX) =

∫ ∞

0

∂

∂ρl

 fχ2
n(ρ

2
k /σ2

j )
(y) log

y
n
2−1

∑K
m=1 pm fχ2

n(ρ
2
m/σ2

j )
(y)

dy, (A103)

where fχ2
n(ρ

2
k /σ2

j )
(y) is the noncentral chi-square pdf with noncentrality parameter ρ2

k/σ2
j

and n degrees of freedom. Notice that the derivative of fχ2
n(ρ

2
k /σ2

j )
(y) with respect to ρl is

different from zero only when k = l and is given by

∂

∂ρl
fχ2

n(ρ
2
l /σ2

j )
(y) =

ρl

σ2
j

(
fχ2

n+2(ρ
2
l /σ2

j )
(y)− fχ2

n(ρ
2
l /σ2

j )
(y)
)

. (A104)

Moreover, given the probability pl associated with ρl , we have that

∂

∂ρl
log

y
n
2−1

∑K
k=1 pk fχ2

n(ρ
2
k /σ2

j )
(y)

= −pl

∂
∂ρl

fχ2
n(ρ

2
l /σ2

j )
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2
k /σ2

j )
(y)

. (A105)

Finally, by combining everything together, we find
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