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A B S T R A C T   

The composition of electricity varies significantly throughout the year. As a result, the environmental impact of 
the electricity mix is also highly variable. However, most LCA studies assume a static annual average electricity 
mix and neglect these fluctuations. Therefore, this study examines the time-varying environmental impacts of 
electricity generation in Germany, France, Italy, Spain, and Poland using a dynamic life cycle assessment. It 
shows that the impacts of environmental categories vary considerably depending on when the electricity is 
generated, resulting from the different energy generation patterns throughout the day and year. In particular, the 
integration of renewable energy sources such as photovoltaic systems and wind turbines leads to significant 
fluctuations of environmental impacts. To determine the magnitude of the variation, coefficients of variation are 
calculated for each environmental impact category for a representative year. High coefficients of variation of 
more than 20% can be observed for several environmental impact categories. In addition, both a production- 
based and a consumption-based approach were used for the dynamic life cycle assessment. Comparing these 
two approaches shows significant differences in impact category results, for example, for Italy, with an average of 
15%. These differences highlight the importance of including cross-border electricity flows in assessing the 
environmental profile of electricity. Overall, the results of the study emphasize the need to implement dynamic 
electricity mix models in life cycle assessments, especially for systems with time-varying electricity consumption. 
The provided Excel spreadsheet files with hourly time profiles of environmental impacts for the countries studied 
facilitate the adoption of the developed models by other practitioners and provide a valuable tool for assessing 
environmental impacts.   

Nomenclature.   

Abbreviations 
AP Acidification 
CV Coefficient of variation 
DE Germany 
EF Environmental footprint 
ENTSO-E European Network of Transmission System Operators for Electricity 
ES Spain 
EU European Union 
EU_f Eutrophication, freshwater 
EU_m Eutrophication, marine 
EU_t Eutrophication, terrestrial 
FR France 
GWP Global warming 
HT_c Human toxicity, cancer 
HT_nc Human toxicity, non-cancer 
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IR Ionising radiation 
IT Italy 
LCA Life cycle assessment 
LU Land use 
ODP Ozone depletion 
PL Poland 
PM Particulate matter 
POCP Photochemical ozone formation 
PV Photovoltaic 
RU_fo Resource use, energy carriers 
RU_m Resource use, minerals and metals 
TPY Typical meteorological year 
WU Water use  

Symbols 
C Installed capacity 
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(continued ) 

C Consumption-based electricity generation matrices 
E Exports 
EI Environmental impacts matrices 
I Imports 
L Transformation and self-consumption losses 
LCA LCA matrices 
P Electricity production time series 
P Production-based electricity generation matrices 
P̂ Production-based electricity generation matrices of trading partners  

Indices 
g Electricity transmission and distribution grid 
i Hour 
j Electricity production type 
ĵ Electricity production type of trading countries 
lv Electricity generation at low voltage level 
n Environmental impacts categories 
t Trading countries 
y Year  

1. Introduction 

The power industry, which includes power and heat generation 
plants, is responsible for almost 40 % of global greenhouse gas emissions 
[1]. In addition to global warming caused by greenhouse gas emissions, 
electricity generation significantly contributes to other environmental 
impacts. These have been examined in many life cycle assessment (LCA) 
studies. In their review article, Barros et al. compared the results of 47 
studies that carried out an LCA of electricity generation [2]. Jordaan 
et al. even identified 251 articles published between 2009 and 2018 that 
deal with the environmental impact of electricity generation, either for 
individual generation types or at grid level [3]. 

Often, electricity consumption is the most significant influencing 
factor on the environmental impact of a product system. This applies 
particularly to electricity-powered systems. For the life cycle impacts of 
heat pumps, Greening et al. found that the operation of heat pumps, 
mainly the electricity required, is the primary source of pollution in most 
environmental impact categories, accounting for an average of 84 % [4]. 
This finding is confirmed by Naumann et al.’s study on the environ-
mental impact of an air-to-water heat pump in Germany [5]. Similar 
conclusions are reached by Famiglietti et al. [6]. In addition to heat 
pumps, the LCA of electric cars also depends heavily on the composition 
of the electricity mix. Bauer et al. found that the greenhouse gas emis-
sions of an electric car per kilometer driven can be reduced by about half 
by 2030 compared to 2012, as the greenhouse gas intensity of the Eu-
ropean electricity mix is expected to decrease [7]. Similar conclusions 
were reached by Nordelöf et al. [8]. Cox et al. also investigated the 
environmental impacts of different passenger cars under different en-
ergy scenarios [9]. They found that the benefits of electrifying cars are 
mainly related to the decarbonization of the electricity sector. The 
composition of the electricity mix has an even more significant influence 
on the environmental impact of hydrogen production by water elec-
trolysis. For example, Bareiß et al. found that, considering the German 
electricity mix of 2017, 96 % of greenhouse gas emissions are attribut-
able to electricity generation [10]. Schropp et al. came to similar con-
clusions in their study of polymer electrolyte membrane water 
electrolysis [11]. An evaluation of the environmental and material 
criticality of anion exchange membrane electrolysis was performed in 
[12]. This study also identified electricity consumption as the most 
influential factor. 

All the LCA studies mentioned above take a dynamic approach by 
looking at future impacts using electricity scenarios. However, in all 
scenarios, they assume a constant electricity mix in the grid on an annual 
average. Therefore, they neglect that the composition of electricity is 
subject to strong fluctuations over a year. Fluctuations in the composi-
tion of electricity mean that the environmental impact of electricity 
generation varies greatly. This particularly impacts the LCA of systems 

whose operation is not evenly distributed throughout the year. Using 
average electricity data over the year will lead to an over- or underes-
timation of the environmental impact of these products. 

1.1. Literature review 

As there are more and more products whose environmental impact is 
dominated by electricity, the number of studies discussing different 
approaches to consider electricity generation patterns increases. In their 
review paper from 2022 on dynamic LCA, Cornago et al. identified a 
total of 39 publications that designed the life cycle inventory of elec-
tricity consumption or the electricity technology mix dynamically, 
which is a very small number compared to the studies that use an annual 
average electricity mix [13]. 

Some studies analyzed the time-varying environmental impacts of 
electricity generation in general. While Tranberg et al. developed dy-
namic emission factors for 27 European countries [14], other studies 
focused on analyzing individual countries. For example, Messagie et al. 
developed time-resolved emission factors for Belgium [15], Vuarnoz 
et al. for Switzerland [16], and Kono et al. for the German electricity grid 
[17]. All these studies used hourly electricity market data to determine 
hourly carbon emission factors. As such, they do not consider environ-
mental impact categories other than global warming potential (GWP). 

Methods for short-term forecasting of time-varying environmental 
impacts of electricity generation were also presented. While Leerbeck 
et al. [18] and Bodke et al. [19] forecasted the short-term CO2 emissions 
of the electricity grid in their studies, Portolani et al. [20] described a 
methodology that can be used to forecast several dynamic LCA impact 
indicators of electricity generation. 

Other studies aimed to analyze electricity-consuming systems using a 
dynamic electricity model. For example, some studies use dynamic 
electricity mix modeling for LCAs of battery electric vehicles. In their 
study, Mehlig et al. determined the retrospective emissions associated 
with charging electric cars in the UK [21]. They used both average and 
marginal emission factors. Rupp et al. [22] determined greenhouse gas 
emissions from electric buses in Germany using quarter-hourly elec-
tricity CO2 intensities, and Rangaraju et al. [23] examined the envi-
ronmental impact of electric cars in Belgium. In addition to battery 
electric vehicles, LCA studies with dynamic electricity mix modeling 
have also been conducted in the building sector. For instance, Roux et al. 
[24] and Collinge et al. [25] used dynamic electricity data to assess the 
environmental impact of a building. The studies compared the dynamic 
results with an annual average electricity mix and found large deviations 
in individual impact categories. Naumann et al. applied a dynamic 
electricity mix to investigate the environmental performance of a hybrid 
solar-hydrogen energy system [26]. Although these studies considered a 
time-resolved electricity mix, they all followed a retrospective approach. 
Therefore, the electricity models are based on empirical data from 
previous years. In contrast, Frapin et al. took a prospective approach in 
their study [27]. They, therefore, considered both short and long-term 
variations in electricity generation to assess the environmental impact 
of buildings. A method for incorporating a prospective approach using 
hourly time steps was also presented by Roux et al. for an LCA of a 
single-family house in France [28]. 

In addition to determining environmental impacts, some studies use 
time-varying electricity mix modeling to identify environmentally 
optimized system operations. Fattler [29] and Zacharopoulos et al. [30] 
applied this to identify environmentally optimized charging strategies 
for electric vehicles. Both studies followed a prospective approach and, 
thus, considered hourly variations of future electricity scenarios. On the 
other hand, Terlouw et al. [31] presented an approach for the optimal 
design of residential energy systems, considering time-varying elec-
tricity generation. 

In most studies, GWP is considered as the only impact category. In 
their review, Cornago et al. found that two-thirds of the identified 
studies that use the dynamic environmental impact as an optimization 
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analysis only consider reducing greenhouse gas emissions [13]. This, 
however, risks burden shifting, i.e., reducing the environmental impact 
of one category while increasing the impact of another [32]. 

1.2 Research gap and objectives 

As the analysis of previous studies shows, using time-varying elec-
tricity mixes in LCA studies is still rare despite its significant impact on 
environmental performances. Therefore, this study aims to develop a 
model to determine European electricity generation’s time-varying 
environmental impacts. To this end, a dynamic life cycle assessment of 
electricity generation in the five largest electricity consumers in the 
European Union (EU) is carried out: Germany (DE), France (FR), Italy 
(IT), Spain (ES), and Poland (PL), which consume two-thirds of the total 
EU electricity [33]. Two approaches are used to calculate the environ-
mental impact of electricity consumption in these countries. While the 
production-based approach considers domestic electricity production, 
the consumption-based model considers the composition of electricity 
consumption, i.e., excluding exports and including imports [14]. The 
LCA results obtained from the two approaches are compared and dif-
ferences are identified. 

To the authors’ knowledge, no study provides dynamic environ-
mental profiles of electricity generation that are ready for use. There-
fore, another aim of the study is to provide the developed temporal 
profiles of the environmental impacts of electricity generation so that 
other LCA practitioners can use them without modeling effort and 
background knowledge of electricity markets. In this way, the dissemi-
nation of dynamic LCAs will be promoted. Although it is possible to 
develop environmental profiles of European electricity generation using 
the Python package published by Lédée et al. [34], this requires a certain 
amount of programming expertise. In addition, the tool only allows 
environmental profiles to be produced based on individual years. 
Therefore, if these electricity profiles are used in LCA studies, weather 
variations and other events may affect results disproportionally. In 
contrast, the model developed in this study compensates for such year- 
specific fluctuations and thus analyzes the environmental impact of 
electricity generation in an average year. In addition, the individual 
dynamic environmental profiles of electricity generation for 2018 to 
2022 are provided to increase transparency. 

2. Materials and methods 

This section presents the methodology used to develop the temporal 
profiles of electricity generation’s environmental impacts in five coun-
tries: Germany, France, Italy, Spain, and Poland. First, section 2.1 pre-
sents the framework of the environmental assessment. Section 2.2 
addresses the required electricity data basis and describes how the 
generated electricity time series are linked to LCA datasets. 

Within the LCA methodology, two general approaches can be 
distinguished. The attributional approach relies on average data that 
includes all relevant energy and material inputs throughout the life cycle 
of a product to examine the direct physical flows involved [35]. In 
contrast, the consequential approach considers how the relevant phys-
ical flows adapt in response to shifts in demand for the product under 
analysis. Thus, consequential models consider only unrestricted, mar-
ginal suppliers capable of adjusting their output in response to increased 
demand [36]. The choice of approach depends strongly on the appli-
cation and the research question [37]. 

In this study, the profiles of environmental impacts of electricity 
production are developed using the attributional approach, which re-
sults in temporally resolved, retrospective, average impact factors. 
Therefore, the developed impact profiles can only be used in ex-post LCA 
analyses. However, depending on the research question, it may be 
necessary to apply the consequential approach. The difference between 
a dynamic attributional electricity mix and a dynamic marginal elec-
tricity mix was investigated by Roux et al. using a life cycle assessment 

for the electric heating of a single-family house in France [38]. Frapin 
et al. also investigated the difference between long-term and short-term 
temporal variations in electricity generation for both methodologies 
[27]. 

In contrast to the dynamic attributional electricity factors developed 
in this study, Hawkes [39] presented a methodology for developing 
dynamic consequential electricity factors for the UK grid, and Braeuer 
et al. [40] provided dynamic marginal greenhouse gas factors for the 
German power system. The choice of using average or marginal emission 
factors depends on the objective of the study. 

2.1. Life cycle assessment methodology 

The LCA methodology is used to determine the environmental 
impact of electricity generation in Germany, France, Italy, Spain, and 
Poland. LCA is a standardized method used to assess the environmental 
impact of a product system over its entire life cycle, from the cradle to 
the grave [41,42]. The product systems cover the following system 
components:  

• the power plants used to generate electricity 
• the energy carriers used during the operation of the electricity gen-

erators, including extraction, processing, distribution, incineration, 
and disposal of the resulting waste  

• the transmission and distribution grid 

The functional unit is the supply of 1 kWh of electricity at a low 
voltage level in the five analyzed countries. The temporal scope refers to 
the installed power capacities in 2022. To model the background system, 
the allocation and cut-off by classification system model of the ecoinvent 
v3.9.1 database is used [36]. This system model classifies intermediate 
exchanges into allocatable products, recyclable materials, and waste 
products. While allocatable products are assessed according to the 
allocation methods implemented in the system model, recyclable ma-
terials are removed from the product system in the End-of-Life phase. 
The treatment of waste products is entirely attributed to the waste 
producer [36]. 

For the impact assessment, the Environmental Footprint (EF) 3.1 
method is used to calculate the environmental profiles [43]. The 
following impact categories were included in the study: acidification 
(AP), climate change (GWP), ecotoxicity − freshwater (ET), energy re-
sources − non-renewable (RU_fo), eutrophication − freshwater (EU_f), 
eutrophication − marine (EU_m), eutrophication − terrestrial (EU_t), 
human toxicity − carcinogenic (HT_c), human toxicity − non- 
carcinogenic (HT_nc), ionizing radiation (IR), land use (LU), material 
resources − metals/minerals (RU_m), ozone depletion (ODP), particu-
late matter formation (PM), photochemical oxidant formation (POCP), 
and water use (WU). Furthermore, the dynamic profiles provided 
contain data on the subcategories climate change − biogenic, climate 
change − fossil, climate change − land use and land use change, eco-
toxicity − freshwater inorganics, ecotoxicity − freshwater organics, 
human toxicity − carcinogenic inorganics, human toxicity − carcino-
genic organics, human toxicity − non-carcinogenic inorganics, and 
human toxicity − non-carcinogenic organics. 

2.2. Dynamic electricity emissions model 

Within the framework of the study, two different concepts to model 
the dynamic power generation structures were followed for all countries 
investigated: a production-based approach and a consumption-based 
approach. The nomenclature was adopted from Tranberg et al. [14]. 
While the production-based model considers all local electricity pro-
ducers within the country’s borders, the consumption-based approach 
additionally includes all imports and exports. The consumption-based 
model thus considers all electricity flows in the European inter-
connected grid. However, this is accompanied by a considerably higher 
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simulation effort. 
Fig. 1 illustrates the methodology of the developed dynamic models. 

First, time series for both the production- and consumption-based elec-
tricity models are generated using publicly available electricity data. 
The profiles are then linked to an LCA database. This allows the gen-
eration of temporal profiles of the environmental impacts of the 
respective electricity mixes. The following two sections describe the 
development of the dynamic models in detail. All models were gener-
ated with Python 3.11.4. 

2.2.1. Data for electricity generation 
The Transparency Platform of the European Network of Trans-

mission System Operators for Electricity (ENTSO-E) is the data basis for 
the developed dynamic models [44]. This online platform publishes 
detailed information on electricity generation, consumption, and 
transmission for all EU Member States. This data is then further pro-
cessed in the dynamic LCA model. The following datasets of the ENTSO- 
E Transparency Platform are used in the developed models:  

• Hourly-resolved actual generation per production type  
• Installed capacity per production type in annual resolution  
• Cross-border physical flows in hourly resolution 

In both the production-based and consumption-based approaches, 
electricity production time series P are first calculated for each pro-
duction type j for each hour i according to Eq. (1). Therefore, for each 
production type j, the utilization rate for each hour i is calculated by 
dividing the electricity production Pi,j,y by the installed capacity Cj,y in 
the year y. Subsequently, the 5-year averages of the hourly utilization 
rates for 2018 to 2022 are calculated. These are then multiplied by the 
installed capacity of each technology C2022,j in 2022. A matrix P ∈ Ri,j 

with j columns and 8,760 rows displays the generated time series. 
Using utilization rates averaged over five years adjusts for annual 

weather variations. It also reduces the influence of year-specific events 
such as the COVID-19 pandemic or the war in Ukraine, which had and 
still have a significant impact on the European power generation. 
Therefore, it is possible to analyze electricity generation in an average 

year. This approach also mitigates the impact of data gaps in the ENTSO- 
E database. However, using utilization rates of all generators averaged 
over five years does not represent a typical meteorological year (TPY) as 
used in dynamic building simulations [45]. Such TPYs include temper-
ature peaks, for example, and thus adequately represent the climatic 
variations of a year. However, the dynamic LCA models developed in 
this study are based on empirical ENTSO-E electricity market data. The 
development of electricity models based on TPYs is, therefore, beyond 
the scope of this study. As it may be necessary for some studies to include 
temperature peaks, the environmental profiles of the electricity mix for 
each year are also presented without averaging utilization rates for the 
years 2018 to 2022. 

Pi,j = C2022,j⋅
∑2022

y=2018

1
5
⋅
Pi,j,y

Cj,y
(1)  

Finally, in the production-based model, the environmental impacts are 
calculated using the generated electricity production matrix P . The 
procedure is explained in Section 2.2.2. Table 1 shows the relative 
annual electricity production structure for all countries considered. For 
this purpose, the electricity production for the whole year is summed up 
for each production type and divided by the total electricity production. 

For the consumption-based models, the country-specific electricity 
production time series Pi,j generated according to Equation 1 are 
modified by imports I and exports E occurring with trading countries t. 
These imports and exports are averaged over five years (Eqs. (2) and 
(3)). 

Ei,t =
∑2022

y=2018

1
5
⋅Ei,t,y (2)  

Ii,t =
∑2022

y=2018

1
5
⋅Ii,t,y (3)  

Pi,j = Pi,j −

(
Pi,j
∑

iPi,j
⋅
∑

t
Ei,t

)

(4)  

The sum of all exports is then subtracted proportionally from all elec-
tricity producers (Equation 4). In contrast, imports are added as addi-
tional columns to the production-based electricity matrix P. These 
additional columns are, in turn, linked to the country-specific produc-
tion-based generation matrices of the trading partners P̂ = ∈ Ri,̂j, where 
ĵ represents the electricity production technologies of the trading 
countries. This results in the consumption-based electricity generation 
matrix C (Equation 5). 

Fig. 1. Schematic overview of the required data and the processing steps to 
develop the dynamic profiles. 

Table 1 
Average production-based electricity mix composition.  

Energy source DE 
[%] 

ES 
[%] 

FR 
[%] 

IT 
[%] 

PL 
[%] 

Biomass  9.0  1.6  0.5  2.2  1.0 
Fossil brown coal  20.6  0.0  0.0  0.0  24.4 
Fossil coal-derived gas  0.0  0.0  0.0  2.5  0.4 
Fossil gas  10.3  28.3  7.1  49.9  10.2 
Fossil hard coal  9.8  3.2  0.4  9.2  44.1 
Fossil oil  0.7  0.7  0.3  0.6  1.2 
Geothermal  0.1  0.0  0.0  2.4  0.0 
Hydro pumped storage  2.1  0.0  1.3  1.3  0.5 
Hydro run-of-river and 

poundage  
2.8  3.4  8.7  13.2  0.7 

Hydro water reservoir  0.3  7.9  3.2  2.6  0.2 
Nuclear  6.7  20.8  66.7  0.0  0.0 
Photovoltaic  9.9  10.3  3.5  7.4  5.2 
Waste  1.3  1.0  0.3  0.1  0.0 
Wind offshore  5.7  0.0  0.0  0.0  0.0 
Wind onshore  20.8  22.9  8.0  8.6  12.0  
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C =
(

P
⃒
⃒
⃒P̂
)
∈ ℝi,j+̂j (5)  

Accordingly, production-based matrices must be established for all 
countries with which electricity is exchanged. As a result, a total of 21 
production-based electricity matrices are calculated. Fig. 2 shows the 
flows of electricity imports for the five countries considered. For 
example, Spain imports electricity from both France and Portugal. As 10 
different energy sources are used to generate electricity in Spain, the 
production-based electricity matrix consists of 10 columns: biomass, 
fossil gas, fossil hard coal, fossil oil, hydro run-of-river and poundage, 
hydro water reservoir, nuclear, photovoltaic, waste, and wind onshore. 
In contrast, the consumption-based electricity matrix has 29 columns: 10 
for Spanish, 11 for French, and 8 for Portuguese electricity generation. 
The resulting consumption-based electricity generation matrices C are 
then linked to the LCA model to determine the environmental impacts 
for each time step (see Section 2.2.2). 

The ENTSO-E Transparency Platform is a comprehensive source of 
European electricity market data. However, the platform also has some 
shortcomings, as already reported by Hirth et al. in their study on the 
data quality of the platform [46]. Therefore, several adjustments were 
necessary, which are listed below:  

• Occasionally, values are missing in the data series of ENTSO-E. These 
data gaps were closed by adopting the values occurring directly 
before. The subsequent value was transferred if a data gap was at the 
beginning of a year.  

• For some countries, values are not available for all five years. For 
example, data is only provided up to 2020 for the United Kingdom. In 
such cases, only the available years were included in the calculation.  

• For Switzerland, no values are provided for the installed capacity of 
wind turbines and photovoltaic (PV) systems. These were added 
manually from [47–49].  

• Although data are available for power exchanges between Italy and 
Malta and between Poland and Ukraine, hourly-resolved power 

generation time series are missing for Malta and Ukraine. Therefore, 
these two countries are excluded from the model. 

Furthermore, it should be noted that power generation data listed 
under the production type “other” were divided among all fossil power 
generation units used in the respective country under consideration. For 
example, in Spain’s case, the hourly power generation data and the 
installed capacity were allocated proportionally to fossil gas, hard coal, 
and oil. This allows for allocating appropriate LCA datasets for each 
electricity generation type (Section 2.2.2) for calculating the environ-
mental impacts. The electricity generation of the production type “other 
renewable” was excluded from the model. 

2.2.2. Life cycle assessment of electricity generation 
The electricity generation time series created in Section 2.2.1 are 

linked to fitting datasets of the allocation and cut-off by classification 
system model of the LCA database ecoinvent v3.9.1 [36]. Therefore, a 
matrix multiplication of the production or consumption-based elec-
tricity generation matrices P or C with LCA ∈ Rj,n matrices is used to 
derive the environmental impact matrices EI ∈ Ri,n (Equations 6 and 7). 
The LCA matrices consist of j rows representing the different types of 
electricity generation and 25 columns corresponding to the 25 envi-
ronmental impact categories of the EF. 3.1 method. 

EI = P ⋅LCA (6)  

EI = C ⋅LCA (7)  

Table 2 uses the example of Spain to show which datasets are used for 
which production types. The ecoinvent market datasets of the respective 
country’s electricity mix were used to select suitable datasets. For the 
generation type waste, the Swiss dataset was selected for all countries 
since the country-specific datasets do not contain values for electricity 

Fig. 2. Electricity trading partners of the five countries analyzed. The arrows 
indicate the electricity imports. Luxembourg is not shown on the map for the 
sake of overview. 

Table 2 
ecoinvent datasets used to model the electricity supply with corresponding 
shares of energy conversion technologies.  

Energy source ecoinvent dataset Share 
[%] 

Biomass heat and power co-generation, biogas, gas engine −
ES 

11  

heat and power co-generation, wood chips, 6667 
kW, state-of-the-art 2014 − ES 

89 

Fossil gas electricity production, natural gas, combined cycle 
power plan − ES 

97  

electricity production, natural gas, conventional 
power plant − ES 

3 

Fossil hard coal electricity production, hard coal − ES 100 
Fossil oil electricity production, oil − ES 100 
Hydro run-of- 

river 
electricity production, hydro, run-of-river − ES 100 

Hydro water 
reservoir 

electricity production, hydro, reservoir, non-alpine 
region − ES 

100 

Nuclear electricity production, nuclear, boiling water reactor 
– ES 

20  

electricity production, nuclear, pressure water 
reactor − ES 

80 

Solar electricity production, photovoltaic, 3kWp slanted- 
roof installation, multi-Si, panel, mounted − ES 

33  

electricity production, photovoltaic, 3kWp slanted- 
roof installation, single-Si, panel, mounted − ES 

27  

electricity production, photovoltaic, 570kWp open 
ground installation, multi-Si − ES 

40 

Waste electricity, from municipal waste incineration to 
generic market for − CH 

100 

Wind onshore electricity production, wind, <1MW turbine, 
onshore – ES 

35  

electricity production, wind, >3MW turbine, 
onshore – ES 

1  

electricity production, wind, 1–3 MW turbine, 
onshore − ES 

64  
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generation by waste. The shares of the datasets for the production types, 
which are additionally listed in Table 2, are chosen to represent the 
ratios in the ecoinvent market dataset for the respective electricity mix. 
For all other countries, the selected datasets are listed with the corre-
sponding shares in a supplementary file. 

Since the functional unit refers to electricity supply at the low- 
voltage level, the environmental impacts of electricity transmission 
and distribution are also considered. Therefore, to calculate the envi-
ronmental impacts of electricity generation at low voltage level 
EIlv ∈ Ri,n, the EI matrices are multiplied by the occurring trans-
formation and self-consumption losses L (Equation 8). In addition, the 
environmental impacts of the electricity transmission and distribution 
grid EIg ∈ Ri,n are added. Both the datasets for the transmission and 
distribution grid infrastructure and the transformation and self- 
consumption losses are based on the ecoinvent market dataset for the 
respective electricity mix. Using the EIlv matrices, it is possible to 
determine the environmental impacts of electricity generation for each 
hour of the year for the countries analyzed. The developed EIlv matrices 
are provided as supplementary Excel files for both consumption- and 
production-based approaches. In addition, EIlv matrices for 2018 to 
2022 are presented without averaging utilization rates. 

EIlv = EI ⋅L+EIg (8)  

3. Results and discussion 

Section 3.1 first shows how the environmental impact of electricity 
generation changes over a year. This highlights the need to implement 
dynamic electricity models in LCA studies. The different results of 
consumption-based and production-based electricity modeling are 
shown in Section 3.2. 

3.1. Change in the environmental impact of electricity generation over 
time 

Fig. 3 shows the composition of electricity generation in Germany in 
the developed model as a function of time. The data for France, Italy, 
Spain, and Poland are provided as supplementary material. As can be 
seen, the electricity production varies both on a daily and monthly basis. 
Some energy sources, such as biomass, lignite, and nuclear power, 
generate constant electricity and serve as base-load power plants. In 

contrast, other energy sources are subject to strong temporal fluctua-
tions. PV and wind power plants are particularly noteworthy here. While 
PV plants mainly generate electricity in summer, wind power plants are 
particularly productive in winter. 

These different compositions of electricity, which depends on the 
time of day and season, lead to a variation in the environmental impact 
of electricity over the year. This is particularly reflected in Fig. 4, which 
shows the time series for GWP and RU_m of the consumption-based 
electricity mix for Germany. The orange horizontal line indicates the 
mean value of the respective impact category. It highlights that the re-
sults in both impact categories are subject to strong fluctuations. 

For the GWP, variations can be observed throughout the year. The 
higher the share of renewable electricity generators in the total elec-
tricity generation, the lower the GWP of the electricity mix. As can be 
seen in Table 1, more than 35 % of electricity in Germany is generated 
by PV plants and wind turbines. However, these two types of generation 
are subject to fluctuations in electricity generation due to weather 
conditions, season, and location. Therefore, at a point in time with a 
high share of renewable electricity generation, the minimum GWP value 
of 0.248 kg CO2-eq/kWh is reached. In contrast, the maximum value at a 
time when renewable electricity generation is low is 0.680 kg CO2-eq/ 
kWh. 

Solar power generation is accompanied by high metal and mineral 
consumption, which is represented by the impact category RU_m. Since 
PV power generation mainly takes place in summer in Germany, the 
RU_m values associated with electricity production in summer are many 
times higher than in winter. In addition, extreme fluctuations can be 
observed during the day since the impacts drop sharply when there is no 
PV power generation at night. 

The extent of variation in environmental impacts can be determined 
for each impact category using the coefficient of variation (CV). This is 
the quotient of the standard deviation σ and the mean value μ (Equation 
7) and is, therefore, a measure of the average deviation of the data points 
from the mean value. The larger the value, the greater the variation in 
emissions. In addition to the CVs for each impact category, Table 3 lists 
the mean values of the LCA results per kWh of electricity and the min-
imum and maximum values. 

CV =
σ
μ (7)  

The high CV values of 16 % and 18 % confirm the fluctuations of GWP 

Fig. 3. Hourly composition of the electricity generation profile in Germany for one year.  
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and RU_m for German electricity generation observed in Fig. 4, 
respectively. Besides GWP and RU_m, high CVs above 15 % are observed 
for six further impact categories: RU_fo, EU_f, IR, LU, ODP, and WU. Like 
GWP, RU_fo directly depends on the share of renewable power genera-
tion, which results in a high CV. As can be seen in Fig. 3, hard coal-fired 
power plants in Germany are used as more flexible medium-load power 
plants. Leachate from hard coal mines releases large amounts of phos-
phorus into groundwater, leading to freshwater eutrophication. There-
fore, the fluctuations in the EU_f results are mainly due to the fluctuating 
use of hard coal-fired power plants. Since domestic nuclear power plants 
are base-load plants with constant operation, the high CV value for IR 
results from imports from France, where around two-thirds of electricity 
generation is based on nuclear power. These imports, in turn, are subject 
to strong temporal fluctuations. The main factors influencing the impact 

category LU are electricity generation from biomass and ground- 
mounted PV plants. Biomass power plants are used as base load power 
plants in Germany and are only subject to minor temporal fluctuations. 
Therefore, the high CV value is almost exclusively attributable to elec-
tricity production from solar parks, which are subject to daily and sea-
sonal fluctuations. The high CV of ODP is due to the flexible use of gas- 
fired power plants. In the case of WU, water reservoir power plants are 
responsible, but these hardly play a role in German power generation. 

The impact categories EU_m, EU_t, and POCP show CVs between 10 
% and 15 %. In contrast, a low CV of less than 10 % can be observed for 
AP, ET, HT_c, HT_nc, and PM. Accordingly, the environmental impacts 
of these categories are only subject to minor temporal fluctuations. 

Table 4 lists the CVs of all impact categories for all countries 
analyzed. The general trends for Spain, France, and Italy are transferable 
from Germany. Since French electricity generation is primarily based on 
nuclear power, IR, RU_m, and RU_fo values deviate only slightly over the 
year. The extremely high CV value for LU of Italian electricity generation 
is caused by the operation of ground-mounted solar parks, which ac-
count for a larger share of PV electricity generation in Italy than in the 
other countries. In contrast, the Polish electricity generation analysis 
shows that the CVs are lower than those of other countries. This is 
because Polish electricity generation is mainly based on fossil fuels 
(Table 1), and therefore, the volatile feed-in behavior of renewable en-
ergy producers is less relevant. 

The results in this section show that many impact categories are 
subject to strong fluctuations over time. This is particularly evident in 
Germany, Spain, France, and Italy. The partially high CV values confirm 
that using annual average electricity mixes in LCAs can lead to a sig-
nificant under- or overestimation of the environmental impact of 
product systems. By using dynamic electricity profiles instead of an 
annual average electricity mix from LCA databases, more accurate re-
sults can be obtained when determining the environmental performance 

Fig. 4. Time series of GWP and RU_m for German electricity generation using the consumption-based approach.  

Table 3 
LCA results of the consumption-based German power generation with mean, 
minimum, and maximum values, as well as the coefficient of variation (CV) of 
each impact category.  

Impact 
category 

Unit Mean 
value 

Minimum 
value 
(deviation 
from mean 
value in %) 

Maximum 
value 
(deviation 
from mean 
value in %) 

CV 
[%] 

AP mol H + -eq 1.39E- 
03 

9.64E-04 (70 
%) 

1.72E-03 
(125 %) 

9 

GWP kg CO2-eq 4.83E- 
01 

2.48E-01 (51 
%) 

6.80E-01 
(141 %) 

16 

ET CTUe 1.95E- 
00 

1.29E-00 (66 
%) 

2.40E-00 
(123 %) 

9 

RU_fo MJ 6.47E- 
00 

3.41E-00 (53 
%) 

8.87E-00 
(137 %) 

16 

EU_f kg P-eq 7.04E- 
04 

3.30E-04 (47 
%) 

1.00E-03 
(143 %) 

17 

EU_m kg N-eq 3.58E- 
04 

2.11E-04 (59 
%) 

4.84E-04 
(135 %) 

14 

EU_t mol N-eq 2.81E- 
03 

1.87E-03 (67 
%) 

3.67E-03 
(131 %) 

11 

HT_c CTUh 1.82E- 
10 

1.61E-10 (89 
%) 

1.99E-10 
(110 %) 

3 

HT_nc CTUh 7.58E- 
09 

5.93E-09 (78 
%) 

9.05E-09 
(119 %) 

7 

IR kBq U235-eq 6.81E- 
02 

3.87E-02 (57 
%) 

1.30E-01 
(191 %) 

24 

LU dimensionless 1.52E- 
00 

1.12E-00 (74 
%) 

2.30E-00 
(151 %) 

17 

RU_m kg Sb-eq 4.69E- 
06 

3.96E-06 (84 
%) 

7.19E-06 
(153 %) 

18 

ODP kg CFC-11-eq 4.98E- 
09 

2.76E-09 (55 
%) 

7.49E-09 
(150 %) 

18 

PM disease 
incidence 

6.61E- 
09 

5.47E-09 (83 
%) 

8.02E-09 
(121 %) 

8 

POCP kg NMVOC-eq 7.76E- 
04 

5.03E-04 (65 
%) 

1.04E-03 
(134 %) 

11 

WU m3 world eq 
deprived 

1.01E- 
01 

4.80E-02 (48 
%) 

1.86E-01 
(184 %) 

22  Table 4 
Coefficients of variation (CV) of environmental impacts of electricity generation 
for all countries analyzed.  

Impact category DE [%] FR [%] IT [%] ES [%] PL [%] 

AP 9 9 13 13 7 
GWP 16 24 11 17 8 
ET 9 6 5 7 5 
RU_fo 16 5 12 14 7 
EU_f 17 15 21 11 9 
EU_m 14 9 11 13 7 
EU_t 11 13 10 13 7 
HT_c 3 5 17 4 5 
HT_nc 7 5 4 6 5 
IR 24 6 36 17 17 
LU 17 31 51 30 6 
RU_m 18 7 9 10 11 
ODP 18 22 8 17 7 
PM 8 4 10 6 4 
POCP 11 15 9 14 7 
WU 22 11 18 25 10  
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of product systems. Product systems whose electricity production or 
consumption does not have a constant profile are of particular interest. 
Examples include heat pumps, which consume electricity primarily 
during the winter months. Another application is electric cars, which, in 
uncontrolled cases, are mainly charged at night. 

In addition to determining the environmental impact of such tech-
nologies, the dynamic LCA electricity models can also be used to 
determine the potential for environmentally optimized operation of 
these systems. For example, analyzing when an electric car should have 
been charged or when a heat pump should have been producing heat is 
possible. However, it should be noted that the provided dynamic envi-
ronmental profiles of electricity generation can only be used to deter-
mine the retrospective potential of such an operating mode, as the 
electricity grids are subject to significant changes due to the expansion 
of renewable electricity generation plants. Nevertheless, such a retro-
spective analysis could drive innovation towards more environmentally 
optimized operations. In order to derive strategies for the future oper-
ation of systems, an ex-ante analysis by developing temporally resolved 
prospective scenarios is required. However, the presented dynamic LCA 
models can serve as a basis for these future scenarios. 

Depending on the goal and scope of an LCA, it may be appropriate to 
apply the consequential approach and thus consider marginal electricity 
suppliers for short-term, environmentally optimized adjustments to the 
operating mode of electricity-consuming systems. A method for short- 
term forecasting of the time-varying environmental impact of elec-
tricity generation is presented in [20]. 

3.2. Comparison of consumption-based and production-based electricity 
models 

Fig. 5a compares the annual mean GWP per kWh of the consumption- 
based modeled electricity mix with the production-based one. In 
contrast, Fig. 5b does not compare the annual averages of the two 
modeling approaches but instead shows the relative deviation of the 
GWP for the production-based electricity mix from the consumption- 
based mix for each hour of the year as box plots. 

In Germany, Spain, Italy, and Poland, the annual mean production- 
based carbon intensity of electricity generation is higher than the 
annual mean consumption-based carbon intensity. This means that 
electricity imported from trading partners is associated with lower 
greenhouse gas emissions than domestic electricity generation. While 
the average difference is relatively small in Germany and Spain, it is 
much more considerable in Italy and Poland. In Italy, the production- 
based electricity mix at the high-voltage level, i.e., without trans-
mission and transformation losses, emits an average of 0.463 kg CO2-eq/ 
kWh. However, Italy imports electricity that is produced with lower 
greenhouse gas emissions. This is shown in Table 5, which lists Italy’s 

electricity imports and the respective GWP of the imported electricity at 
high-voltage levels. More than 13 % of the electricity consumed in Italy 
originates from Switzerland and France, where electricity generation is 
associated with much lower greenhouse gas emissions. As a result, the 
average CO2-eq emissions of the Italian electricity mix related to elec-
tricity consumption are lower than those related to production. How-
ever, the hourly differences in greenhouse gas emissions between the 
two modeling approaches are subject to strong fluctuations, as shown by 
the box plot for Italy in Fig. 5b. The relative deviation is between 10 and 
15 % in half of the hours. However, there are also times when the 
production-based approach leads to 20 % higher greenhouse gas 
emissions. 

The same trend can be observed in Poland for the annual mean dif-
ference. Although Poland imports only about 9 % of the electricity it 
consumes, all the imported electricity, regardless of the trading partner, 
is associated with lower greenhouse gas emissions since Polish elec-
tricity generation is primarily based on fossil fuels, mainly lignite and 
hard coal. Thus, the imports reduce the annual mean consumption-based 
carbon intensity compared to the production-based intensity. However, 
due to the lower share of electricity imports, there is less variation in 
hourly CO2 deviations of both electricity models for Poland than for 
Italy. 

In France, on the other hand, annual mean CO2-eq emissions from 
electricity consumption are higher than those from electricity produc-
tion. This is because domestic electricity production already has a low 
GWP due to the high share of nuclear power. However, imported elec-
tricity from Belgium, Germany, Italy, Spain, and the United Kingdom is 
associated with higher greenhouse gas emissions. Only electricity im-
ports from Switzerland emit less CO2-eq emissions. In terms of hourly 
variations, France shows the greatest relative variations. Fig. 5b reveals 
that the GWP of the consumption-based and production-based elec-
tricity mixes differ significantly at certain times of the year. While 50 % 
of the results show an hourly deviation of 5 to 15 %, maximum 

Fig. 5. (a) annual mean GWP of the consumption-based and production-based electricity generation; (b) box plots of the relative hourly deviations of greenhouse gas 
emissions between production-based and consumption-based electricity mixes. 

Table 5 
Countries from which Italy imports electricity. In addition, the share of elec-
tricity imports of the entire electricity consumption is listed with the associated 
GWP of the imported electricity.  

Exporting 
countries 

Italian 
electricity 
imports [%] 

Share of imports in 
Italian electricity 
consumption [%] 

GWP production- 
based high voltage 
[kg CO2-eq/kWh] 

Austria  2.9  0.5  0.153 
France  31.8  5.7  0.069 
Greece  2.3  0.4  0.540 
Montenegro  6.2  1.1  0.646 
Slovenia  12.2  2.2  0.349 
Switzerland  44.5  8.0  0.021  
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deviations of almost 40 % can be observed. The negative values for 
France imply that the production-based emissions are lower than the 
consumption-based emissions. 

Following Tranberg et al., the consumption-based carbon intensity is 
lower than the production carbon intensity in countries with a high 
share of fossil fuel power producers due to electricity imports [14]. This 
pattern is reversed for countries with a low share of fossil power 
producers. 

Fig. 6 shows a radar chart comparing the annual mean consumption- 
based and production-based electricity generation LCA results for all 
impact categories by setting the higher result to 100 % and scaling the 
lower result accordingly. Therefore, the following analyses only refer to 
the average annual results. Similar to the GWP shown in Fig. 5b, the 
differences in the results of the other impact categories of the two 
electricity mixes can also vary much more in individual hours. 

For the French electricity mix, the results of the two electricity 
models differ by 4.5 % on average in all impact categories. The 
consumption-based modeling leads to lower impacts in only 2 of 16 
impact categories: RU_fo and IR. Significant deviations of more than 10 
% are observed for EU_f and LU. As can be seen in Table 1, France 
generates very little electricity from biomass and PV compared to the 
electricity trading partners. These two electricity generation technolo-
gies are associated with a transformation of land and, therefore, an 
impact in the LU impact category. Thus, imported electricity has much 
higher LU impacts. The higher EU_f results of the consumption-based 
approach are caused by imported coal-based electricity since France 
does not use lignite for electricity generation. However, among the 
electricity trading partners are countries, such as Germany, which use 
lignite as an energy source for electricity production. 

The average deviation of the LCA results for the German electricity 
mix is 5.2 %, with consumption-based modeling showing higher impacts 
in only 4 impact categories. The deviation is significant for IR and WU. 
Around 14 % of Germany’s electricity imports come from Norway, 

which accounts for 1 % of Germany’s electricity consumption. As Nor-
way generates more than three-quarters of its electricity from water 
reservoir plants, and this type of electricity generation causes high water 
consumption, Germany’s consumption-based electricity mix has a 
significantly higher water consumption than the production-based mix. 
The same applies to imports from Switzerland, which also generates 
more than 20 % of its electricity with water reservoir plants. The higher 
ionizing radiation of the consumption-based electricity mix is because 
the last nuclear power plant in Germany was decommissioned in April 
2023 [50]. Therefore, in 2022, the reference year of this study, only 
small capacities of nuclear power plants were under operation. How-
ever, 29 % of Germany’s imports come from France, where nuclear 
power is the largest electricity producer. 

The deviation of the LCA results is highest for the Italian electricity 
mix, with an average of 14.7 %. Thereby, the impacts of the production- 
based electricity mix are higher in 11 of 16 impact categories. Differ-
ences of more than 10 % are observed for the following impact cate-
gories: GWP, EU_f, HT_c, IR, ODP, POCP, and WU. IR stands out with 
94.4 % lower impacts of the production-based approach. This is due to 
electricity imports of the consumption-based electricity mix from 
France. In contrast, Italy does not operate nuclear power plants, 
resulting in very little ionizing radiation in domestic electricity gener-
ation. However, the consumption-based electricity mix emits less 
greenhouse gas emissions because, as described in Fig. 5, a large share of 
Italy’s electricity imports comes from Switzerland and France, whose 
electricity mix is associated with a lower GWP. Electricity imports from 
Switzerland also account for the higher water consumption of the 
consumption-based electricity mix. While there is no lignite-fired power 
generation in Italy, it plays a significant role in Slovenia, Montenegro, 
and Greece. Although the imported electricity volumes from these 
countries are not large, they result in higher EU_f impacts of 
consumption-based electricity generation. In contrast, the production- 
based electricity mix has higher values than the consumption-based 

Fig. 6. Relative environmental impacts of consumption-based and production-based electricity generation.  
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electricity mix for the HT_c, ODP, and POCP categories. This is due to the 
use of coal gas for electricity generation in Italy, which is associated with 
high impacts in these categories. 

In Poland, the average deviation of the LCA results is 7.9 %. The 
production-based approach leads to higher impacts in 13 impact cate-
gories. A significant deviation can only be observed for IR, as Poland 
does not operate any nuclear power plants but imports nuclear power 
from other countries. 

The slightest deviation in the average LCA results is observed for 
Spain with 1.8 %. The two electricity mixes are similar because in Spain 
only 5 % of the electricity consumed originates from electricity imports. 

The comparison of the results of the two modeling approaches shows 
that even the annual average results differ significantly for most coun-
tries. Looking at the hourly deviations for GWP, all countries show 
significant variations in the differences in greenhouse gas emissions 
between the two electricity mixes. This pattern can also be transferred to 
other impact categories. Therefore, electricity imports significantly 
impact electricity emissions in many countries. The difference between 
the consumption-based and production-based electricity mixes high-
lights the importance of including cross-border electricity flows in 
assessing the environmental profile of electricity. Although the proposed 
methodology is more complex than the production-based analysis due to 
the inclusion of cross-border electricity flows, it better reflects the reality 
of the integrated European electricity market. 

4. Conclusions 

The dynamic assessments show that the impacts of the different 
environmental categories vary considerably depending on the time of 
electricity generation. As Poland’s electricity generation is primarily 
based on fossil fuels and, therefore, the fluctuating feed-in of renewable 
energy sources plays a minor role, the environmental impact of Polish 
electricity generation shows the slightest temporal variation. In contrast, 
electricity generation in Germany, France, Italy, and Spain has co-
efficients of variation above 10 % for most impact categories. In some 
cases, the variation is even higher than 20 %. The largest temporal 
variation, with a coefficient of variation of more than 50 %, is observed 
for the land use category in Italy. 

In addition, the analysis shows that the results of the consumption- 
based and production-based modeling approaches differ significantly 
for most countries. With an average deviation in environmental impacts 
of around 15 %, the difference is most significant for Italy. Therefore, 
especially for countries with high electricity imports and exports, LCA 
studies should not only be based on the environmental impacts of do-
mestic electricity production but should also consider cross-border 
electricity flows. 

The study’s results highlight the need to implement dynamic elec-
tricity mix models in LCA studies that examine product systems with 
time-varying electricity consumption, like electric heating systems such 
as heat pumps or the charging of electric cars. However, using dynamic 
electricity models leads to more accurate results in almost all LCA 
studies of electricity-consuming product systems, as the electricity 
consumption of most product systems varies over time, and the level of 
environmental impact, therefore, depends on the time of the actual 
electricity consumption. Due to the supply of the developed dynamic 
environmental profiles of electricity generation as supplementary ma-
terial, the dynamic approach can be easily transferred into further LCA 
studies. In addition to determining the environmental impact of 
electricity-consuming technologies, the dynamic LCA electricity models 
can also be used to determine the potential for environmentally opti-
mized operations. However, only the retrospective optimization poten-
tial of such technologies can be determined, as the provided dynamic 
environmental profiles are based on empirical data. Future studies can 
extend the model for developing prospective scenarios to enable the 
application of ex-ante LCA analyses. In addition, it would be advisable to 
expand the model to include also dynamic marginal electricity mixes so 

that environmental profiles are available for both attributional and 
consequential LCA studies. 

Funding 

This work was supported by the Fachagentur für Nachwachsende 
Rohstoffe (FNR) [2219NR161]. 

CRediT authorship contribution statement 

Gabriel Naumann: Writing – original draft, Visualization, Software, 
Project administration, Methodology, Investigation, Formal analysis, 
Conceptualization. Jacopo Famiglietti: Writing – review & editing, 
Investigation, Conceptualization. Elke Schropp: Writing – review & 
editing, Visualization, Validation, Investigation, Conceptualization. 
Mario Motta: Supervision, Funding acquisition. Matthias Gaderer: 
Supervision, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.enconman.2024.118520. 

References 

[1] Crippa M, Guizzardi D, Banja M, Solazzo E, Muntean M, Schaaf E et al. CO2 
emissions of all world countries: JRC/IEA/PBL 2022 Report. [November 27, 2023]; 
Available from: https://publications.jrc.ec.europa.eu/repository/handle/ 
JRC130363. 

[2] Barros MV, Salvador R, Piekarski CM, de Francisco AC, Freire FMCS. Life cycle 
assessment of electricity generation: a review of the characteristics of existing 
literature. Int J Life Cycle Assess 2020;25(1):36–54. https://doi.org/10.1007/ 
s11367-019-01652-4. 

[3] Jordaan SM, Combs C, Guenther E. Life cycle assessment of electricity generation: 
A systematic review of spatiotemporal methods. Adv Appl Energy 2021;3:100058. 
https://doi.org/10.1016/j.adapen.2021.100058. 

[4] Greening B, Azapagic A. Domestic heat pumps: Life cycle environmental impacts 
and potential implications for the UK. Energy 2012;39(1):205–17. https://doi.org/ 
10.1016/j.energy.2012.01.028. 

[5] Naumann G, Schropp E, Gaderer M. Life Cycle Assessment of an Air-Source Heat 
Pump and a Condensing Gas Boiler Using an Attributional and a Consequential 
Approach. Procedia CIRP 2022;105:351–6. https://doi.org/10.1016/j. 
procir.2022.02.058. 

[6] Famiglietti J, Toppi T, Bonalumi D, Motta M. Heat pumps for space heating and 
domestic hot water production in residential buildings, an environmental 
comparison in a present and future scenario. Energ Conver Manage 2023;276: 
116527. https://doi.org/10.1016/j.enconman.2022.116527. 

[7] Bauer C, Hofer J, Althaus H-J, Del Duce A, Simons A. The environmental 
performance of current and future passenger vehicles: Life cycle assessment based 
on a novel scenario analysis framework. Appl Energy 2015;157:871–83. https:// 
doi.org/10.1016/j.apenergy.2015.01.019. 
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performance of a hybrid solar-hydrogen energy system for buildings. Int J 
Hydrogen Energy 2023. https://doi.org/10.1016/j.ijhydene.2023.07.208. 

[27] Frapin M, Roux C, Assoumou E, Peuportier B. Modelling long-term and short-term 
temporal variation and uncertainty of electricity production in the life cycle 
assessment of buildings. Appl Energy 2022;307:118141. https://doi.org/10.1016/ 
j.apenergy.2021.118141. 

[28] Roux C, Schalbart P, Assoumou E, Peuportier B. Integrating climate change and 
energy mix scenarios in LCA of buildings and districts. Appl Energy 2016;184: 
619–29. https://doi.org/10.1016/j.apenergy.2016.10.043. 

[29] Fattler S. Economic and environmental assessment of electric vehicle charging 
strategies. [September 04, 2023]; Available from: https://d-nb.info/1244377503/ 
34. 

[30] Zacharopoulos L, Thonemann N, Dumeier M, Geldermann J. Environmental 
optimization of the charge of battery electric vehicles. Appl Energy 2023;329: 
120259. https://doi.org/10.1016/j.apenergy.2022.120259. 

[31] Terlouw T, AlSkaif T, Bauer C, Mazzotti M, McKenna R. Designing residential 
energy systems considering prospective costs and life cycle GHG emissions. Appl 
Energy 2023;331:120362. https://doi.org/10.1016/j.apenergy.2022.120362. 

[32] Algunaibet IM, Guillén-Gosálbez G. Life cycle burden-shifting in energy systems 
designed to minimize greenhouse gas emissions: Novel analytical method and 
application to the United States. J Clean Prod 2019;229:886–901. https://doi.org/ 
10.1016/j.jclepro.2019.04.276. 

[33] Statista Research Department. Electricity demand in the European Union (EU) in 
2022, by country. [September 04, 2023]; Available from: https://www.statista. 
com/statistics/1260553/eu-power-demand-country/. 

[34] Lédée F, Padey P, Goulouti K, Lasvaux S, Beloin-Saint-Pierre D. EcoDynElec: Open 
Python package to create historical profiles of environmental impacts from 
regional electricity mixes. SoftwareX 2023;23:101485. https://doi.org/10.1016/j. 
softx.2023.101485. 

[35] Earles JM, Halog A. Consequential life cycle assessment: a review. Int J Life Cycle 
Assess 2011;16(5):445–53. https://doi.org/10.1007/s11367-011-0275-9. 

[36] Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B. The 
ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle 
Assess 2016;21(9):1218–30. https://doi.org/10.1007/s11367-016-1087-8. 

[37] Regett A, Boing F, Conrad J, Fattler S, Kranner C. Emission Assessment of 
Electricity: Mix vs. Marginal Power Plant Method. In: 2018 15th International 
Conference on the European Energy Market (EEM). IEEE; 2018, p. 1–5. 

[38] Roux C, Schalbart P, Peuportier B. Development of an electricity system model 
allowing dynamic and marginal approaches in LCA—tested in the French context 
of space heating in buildings. Int J Life Cycle Assess 2017;22(8):1177–90. https:// 
doi.org/10.1007/s11367-016-1229-z. 

[39] Hawkes AD. Long-run marginal CO2 emissions factors in national electricity 
systems. Appl Energy 2014;125:197–205. https://doi.org/10.1016/j. 
apenergy.2014.03.060. 

[40] Braeuer F, Finck R, McKenna R. Comparing empirical and model-based approaches 
for calculating dynamic grid emission factors: An application to CO2-minimizing 
storage dispatch in Germany. J Clean Prod 2020;266:121588. https://doi.org/ 
10.1016/j.jclepro.2020.121588. 

[41] German Institution for Standardization. DIN EN ISO 14040: Environmental 
management – Life cycle assessment – Principles and framework (ISO 14040: 
2006); 2009. 

[42] German Institution for Standardization. DIN EN ISO 14044: Environmental 
management - Life cycle assessment - Requirements and guidelines (ISO 14044: 
2006 + Amd 1:2017); 2018. 

[43] Andreasi Bassi S, Biganzoli F, Ferrara N, Amadei A, Valente A, Sala S et al. Updated 
characterisation and normalisation factors for the Environmental Footprint 3.1 
method. [August 27, 2023]; Available from: https://op.europa.eu/en/publication- 
detail/-/publication/145f8401-a82a-11ed-b508-01aa75ed71a1/language-en. 

[44] ENTSO-E. Transparency Platform. [August 27, 2023]; Available from: https:// 
transparency.entsoe.eu/. 

[45] Ebrahimpour A, Maerefat M. A method for generation of typical meteorological 
year. Energ Conver Manage 2010;51(3):410–7. https://doi.org/10.1016/j. 
enconman.2009.10.002. 

[46] Hirth L, Mühlenpfordt J, Bulkeley M. The ENTSO-E Transparency Platform – A 
review of Europe’s most ambitious electricity data platform. Appl Energy 2018; 
225:1054–67. https://doi.org/10.1016/j.apenergy.2018.04.048. 

[47] Statista Research Department. Nennleistung der in der Schweiz installierten 
Photovoltaikmodule von 2005 bis 2022. [August 27, 2023]; Available from: 
https://de.statista.com/statistik/daten/studie/446486/umfrage/nennleistung-der- 
installierten-photovoltaikmodule-in-der-schweiz/. 

[48] Statista Research Department. Installierte Leistung der Windenergieanlagen in der 
Schweiz von 2005 bis 2020. [August 27, 2023]; Available from: https://de.statista. 
com/statistik/daten/studie/873874/umfrage/installierte-leistung-der- 
windenergieanlagen-in-der-schweiz/. 

[49] Suisse Eole. Schweizer Windparks und Projekte. [August 27, 2023]; Available 
from: https://suisse-eole.ch/de/windenergie/windparks/. 

[50] Bundeszentrale für politische Bildung. Atomausstieg – Deutschland verabschiedet 
sich endgültig von der Kernkraft. [November 23, 2023]; Available from: https:// 
www.bpb.de/kurz-knapp/hintergrund-aktuell/520059/atomausstieg-deutschland- 
verabschiedet-sich-endgueltig-von-der-kernkraft/. 

G. Naumann et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0196-8904(24)00461-8/h0055
http://refhub.elsevier.com/S0196-8904(24)00461-8/h0055
https://doi.org/10.1016/j.apenergy.2023.122247
https://doi.org/10.1016/j.apenergy.2023.122247
https://doi.org/10.3390/su14116464
https://doi.org/10.1016/j.esr.2019.100367
https://doi.org/10.1016/j.apenergy.2014.08.071
https://doi.org/10.1016/j.energy.2018.07.087
https://doi.org/10.1007/s11367-017-1277-z
https://doi.org/10.1007/s11367-017-1277-z
https://doi.org/10.1016/j.apenergy.2020.115527
https://doi.org/10.1016/j.apenergy.2020.116061
https://doi.org/10.3389/frsus.2022.1037497
https://doi.org/10.3389/frsus.2022.1037497
https://doi.org/10.1016/j.trd.2022.103430
https://doi.org/10.1016/j.trd.2022.103430
https://doi.org/10.1016/j.apenergy.2019.01.059
https://doi.org/10.1016/j.apenergy.2015.01.121
https://doi.org/10.1016/j.jclepro.2015.11.052
https://doi.org/10.1021/acs.est.7b06535
https://doi.org/10.1021/acs.est.7b06535
https://doi.org/10.1016/j.ijhydene.2023.07.208
https://doi.org/10.1016/j.apenergy.2021.118141
https://doi.org/10.1016/j.apenergy.2021.118141
https://doi.org/10.1016/j.apenergy.2016.10.043
https://doi.org/10.1016/j.apenergy.2022.120259
https://doi.org/10.1016/j.apenergy.2022.120362
https://doi.org/10.1016/j.jclepro.2019.04.276
https://doi.org/10.1016/j.jclepro.2019.04.276
https://doi.org/10.1016/j.softx.2023.101485
https://doi.org/10.1016/j.softx.2023.101485
https://doi.org/10.1007/s11367-011-0275-9
https://doi.org/10.1007/s11367-016-1087-8
https://doi.org/10.1007/s11367-016-1229-z
https://doi.org/10.1007/s11367-016-1229-z
https://doi.org/10.1016/j.apenergy.2014.03.060
https://doi.org/10.1016/j.apenergy.2014.03.060
https://doi.org/10.1016/j.jclepro.2020.121588
https://doi.org/10.1016/j.jclepro.2020.121588
https://doi.org/10.1016/j.enconman.2009.10.002
https://doi.org/10.1016/j.enconman.2009.10.002
https://doi.org/10.1016/j.apenergy.2018.04.048

	Dynamic life cycle assessment of European electricity generation based on a retrospective approach
	1 Introduction
	1.1 Literature review
	1.2 Research gap and objectives

	2 Materials and methods
	2.1 Life cycle assessment methodology
	2.2 Dynamic electricity emissions model
	2.2.1 Data for electricity generation
	2.2.2 Life cycle assessment of electricity generation


	3 Results and discussion
	3.1 Change in the environmental impact of electricity generation over time
	3.2 Comparison of consumption-based and production-based electricity models

	4 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary material
	References


