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A machine learning framework is developed to compute the aerodynamic forces and moment coefficients for a 
pitching NACA0012 airfoil incurring in light and deep dynamic stall. Four deep neural network frameworks of 
increasing complexity are investigated: two multilayer perceptrons and two convolutional neural networks. The 
convolutional framework, in addition to the standard mean squared error loss, features an improved loss function 
to compute the airfoil loads. In total, five models are investigated of increasingly complexity. The convolutional 
model, coupled with the loss function based on force and moment coefficients and embedding the attention 
mechanism, is found to robustly and efficiently predict pressure and skin friction distributions over the airfoil 
over the entire pitching cycle. Periodic conditions are implemented to grant the physical smoothness of the 
model output both in space and time. An analysis of the training dataset point distributions is performed to point 
out the effects of adopting low discrepancy sequences, such as Latin hypercube, Sobol’, and Halton, compared 
to random and uniform sequences. The current model shows improved performances in predicting forces and 
pitching moment in a broad range of operating conditions.
1. Introduction

Dynamic stall can be encountered in a wide range of aeronautical 
applications, such as over blades of helicopter rotors and maneuvering 
fixed wing aircraft. It is of concern also for wind turbines and turbo-

machinery applications. Dynamic stall is a highly nonlinear unsteady 
aerodynamic phenomenon observed at large angles of attack, in com-

bination with rapid variations of incidence. The ability to predict and 
mitigate dynamic stall results in an improvement of safety standards 
and also a better estimation of the flight envelopes [1]. The occurrence 
of dynamic stall is also one of the critical factor limiting the maximum 
speed of conventional helicopters.

Many experiments and computational simulations have been per-

formed to investigate dynamic stall phenomena and study the flow 
around pitching and plunging airfoils [2]. Especially during the last 
decade, thanks to the advances in numerical methods and computa-

tional power provided by modern GPGPUs [3,4] together with optical 
measurements techniques [5], dynamic stall has received particular 
attention in the literature where considerable advances in modeling, 
prediction, and understanding are reported. Several aspects of dynamic 
stall have been numerically investigated ranging from aspect ratio [6]
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to sweep angle [7] and compressibility effects [8]. The current state-

of-the-art numerical simulations consist in wall-resolved large eddy 
simulations (LES) of ramp-up motion for spanwise-extruded airfoils [9].

One key aspect, relevant to many practical applications, is the for-

mulation of a reduced order model (ROM) for dynamic stall. Due to the 
large computational costs associated to dynamic stall CFD simulations, 
ROM are needed to reduce the computation cost of e.g. aeroelastic anal-

ysis or flight mechanics evaluations. Recent developments in dynamic 
stall ROM leverage on high-fidelity numerical simulations to better un-

derstand the underlying physics of dynamic stall and gather data from 
larger datasets. An example of a dynamic stall ROM, which uses Spectral 
Proper Orthogonal Decomposition (SPOD) to decompose the velocity 
flow field from a Delayed Detached Eddy Simulations (DDES) with SST 
model, has been developed in Refs. Avanzi et al. [10,11]. The approach 
by Avanzi et al. [10,11] defines an appropriate operating range of the 
filter’s typical dimension to identify coherent structures in the process 
and reconstructs force and moment coefficients over the pitching cycle 
using a reduced set of modes.

A powerful tool that is becoming more and more popular in engi-

neering applications is machine learning [12]. Recent developments 
in deep learning bring advanced and innovative approaches to im-
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prove the efficiency, flexibility, and accuracy of the predictive mod-

els [13–16]. Some of the outstanding applications of deep neural net-

works (DNNs) in the domain of computational physics are solution of 
partial differential equations (PDEs), like Physics-Informed Neural Net-

works (PINNs) [17–20]. Other neural network architectures that allow 
to analyze information from large datasets are Convolutional Neural 
Networks (CNNs). They received increasing attention by the fluid-

mechanics community for their ability in pattern recognition [21]. In 
addition, convolution layers are usually coupled with pooling and up-

sampling layers, allowing to reduce or increase data size, respectively. 
The neural network capability of analyzing a large dataset has been of 
particular interest in dynamic stall phenomena since time-dependent 
series can be analyzed as a whole. Damiola et al. [22,23] proposed a 
State-Space Neural Network (SS-NN) model trained using sine sweep 
functions at several angle-of-attack ranges. The study shows that SS-NN 
can be a powerful tool to accurately predict the unsteady aerodynamic 
loads of a pitching airfoil, both in pre-stall and post-stall conditions. 
In particular, the model succeeds in correctly capturing highly non-

linear flow features such as the delay of flow separation, and the 
formation and shedding of the dynamic stall vortex. A final example 
is presented by Eivazi et al. [24], where an autoencoder network is 
used for non-linear dimension reduction and feature extraction as an 
alternative to singular value decomposition (SVD). Then, the extracted 
features are used as an input for a long short-term memory (LSTM) 
network to predict the velocity field at future time instances. Solera-

Rico et al. [25], Wang et al. [26] further confirmed the NN capabilities 
of predicting dynamic stall loads by comparison with non-intrusive re-

duced order models based on dynamic mode decomposition and proper 
orthogonal decomposition.

This work presents a deep neural network-based framework de-

signed to predict force and moment coefficients throughout an entire 
pitching cycle, encompassing small oscillations and both light and deep 
dynamic stall conditions. The primary goal is to define a reduced order 
model that can efficiently predict the aerodynamic loads for integration 
into an aeroelastic code. Contrary to semi-empirical models that impose 
underlying a-priori laws, such as the Leishman-Beddoes one, and need 
to be tuned for each operating condition, the present approach does not 
assume any constraints. Four deep neural networks of increasing com-

plexity are applied: two multilayer perceptrons and two convolutional 
neural networks. The operating conditions are defined by four param-

eters: the mean pitch angle 𝛼0, the amplitude of the oscillation 𝛼𝑠, the 
reduced frequency 𝑘, and the free-stream velocity 𝑉∞. In section 2, 
the dataset point sequences are reported with the numerical setup of 
computational fluid dynamics simulations to generate the datasets. In 
section 3, the four neural network frameworks are presented together 
with the enhanced loss function and the attention mechanism for the 
convolutional frameworks. After describing the numerical setup, the 
performances of the models are investigated in detail in the section 4, 
highlighting the pros and cons. Finally, section 5 reports the conclusions 
and the final remarks.

2. Aerodynamic dataset generation

The aerodynamic dataset for training the model is generated by 
solving the unsteady 2D RANS equations. The numerical setup is 
assessed against the experimental campaign presented in Lee and 
Gerontakos [27]. A detailed grid convergence analysis and a study 
of the effects of the turbulence model is reported by Baldan and 
Guardone [28]. The main settings of the reference test case are sum-

marized in the following for completeness. The reference case is the 
NACA 0012 airfoil with a chord 𝑐 of 0.15 m, undergoing a sinusoidal 
pitching motion, at reduced frequency k = 0.1 and Reynolds number 
Re = 1.35 ⋅ 105. The free-stream velocity is 𝑉∞ = 14 m/s with a turbu-

lent intensity equal to 0.08%, pressure is 𝑃∞ = 1 atm, and the pitching 
frequency 𝜔 is set equal to 18.67 Hz. The mean angle of attach 𝛼0 is 
2

10◦, while the angle oscillation amplitude 𝛼𝑠 is 15◦. An O-grid mesh 
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Table 1

Discrepancy for Latin hypercube, Sobol’, and Halton 
sequences of the datasets in the unitary hypercube 
before scaling to real values.

Dataset size Latin Sobol’ Halton

30 5.18 ⋅ 10−3 3.00 ⋅ 10−3 2.44 ⋅ 10−3
40 2.04 ⋅ 10−3 1.52 ⋅ 10−3 1.42 ⋅ 10−3
50 2.70 ⋅ 10−3 1.07 ⋅ 10−3 1.25 ⋅ 10−3
100 7.11 ⋅ 10−4 3.36 ⋅ 10−4 2.67 ⋅ 10−4
216 2.52 ⋅ 10−4 8.49 ⋅ 10−5 8.02 ⋅ 10−5

has been used in the computations, with to 512 nodes over the profile 
and 128 nodes in the normal direction, named medium grid in Baldan 
and Guardone [29]. The element size at the leading edge is 2.0 ⋅ 10−3 𝑐
while at the trailing edge is 5.0 ⋅ 10−4 𝑐 according to the best practice. 
The 𝑦+ < 1 requirement is always satisfied for the first cell layer at the 
wall, for all considered operating conditions. Numerical simulations are 
performed using ANSYS Fluent 2023R2. The unsteady incompressible 
RANS equations are solved using second-order upwind discretization 
and second-order implicit time integration scheme. Gradients are re-

trieved through a least square cell-based method, and fluxes are ob-

tained with the Rhie-Chow momentum-based formulation. Pressure-

velocity equations are solved using the SIMPLE method. A rigid motion 
of the entire grid is prescribed through a user-defined expression to al-

low the airfoil pitching, 𝛼(𝑡) = 𝛼0 + 𝛼𝑠 sin(𝜔𝑡). The SST model with the 
intermittency equation [30] is employed to close the RANS equations. 
Each cycle is discretized with 3 600 time steps. All the simulations are 
evolved until time convergence is reached between subsequent cycles, 
meaning that the obtained solution overlaps.

The design space is limited to three variables to reduce the di-

mensionality of the problem and decrease the number of performed 
simulations in all the analysis related to the random sequences and the 
preliminary study on the neural network architectures. Thus, the input 
parameters are the free-stream velocity 𝑉∞ that can vary between 12 
and 22 m/s, the pitching amplitude angle 𝛼𝑠 that ranges from 5◦ to 
15◦, and the reduced frequency 𝑘 extends from 0.1 to 0.2. All the other 
parameters are kept equal to the reference test case. The free-stream 
velocity allows to change the Reynolds number of the test case. The ad-

dition of this parameter aims at defining a more general model that can 
deal with compressible flows where the velocity is proportional to the 
Mach number having fixed the Reynolds over Mach ratio. When con-

sidering the full setup the additional input is the mean angle of the 
pitching cycle, 𝛼0, and it varies in the range 0◦ to 10◦.

To generate the training distribution, a uniform grid has been used 
to cover the input space utilizing 6 points for each variable, namely 216 
points in total. Unfortunately, it is known that the uniform grid distri-

bution performs poorly in terms of discrepancy especially for a limited 
number of points and large dimensionality [31]. To overcome this lim-

itation, low-discrepancy sequences have been used. Low-discrepancy 
distributions, also called quasi-random sequences, are sequences of 
points strategically generated to achieve a more uniform coverage of 
the design space compared to purely random sequences. The objec-

tive is to minimize discrepancies or irregularities in the distribution of 
points, especially in higher dimensions. Unlike truly random sequences, 
low-discrepancy sequences systematically distribute points across dif-

ferent dimensions to create a more even sampling of the input space. 
This regular and deterministic pattern is advantageous in numerical 
methods and simulations where a more uniform sampling contributes 
to improved accuracy. In this work, Sobol’, Latin hypercube, and Hal-

ton sequences [32] are used for training with different sizes: 30, 40, 
50, 100 and 216. The discrepancy of each distribution is reported in 
Table 1. The model validation dataset is not obtained by splitting the 
training dataset to preserve the low-discrepancy property of the em-

ployed sequences. The model’s performance is evaluated using two new 

sets of data, each containing 40 and 100 random points, respectively.
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Fig. 1. Example of spatio-temporal contour of the post-processed 𝐶𝑝 and 𝐶𝑓

distributions over an entire pitching cycle.

When the full input space is considered, namely also the mean angle 
of the pitching cycle can be set, the 4-dimensional hypercube repre-

senting the operating conditions is covered using the Halton sequence 
with 64, 128, 256, and 512 points for the training dataset. The specific 
sequence has been selected among the others since it reaches the low-

est errors as reported in result section 4. The testing dataset, instead, is 
built using a 64-point random sequence.

The outputs of each simulation, which populates the datasets, are 
the pressure coefficient and the skin friction coefficient distributions 
over the profile for each time step in one pitching cycle. The unstruc-

tured output from Fluent is mapped to the structured airfoil mesh using 
a k-d tree to search the nearest neighbors. This allows to organize the 
output in a 3-dimensional array and to compare results for different 
simulations. The first direction corresponds to the time step and ranges 
from 1 to 3 600. The second direction represents the airfoil surface co-

ordinate. Indexes from 1 to 256 refer to data over the suction side of 
the profile while, from 257 to 512 to the pressure side. The size of the 
last direction is 2 and stores physical data, namely 𝐶𝑝 and 𝐶𝑓 . If the 
full dataset is considered, an additional dimension is present that iden-

tifies the simulation index. The post-processed value of the skin friction 
in each point is equal to the signed magnitude. The sign is set accord-

ing to the direction computed from the 𝑥 and 𝑦 components of the 𝐶𝑓 . 
The positive geometric direction is defined as the curvilinear coordinate 
starting from the leading edge towards the trailing edge for both sides 
of the airfoil. If the geometric direction and the 𝐶𝑓 direction computed 
from the numerical simulations coincide, the sign is positive. Other-

wise, the sign is negative. This allows to highlight the regions where 
the flow is detached and helps the neural networks to identify stalled 
portions. Finally, in 1, an example of spatio-temporal contour of the 
post-processed 𝐶𝑝 and 𝐶𝑓 distributions over an entire pitching cycle is 
available, highlighting the pitch-up and pitch-down phases and how the 
profile is mapped in the structured array.

3. Neural network frameworks

The term multilayer perceptron (MLP) is commonly used to identify 
3

a feed-forward artificial neural network, consisting of fully connected 
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neurons with a non-linear activation function, made of at least three 
layers [33]. A convolutional neural network (CNN), instead, is a regu-

larized type of feed-forward neural network which optimizes the filters, 
or kernels, through automated learning, whereas in traditional algo-

rithms these filters are user-defined [34].

The model implementation and the training pipeline rely on the Ten-

sorFlow 2.11 deep-learning framework. Three different neural network 
frameworks are used in the first part of this work to study the learn-

ing capabilities of different architectures. The first two are MLPs while 
the third one is a CNN. In the second part, instead, the CNN framework 
is tested in the full 4-dimensional setup and an attention augmented 
convolutional neural network, AA-CNN, is proposed as a further im-

provement. The level of complexity increases moving from the first to 
the last one. The operating condition input in the assessment of the NN 
frameworks is made of three parameters, namely 𝛼𝑠, 𝑉∞, and 𝑘, while 
in the last part 𝛼0 is also included. All parameters are rescaled in the 
range [0, 1] using their minimum and maximum values. The additional 
input parameter time 𝑡 is present in the first framework. Time is scaled 
using the oscillation period, meaning that 𝑡 can only assume values in 
the well-known range [0, 1].

The output is different for all the first three frameworks, while it is 
the same for the CNN ones. In the first one, the values of 𝐶𝑙 , 𝐶𝑑 , and 
𝐶𝑚 are generated at each time level. Moving to the next framework, the 
same coefficients are computed but for the entire cycle leading to an 
output array of size 3 600 × 3. Finally, in the CNN the output are the 
pressure and skin friction distributions over the airfoil for all time steps 
of size 3 600 × 512 × 2. Starting from the output distributions, the force 
and moment coefficients are straightforwardly retrieved from the airfoil 
geometry.

The simplest implementation, corresponding to the first framework, 
consists in an MLP neural network that predicts 𝐶𝑙, 𝐶𝑑 , and 𝐶𝑚 for a 
given operational condition and one temporal instant. For this reason, 
in the following is referred as MLP Single. It is characterized by three 
hidden layers of size 256, 1024, and 256 respectively. The activation 
function is Leaky ReLU (Rectified Linear Unit) which is commonly used 
to introduce non-linearity. The Leaky ReLU activation function allows a 
small, positive gradient when the input is negative, helping to address 
the vanishing gradient problem [35]. Mathematically, Leaky ReLU is 
defined as 𝑓 (𝑥) =max(𝛾𝑥, 𝑥), where 𝛾 is set equal to 0.1.

Considering now the second MLP neural network, the structure is 
similar to the previous one since it always presents three hidden layers 
and adopts the same activation function. The differences concern the 
layer sizes that are: 256, 1 024, and 4 096. The last layer has size 10 800 
that is reshaped to 3 600 × 3 to cope with the output size. Due to the 
capability of predicting all the coefficients over one cycle is called MLP 
All for brevity.

Then, the Convolutional Neural Network (CNN) is considered. The 
first two hidden layers are formed by fully connected and Leaky ReLU-

activated of size 256 and 184 320. After, it is reshaped to 45 × 16 × 256. 
The first up-sampling layer increases the number of data points in the 
first direction by a factor of 5 while for the second direction they are 
doubled, leading to the first convolution layer with leaky ReLU activa-

tion. Four up-sampling and convolution layers follow, where the feature 
dimension is halved, and the other two directions are doubled until the 
output size is reached. The last convolution layer that reduces the 16 
features to the pressure and friction distributions has a linear activation. 
In the actual implementation, before each convolution, an additional 
ad-hoc implemented layer is computed to enlarge the data and ensure 
periodicity. This step is very important from a physical point of view 
because it guarantees that there are no discontinuities over the airfoil 
and also that the start and the end of two cycles are coincident. In Ten-

sorFlow, the convolution layers are applied to the extended data with 
padding equal to valid. In a general setup, where the flow time his-

tory does not present any periodicity, the current approach can still 
be leveraged. The only difference lies in using a padding same for the 

time direction, namely the first and last values at the data boundaries 
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Fig. 2. Influence of 𝛽 hyperparameter on the mean percentage error for 𝐶𝑙 , 
𝐶𝑑 , and 𝐶𝑚. Training dataset is 216-point Halton and test dataset is 100-point 
Random.

are copied evenly. This is the first difference with respect to the other 
two frameworks that are not able to grant a physical meaning to the 
predicted data. Another advantage of having the 𝐶𝑝 and the 𝐶𝑓 dis-

tributions is the possibility of computing the moment coefficient with 
respect to an arbitrary point in the space that is not possible when di-

rectly learning the quarter-chord value. When the input includes the 
mean pitch angle, the actual input has size equal to 4 but all the other 
settings do not change.

Lastly, we present the AA-CNN in which the attention mechanism is 
added. It presents two differences with respect to the previous architec-

ture. The first consists in the inclusion of three attention layers after the 
first convolution layers. The second, which is related to the memory re-

quirements imposed by the attention computation, is the modification 
of the first up-sampling layer that only doubles the data points in the 
first direction. The fourth one, instead, now increases the first direction 
by a factor of five to complain with the output size. Going into the de-

tails of the attention layer, it consists of three 1x1 convolution layers to 
build the query, key, and value arrays used in the 16-head multi-head 
attention layer. After, the attention features are concatenated with the 
input and a final 1x1 convolution is performed to half the features.

The loss function  is the same in all the frameworks and it is the 
mean squared error (MSE).

MSE = 1
𝑁

𝑁∑
𝑖=1

(�̂�𝑖 − 𝑦𝑖)2, (1)

where 𝑁 is the number of data points, �̂�𝑖 is the predicted value for the 
𝑖-th data point, and 𝑦𝑖 is the ground truth value for the 𝑖-th data point.

For the CNN, an additional loss function has been implemented and 
tested trying to incorporate more physical information in the fourth 
model. Indeed, to build a robust model, only the data-driven approach 
is usually not sufficient and physics information have to be included in 
the model [36]. The objective is to include the mean squared force and 
moment coefficient error, MSECl ,Cd ,Cm

, in the loss function  in addition 
to the MSE presented before MSECp ,Cf

.

 = MSECp ,Cf
+ 𝛽 ⋅ MSECl ,Cd ,Cm

(2)

The hyperparameter 𝛽 controls the influence of the coefficient error in 
the total loss. The optimal value for 𝛽 was found to be equal to 1 ⋅ 10−4
in order to have a comparable error from the two contributions to the 
total loss function. A complete analysis on the influence of 𝛽 is reported 
in Fig. 2. The shape of the airfoil and the mesh point positions are given 
as input to the neural network to compute the aerodynamic loads. The 
two models utilizing the CNN framework are distinguished based on 
their loss functions. The model employing the Mean Squared Error loss 
is referred as CNN MSE, while the one incorporating the improved loss 
function is designated as CNN Coefficients.

The AdamW algorithm [37] is employed, featuring a variable learn-
4

ing rate that starts at 10−4 and progressively decreases through a co-
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Table 2

NVIDIA A100 training and inference wall-time. Per-

formances are evaluated with the 216-point Hal-

ton dataset for training and the 100-point random 
dataset for inference. [CFD] is the equivalent num-

ber of CFD simulations.

Framework Train time Inference time

[ℎ] [CFD] [𝑠]

MLP single 0.24 0.11 2.45 ⋅ 10−3
MLP all 0.32 0.15 3.37 ⋅ 10−3
CNN MSE 3.82 1.74 1.10

CNN Coefficients 4.01 1.82 1.10

Table 3

NVIDIA A100 training and inference wall-time. 
4-dimensional input setup performances are 
evaluated with the 512-point Halton dataset for 
training and the 64-point random dataset for in-

ference. Improved based loss is used. [CFD] is 
the equivalent number of CFD simulations.

Framework Train time Inference time

[ℎ] [CFD] [𝑠]

CNN 9.11 4.14 1.11

AA-CNN 12.24 5.56 1.32

sine decay to 10−11. The training duration spans a maximum of 2 000 
epochs. The complete training datasets are employed, while validation 
is performed on the random datasets. Training and inference wall-time 
for the analyzed frameworks is summarized in Table 2. The perfor-

mances are evaluated using the 216-point Halton dataset for training 
and the 100-point random dataset for inference. A single NVIDIA A100 
SXM4 40GB GPU is used in all the computations. Note that the improved 
loss function slightly increases the training time but does not influence 
the inference time still allowing a fast prediction. For the full setup, 
the wall-time is reported in Table 3. On the contrary of the previous 
consideration, the addition of the attention layers increases of around 
20% the inference time. Finally, the training time is compared to the 
average time to compute a single CFD simulation using eight Intel Xeon 
Gold 6248 CPU @2.50GHz cores which corresponds to ≈ 2.2 hours. Fo-

cusing on the comparison between the computational time required to 
build the ROM, namely generate the dataset and training the NN, and 
the average CFD simulation, it can be noted that the ROM is convenient 
if the number of the evaluations is larger than the simulations used in 
the training dataset plus ≈ 5 equivalent simulations to train the NN. 
This number is in the order of one to few hundred.

4. Results

This section delves into the performance of the presented neural 
network architectures in predicting the loads experienced by airfoils 
undergoing dynamic stall during pitching motion. It highlights both the 
strengths and the weaknesses of these networks comparing the results 
with high-fidelity numerical simulations. The analysis focuses on how 
the networks can handle unseen data and maintain accuracy across dif-

ferent operating conditions. Firstly, the results related to the effects of 
the quasi-random sequences are investigated using the different neural 
network frameworks. Finally, the analysis of the four-dimensional setup 
is presented using the best practices defined in the lower dimensional 
space.

The prediction error of an entire dataset is computed as the aver-

age error of the predicted coefficients per each simulation as reported 
in Equation (3). In detail, 𝑛𝑠 is the number of simulations in the dataset 
and 𝜀𝑠2 is the squared error of the single snapshot per each coefficient. 

The error of the single simulation is derived as in Equation (4) in which 
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𝑛𝑡 is the number of time steps, namely 3 600, �̂�𝑠,𝑡 is the predicted co-

efficient at time 𝑡 in simulation 𝑠, and 𝑥𝑠,𝑡 is the reference value. The 
reason for summing up the squared errors and dividing them by the 
sum of the reference values is linked to the occurrence of values close 
to zero. Indeed, when the ground truth value is close to zero, such as 
the 𝐶𝑚, a small discrepancy in the predicted value can lead to large 
relative errors giving a wrong estimation.

�̄� =

√∑𝑛𝑠
𝑠=1 𝜀s

2

𝑛𝑠
(3)

𝜀s
2 =

∑𝑛𝑡
𝑡=1

(
�̂�𝑠,𝑡 − 𝑥𝑠,𝑡

)2
∑𝑛𝑡

𝑡=1 𝑥𝑠,𝑡
2

(4)

The mean error provides overall performance of each framework. Since 
we are also interested in the performance for specific operating con-

ditions, we investigated also some specific test cases of light and deep 
dynamic stall conditions.

4.1. Three-dimensional dataset and neural network framework analysis

Focusing on the preliminary study limited to the three-dimensional 
input, two dynamic stall test cases have been selected from the 100-

point random dataset. The light dynamic stall is characterized by an 
oscillation amplitude of 8.62◦, a 18.96 m/s free-stream velocity and 
a reduced frequency of 0.157. Deep dynamic stall, instead, occurs for 
an oscillation amplitude of 14.99◦, a 15.71 m/s free-stream velocity 
and a reduced frequency of 0.105. In Fig. 3, the mean lift, drag, and 
moment coefficient relative errors are compared for all the analyzed 
frameworks with all the training and test datasets. The following two 
figures, 4 and 5, show the influence of the point distribution of the 
training datasets maintaining the number of points constant for the 
aerodynamic loads in the selected test cases. Figs. 6 and 7, instead, 
investigate the effect of the point number for the Halton sequence for 
the same test cases.

Focusing on the MLP Single neural network, the first aspect to notice 
is the sensitivity to the point distribution. Indeed, on the uniform grid 
the 𝐶𝑚 error is not acceptable and it is several times larger than the 
other datasets. Moreover, for the same low discrepancy sequence, in-

creasing the number of training points does not result in improving the 
accuracy, since the error is not following any particular trend. Consid-

ering now the predicted coefficients for the chosen test cases we can see 
that the trends are well captured for lift and drag. The pitching moment, 
instead, is in good agreement with the reference data only with the Hal-

ton and Latin hypercube datasets, even if for the deep dynamic stall case 
is completely missing the oscillations in both upstroke and downstroke 
phases. The framework suffers particularly in the 𝐶𝑚 prediction. One of 
the reasons leading to large mean error is that the predicted curve is 
not a closed loop suggesting that the underlying physics is not learned. 
Another confirmation that the present architecture is not suitable to 
predict the unsteady loads is that increasing the number of neurons or 
layers does not improve the accuracy of the prediction.

The MLP All neural network outputs the force ad moment coeffi-

cients over an entire cycle. According to the mean errors reported in 
Fig. 3, the model better catches the physics of the problem. In partic-

ular, it is less sensitive to the point distribution used for the training 
and also the uniform grid distribution shows errors comparable to low 
discrepancy ones. Furthermore, enlarging the training datasets results 
in monotonically decreasing errors as expected. Despite the promising 
properties shown in the mean error map, when model predictions are 
analyzed, an additional issue is identified. Especially the drag and mo-

ment curves show spurious non-physical oscillations at low angle of 
attack making the model not suitable for the applications. Including ad-

ditional layers in the framework and/or a larger number of neurons do

not remove the oscillations. This behavior highlights that the NN archi-

tecture plays a crucial role in the prediction error and that the number 
5

of parameters is secondary.
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The last neural network framework is based on convolution layers. 
The outputs of this framework are the 𝐶𝑝 and 𝐶𝑓 distributions. The re-

quired error convergence property increasing the number of points in 
each dataset and the low sensitivity to sequence type are satisfied as 
depicted in the error map. Looking closely in this regard, adding the 
loss based on the load coefficients further improves the performance. 
Even when the uniform grid distribution is adopted the error is com-

parable to the other distributions, confirming the necessity of include 
as many physical relations as possible in the model. The mean error in 
the CNN Coefficient framework is always lower than the CNN MSE one. 
Furthermore, the error always goes down when using a larger dataset 
with the more sophisticated loss. On the contrary, the CNN MSE has 
a peak in the mean error for 100-point Latin hypercube and 216-point 
Sobol’ sequences. The Halton sequence is the one that reaches the low-

est global error, but at the same time it is the one that has the largest 
error when using less points. The Latin and Sobol’ ones, instead, present 
a more limited error variation while reaching satisfying performances 
for 100 and 216 points. Overall, the Latin hypercube grants better pre-

diction quality with respect to Sobol. To further remark the effect of 
physics information in the model, in Figs. 4 and 5 it can be noted how 
the curves for all the three coefficients are closer to the actual solution 
and the differences of the datasets are less noticeable. A common issue 
is the ability to capture the instabilities near the trailing edge during 
the upstroke phase due to the transitioning of the boundary layer from 
laminar to turbulent. This behavior is mostly due to the up-sampling op-

erations of the flow field that tends to smear out rapid oscillations. The 
other region where the error is larger coincides with the pressure peaks 
especially for the secondary vortex that involves highly non-linear phe-

nomena and reaches 𝐶𝑝 values close to the dynamic stall vortex that 
detaches first. A peculiarity that seems in contrast to what has been 
presented until now is the extremely low error for the uniform grid 
in the deep dynamic stall case. However, this behavior is due to an-

other effect, that is the distance between the predicted point and the 
closest training point in the flight envelope. Specifically, for this case, 
the closest training point is located at 𝛼𝑠 = 15◦, 𝑉∞ = 16 m/s, and 
𝑘 = 0.1 which is particularly near to the deep dynamic stall test con-

ditions.

4.2. Four-dimensional setup evaluation

Considering the complete input parameter space defined by four 
variables, a comparison is made between the coefficient errors of the 
standard CNN and AA-CNN models using the loss based on the load 
coefficients. Both architectures demonstrate the potential as robust al-

ternatives for load prediction of an oscillating profile encompassing 
regimes from small oscillations to deep dynamic stall.

Fig. 8 reports the trend of the mean error �̄�, as presented in the 
three-dimensional case, for the loads on the profile as a function of the 
training dataset size. The results demonstrate that the AA-CNN consis-

tently achieves lower average errors compared to the standard CNN. 
This distinction is particularly evident for drag coefficient prediction, 
where the error reduction is in the 2 − 3× range. Drag is inherently 
sensitive to both pressure and wall shear stress distributions. For lift 
and moment coefficients, the observed difference is less pronounced, 
remaining within the 20 − 50% range. Notably, the 𝐶𝑚 error exhibits a 
larger magnitude compared to the previously studied three-dimensional 
input scenario. This can be attributed to the inclusion of small oscilla-

tions at low-incidence angles, which generates large and high-frequency 
oscillations in the loads, which were not included in the prior operating 
condition set.

Fig. 9 offers a comprehensive investigation of this phenomenon 
visualizing the history of the loads across the entire pitching cy-

cle. A crucial differentiating factor between the models lies in the 
presence or absence of spurious oscillations within the reduced-order 
model representation. The inclusion of the attention mechanism en-
ables the AA-CNN to effectively extract the mean load trend. Con-
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Fig. 3. Mean lift, drag, and moment coefficient error (Equations (3), (4)) comparison for the analyzed NN frameworks using different datasets for training and 
testing.
versely, the CNN retains the inherent oscillations in the data; however, 
their amplitude and frequency exhibit significant deviations from the 
reference solution. This discrepancy translates into a larger overall 
mean error.

Shifting focus to a light dynamic stall test case, the performance of 
both NNs is similar. Fig. 10 shows the loads as in the previous case. 
Notably, both architectures achieve excellent reconstruction capabili-

ties, effectively replicating the high-fidelity simulation data. A closer 
examination of the results reveals that the attention-based NN exhibits a 
superior capability in reproducing the peak load values. Furthermore, a 
6

key strength of the AA-CNN lies in its ability to generate a near-identical 
solution using a training dataset comprised of only 64 data points. This 
highlights the model’s data efficiency.

Finally, Fig. 11 depicts the deep dynamic stall conditions, where 
non-linear phenomena play a significant role. The reconstruction er-

ror remains substantial when the training dataset is limited to 64 
points. However, a significant reduction is observed upon increasing 
the dataset size to 256 points. In this case, the advantage of the at-

tention mechanism becomes more pronounced. The AA-CNN demon-

strates a superior ability to capture the pressure peaks near the pro-

file’s nose, surpassing the performance of the standard CNN frame-
work.
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Fig. 4. Influence of quasi-random training sequence type on NN framework performances for a light dynamic stall example.
7

Fig. 5. Influence of quasi-random training sequence type on NN framework performance for a deep dynamic stall example.
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Fig. 6. Influence of Halton training sequence size on NN framework performances for a light dynamic stall example.
8

Fig. 7. Influence of Halton training sequence size on NN framework performances for a deep dynamic stall example.
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Fig. 8. Mean lift, drag, and moment coefficient error (Equations (3), (4)) comparison for the CNN and AA-CNN frameworks using different dataset sizes for training.

Fig. 9. Comparison of the force and moment coefficients for CNN and AA-CNN frameworks for a small oscillation test case.

Fig. 10. Comparison of the force and moment coefficients for CNN and AA-CNN frameworks for a light dynamic stall test case.
5. Conclusions

This work presents a robust framework to fast predict aerodynamic 
loads for sinusoidal pitching airfoils incurring in light and deep dy-

namic stall. A data-driven reduced order model, based on deep neural 
9

networks and high-fidelity simulations, is build to accurately describe 
dynamic stall phenomena. Five different models, constructed upon four 
different deep learning frameworks, have been presented. A loss func-

tion that incorporates the computation of lift, drag, and moment co-

efficients in the network has been implemented, highlighting the ad-

vantages of including physical knowledge in the model. Moreover, a 

periodic condition has been implemented in the convolution layers to 
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Fig. 11. Comparison of the force and moment coefficients for CNN and AA-CNN frameworks for a deep dynamic stall test case.
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Fig. A.12. Neural network framework representations. Input parameters are: 𝛼𝑠 , 𝑘, and 𝑉∞. When present, 𝑡 represents the time instant over the pitching period.
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Fig. A.13. Neural network framework representation. Input parameters are: 𝛼 , 𝛼 , 𝑘, and 𝑉 .
ensure the physical meaning of the 𝐶𝑝 and 𝐶𝑓 outputs. Indeed, peri-

odicity grants that there are no discontinuities in the distributions over 
the airfoil and also that the aerodynamic loads are continuous between 
subsequent cycles. Furthermore, an extensive analysis of the training 
dataset point distributions has been performed. A uniform grid distri-

bution is compared against low discrepancy sequences, showing that 
the Halton sequence is the one that closely predicts the reference loads.

After the preliminary analysis using the three-dimensional operat-

ing condition space where the mean pitch angle is kept constant, we 
investigated the model in a possible real scenario in which all the in-

put parameters are present. In this framework, the convolutional neural 
network, coupled with the improved loss function and possibly with 
the attention mechanism, showed improved performance in predicting 
aerodynamic loads for a broad range of operating conditions. Despite 
the use of incompressible CFD solutions, the properties of the presented 
framework are still valid for a full compressible setup, and the present 
models are candidates to fill the gap of next-generation reduced order 
models for dynamic stall phenomena.
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Appendix A. Neural network architectures

A representation is reported for the neural network architectures 
employed in this work. In detail, Figs. A.12a and A.12b represent 
the two MLPs while, the two CNN architectures are schematized in 
Fig. A.12c and A.13a.
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