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ABSTRACT
Fabricating an integrated circuit is becoming unaffordable for many

semiconductor design houses. Outsourcing the fabrication to a

third-party foundry requires methods to protect the intellectual

property of the hardware designs. Designers can rely on embedded

reconfigurable devices to completely hide the real functionality of

selected design portions unless the configuration string (bitstream)

is provided. However, selecting such portions and creating the

corresponding reconfigurable fabrics are still open problems. We

propose ALICE, a design flow that addresses the EDA challenges of

this problem. ALICE partitions the RTL modules between one or

more reconfigurable fabrics and the rest of the circuit, automating

the generation of the corresponding redacted design.

1 INTRODUCTION
Hardware Intellectual Property (IP) protection is becoming one

of the most important concerns during Integrated Circuit (IC) de-

sign and manufacturing [7]. Due to the globalization of the supply

chain, more semiconductor design houses are forced to outsource

IC fabrication to third-party foundries to keep the costs sustainable.

However, rogue employees can steal the IC design and make illegal

copies [15]. Design houses are using protections like watermarking,

split manufacturing, and logic locking to protect the critical parts of

their designs [7]. All these methods have their limitations: water-

marking is only a passive method [1]; split manufacturing requires

advanced manufacturing skills [11], and logic locking is challenged

by a broad range of attacks [15, 18], especially when the attacker

can access a working chip (called oracle).

FPGA redaction is a novel, promising technique that aims to

thwart reverse engineering attacks by exploiting the flexibility of

reconfigurable devices. Critical parts are mapped on and replaced

by specific reconfigurable blocks (called embedded FPGAs - eFP-

GAs) with a two-fold goal: (1) during fabrication, reconfigurable

devices can implement any arbitrary functions, without reveal-

ing their intended functionality; (2) during execution, they can be

configured to implement the correct functionality by classic FPGA

programmingmethods. Figure 1 shows an example, where a module

is replaced by a custom eFPGA fabric. Inside, each block represents

a Configurable Logic Block (CLB). Modern FPGA specialization
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Figure 1: FPGA redaction flow. Criticalmodules are replaced
with custom eFPGA implementations.

tools, like OpenFPGA [19] and FABulous [8], allow designers to

start from a HDL module and generate the corresponding soft eF-

PGA IP that can be integrated and synthesized with the rest of the

chip. The FPGA-redaction resilience to SAT attacks comes from a

large number of “key bits” to be recovered (i.e., the entire eFPGA

configuration bitstream) and a more complex I/O relationship in

the eFPGA fabric [4, 10]. Custom eFPGAs have smaller overhead

than commercial, off-the-shelf ones [4, 14].

FPGA redaction requires the designers to perform several steps.

First, it requires them to select the best modules to be redacted from

both security and design viewpoints. Then, it requires the creation

and integration of the corresponding custom eFPGA fabric. These

two problems are strictly interdependent and often application-

dependent. For these reasons, designers currently solve these by

hand, potentially leading to sub-optimal solutions [6, 14].

This paper focuses on the EDA problem of partitioning RTL mod-

ules between eFPGA and ASIC and creating the proper eFPGA fabrics

to implement the redacted modules. While modules implemented

in ASIC can be retrieved by the malicious foundry, the flexibil-

ity of eFPGAs protects the redacted modules. We propose ALICE
(Automatic module seLectIon for seCurity-aware EFPGA redac-

tion), a complete flow to identify the modules to be redacted
and generate the corresponding soft eFPGAs. Starting from

the set of candidate redaction modules, ALICE performs a pro-

gressive refinement of the solution by filtering out inadmissible

modules, clustering the remaining ones to enable the creation of

larger eFPGAs, and characterizing them in terms of hardware cost

and security resilience to select the best final implementation. Af-

ter presenting the background of our work (threat model, eFPGA

design flow, and related work), we present our main contributions:

• we refine the list of modules to be redacted (Section 4);

• we group independent modules into clusters (Section 5) and we

characterize the corresponding eFPGA fabric (Section 6);

• we evaluate our automatic creation of FPGA-redacted designs

on common benchmarks for hardware IP protection (Section 7).

Designers can combine functional characteristics (e.g., modules that

affect selected outputs), structural characteristics (e.g., maximum

number of I/O pins), and eFPGA parameters (e.g., maximum number

of eFPGA instances) to guide the redaction process.

https://doi.org/10.1145/3489517.3530543


DAC ’22, July 10–14, 2022, San Francisco, CA, USA C. Muscari Tomajoli, L. Collini, et al.

2 BACKGROUND
2.1 Threat Model
We assume the attackers have access to the chip design, can isolate

the eFPGA fabric, and have access to an oracle, i.e., a fully-scanned

and unlocked design. In this way, they can observe input/output

behaviors of this part to apply SAT-based attacks [16]. The attack-

ers have to retrieve the correct bitstream to restore the real func-

tionality. This is the typical threat model for recent eFPGA redac-

tion works [4, 10]. In this scenario, the eFPGA security comes
more from the fabric parameters and way the designer uses
the fabrics rather than the specific redacted modules them-
selves [3, 4]. We also assume the designers will use state-of-the-art

eFPGA parameters from the security viewpoint [3].

2.2 Custom eFPGA Design Flow
Reconfigurable devices can implement any arbitrary function after

fabrication by simply changing the configuration bitstream. This is

a key feature for hardware IP protection. Designers can integrate

the FPGAs as pre-existing blocks in ASIC designs, while their con-

figuration is done only by the final user. The function implemented

on the FPGA is thus unknown to the foundry.

Custom eFPGAs can be created with open-source tools, like

OpenFPGA [19] or FABulous [8]. Such frameworks allow the au-

tomatic customization of FPGA architectures, which are tailored

to specific modules with a complete Verilog-to-bitstream flow. For

example, Figure 2 shows the OpenFPGA-based customization flow

that can be used for eFPGA redaction [4]. OpenFPGA starts from

an XML specification of the fabric parameters and produces the

corresponding fabrication-ready eFPGA IP [4, 19]. The modules to

be redacted will drive the customization of the eFPGA. Using open

source frameworks offers additional degrees of freedom to the de-

signer, where one can tune many parameters, as shown in [3]. This

will allow the user to come up with architectures that are most suit-

able for the given design. Thanks to a more tight integration of the

soft eFPGA modules, the resulting System-on-Chip architectures

can significantly reduce area and performance overheads [10, 14].

In this work, we explore an FPGA architecture composed of

Configurable Logic Blocks (CLBs) that are built with four 4-input

LUTs, as proposed and evaluated in several recent works [4, 8, 19].

However, we can support any fabric configuration since our work

is more focused on how to use them rather than in their generation

and security evaluation. Indeed, we can support even off-the-shelf

fabrics to be later integrated into the final chip.

2.3 Related Work
Hardware IP protection is a hot topic in recent years. Researchers

proposed many methods, especially at low levels of abstraction

(i.e., on gate-level netlists or physical designs, or directly during

fabrication [2, 13]. For example, logic locking assumes the attacker is

not able to retrieve the correct functionality thanks to the protection

of a “secret”, the locking key [5]. Despite many advances [20],

SAT attacks [16] can be used to identify the I/O relationships and

retrieve key bits when an activated chip is available, challenging

the effectiveness of logic locking [15, 18].
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Figure 2: ALICE uses an eFPGA design flow based on OpenF-
PGA [19]. The eFPGA netlist is integrated with the rest of
the chip, while the configuration bitstream is kept secret.

FPGA redaction is a recent technique that aims at implementing

selected modules with soft or hard eFPGAs that are included in the

design. The key idea is that (1) attackers in the foundry have no

access to the configuration of the bitstream that can implement

any possible functionality, while (2) end-user attackers that have

access to an activated chip cannot retrieve the correct bitstream. In

this case, the “secret” corresponds to the configuration bitstream.

However, the design of FPGA-redacted ICs is complex, especially

in the module partitioning between eFPGA and ASIC.

While recent studies focused on VLSI challenges of eFPGA in-

tegration [9], the selection of the modules to be redacted is still

manual effort or requires at least a reference design. In the former

case, designers have to identify the modules to be protected, for

example because they are part of the core business [10]. Designers

may want to use FPGA redaction to protect the results of selected

outputs with FPGA redaction without knowing the critical compo-

nents. In the latter case, two or more designs are compared with

each other to identify common parts (which are assumed to be

common to many other designs) and different parts (which are the

unique parts of the given design) [6]. However, designers may not

have an alternative version of the same design to be compare with.

Recent studies on the security of FPGA redaction show that the

resilience to SAT attacks is correlated more with the eFPGA fabric

configuration and its utilization rather than the implemented mod-

ule(s) [3, 4, 10]. For this reason, we focusmore on the selection of the

functionality to be redacted (together with its EDA implications),

assuming the fabric configuration as given and “secure”, and
aiming at maximizing the fabric (both I/O and CLB) utilization.

ALICE performs the automated FPGA redaction of a given
design, identifying the modules that have impact on selected out-

puts and enabling the possibility of grouping them into the same

eFPGA to maximize its utilization. ALICE also supports multi-
ple eFPGA instances to give more flexibility to the designer.

3 ALICE DESIGN FLOW FOR EFPGA
REDACTION

Our redaction flow is shown in Figure 3. It starts from the RTL

description of the design to be redacted in Verilog
1
and a set of

parameters for the flow (in a custom YAML configuration file). Such

parameters include eFPGA fabric configurations (e.g., as specified in

1
Limitations are only due to the HDL parser that we use. Supporting another HDL

language (e.g., VHDL) only requires the proper parser.
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Figure 3: ALICE flow for automatic eFPGA-based redaction.

the OpenFPGA configuration file), themaximumnumber of eFPGAs

to be instantiated, and the maximum number of I/O for each of

them. The number of I/O pins is also a rough indication of the type

of eFPGA that the designer aims at using. For example, a 4×4 fabric
configuration has no more than 64 I/O pins [4, 10]. Currently we

support (one or more) eFPGAs with the identical fabric architecture

and maximum number of used I/O pins. While we contend that this

setup will create a more regular physical design, adding support in

the future for eFPGAs with different configurations is possible.

ALICE focuses on how to partition an RTL design and generate

the corresponding eFPGA-enhanced IC with three main phases:

module filtering, cluster identification, and eFPGA selection.
During module filtering, we analyze the design to identify candidate

redaction modules, while discarding the ones that do not satisfy

specific constraints. In the second phase, the candidate modules

are clustered into candidate module clusters. Again, solutions that

do not satisfy specific constraints are discarded. The result of this

phase is a set of candidate clusters that are then characterized

by running the flow for the creation of the corresponding eFPGA

fabrics. We finally apply an algorithm to select the eFPGAs that

maximize our objectives (i.e., minimum hardware overhead and

maximum security) with no overlapping sets of redacted modules.

The resulting redacted RTL description is reproduced alongwith the

fabrics of the selected eFPGAs. The final output is the description

of the final system ready for ASIC design. ALICE is a modular

flow that can be extended with additional criteria for selection. It

can also interface with other eFPGA tools for characterization and

include further metrics for security assessment, if needed.

Algorithm 1: ALICE module filtering

Input: Input RTL design 𝐷 , eFPGA parameters 𝑃 , list of selected outputs𝑂

Output: Set of candidate redaction modules 𝑅

1 𝑀 ← ExtractInitialModules(𝐷) // Analyze input RTL design.

2 𝑆 ← ∅
3 foreach𝑚 ∈ 𝑀 do
4 𝑆 [𝑚] ← 0

5 end
6 foreach 𝑜 ∈ 𝑂 do
7 𝑇 ← IdentifyModules(𝑀,𝑜) // Compute modules 𝑇 affecting 𝑜

8 UpdateScore(𝑇, 𝑆) // Increment scores of modules 𝑇

9 end
10 𝐹 ← RankAndSelect(𝑀,𝑆) // Select most relevant modules

11 𝑅 ← ∅
12 foreach 𝑓 ∈ 𝐹 do
13 if CheckParameters(𝑓 , 𝑃 ) then
14 𝑅 ← 𝑅 ∪ {𝑓 }
15 end
16 return 𝑅

4 MODULE FILTERING
This phase analyzes the input design to determine the list of RTL

modules that must be considered for redaction. Algorithm 1 shows

the pseudocode of our procedure. Our algorithm starts from the

input design 𝐷 , the list of eFPGA parameters 𝑃 (e.g., maximum

number of I/O pins), and the list of selected output𝑂 . The designers

can provide a list of outputs that they want to “protect”. The algo-

rithm then applies functional and structural criteria to obtain the

final set 𝑅 of candidate redaction modules. Functional criteria aim

at identifying modules that are more important for FPGA redaction

from the functionality viewpoint. Structural criteria aim at iden-

tifying modules that can be effectively implemented with eFPGA,

excluding the ones that would lead to an unfeasible solution.

We list the modules𝑀 of the input design𝐷 (line 1), assigning an

initial zero score for each of them (lines 3-5). We create the dataflow

graph of the entire RTL design and, for each selected output, we

increase the scores of the modules that have a direct impact on it

(lines 6-9). We select the top-score modules and add them to the

list 𝐹 of functionally-relevant modules for redaction (line 10).

In the next stage, we apply structural criteria to each functionally-

relevant module for redaction (lines 12-15). We check whether each

module is compatible with the given eFPGA parameters (line 13).

For example, we compute the number of I/O pins of the module

to check if it fits into the potential eFPGA fabric. If the module

satisfies the constraints, it can be added to the final list 𝑅 (line 14).

The list 𝑅 represents feasible modules that affect a relevant num-

ber of (selected) outputs and can be clustered or implemented alone

in an eFPGA (depending on their size). This phase can be easily

extended with more module-level filtering criteria.

5 CLUSTER IDENTIFICATION
Given the set of candidate modules 𝑅, we find all valid combinations

(clusters) that can be redacted onto an eFPGA. A cluster can be

composed of a single module (single-module redaction) or a set

of independent modules (multi-module redaction). In both cases,

the cluster is valid if the corresponding eFPGA implementation is

admissible (i.e., it respects the given designer’s constraints).

Algorithm 2 shows the pseudo-code of the procedure used in

ALICE. It performs a fixed-point analysis to identify the set 𝐶 of



DAC ’22, July 10–14, 2022, San Francisco, CA, USA C. Muscari Tomajoli, L. Collini, et al.

Algorithm 2: ALICE cluster identification

Input: Set of candidate redaction modules 𝑅, eFPGA parameters 𝑃

Output: Set of candidate module clusters𝐶

1 𝐶 ← ∅
2 foreach 𝑟 ∈ 𝑅 do
3 𝐶 ← 𝐶 ∪ {𝑟 }
4 end
5 𝐹𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒

6 do
7 𝐷 ← ∅
8 foreach 𝑐1 ∈ 𝐶 do
9 foreach 𝑐2 ∈ 𝐶 do
10 if 𝑐1 ≠ 𝑐2 then
11 𝑁 ← 𝑐1 ∪ 𝑐2
12 if 𝑁 ⊄ 𝐷 ∧ 𝑁 ⊄ 𝐶 ∧ CheckParameters(𝑁, 𝑃 ) then
13 𝐷 ← 𝐷 ∪ 𝑁

14 end
15 end
16 end
17 end
18 𝐹𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒

19 if 𝐷 ≠ ∅ then
20 𝐶 ← 𝐶 ∪𝐷
21 𝐹𝑙𝑎𝑔← 𝑇𝑟𝑢𝑒

22 end
23 while Flag
24 return𝐶

all candidate module clusters. Each of them is meant to fit into a

single eFPGA. We initialize the set𝐶 with clusters composed of the

single modules identified in the previous phase (lines 2-4). We then

proceed iteratively to create new and larger clusters (lines 6-23).

This part recombines each pair of admissible clusters (lines 8-17).

If the cluster was not already identified in the previous iterations

and it respects the input constraints (line 12), it is added to the

list of current clusters (line 13). Indeed, each cluster is analyzed

with the same structural criteria used for the modules. For example,

in the case of multi-module redaction, the number of I/O pins is

the aggregated number of the I/O pins of the single modules. The

cluster is admissible if it respects the limit given by the designer. At

the end of each iteration, new clusters (line 19) are added to the set

𝐶 and the procedure restarts. We terminate our algorithm when,

after recombining the current clusters, it is not possible to create

new ones. Each element of 𝐶 is a candidate module cluster.

6 EFPGA SELECTION
Each candidate module cluster in 𝐶 can be implemented by an

eFPGA. The set of resulting candidate implementations must be

now characterized, ranked, and selected to determine the final solu-

tion. In this phase, we evaluate all candidate clusters to determine

whether the corresponding eFPGA fabrics are admissible, determine

all feasible solutions, and select the best and final one.

Algorithm 3 shows the pseudocode used in ALICE. First, we

generate the top module corresponding to each candidate cluster

and run the selected eFPGA customization flow (i.e., OpenFPGA

in our case) on it (lines 2-7). In the case of multi-module redaction,

we create a top Verilog module that instantiates all independent

modules. OpenFPGA returns the corresponding fabric if the design

is feasible and an error otherwise (e.g., when the cluster modules

cannot be implemented for any reason). Since the designer can

specify the range of permitted fabric sizes, we also check that the

Algorithm 3: ALICE eFPGA selection

Input: Set of candidate module clusters𝐶 , eFPGA parameters 𝑃

Output: Solution 𝑠𝑡
1 𝐹 ← ∅
2 foreach 𝑐 ∈ 𝐶 do
3 𝑓 ← CreateEFPGA(𝑐, 𝑃 )
4 if IsValid(𝑓 ) then
5 𝐹 ← 𝐹 ∪ 𝑓

6 end
7 end
8 𝑇 ← ComputeScore(𝐹 )
9 𝑊 ← {} // Initialize with empty solution

10 𝑆 ← ∅
11 foreach 𝑤 ∈𝑊 do
12 foreach 𝑓 ∈ 𝐹 do
13 𝑐 ← 𝑓 ∪ 𝑤

14 if isValidSolution(𝑐) then
15 if isFinal(𝑐) then
16 𝑆 ← 𝑆 ∪ 𝑐
17 end
18 else
19 𝑊 ←𝑊 ∪ 𝑐
20 end
21 end
22 end
23 end
24 𝑆 ← 𝑆 ∪𝑊 \ {}
25 𝑠𝑡 ← RankAndSelect(𝑆,𝑇 )
26 return 𝑠𝑡

resulting fabric is admissible (line 4). If so, the fabric is added to

the list 𝐹 of valid implementations (line 5). At this point, we give a

score to each fabric implementation (line 8). The score combines

information about I/O and CLB utilization as follows:

𝑇𝑓 = 𝛼 ·
𝑀𝑎𝑥𝐼𝑂𝑈𝑡𝑖𝑙 − 𝐼𝑂𝑈𝑡𝑖𝑙𝑓

𝑀𝑎𝑥𝐼𝑂𝑈𝑡𝑖𝑙
+𝛽 ·

𝑀𝑎𝑥𝐶𝐿𝐵𝑈𝑡𝑖𝑙 −𝐶𝐿𝐵𝑈𝑡𝑖𝑙𝑓

𝑀𝑎𝑥𝐶𝐿𝐵𝑈𝑡𝑖𝑙
(1)

where 𝐼𝑂𝑈𝑡𝑖𝑙𝑓 and 𝐶𝐿𝐵𝑈𝑡𝑖𝑙𝑓 represent the I/O and CLB utiliza-

tion, respectively, while 𝑀𝑎𝑥𝐼𝑂𝑈𝑡𝑖𝑙 and 𝑀𝑎𝑥𝐶𝐿𝐵𝑈𝑡𝑖𝑙 represent

the corresponding maximum values for all analyzed eFPGAs. In

this way, both contributions range between 0 and 1. 𝛼 and 𝛽 are two

user-defined parameters to balance the contributions. The score 𝑇

embeds information related to security resilience. Indeed, eFPGA

implementations with poor I/O utilization are more prone to at-

tacks because it is easier to identify stuck-at-0 outputs. Similarly,

fabrics with low CLB utilization have less logic to be (successfully)

recovered [3, 4]. We then use a branch&bound algorithm to enumer-

ate all possible eFPGA combinations that can be redacted together

(lines 11-23) and obtain the full set of solutions. In particular, we

start from an empty working solution (line 9) and, at each step, we

aim to add a new eFPGA implementation to each current working

solution (lines 12-22). A solution represents a set of eFPGAs with

no overlapping module instances. If the solution is final (i.e., it

reaches the maximum number of allowed eFPGAs or it redacts all

the admissible modules), it is added to the final set of solutions

(line 16). Otherwise, we keep it in the working list for further ex-

pansion (line 19). At the end of this phase, the set 𝑆 contains the

total set of admissible solutions. We now assign a score to each of

them. The score of a solution is the sum of the scores of its eFPGA

implementations, each of them obtained with Eq. 1. We rank the

set 𝑆 according to the score and the one with the highest score is

the best and final solution (line 25).
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Table 1: Characteristics of the selected benchmarks

Suite Design Modules Instances I/O pins

(#) (#) [min, max]

CEP

DES3 11 11 [12, 301]

FIR 5 5 [64, 384]

IIR 5 5 [66, 384]

SHA256 3 3 [38, 774]

IWLS05

SASC 2 3 [23, 28]

USB_PHY 3 3 [17, 33]

OpenROAD GCD 10 11 [6, 68]

The final solution includes a set of eFPGA implementations, each

of them containing a list of module instances to be redacted. At this

point, we need to regenerate the top module for ASIC implementa-

tion (Top ASIC module in Figure 3) where we replace the redacted

instances with the corresponding eFPGA instances. In case of multi-

module redaction, the different modules can be spread around the

design. In this case, we apply a dominator tree analysis on the mod-

ule hierarchy to identify the best point where to insert the eFPGA

instance and minimize wire length. Signals from the original in-

stances are re-routed to the corresponding eFPGA instance, while

its control signals are propagated to the top module. We also remap

the module signals to the eFPGA GPIO signals for correct connec-

tion. The updated design, along with the fabric netlists, can be given

to physical design tools.

7 EXPERIMENTAL EVALUATION
We implemented a prototype of ALICE in Python, using the PyVer-

ilog framework [17]. PyVerilog can parse the Verilog designs, ana-

lyze, and manipulate the resulting Abstract Syntax Tree (AST), and

regenerate the output files, including the ones fed into the OpenF-

PGA tool chain for eFPGA creation. Table 1 shows the benchmarks

that we used to validate ALICE. They are commonly used to eval-

uate RTL locking [12]. The table reports the number of modules

and the instances that can be redacted. We report the range of the

I/O pin count for such modules. For each design, we identified the

main output(s) to be given to the module filtering phase.

We configure ALICE to run with two configurations. In cfg1, we
set the maximum I/O pin count of the modules that can redacted

to 64 and the limit is two eFPGAs. In cfg2, the maximum I/O pin

count is 96 and the limit is one eFPGA. These experiments will

show how to use ALICE to implement more but smaller eFPGAs or

fewer but larger eFPGAs. We set 𝛼 = 𝛽 = 1 (Eq. 1) in both cases.

We run the OpenFPGA flow to implement the eFPGA fabrics

composed of 4-input fracturable LUTs, 4 logic elements for each

CLB, and 8 GPIOs for each I/O tile. Future work will explore these

eFPGA parameters. Each OpenFPGA run aims at identifying the

most suitable fabric (i.e., the one with minimum size) to implement

the given module(s). We finally validated the designs with Cadence

Genus 18.14 for logic synthesis and Cadence Innovus 18.10 for

physical design, targeting the NanGate 45nm Open Cell Library.

Table 2 shows the results that we obtained when running ALICE

on the benchmarks with the two configurations. In particular, we

report: the number of candidate redactionmodules (|𝑅 |), as obtained
aftermodule filtering, the number of candidate module clusters that

(a) cfg1: two 4×4 (52,629`𝑚2) (b) cfg2: one 5×5 (54,512`𝑚2)

Figure 4: Physical layouts of two GCD solutions with differ-
ent number of eFPGAs. The figures are in scale.

are created (|𝐶 |), as obtained after cluster identification, the total

number of valid eFPGA implementations, and the number of total

solutions (|𝑆 |), as obtained during eFPGA selection. We also report

the characteristics of the eFPGAs in the final solution, along with

the total number of redacted modules.

In all benchmarks except IIR in the first configuration, we are able

to find at least a feasible solution for the given eFPGA parameters.

In the case of IIR in cfg1, the smallest modules have already more

I/O pins (66 pins – see Table 1) than the maximum allowed I/O pin

count of the eFPGA (64 pins). Indeed, the filtering phase does not

produce any valid candidate redaction module and the flow cannot

continue. Increasing the number of I/O pins to 96 (cfg2) allowed us
to find a solution, showing how ALICE can guide the designer
in the identification of modules to be redacted.

DES3 and GCD present other interesting results. They have more

instances than the other benchmarks and ALICE is able to find sev-

eral candidate clusters in both configurations (more than 200 for

DES3 and at least 19 for GCD). Both GCD and DES3 have modules

with a high variance in the number of I/O pins. So we can create

multi-module redaction clusters when combining modules with

low and high number of I/O pins, but clusters having modules with

many I/O pins become invalid. Also, when using more eFPGAs

(cfg1), the number of possible cluster combinations and, in turn,

solutions grows significantly. The tool is then able to find solu-

tions with two smaller eFPGAs (two 8×8 for DES3 and two 4×4 for
GCD) or one larger eFPGA (14×14 for DES3 and 5×5 for GCD). The
designers can use these results in different ways. For DES3, they

can use the second implementation with a 14×14 eFPGA because

it redacts many more modules than the first case. For GCD, the

two solutions are equivalent from the area viewpoint (see data in

Figure 4) and have almost the same number of redacted modules.

The designer could be motivated to use the first solution because it

requires the attacker to recover more bit-streams. Figure 4 shows

screenshots of the two physical designs for GCD. This testcase is

small and so most of the chip is occupied by the eFPGAs. However,

the same modules will become less relevant when the component

is inserted into a larger system-on-chip (like PicoSoc in [4]). In all

cases, area/time/power overheads are in line with previous
studies on FPGA redaction [4, 10] as they are more related
to the fabric architectures and sizes rather than the specific
modules that are redacted.

Table 2 reports also the execution time of each phase. Note that

module filtering includes the time spent for dataflow analysis to
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Table 2: Results after running ALICE with two different configurations.

Configuration Design # Instances Module filtering Cluster identif. eFPGA selection

Time |𝑅 | Time |𝐶 | Time # valid |𝑆 | eFPGA size # redacted

eFPGAs modules

cfg1:
64 I/O pins

and 2 eFPGAs

DES3 11 289.21s 8 0.96s 218 905.12s 216 2,105 8×8, 8×8 4

FIR 5 0.17s 1 <0.01s 1 1.43s 1 1 6×6 1

IIR 5 1.36s 0 - - - - (n.a.)
1

- -

SHA256 3 12.87s 1 <0.01s 1 4.80s 1 1 12×12 1

SASC 3 0.20s 1 <0.01s 1 1.36s 1 1 7×7 1

USB_PHY 3 2.03s 2 <0.01s 3 5.99s 1 1 7×7 1

GCD 11 0.39s 9 0.01s 28 32.10s 19 76 4×4, 4×4 2

cfg2:
96 I/O pins

and 1 eFPGA

DES3 11 295.65s 8 1.17s 255 1,093.03s 255 245 14×14 8

FIR 5 0.15s 3 <0.01s 3 16.76s 3 3 6×6 1

IIR 5 0.29s 2 <0.01s 2 24.40s 2 2 15×15 1

SHA256 3 12.68s 1 <0.01s 1 4.83s 1 1 12×12 1

SASC 3 0.20s 1 <0.01s 1 1.34s 1 1 7×7 1

USB_PHY 3 1.92s 2 <0.01s 3 5.77s 1 1 7×7 1

GCD 11 0.45s 10 0.05s 70 91.28s 37 33 5×5 3

1
The module with the minimum I/O count already exceeds the maximum I/O size of the eFPGA (see Table 1).

determine which modules affect the selected outputs, while eFPGA

selection includes the time to run OpenFPGA on all valid solutions.

Dataflow becomes more complex as the complexity (and not nec-

essarily the number) of the RTL modules increases and is mostly

independent of the configuration parameters. For example, SHA256

takes more time than GCD even if it has only three modules. Run-

ning OpenFPGA is generally very fast, except for large eFPGA

instances. However, it is always in the order of tens of seconds in

the worst case (see IIR with two large solutions in cfg2). In gen-

eral, the time for the eFPGA selection phase grows linearly with the

number of solutions to be tested. In FIR, even if the solutions for

the two configurations are the same, the cfg2 analysis takes much

longer because there are more and larger eFPGA candidates (up to

19×19) that are later excluded because of low score.

8 CONCLUSIONS AND FUTUREWORK
This paper presented ALICE, a methodology for automatic eFPGA

redaction. ALICE analyzes the given RTL design, identifies the

modules that have an effect on selected outputs, and cluster them.

Such clusters are then characterized with an open-source FPGA

customization flow and we select the ones that can maximize se-

curity. We show that ALICE can identify different solutions based

on the given parameters (e.g., maximum number of I/O pins and

eFPGA instances). Our flow can be part of a larger exploration that

co-optimizes eFPGA parameters and module selection. It can also

include a pre-processing step to perform fine-grained redaction: It

can decompose large modules into smaller instances so that only

part of them are effectively redacted.
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