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Abstract

In bike sharing systems the quality of the service to the users strongly depends on the
strategy adopted to reposition the bikes. The bike repositioning problem is in general very
complex as it involves different interrelated decisions: the routing of the repositioning vehi-
cles, the scheduling of their visits to the stations, the number of bikes to load or unload for
each station and for each vehicle that visits the station. In this paper we study the problem
of optimally loading/unloading vehicles that visit the same station at given time instants of
a finite time horizon. The goal is to minimize the total lost demand of bikes and free stands
in the station. We model the problem as a mixed integer linear programming problem and
present an optimal algorithm that runs in linear time in the size of the time horizon.

Keywords: Bike Repositioning Problem; One station; Linear complexity; Optimal algo-
rithm

1 Introduction

In a Bike Sharing System (BSS) one of the most important decisions at the operational level is
the adoption of a bike repositioning strategy to mitigate the imbalances caused by user demand
over time and space. These strategies can be divided in user-based and vehicle-based. In the
former, reward systems are put in place to encourage a use of the system that counteracts the
imbalance. In the latter, one or more vehicles are deployed to move bike to and from stations to
rebalance the bike inventory. In this paper we consider the latter and focus on the operations of
a fleet of vehicles in a single station.

Vehicle-based bike repositioning strategies can be further classified as static or dynamic.
When a static bike repositioning strategy is adopted, the bike repositioning operations are per-
formed when the user demand is low compared to the rest of the day, typically at night. In this

1



case, real-time user demand is disregarded. Dynamic bike repositioning is performed during the
day, accounting for the real-time status of the system and the behavior of the users, as well as
its forecast. Typically, the dynamic problem is tackled by solving a static time-dependent sub-
problem at the beginning of the operating day based on the current state and a forecast of the
demand during the day. Decisions are then periodically re-evaluated at later times with updated
information.

Various objectives have been considered in the literature to evaluate the quality of the relo-
cation solution. The most common one is the maximization of the quality of service, typically
measured as the number of lost withdraws (due to the lack of bikes) and/or returns (due to the
lack of stands). The former causes discomfort as the user has to either wait for a bike to be
returned at the desired departure station, move to another station where bikes are available, or
resort to another means of transportation. In the latter case, the user has to cycle to a different
station with free stands or, if available, resort to alternative ways to return the bike (e.g., with
a lock issued by the BSS operator).

Decisions to be taken in a repositioning strategy include those about the amount of bikes to
be loaded or unloaded in each station, the routing of the vehicles, and, in the dynamic setting,
the timing of the visits of the vehicles at each station. We collect the models that approach
these decisions under the name of bike repositioning problems (BRPs). These decisions are
interrelated. The routing determines the sequence of the stations visited by the vehicles and
therefore constrains their arrival time at each station. The number of bikes present at each
station depends on the arrival time.

The decisions taken for the operations of a vehicle in a station influence (interact with) not
only the actions of the same vehicle in the following stations along its route but also the actions of
other vehicles that could be scheduled to visit the same station. In fact, the interaction between
the operations of multiple vehicles is one of the main challenges when solving a problem in the
class of BRPs. The need of multiple visits, by the same vehicle or different vehicles, to the same
station is a consequence of the limited capacity of the repositioning vehicles, and of the dynamic
nature of the user demand. Both loading and unloading operations need to be performed across
the stations and across time at the same station.

When multiple visits to a station are considered, the interaction among the vehicles should be
taken into account when planning the loading/unloading operations of each vehicle. Any decision
taken for a vehicle has an impact on the operations that the following vehicles can perform along
their routes. For example, if a vehicle loads bikes to tackle a shortage of stands, and the next
vehicle unloads bikes to prevent a later shortage of bikes, the number of bikes loaded by the first
vehicle may have an impact on the size of the subsequent bike shortage. In other words, loading
an exceedingly large number of bikes on the first vehicle may cause a worsening of the shortage
of bikes at a later time that the second vehicle may be unable to cope with.
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Contribution. Drawing from the experience gained in a collaboration with Brescia Mobilità
SpA, operating the station-based BSSs in Brescia, Italy (see [2]), in this paper we study the
problem of optimally loading/unloading vehicles that visit the same station at given time instants
of a discrete and finite time horizon. The net users demand at the station is known (provided
by the forecast) at each time instant of the time horizon. The goal is to minimize the total lost
demand of bikes and free stands. The station is characterized by an initial inventory stock and
a known capacity. Likewise, each vehicle is characterized by a capacity and an initial load of
bikes. We model the optimization problem, that accounts for the interaction of the operations
of the vehicles, as a mixed integer linear programming problem whose linear relaxation is shown
to always have an integer solution. We then present a solution algorithm that runs in linear
time in the size of the time horizon. Given the forecast of net users demand on each instant
(epoch) of the time horizon, the algorithm finds the type of operation (loading/unloading) and
the number of bikes (to be loaded/unloaded) for each vehicle that visits the station to minimize
the number of unsatisfied requests, taking into account the limits imposed by the capacity and
the load at the time of the visit. It also finds the number of requests that remain unsatisfied
regardless of the load and capacity of the vehicles. Therefore, the algorithm could be also used to
calibrate the load of the vehicles upon their arrival at a station and to evaluate the effectiveness
of certain visiting times at a station. The problem addressed can be seen as a subproblem to be
solved in a solution approach to a more general repositioning problem. The availability of a very
efficient optimal algorithm for the solution of the subproblem will contribute to the efficiency of
the approach. In this sense our work provides a contribution to the design of solution approaches
to more general models in the class of BRPs.

Literature Review. The design and management of a BSS involve many issues that have been
tackled by the optimization literature (see [25, 37, 41]). Among these problems, those regarding
the mitigation of spatio-temporal imbalances in the demand and offer of bikes by the users have
received a considerable attention. Many works consider a static setting, where bike relocation
is assumed to take place at night, when user demand is negligible (see [4, 10, 14, 16]). In this
context, the decisions can be decomposed in those regarding the inventory of the station and
those about the routing of the relocating vehicles. Considering the nighttime-only relocation
of bikes can be a limitation in systems experiencing high fluctuations in user demand. This
limitation is overcome in the dynamic setting where the relocation takes place during the day
and therefore decisions can be revised multiple times. In this setting, the decisions to be taken
include the inventory of each station, and the scheduling and routing of the vehicles performing
the relocation must be taken. These decisions have been tackled both separately (e.g., [34]) and
in an integrated way (e.g., [44, 20, 45]). It must be noted that the dynamic setting requires to
accurately forecast user behavior. This requirement is considered in various contributions (e.g.,
[34, 1, 43, 26]).
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As noted above, in this paper we aim at tackling the problem of coordinating the operations
of multiple vehicles visiting a single station over time. A summary of the literature for this class
of BRPs that is relevant for our contribution is presented in Table I. For each reference, the table
classifies the papers according to: the time setting of the problem (static or dynamic), the number
of vehicles for the repositioning of bikes, whether stations are allowed to be visited multiple times,
and whether vehicle interaction is considered or not. Considering the real-time evolution of the
system and the forecast of users behavior makes the bike repositioning a very difficult problem
to solve. It is therefore not surprising that early contributions generally considered the static
setting. Furthermore, a considerable portion of the literature examined considers the case of a
single vehicle or does not allow for multiple visits or vehicle interaction. To further highlight the
difficulty of the task, it is also worth noting that, in many of the papers, the fact that stations
might be visited multiple times is not the result of a repositioning plan that explicitly considers
this possibility and the consequent vehicle interactions. In these papers this is the result of either
the problem being modeled as a Markov Decision Process where the set of actions includes the
visit to one among all the stations of the system, or the problem being solved by considering a
rolling horizon scheme where the reoptimization step considers a visit to all the stations, that
is, without removing from the set of candidate stops stations that have been visited at earlier
times.

We report that, to the best of our knowledge, the only work considering the problem on a
single station is [32]. The authors model the user requests to rent or return a bike as stochastic
processes and introduce a dissatisfaction function, establishing its convexity and devising an
accurate and efficient approximation for its estimation.

The paper is organized as follows. First, in Section 2 the problem is defined. Then, in Section
3 the optimization problem is discussed for specific subsets of the time horizon. The results are
then exploited in Section 4 to present a solution algorithm for the problem on the entire time
horizon.
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Reference
Time

setting
# of vehicles

Multiple
visits

Vehicles
interaction

[4, 10, 16, 21, 28, 39] Static Single – –
[13] Static Single ✓ –
[29, 18, 17, 15, 40] Static Multiple – –
[36] Static Multiple1 – –
[7] Static Multiple ✓ –
[31, 33, 3, 1, 22, 42] Static Multiple ✓ ✓

[9] Static Multiple ✓ ✓4

[8] Dynamic Single – –
[38] Dynamic Single ✓ –
[5] Dynamic Single ✓2 –
[24] Dynamic Multiple – –
[23] Dynamic Multiple1 – –
[27, 6] Dynamic Multiple1 ✓2 –
[12, 44, 11, 2] Dynamic Multiple ✓3 –
[20, 30, 19, 45] Dynamic Multiple ✓ ✓

1 Stations are clustered and each cluster is assigned to one vehicle.
2 A Markov Decision Process is presented where routing decisions involve only

one vehicle visit per station. Further visits to a station are allowed only in
subsequent stages.

3 Each station can be served at most once by one vehicle within a reposi-
tioning time-window. A rolling horizon scheme is presented, with multiple
repositioning time-windows, meaning that a station can be served in multiple
time-windows during the day.

4 The vertices can be visited several times and by distinct vehicles, but tem-
porary storage is not allowed. This means that when inventory units are
delivered to some vertices, they cannot be picked up later again.

Table I: Literature contributions with respect to the characteristics relevant for this work.

2 Notation and problem definition

Let us consider a bike-station (station from now on) with known capacity C and initial stock
level s(0) ∈ [0, C] at time t(0). Let the time horizon consist of m time instants t(h) indexed with
h ∈ T = {1, . . . ,m}, where t(h−1) < t(h) for all h = 1, . . . ,m, and let us call epochs the indices
h ∈ T . The station receives at epoch h a known request of net flow of bikes (difference between
rentals and returns) d(h), where d(h) > 0 represents an incoming net flow and d(h) < 0 represents
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an outgoing net flow.
A set V = {v1, . . . , vw} of w vehicles is available to visit the station with a fixed sched-

ule. More precisely, vehicle vi visits the station at a fixed epoch ei ∈ T . We denote by
H = {e1, . . . , ew} ⊆ T the set of visiting epochs and w.l.o.g. we assume that e1 = 1 and
vehicles are indexed according to visiting epochs so that ei < ei+1 for i = 1, . . . , w − 1. Every
vehicle vi has a fixed capacity Qi and a known load qi ∈ [0, Qi] at visit epoch ei.

Thus, at epoch ei the operator of vehicle vi may move, in either direction, some bikes between
the station and the vehicle. The amount moved at epoch ei is indicated with xi, where xi > 0

represents a bike flow from the vehicle to the station (i.e., bike unloading from the vehicle) and
xi < 0 represents a bike flow from the station to the vehicle (i.e., bike loading on the vehicle).
We call this amount an intervention. Intervention xi is bounded from above by the load qi of
the vehicle and from below by its residual capacity qi −Qi. Thus, the intervention is feasible if
and only if

xi ∈ [qi −Qi, qi] (or, equivalently qi − xi ∈ [0, Qi]). (1)

As the intervention xi and the request d(ei) take place at epoch ei the final result is a (post
intervention) virtual stock given by

ŝ(ei) = s(ei−1) + d(ei) + xi. (2)

In any other epoch h /∈ H the virtual stock is given by

ŝ(h) = s(h−1) + d(h). (3)

At any epoch h ∈ T , if the virtual stock is greater than the station capacity, or below zero, the
difference is accounted for as a loss. More precisely, we define the surplus loss as

l(h)+ = max(0, ŝ(h) − C) (4)

and the stockout loss as

l(h)− = max(0,−ŝ(h)). (5)

It is clear that at most one of these two quantities may be positive. The actual (post intervention)
stock level in the station is

s(h) = ŝ(h) − l(h)+ + l(h)− (6)

where by construction s(h) ∈ [0, C], s(h) = 0 if l(h)− > 0 and s(h) = C if l(h)+ > 0. We define the
total amount of lost requests as L =

∑m
h=1

(
l(h)+ + l(h)−

)
.

Figure 1 reports an example of the net flow of bikes d. A vehicle v9 with capacity Q9 and load
q9 is visiting the station at time t(9). Note that, in the figure, a small jitter is present to avoid
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superimposition. For a given initial stock level s(0), Case (1) represents the resulting stock s(h),
surplus loss l(h)+, and stockout loss l(h)− (for h ∈ T ) in the case of null intervention. The total
loss L is also reported. While no temporal characterization is given for L, its value over time is
represented in Figure 1 for ease of visualization. It is worth pointing out that losses might occur
in an epoch h when an intervention is not allowed (h /∈ H), unless they are avoided by an earlier
intervention. Observe that earlier interventions should take into account that the station stock
level is waving up and down due to the net flow, and since an intervention at epoch h produces
a shift in the stock level from epoch h onward, it may avoid some losses in the next epochs, but
may also generate new losses in one or more of the next epochs. This is exemplified in Case
(2), where the intervention planned for t(9) avoids the losses occurring in t(10) and t(12) when no
interventions can be performed. Increasing the number of bikes loaded in t(9) reduces the loss
occurring in t(29) (Case (3)), but because of the waving of the net demand, a larger intervention
induces a stockout loss in t(20) (Case (4)), without modifying the actual stock at later times (i.e.,
the loss at t(29) and later is unchanged w.r.t. Case (3)).
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Figure 1: A representation of the quantities involved in the problem: the net flow of bikes
(above), and resulting actual stock, and surplus and stockout losses. The effect on s(h), l(h)−,
and l(h)− of different values for an intervention in t(9).
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Problem instance is defined by parameters s(0), C and vectors d = [d(1), . . . , d(m)], q =

[q1, . . . , qw], Q = [Q1, . . . , Qw]. Decision variables are described by a vector of interventions
x = [x1, . . . , xw]. When required by the discussion, we will refer to quantities s(h), ŝ(h), l(h)+,
and l(h)− as s(h)(x), ŝ(h)(x), l(h)+(x), and l(h)−(x), respectively, to explicitly express their
dependence from interventions x. Accordingly, the total amount of lost requests L will be
denoted by L(x) =

∑m
h=1

(
l(h)+(x) + l(h)−(x)

)
.

Thus, the problem can be formulated as a MILP as follows

min L(x) (7)

s.t. equations (1)-(6) for h = 1, . . . ,m.

xi ∈ Z for i = 1, . . . , w. (8)

The linear relaxation of this problem is obtained by removing the integrality conditions
xi ∈ Z. It can be shown that the problem always has an integer solution.

Theorem 1. An integer solution always exists to the linear relaxation of Problem (1)-(8).

Proof. The claim follows from observing that the matrix of the coefficients of the variables in
the constraints is totally unimodular. This is true because

• every entry is 0, +1, or −1;

• every column contains at most two non-zero (i.e., +1 or −1) entries;

• each variable that appears in more than one constraint, that is each s(h) and each ŝ(h),
with h ∈ T , appears with coefficients +1 and −1.

These are sufficient conditions for the matrix to be totally unimodular (see [35]). ⊓⊔

In this paper we show that the problem can be solved in O(m) time.
Observe that x = 0 is a feasible vector of interventions provided qi ∈ [0, Qi] for all vi ∈ V .

Observe also that the total loss is minimized by maximizing the quantity L(0)−L(x) which we
call recovered (or saved) loss. More in detail, if (l(h)+(0)+l(h)−(0)) > (l(h)+(x)+l(h)−(x)) we say
that interventions x recovers a loss at epoch h; while, if (l(h)+(0)+l(h)−(0)) < (l(h)+(x)+l(h)−(x))

we say that interventions x creates (or increments) a loss at epoch h.
Note that, for the sake of ease of reading, all the proofs of the propositions are provided in

Appendix A. For the same reason, the appendix also reports a table of notation.

3 Interval optimization

In this section we study the case of the problem of a single intervention to be taken at epoch e

(i.e., H = {e}) by a vehicle with capacity Q and load q to minimize the loss realized within an
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epoch interval [e, e]. We call this particular problem the 1-Intervention problem. As we have a
single decision, the vector of interventions x reduces to a scalar value x.

We focus first on the uncapacitated version of the 1-Intervention problem where constraint (1)
is relaxed and characterize the set of optimal interventions. Then, we establish the relationship
with the capacitated problem and design a linear time optimal algorithm. To characterize optimal
interventions, the sufficient conditions to improve an intervention are described (Section 3.1).
Then, sufficient conditions for the worsening of an intervention are defined (Section 3.2). These
results allow for the definition of the conditions for the optimality of an intervention (Section
3.3) and, eventually, the definition of an algorithm running in O(e− e) time (Section 3.4).

Some additional notation is now introduced for this particular 1-Intervention version of the
problem. Given an intervention x at epoch e we define

• s[e,h](x) = min(s(k)(x) | e ≤ k ≤ h), that is the minimum stock level in epoch interval
[e, h];

• s[e,h](x) = max(s(k)(x) | e ≤ k ≤ h), that is the maximum stock level in epoch interval
[e, h];

• h(+)(x) = min(k ∈ [e, e]| l(k)+(x) > 0) if there is an epoch with surplus loss, +∞ otherwise;

• h(−)(x) = min(k ∈ [e, e] | l(k)−(x) > 0) if there is an epoch with stockout loss, +∞
otherwise.

3.1 Improving interventions

Here we state sufficient conditions to improve a given intervention x. Considering the case that,
for a given intervention x, the first loss is of type surplus (i.e., h(+)(x) < h(−)(x)), we would like
to move from the station to the vehicle a quantity δ so that the stock in the interval [e, h(+)(x)−1]

is downshifted and the surplus at epoch h(+)(x) is reduced or even zeroed without changing the
stock since then. However, the downshift should not be too large in order to avoid the creation
of stockout losses that would also stop the surplus recovery. In case we manage to zero the
loss at epoch h(+)(x), the epoch of first loss is moved forward and we can look for a further
improvement of the new intervention (see Section 3.4). A similar argument can be used when
h(−)(x) < h(+)(x).

Proposition 1 (Downshift improvement). Let x be an intervention such that h = h(+)(x) < ∞
(at least one surplus loss) and define δ∗ = min

(
l(h)+(x), s[e,h−1](x)

)
.

Then, for any δ ∈ [0, δ∗], following properties hold for intervention x′ = x− δ

l(k)−(x′) = l(k)−(x) for k ∈ [e, e]

l(k)+(x′) = l(k)+(x)− δ for k = h l(k)+(x′) = l(k)+(x) for k ̸= h

s(k)(x′) = s(k)(x)− δ for k < h s(k)(x′) = s(k)(x) for k ≥ h
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Moreover, L(x′) = L(x)− δ; we also have that δ = l(h)+(x) if and only if h(+)(x) < h(+)(x′).

Observe that Proposition 1 does not provide any improvement in case δ∗ = 0. Otherwise,
if δ∗ > 0, any intervention x′ = x − δ with δ ∈ (0, δ∗] is a strict improvement of x, indeed the
surplus loss at epoch h(+)(x) is decreased exactly by δ. Moreover, the stock level before epoch
h(+)(x) is uniformly downshifted by δ∗ while the stock level remains unchanged starting from
epoch h(+)(x) (in particular we still have C at epoch h(+)(x)). Finally, the first surplus loss
induced by the new intervention is pushed forward if and only if x′ recovers the whole loss at
epoch h(+)(x).

Proposition 2 (Upshift improvement). Mirror of Proposition 1.
Let x be an intervention such that h = h(−)(x) < ∞ (at least one stockout loss) and define

δ∗ = min
(
l(h)−(x), s[e,h−1](x)

)
.

Then, for any δ ∈ [0, δ∗], following properties hold for intervention x′ = x+ δ

l(k)+(x′) = l(k)+(x) for k ∈ [e, e]

l(k)−(x′) = l(k)−(x)− δ for k = h l(k)−(x′) = l(k)−(x) for k ̸= h

s(k)(x′) = s(k)(x) + δ for k < h s(k)(x′) = s(k)(x) for k ≥ h

Moreover, L(x′) = L(x)− δ; we also have that δ = l(h)−(x) if and only if h(−)(x) < h(−)(x′).

3.2 Worsening interventions

Here we state sufficient conditions to say that an intervention x cannot be improved by a down-
shift x′ < x or by an upshift x′ > x. Let us consider the case that for a given intervention x the
stock is zero before any surplus loss. In this case no downshift could recover the surplus loss as
it would generate stockout losses at one or more earlier epochs preventing the downshift at the
later epoch.

Proposition 3 (Worsening by downshift). Let x be an intervention and ĥ = min(h(+)(x), e). If
s[e,ĥ](x) = 0 (the stock level goes to zero in the interval and before the first epoch with a surplus
loss, if any), then, for all δ > 0 the following properties hold for intervention x′ = x− δ

L(x′) = L(x) + δ

s(e)(x′) = s(e)(x)

where the new loss is of type stockout and is realized at one or more epochs earlier than ĥ.

Proposition 4 (Worsening by upshift). Mirror of Proposition 3. Let x be an intervention and
ĥ = min(h(−)(x), e). If s[e,ĥ](x) = C (the stock level goes to C in the interval and before the
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first epoch with a stockout loss, if any), then, for all δ > 0 the following properties hold for
intervention x′ = x+ δ

L(x′) = L(x) + δ

s(e)(x′) = s(e)(x)

where the new loss is of type surplus and is realized at one or more epochs earlier than ĥ.

3.3 Optimal intervention characterization

Here we characterize the properties of optimal interventions for the uncapacitated problem and
describe the set of optimal interventions. The computation of optimal interventions for the
capacitated problem and the corresponding optimal value are then described.

Proposition 5. An intervention x is optimal for the uncapacitated problem if and only if at least
one of the following conditions holds:

h(−)(x) = h(+)(x) = +∞ (9)

h(+)(x) < h(−)(x) ∧ s[e,h(+)(x)](x) = 0 (10)

h(−)(x) < h(+)(x) ∧ s[e,h(−)(x)](x) = C (11)

The next proposition characterizes the set X∞ of optimal interventions for the uncapacitated
problem and its extreme points x∞ = min(X∞) and x∞ = max(X∞).

Proposition 6. Let x∗ be an optimal intervention for the uncapacitated problem. The whole set
of optimal interventions is characterized as follows.

1. If L(x∗) > 0, we have X∞ = {x∗}, and for all x′

L(x′) = L(x∗) + |x′ − x∗| and
s(e)(x′) = s(e)(0) = s(e)(x∗).

(12)

2. If L(x∗) = 0, the set of optimal interventions is a range [x∞, x∞] defined as

X∞ = [x∗ − s[e,e](x
∗), x∗ + C − s[e,e](x

∗)].

Moreover, we have

x′ ∈ [x∞, x∞] ⇒ L(x′) = 0, s(e)(x′) = s(e)(x∗) + (x′ − x∗),

x′ > x∞ ⇒ L(x′) = x′ − x∞ > 0, s(e)(x′) = s(e)(x∞),

x′ < x∞ ⇒ L(x′) = x∞ − x′ > 0, s(e)(x′) = s(e)(x∞).

(13)
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As a consequence of Proposition 6 we can conclude that the set of optimal interventions for
the uncapacitated problem is an interval that reduces to a single point when the optimal loss
is positive. In all cases any intervention x /∈ [x∞, x∞] generates an additional loss equal to the
distance of x from the boundary of [x∞, x∞].

From now on, we denote by L∞ the optimal loss and with x∞ the optimal intervention with
minimum modulus in [x∞, x∞], that is x∞ = x∞ if x∞ > 0, x∞ = x∞ if x∞ < 0, x∞ = 0,
otherwise.

The following proposition states the relationship between optimal interventions for the unca-
pacitated problem and its capacitated version, together with the corresponding optimal values
and stock level induced at the final epoch e. Accordingly, we will denote by XQ the set of
optimal interventions for the capacitated problem with extreme points xQ = min(XQ) and
xQ = max(XQ). We also denote by xQ the optimal intervention with minimum modulus and as
LQ the corresponding optimal value.

Proposition 7. The set XQ of optimal interventions for the capacitated version is a range
[xQ, xQ] determined from the range [x∞, x∞] of optimal interventions for the uncapacitated 1-
Intervention problem as follows,

[xQ, xQ] =


{q} if q < x∞ = x∞

{q −Q} if x∞ = x∞ < q −Q

[x∞, x∞] ∩ [q −Q, q] otherwise,
(14)

the minimum modulus optimal intervention xQ is determined from x∞ as

xQ =


q if q < x∞ = x∞

q −Q if x∞ = x∞ < q −Q

x∞ if otherwise,
(15)

the optimal loss is

LQ = L∞ + |x∞ − xQ|, (16)

and the stock level induced at epoch e is

s(e)(xQ) = s(e)(x∞) = s(e)(0). (17)

3.4 Interval optimal intervention

In this section we present an algorithm for the 1-Intervention problem discussed above. For the
sake of generality and in view of how the algorithm will be used to solve the general problem,
we assume that the vectors ŝ, l+, l− and s, representing, respectively, virtual stock, surplus loss,
stockout loss and stock level induced by the null vector of interventions x = 0 on all epochs T ,
have been already computed.
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The idea is to maintain a 4-tuple of variables ⟨x∞, L∞, α, β⟩ where x∞ represents the mini-
mum modulus (optimal) intervention at epoch e to minimize the total loss on interval [e, h] for
the uncapacitated problem; variables L∞, α and β, represent the optimal loss, the minimum
and the maximum stock level induced by x∞ on the considered interval. The computation is
initialized by setting the 4-tuple of variables for interval [e, e]. Then, the time interval is scanned
to iteratively enlarge the considered interval up to [e, e]. Improvement opportunity for current
intervention with respect to the new interval is evaluated, and by the end of each iteration the
4-tuple is consistently updated to an interval with one more epoch. When the scan is over, the
optimal intervention xQ for the capacitated problem is computed together with the corresponding
loss LQ. A formal definition of the algorithm is provided in Pseudo-code Vehicle-Intervention
(Algorithm 1) provided below.

Algorithm 1: Vehicle-Intervention
input : e : intervention epoch, e : epoch up to which optimize intervention, q : vehicle

load, Q : vehicle capacity
output: xQ : minimum modulus optimal intervention for capacitated problem; LQ :

minimum loss for capacitated problem; x∞ : minimum modulus optimal
intervention for uncapacitated problem; L∞ : minimum loss for uncapacitated
problem;

global : C, s, l−, l+

// initialization

1 x∞ = −l(e)+ + l(e)−

2 L∞ = 0

3 α, β = s(e)

4 for (h = e+ 1; h ≤ e; h++) do // scan time horizon

// intervention improvement

5 δ+ = min(l(h)+, α)

6 δ− = min(l(h)−, C − β)

7 x∞ = x∞ − δ+ + δ−

8 L∞ = L∞ + (l(h)+ − δ+) + (l(h)− − δ−)

9 α = min(α− δ+, s(h))

10 β = max(β + δ−, s(h))

11 if x∞ < q −Q then {xQ = q −Q; LQ = L∞ + xQ − x∞}
12 else if x∞ > q then {xQ = q; LQ = L∞ + x∞ − xQ}
13 else {xQ = x∞; LQ = L∞}

Theorem 2. Algorithm Vehicle-Intervention computes x∞, xQ, L∞ and LQ in O(e−e) time.

So far we have considered the initial stock level s(0) as given. However, the optimal interven-
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tions and losses for both the uncapacitated and capacitated problems can be somehow affected
by the initial stock level. In order to understand some properties of the general problem on the
whole time horizon T , it can be useful to discuss a little bit about this point. Let us denote by
L(x | s) and s(e)(x | s) the total loss and the final stock level induced at epoch e by intervention
x given a stock level s at epoch e−1. Moreover, let us denote by x∞(s) and xQ(s) the minimum
modulus optimal interventions for the uncapacitated and capacitated problems, respectively, as
functions of the stock level s at epoch e− 1, and by L∞(s) and LQ(s) the corresponding optimal
losses. Finally, we denote by X∞(s) = [x∞(s), x∞(s)] and XQ(s) = [xQ(s), xQ(s)] the range of
optimal interventions for the uncapacitated and capacitated problems, respectively.

The next proposition shows the relationship between these quantities when, under some
circumstances, the initial stock level s is translated by a quantity δ. The special cases considered
by the proposition will be used in the following to study the properties of the general problem.

Proposition 8. Let s, s+ δ ∈ [0, C] be two alternative stock levels at epoch e− 1, then{
L∞(s+ δ) = L∞(s)

def.
≡ L∞,

X∞(s+ δ) = X∞(s)− δ
(18)

L∞ > 0 ⇒ s(e)(x | s) = s(e)(0 | 0), (19)

x∞(s) ≥ q, δ ≤ x∞(s)− q ⇒


x∞(s+ δ) = x∞(s)− δ

xQ(s+ δ) = xQ(s) = q

LQ(s+ δ) = LQ(s)− δ

s(e)(xQ(s+ δ) | s+ δ) = s(e)(xQ(s) | s),

(20)

x∞(s) ≤ q −Q, δ ≥ x∞(s)− (q −Q) ⇒


x∞(s+ δ) = x∞(s)− δ

xQ(s+ δ) = xQ(s) = q −Q

LQ(s+ δ) = LQ(s) + δ

s(e)(xQ(s+ δ) | s+ δ) = s(e)(xQ(s) | s).

(21)

Equations (18) show that the total loss induced in the interval by any intervention contains
a “systemic” component which cannot be recovered in any way, independently of the initial stock
level and available capacity and load. On the other hand, the range of optimal interventions for
the uncapacitated problem translate accordingly to the initial stock level; namely, an upshift of
the initial stock level produces a corresponding downshift of the optimal interventions, and vice
versa. Also equation (19) shows a sort of stability property, when the systemic loss is positive
any intervention with any initial stock level variation does not impact the final stock level. The
remaining part of the loss can be fully, or only partly, recovered according to the load-capacity
constraint (i.e., we could recover more if we had more capacity or load) and to the initial stock
level (we could lose less if we had a different initial stock). While we have no margin to work on
capacity, we can work on earlier interventions in order to set up appropriate initial stock levels
for later interventions and even anticipate the recover of losses that could also be recovered later.
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However, note that equations (20) and (21) show that, under applicable conditions, by changing
the initial stock level we may improve or worsen the result according to the sign of stock change
δ. This is the main focus of the analysis when we consider the optimization of the vector of
interventions on the whole time horizon.

4 Time horizon optimization

In this section we first sketch the idea of how we can exploit the local optimization on the 1-
Intervention problem discussed in the above section to obtain the global optimization on the
whole time horizon T with w intervention epochs. Then, we define the algorithm and prove its
correctness and computational complexity.

Let us consider two families of time intervals made of w members each

Ii = [ei, ei + 1, . . . , ei+1 − 1] for i = 1, . . . , w − 1; and Iw = [ew, . . . ,m];

Ji = [e1, e2, . . . , ei+1 − 1] for i = 1, . . . , w − 1; and Jw = [e1, . . . ,m];

where Ji = ∪i
l=1Il for i = 1, . . . , w (recall we assumed w.l.o.g. e1 = 1).

In the following, we denote by

LJi ([x1, . . . , xi])
def.
≡

ei+1−1∑
h=e1

(
l(h)+(x) + l(h)−(x)

)
the loss in interval Ji depending on the initial stock level s(0) and the interventions [x1, . . . , xi]

implemented at epochs e1, . . . , ei, and as

LIi

(
xi

∣∣∣ s(ei−1)(x)
)

def.
≡

ei+1−1∑
h=ei

(
l(h)+(x) + l(h)−(x)

)
the loss in interval Ii depending on the intervention xi implemented at epoch ei and on the stock
level s(ei−1)([x1, . . . , xi−1]) determined at epoch ei−1 by all previous interventions and which we
denote by s(ei−1)(x) for short, where for sake of notation compactness, when i = 1, s(e1−1)(x)

represents s(0).
By construction, we have the following equalities for all i ≤ w

LJi ([x1, . . . , xi]) =
i∑

h=1

LIh

(
xh

∣∣∣ s(eh−1)(x)
)

(22)

and

LJ1 ([x1]) = LI1

(
x1

∣∣ s(0) ) ,
LJi ([x1, . . . , xi]) = LJi−1 ([x1, . . . , xi−1]) + LIi

(
xi

∣∣ s(ei−1)(x)
)
, for i > 1.

(23)
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4.1 Backward formulation

We see the computation of an optimal vector of interventions as a decision-making process in
which we first determine the value of the first intervention at epoch e1, then that of intervention
at epoch e2 and so on until we determine the last intervention at epoch ew. The choices made up
to epoch ei condition the subsequent choices by influencing the stock level at epoch ei+1−1 from
which subsequent decisions take place. Thus, once the first i− 1 values of a vector x have been
chosen, it will be a question of choosing the next one in order to minimize the losses in accordance
with the conditions generated by the previous choices. We will therefore have to choose at best
the first i values (i.e., [x1, . . . , xi]) to obtain, after the optimization of the following ones (i.e.,
[xi+1, . . . , xw]), a minimum overall loss.

Using equation (23), problem (7) can thus be formulated in a backward recursive form:

P(w)
def.
≡ min

[x1,...,xw−1]

(
LJw−1 ([x1, . . . , xw−1]) + min

xw∈[qw−Qw,qw]
LIw

(
xw

∣∣∣ s(ew−1)(x)
))

(24)

where vector [x1, . . . , xw−1] is required to satisfy feasibility constraints (1). Analogously, we
define problems P(i) for all 1 < i ≤ w. For i = 1, P(i) reduces to the 1-Intervention problem
we have already solved in the previous section. We denote by L∗

Ji
the optimal value of P(i) for

any i ≤ w.
According to formulation (24), for any given vector [x1, . . . , xw−1] the best we can do is to

solve the 1-Intervention problem on interval Iw given the initial stock s(ew−1)(x) produced at
epoch ew − 1 by vector [x1, . . . , xw−1]. Thus, we have to find the best vector [x1, . . . , xw−1] such
that after optimizing xw we get the overall minimum loss.

We may observe that if s(ew−1)(x) were independent of [x1, . . . , xw−1], that is s(ew−1)(x) = Sw

for a fixed and known Sw, then we could solve separately the two (smaller) problems: first the
1-Intervention problem

min
xw∈[Qw−qw,qw]

LIw (xw | Sw )

and then
P(w − 1) = min

[x1,...,xw−1]
LJw−1 ([x1, . . . , xw−1])

which could be recursively broken in w− 1 independent 1-Intervention problems. Although this
is true in some cases, it does not hold in general because the interventions on Jw−1 may affect,
for better or worse, the initial stock Sw for Iw. Nevertheless, our approach to problem (24) is to
prove that we can solve two separate smaller problems of these types leading to the solution of
a sequence of 1-Intervention problems. The following discussion illustrates how we can separate
the two subproblems.

Proposition 9. Let i ≤ w and x∗ = [x∗1, . . . , x
∗
i ] be an optimal vector of interventions for

problem P(i). Then, for all h ≤ i, intervention x∗h is optimal for the 1-Intervention capacitated
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problem on interval Ih given the stock level s(eh−1)(x∗) at epoch eh − 1. That is,

LIh

(
x∗h

∣∣∣ s(eh−1)(x∗)
)
= min

x∈[qh−Qh,qh]
LIh

(
x

∣∣∣ s(eh−1)(x∗)
)
.

Proposition 10. Let x∗ and y∗ be two optimal vectors of interventions for P(i). Then, for any
interval Ih (h ≤ i) we have

LIh

(
x∗h

∣∣∣ s(eh−1)(x∗)
)
= LIh

(
y∗h

∣∣∣ s(eh−1)(y∗)
)
. (25)

Proposition 11. Let x∗ = [x∗1, . . . , x
∗
i ] be an optimal vector of interventions for problem P(i)

for some 1 < i ≤ w. Then for all h < i, vector [x∗1, . . . , x
∗
h] is optimal for P(h).

Observe that while Proposition 11 cannot guarantee that an optimal vector of interventions
for problem P(w) can be built upon any optimal intervention for problem P(i) with i < w, it
however guarantees that in order to find the first i optimal interventions for problem P(w) we
only have to look into the set of optimal vectors of interventions for problem P(i).

Proposition 12. Problem P(i) admits an optimal vector of interventions x∗ such that s(f)(x∗) =

s(f)(0) where f = ei+1 − 1 if i < w, f = m otherwise.

4.2 The augmented problem

Let us consider, for i < w and a scalar parameter δ, the augmented time intervals Īi = [ei, ei+1],
and J̄i = [e1, ei+1] (i.e., Īi = Ii∪{ei+1} and J̄i = Ji∪{ei+1}) where net flow d(ei+1) is fictitiously
set to zero if δ = 0 or so that the null vector 0 produces, at epoch ei+1 a stockout loss |δ| if δ > 0

or a surplus loss |δ| if δ < 0. That is, if δ = 0, d(ei+1) = 0, if δ > 0, d(ei+1) = −s(ei+1−1)(0)− |δ|,
and, if δ < 0, d(ei+1) = C − s(ei+1−1)(0) + |δ|.

We denote by L[J̄i,δ]
([x1, . . . , xi]) the corresponding loss induced by interventions [x1, . . . , xi]

and call

P̄(i, δ)
def.
≡ min

[x1,...,xi]
L[J̄i,δ]

([x1, . . . , xi])

the augmented problem on interval J̄i. We generally denote by L∗
[J̄i,δ]

the optimal value of P̄(i, δ).
Note that the augmented problem is still a problem in the class defined by (7) and all derived

properties still hold for it. However, P(i) and P̄(i, δ) are defined on different set of data; namely
problem P̄(i, δ) has the same set of decision epoch as P(i), but a longer time horizon with one
more epoch: ei+1 and net flow d(ei+1). Finally, we have by construction

L[J̄i,δ]
([01, . . . , 0i]) = LJi ([01, . . . , 0i]) + |δ|

L[Īi,δ]

(
0
∣∣∣ s(ei−1)(0)

)
= LIi

(
0
∣∣∣ s(ei−1)(0)

)
+ |δ|

We can further state some more properties of the augmented problem P̄(i, δ) that establish
its relationship with the base problem P(i).
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Proposition 13. For all i < w, an optimal vector of interventions x̄ for the augmented problem
P̄(i, δ) is optimal also for the problem P(i). In a formula:

LJi ([x̄1, . . . , x̄i]) = min
[x1,...,xi]

LJi ([x1, . . . , xi]) = L∗
Ji .

Proposition 14. Let us consider problem P(i) for some i > 1 and let Si = s(ei−1)(0) be the stock
induced by the null vector of interventions at epoch ei−1. Let (x∞(Si), L

∞
Ii
) and (xQ(Si), L

Q
Ii
(Si))

be the pairs of optimal intervention and optimal value for the uncapacitated and capacitated
1-Intervention problems on interval Ii with initial stock level Si. Then, an optimal vector of
interventions x̄ = [x̄1, . . . , x̄i−1] for the augmented problem P̄(i−1, δ), with δ = x∞(Si)−xQ(Si),
exists such that x∗ = [x̄1, . . . , x̄i−1, x

Q(Si)] is an optimal vector of interventions for problem P(i)

and L∗
Ji

= L∗
[J̄i−1,δ]

+ L∞.

4.3 The algorithm

4.3.1 Sketch of the algorithm

The algorithm exploits the backward formulation of the problem. The basic line of the algorithm
is described below. We first compute the vectors ŝ, l+, l−, and s representing, respectively,
virtual stock, surplus loss, stockout loss and stock level induced by the null vector of interventions
x = 0 on all epochs T . Then a 1-Intervention problem is solved on the last interval Iw with
initial stock level Sw = s(ew−1)(0). The difference x∞Iw − xQIw is used to build the augmented
problem on interval Jw−1. In some sense we may say that |x∞Iw − xQIw | is the loss due to limited
capacity of vehicle vw and which is delegated to previous interventions. The augmented problem
is recursively solved by solving a 1-Intervention problem on the last interval and delegating
to previous decisions the loss that could not be recovered by last intervention due to limited
capacity. Recursion stops when the augmented problem is defined on the first interval; in that
case only the 1-Intervention problem is solved. In the meanwhile we take into account the loss
realized on each interval and compose the vector of optimal interventions.

4.3.2 Algorithm definition

A formal definition of the algorithm is provided in Pseudo-codes Global-Backward (Algorithm
2) and Global-Backward-Recursive (Algorithm 3) provided below.
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Algorithm 2: Global-Backward
input : s : initial stock level, C : station capacity, d : net flow, H : decision epochs, q :

vehicle loads, Q : vehicle capacities
output: x∗ optimal vector of interventions; L∗ optimal value
global : all variables

// initialization

1 m = dim(d) // problem size

2 w = |H| // number of interventions

3 s(0) = s

4 for (h = 1 : h ≤ m; h++) do
5 ŝ(h) = s(h−1) + d(h) // ŝ = ŝ(0)

6 l(h)+ = max(0, ŝ(h) − C) // l+ = l+(0)

7 l(h)− = max(0,−ŝ(h)) // l− = l−(0)

8 s(h) = ŝ(h) − l(h)+ + l(h)− // s = s(0)

9 e = ew

10 e = m

11 (xQ, LQ, x∞, L∞) = Vehicle-Intervention(e, e, qw, Qw)

12 (x, L) = Global-Backward-Recursive(w − 1, x∞ − xQ)

13 x∗ = [x, xQ]

14 L∗ = L+ L∞
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Algorithm 3: Global-Backward-Recursive
input : i : stage of decision process, δ : problem augmentation
output: x∗ optimal vector of interventions up to stage i; L∗ optimal value up to stage i

global : C, d, s, H, q, Q

1 if i > 0 then
2 e = ei

3 e = ei+1

4 if δ > 0 then d(e) = −s(e−1) − |δ|
5 else if δ < 0 then d(e) = C − s(e−1) + |δ|
6 else d(e) = 0

7 (xQ, LQ, x∞, L∞) = Vehicle-Intervention(e, e, qi, Qi)

8 (x, L) = Global-Backward-Recursive(i− 1, x∞ − xQ)

9 x∗ = [x, xQ]

10 L∗ = L+ L∞

11 else
12 x∗ = ∅
13 L∗ = |δ|

4.3.3 Algorithm properties

Theorem 3. Algorithm Global-Backward (Algorithm 2) computes an optimal vector of inter-
ventions x∗ for problem P(w) in O(m) time. Moreover, the vector returned by the algorithm
induces at the final epoch m the same stock induced by the null vector 0 (i.e., s(m)(x∗) = s(m)(0)).

5 Conclusions

In this paper, the one-station bike repositioning problem is studied. A set of capacitated vehicles
with a given bike load are planned to visit a station to load or unload bikes at given times of a
finite time horizon. The problem is to find the optimal number of bikes to load or unload at each
visit with the goal of minimizing the number of user requests (of bike rental or return) lost over
the time horizon. An optimal algorithm with linear complexity in the cardinality of the time
horizon is presented. In addition to finding the optimal solution to the problem, the algorithm
provides the number of requests that would be lost regardless of the capacity and initial load of
the vehicles.

The studied problem considers multiple visits of vehicles to the same station and takes into
account the interaction among vehicles, crucial aspects of the problem of repositioning bikes in
a bike sharing system that have been in most of the cases disregarded in the literature. The
algorithm and the results presented in this paper are a contribution to a deep understanding of
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the general repositioning problem and could be useful to take decisions, for example about the
initial load of the vehicles. The algorithm, in particular, can be seen as a component of a general
solution approach to a more general problem.

As a final remark, we would like to point out that the strategy adopted by the proposed
algorithm is of the kind “recover as late as possible”. However, different optimal repositioning
strategies, like “recover as soon as possible”, can be implemented with little changes to the
algorithm, maintaining its linear complexity.

Future research efforts should be devoted to extending the analysis to the case where the
times of the visits are not given and to the case where more than one station is considered.
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Appendices

A Proofs

A.1 1-Intervention problem

Proof of Proposition 1.
Let us iteratively build vectors s(x′), l−(x′) and l+(x′). It is easy to see that from equations

(2)-(6) we have the following cases.

Case e = h(+)(x).

• For k = e = h(+)(x):



ŝ(k)(x′) = s(k−1) + d(k) + x′ = s(k−1) + d(k) + (x− δ) = ŝ(k)(x)− δ = C + l(k)+(x)− δ ≥ C

l(k)+(x′) = max(0, ŝ(k)(x′)− C) = max(0, l(k)+(x)− δ) = l(k)+(x)− δ

l(k)−(x′) = max(0,−ŝ(k)(x′)) = 0 = l(k)−(x)

s(k)(x′) = ŝ(k)(x′)− l(k)+(x′) + l(k)−(x′) = s(k)(x) + l(k)+(x)− δ − (l(k)+(x)− δ) = s(k)(x) = C .

Case e < h(+)(x).

• For k = e, we have:
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

ŝ(k)(x′) = s(k−1) + d(k) + x′ = s(k−1) + d(k) + (x− δ) = ŝ(k)(x)− δ ≤ C

l(k)+(x′) = max(0, ŝ(k)(x′)− C) = 0 = l(k)+(x)

l(k)−(x′) = max(0,−ŝ(k)(x′)) = max(0,−(ŝ(k)(x)− δ)) = l(k)−(x)

s(k)(x′) = ŝ(k)(x′)− l(k)+(x′) + l(k)−(x′) = ŝ(k)(x)− l(k)+(x′) + l(k)−(x′)− δ = s(k)(x)− δ .

• For k = e+ 1, . . . , h(+)(x)− 1, we have:



ŝ(k)(x′) = s(k−1)(x′) + d(k) = (s(k−1)(x)− δ) + d(k) = (s(k−1)(x) + d(k))− δ = ŝ(k)(x)− δ ≤ C

l(k)+(x′) = max(0, ŝ(k)(x′)− C) = 0 = l(k)+(x)

l(k)−(x′) = max(0,−ŝ(k)(x′)) = max(0,−(ŝ(k)(x)− δ)) = l(k)−(x)

s(k)(x′) = ŝ(k)(x′)− l(k)+(x′) + l(k)−(x′) = ŝ(k)(x)− l(k)+(x′) + l(k)−(x′)− δ = s(k)(x)− δ .

• For k = h(+)(x), we have:



ŝ(k)(x′) = s(k−1)(x′) + d(k) = (s(k−1)(x)− δ) + d(k) = ŝ(k)(x)− δ = C + l(k)+(x)− δ ≥ C

l(k)+(x′) = max(0, ŝ(k)(x′)− C) = max(0, ŝ(k)(x)− C − δ) = max(0, l(k)+(x)− δ) = l(k)+(x)− δ

l(k)−(x′) = max(0,−ŝ(k)(x′)) = max(0,−(ŝ(k)(x)− δ)) = 0 = l(k)−(x)

s(k)(x′) = ŝ(k)(x′)− l(k)+(x′) + l(k)−(x′) = s(k)(x) + l(k)+ − δ − (l(k)+(x)− δ) = s(k)(x) = C .

Observe that interventions x and x′ produce the same station stock level C at epoch h(+)(x).
Thus, since then they produce the same virtual stock, losses and stock level up to e.

As far as total loss is concerned, equation L(x′) = L(x) − δ comes from the construction
of l+(x′) and clearly the recovered loss is equal to intervention increment. Finally, we have
h(+)(x′) > h(+)(x) if and only if the whole surplus loss at epoch h(+)(x) is fully recovered, which
happens if and only if δ equals the loss produced at that epoch by intervention x. ⊓⊔

Proof of Proposition 2. Discussion mirroring that for Proposition 1. ⊓⊔

Proof of Proposition 3. Let us consider the first epoch h such that s(h)(x) = 0 and observe
that the inequality h ≤ ĥ holds by the hypothesis.
Case h = e.

We have ŝ(e)(x) ≤ 0 and every δ > 0 implies ŝ(e)(x′) = ŝ(e)(x) − δ < 0 with l(e)−(x′) =

l(e)−(x) + δ. Moreover, the equality s(e)(x′) = s(e)(x) = 0 holds, which implies all future
values of s, l+ and l− will be the same for x and x′; in particular, with s(e)(x′) = s(e)(x) and
L(x′) = L(x) + δ.

Observe that a new stockout loss is introduced at epoch h while any other value remains
unchanged.
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Case h > e.
For ease of notation, let us indicate as s = s[e,h−1](x) > 0 the minimum level reached by the

station stock before epoch h.

• For δ ≤ s we can prove by construction that

ŝ(k)(x′) = ŝ(k)(x)− δ ∈ [0, C) for all k ∈ [e, h− 1],

while
ŝ(k)(x′) = ŝ(k)(x)− δ for k = h

from which
l(h)−(x′) = −ŝ(h)(x′) = −(ŝ(h)(x)− δ) = l(h)−(x) + δ.

Moreover, the equality s(h)(x′) = s(h)(x) = 0 holds, which implies all future values of
s, l+ and l− will be the same for x and x′; in particular, with s(e)(x′) = s(e)(x) and
L(x′) = L(x) + δ.

Observe that the stock is uniformly downshifted by δ up to h and a new stockout loss is
introduced at epoch h while any other value remains unchanged.

• For δ > s we proceed as follows. Let us define δ[1] = s and x[1] = x − δ[1] the worsening
intervention with s(e)(x[1]) = s(e)(x) and L(x[1]) = L(x) + δ[1]. Observe that with respect
to x, intervention x[1] uniformly downshifts the stock by δ[1] up to h and introduces a
new stockout loss δ[1] at epoch h while any other value remains unchanged. Moreover,
intervention x[1] satisfies hypothesis of Proposition 3, and thus, we can iterate on x[1] with
δ′ = δ − δ[1].

If δ′ > s′(x[1]), we iterate in this case with δ[2] = s′(x[1]) and x[2] = x[1] − δ[2] producing a
worse loss L(x[2]) = L(x[1]) + δ[2] = L(x) + δ[1] + δ[2] and so on.

We reach the last iteration when δ′ ≤ s′(x[j]), so that we fall in the first case and end up
with intervention x′ = x[j] − δ′ = x −

∑j
k=1 δ

[j]) − δ′ = x − δ producing a loss L(x′) =

L(x[j]) + δ′ = L(x) +
∑j

k=1 δ
[j] + δ′ = L(x) + δ.

Observe that at each iteration a new earlier stockout loss is introduced.
⊓⊔

Proof of Proposition 4. Discussion mirroring that for Proposition 3. ⊓⊔

Proof of Proposition 5.
Sufficient conditions

Eq. (9) If h(+)(x) = h(−)(x) = +∞, then L(x) = 0 holds by definition, which cannot be further
improved.

24



Eq. (10) Assuming h(+)(x) < h(−)(x) (first loss is of type surplus), hypothesis of Proposition 4
are satisfied (stock level reaches C before any stockout loss). Thus any upshift brings
to a larger loss. On the other hand, any downshift also leads to a worse loss. Indeed,
s[e,h(+)(x)](x) = 0, and, according to Proposition 3, any downshift would imply additional
stockout loss at epochs earlier than h(+)(x).

Eq. (11) Discussion mirroring that for point (10).

Necessary conditions. We proceed by contradiction. Let us assume that none of the listed
conditions hold. Then it must be the case that min(h(+)(x), h(−)(x)) < ∞ (some kind of loss
occurs at some epoch). Of course it cannot be the case that h(+)(x) = h(−)(x) < ∞, thus,
exactly one of the following two holds

• h(+)(x) < h(−)(x). In this case we must have s[e,h(+)(x)](x) > 0. Then hypothesis of
Proposition 1 hold with δ∗ > 0 and losses produced by intervention x can be strictly
improved.

• h(−)(x) < h(+)(x). In this case we have s[e,h(−)(x)](x) < C. Then hypothesis of Proposition
2 hold with δ∗ > 0 and losses produced by intervention x can be strictly improved.

⊓⊔

Proof of Proposition 6. Let x∗ be an optimal intervention and consider the cases L(x∗) > 0

and L(x∗) = 0 separately.

L(x∗) > 0. At least one loss is detected in [e, e] and either condition (10) or (11) is satisfied by x∗. Let us
assume w.l.o.g. that condition (10) is matched by intervention x∗ (i.e., h(+)(x∗) < h(−)(x∗)

and s[e,h(+)(x∗)](x
∗) = 0) and consider an alternative intervention x′ ̸= x∗. We have to

discuss two cases

– Case x′ = x∗−δ with δ > 0. Condition (10) guarantees that hypothesis of Proposition
3 are satisfied by x∗. Accordingly, any alternative intervention x′ < x∗ would lead to
a loss L(x′) = L(x∗) + |x′ − x∗| with s(e)(x′) = s(e)(x∗).

– Case x′ = x∗ + δ with δ > 0. Since we have h(+)(x∗) < ∞, we have a surplus loss in
the interval with s[e,h](x

∗) = C for some h ≤ e. Thus, hypothesis of Proposition 4 are
satisfied by x∗. Accordingly, any alternative intervention x′ > x∗ would lead to a loss
L(x′) = L(x∗) + |x′ − x∗| with s(e)(x′) = s(e)(x∗).

L(x∗) = 0. Condition (9) is satisfied by x∗. First, observe that

ŝ(e)(x′) = s(e−1) + d(e) + x′ = s(e−1) + d(e) + x∗ + (x′ − x∗) = ŝ(e)(x∗) + (x′ − x∗)

with ŝ(e)(x∗) ∈ [0, C] by the hypothesis L(x∗) = 0 and thus s(e)(x∗) = ŝ(e)(x∗).
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If x′ ∈ X∞ we have (x′ − x∗) ∈ [−s[e,e](x
∗), C − s[e,e](x

∗)] and thus ŝ(e)(x′) = s(e)(x∗) +

(x′ − x∗) ∈ [0, C], and also s(e)(x′) = s(e)(x∗) + (x′ − x∗) ∈ [0, C].

Moreover, for h = e+ 1, . . . , e we get

ŝ(h)(x′) = s(h−1)(x′) + d(h) = s(h−1)(x∗) + (x′ − x∗) + d(h) = ŝ(h)(x∗) + (x′ − x∗)

with ŝ(h)(x∗) ∈ [0, C] by the hypothesis L(x∗) = 0 and thus ŝ(h)(x′) ∈ [0, C] and also
s(h)(x′) = s(h)(x∗) + (x′ − x∗).

This proves L(x′) = 0 and optimality of x′.

Now we show that extreme points of X∞ do not depend on the particular optimal interven-
tion x∗. Let us first observe that for any x′ ∈ X∞, from s(h)(x′) = s(h)(x∗) + (x′ − x∗) for
all h ∈ [e, e], we derive s[e,e](x

′) = s[e,e](x
∗)+ (x′−x∗) and s[e,e](x

′) = s[e,e](x
∗)+ (x′−x∗).

Algebra tells us that x∗−s[e,e](x
∗) = x′−s[e,e](x

′) and x∗+C−s[e,e](x
∗) = x′+C−s[e,e](x

′)

which is what we need.

If x′ > x∞ = max(X∞) we observe that for the optimal intervention x∞ we have
s[e,e](x

∞) = C and x∞ satisfies hypothesis of Proposition 4. Thus if we write x′ =

x∞ + (x′ − x∞) we get L(x′) = x′ − x∞ and s(e)(x′) = s(e)(x∞).

If x′ < x∞ = min(X∞) we observe that for the optimal intervention x∞ we have s[e,e](x∞) =

0 and x∞ satisfies hypothesis of Proposition 3. Thus if we write x′ = x∞ + (x′ − x∞) we
get L(x′) = x∞ − x′ and s(e)(x′) = s(e)(x∞).

Finally, the last two steps proves that no other intervention outside X∞ can be optimal.
⊓⊔

Proof of Proposition 7. Let us analyze the three cases.

If x∞ ∈ [q − Q, q], then x∞ is also feasible for the more constrained capacitated problem.
Equalities xQ = x∞, LQ = L∞ and s(e)(xQ) = s(e)(x∞) are thus obvious. Equality s(e)(x∞) =

s(e)(0) comes from the following argument. If x∞ = 0, there is nothing more to prove. Otherwise,
the equality comes from Proposition 6 by setting x′ = 0 in both cases, i.e., L∞ > 0 and L∞ = 0,
respectively. In the latter case use second implication when x∞ = x∞ < 0, and third implication
when 0 < x∞ = x∞.

If q < x∞, then 0 < x∞ = x∞ and any feasible intervention x′ ∈ [q−Q, q] for the capacitated
problem is smaller than x∞; according to Proposition 6 we get L(x′) = L∞ + |x∞ − x′| which
is clearly minimum only for the maximum feasible value for x′. Thus, xQ = q and LQ =

L∞ + |x∞ − xQ|. Condition s(e)(xQ) = s(e)(x∞) = s(e)(0) is directly derived from Proposition
6) by setting x′ = xQ and x′ = 0 (use third implication in case 2).
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If x∞ < q − Q, then x∞ = x∞ < 0 and any feasible intervention x′ ∈ [q − Q, q] for the
capacitated problem is greater than x∞. The argument follows the same line of the previous
case. ⊓⊔

Proof of Theorem 2.

Complexity. We assume information on the system state induced by the null intervention at
all epochs h ∈ [e, e], described in vectors s, l− and l+, has been already computed in O(m) time
according to equations (2)-(6). The algorithm itself runs in O(e − e), indeed every step has a
cost O(1) while the main loop executes O(e− e) times.

Correctness. We show that algorithm Vehicle-Intervention initializes and sequentially up-
dates the 4-tuple of variables ⟨x∞, L∞, α, β⟩, so that, at the end of each loop iteration, the
following property holds on interval [e, h]:

• x∞ is the minimum modulus optimal intervention;

• L∞ is the optimal loss;

• s(h)(x∞) = s(h)(0);

• α = s[e,h](x
∞);

• β = s[e,h](x
∞).

Let us observe that if the property holds, from Proposition 5 we derive quite straightforwardly
that L∞ > 0 =⇒ (α = 0 ∧ β = C), or viceversa that (α > 0 ∨ β < C) =⇒ L∞ = 0.
We proceed with the following steps.

1. Property holds after the initialization phase (lines 1 – 3) for h = e. Observe that the
4-tuple is consistently initialized with ⟨x∞ = l(e)− − l(e)+, L∞ = 0, α = s(e), β = s(e)⟩.
Indeed, if no loss is induced at epoch e by the null intervention (i.e., l(e)− = l(e)+ = 0),
then the minimum modulus optimal intervention is zero, the loss is null and the stock
level at epoch e is unchanged. Otherwise let us assume w.l.o.g. we have a stockout loss
at epoch e (i.e., l(e)− > 0 and l(e)+ = 0). In this case, we have x∞ = l(e)− which is
the minimum positive intervention to recover the whole loss without changing the stock
level s(e)(x∞) = s(e)(0) = 0 at epoch e; in fact, according to equations (2) – (6) a smaller
intervention would leave a positive loss at epoch e, while a larger intervention would increase
the stock level at epoch e. A similar argument holds in case l(e)+ > 0.

2. Assuming that for some h > e the property holds at the beginning of a loop iteration on
interval [e, h− 1], we prove that at the end of the iteration the property holds on interval
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[e, h]. First, observe that since s(h−1)(x∞) = s(h−1)(0), we have for all h′ ≥ h

s(h
′)(x∞) = s(h

′)(0),

l(h
′)−(x∞) = l(h

′)−(0),

l(h
′)+(x∞) = l(h

′)+(0),

thus, when the iteration starts, L∞ + l(h)+ + l(h)− represents the loss induced on [e, h] by
x∞, which is currently the minimum modulus optimal solution on interval [e, h − 1] with
optimal loss L∞. Let us also observe that at least one of δ− and δ+ must be null and
proceed by cases:

• δ+ > 0 (and δ− = 0). According to computation at line 5, condition δ+ > 0 implies
0 < α = s[e,h−1](x

∞) and l(h)+(x∞) > 0.

Inequality α > 0 implies L∞ = 0. Indeed, s[e,h−1](x
∞) > 0 (minimum stock level

in interval [e, h− 1]) implies h(−)(x∞) = ∞ and both optimality conditions (10) and
(11) in Proposition 5 are excluded.

On the other hand, inequality l(h)+(x∞) > 0 implies s(h)(x∞) = s(h)(0) = C.

In particular, from L∞ = 0, we have l(h
′)+(x∞) = l(h

′)−(x∞) = 0 ∀h′ ≤ h−1, which
together with l(h)+(x∞) > 0 implies h = h(+)(x∞). Thus, h and δ+ play the role of h
and δ∗ in Proposition 1. Accordingly, the intervention update at line 7 is an improving
intervention on interval [e, h] with a loss update given at line 8. Moreover, Proposition
1 guarantees that stock levels are downshifted up to epoch h − 1, and unchanged
starting from h (i.e., s(h′)(x∞) = s(h

′)(0) ∀h′ ≥ h) including s(h)(x∞) = s(h)(0) = C.

Then, variables α and β are correctly updated to α = s[e,h](x
∞) at line 9 and to

β = s[e,h](x
∞) = C at line 10.

The optimality of the new value for x∞ in interval [e, h] is argued as follows. If δ+

computed at line 5 equals l(h)+, we know that the updated value of L∞ is still zero
and we cannot do any better. Otherwise, we have the first loss in h = h(+)(x∞) while
the new value of α (as updated at line 9) equals 0, thus updated intervention x∞

matches optimality condition (10) in Proposition 5 with respect to interval [e, h]

Finally, according to Proposition 1 we know that any update to x∞ smaller than
δ+ would imply a larger update to L∞, which proves the suboptimality of any other
intervention smaller in modulus.

• δ− > 0 (and δ+ = 0). Discussion mirroring that of previous point.

• δ+ = δ− = 0. Intervention x∞ does not change and loss L∞ and bounds α and β

are consistently updated at lines 8, 9 and 10, respectively, with s(h)(x∞) = s(h)(0)

implied by s(h−1)(x∞) = s(h−1)(0).

Observe that, by hypothesis, optimality conditions stated in Proposition 5 hold for
x∞ on [e, h− 1]. If either condition (10) or (11) is satisfied, then the same condition
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is still satisfied on interval [e, h] (epoch of first loss does not change with respect to
the larger interval and so does the stock level up to then). If only condition (9) is
satisfied then we have three possible cases.

– l(h)+ = l(h)− = 0. Optimality condition (9) still holds on interval [e, h].

– l(h)+ > 0, α = 0. On interval [e, h] we have s[e,h] = 0 and h = h(+)(x∞) <

h(−)(x∞), thus optimality condition (10) hold for x∞ on interval [e, h].

– l(h)− > 0, β = C. On interval [e, h] we have s[e,h] = C and h = h(−)(x∞) <

h(+)(x∞), thus optimality condition (11) hold for x∞ on interval [e, h].

So far we know that x∞ is the minimum modulus optimal intervention on interval
[e, h−1], and an optimal intervention on [e, h]. To show that x∞ is also the minimum
modulus optimal intervention on interval [e, h] we use the following argument. If
x∞ = 0 the point is self evident. Otherwise, let us assume w.l.o.g. that x∞ > 0 and
keep the focus on interval [e, h − 1] for which we have x∞ = x∞ > 0. Now consider
an alternative intervention x′ < x∞. From Proposition 6 (use h − 1 in place of e)
we observe that x′ is suboptimal on interval [e, h − 1] and s(h−1)(x′) = s(h−1)(x∞).
Thus, according to equations (2)-(6), interventions x′ and x∞ produce the same loss
at epoch h. This proves the suboptimality of x′ on interval [e, h].

3. Finally (lines 11 – 13), the algorithm computes xQ and LQ accordingly to Proposition 7.
⊓⊔

Proof of Proposition 8.
Let us proceed in order.

Eq. (18) We first observe that

L(x | s) = L(x− δ | s+ δ). (26)

Indeed, for any intervention x and δ we have

ŝ(e)(x− δ | s+ δ) = (s+ δ) + (x− δ) + d(e) = s+ x+ d(e) = ŝ(e)(x | s), (27)

that is, from epoch e all values of vectors s, l−, l+ are the same. In particular we have the
same losses all along the time interval and the same stock level at the final epoch e.

Then we observe that for any x we have an intervention y = x − δ such that L(x | s) =
L(y | s+ δ), thus

min
x

L(x | s) ≥ min
x

L(x | s+ δ).

Analogously, for any x we have an intervention y = x+ δ such that L(x | s+ δ) = L(y | s),
thus

min
x

L(x | s) ≤ min
x

L(x | s+ δ)
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and clearly,

min
x

L(x | s) = min
x

L(x | s+ δ)
def.
≡ L∞.

Moreover, from (26) we get that L(x | s) = L∞ if and only if L(x− δ | s+ δ) = L∞, thus
x∞(s+ δ) = x∞(s)− δ and x∞(s+ δ) = x∞(s)− δ. This concludes the argument.

Eq. (19) Let us consider L∞ > 0 and fix x and s ∈ [0, C]. Now let δ = −s and use equation (27) to
realize that

s(e)(x | s) = s(e)(x+ s | 0).

Finally, from equations (12) of Proposition 6 we have

s(e)(x+ s | 0) = s(e)(0 | 0),

and obviously
s(e)(x | s) = s(e)(0 | 0).

Eq. (20) Observe that the virtual loss induced at epoch e by intervention y = x∞(s)−δ ∈ [q, x∞(s)]

with initial stock level s+ δ is, according to (27),

ŝ(e)(y | s+ δ) = ŝ(e)(x∞(s) | s),

that is y produces, at every epoch in interval [e, e] the same stock levels and losses. Thus,
y produces the same total loss L∞ and so is optimal for the initial stock level s+ δ. In the
same way we can show that for any y′ ∈ [0, y) we get

ŝ(e)(y′ | s+ δ) = ŝ(e)(x∞(s)− (y − y′) | s)

and, because x∞(s)− (y − y′) ∈ [0, x∞(s)), y′ produces a loss larger than L∞, thus,

y = x∞(s)− δ = x∞(s+ δ).

Equalities

xQ(s+ δ) = xQ(s) = q and

LQ(s+ δ) = L∞ + x∞(s)− q − δ

come directly from condition x∞(s+ δ) = y > q and equations (15), (16) in Proposition 7,
respectively.

Finally, observe that from x∞(s+ δ) = x∞(s)− δ, and equation (27) we have at epoch e

ŝ(e)(x∞(s+ δ) | s+ δ) = ŝ(e)(x∞(s)− δ | s+ δ) = ŝ(e)(x∞(s) | s),
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then we also have at epoch e

s(e)(x∞(s+ δ) | s+ δ) = s(e)(x∞(s) | s).

Also consider that xQ(s + δ) = xQ(s) = q ≤ x∞(s + δ) ≤ x∞(s). Thus, from either
equations (12) or (13) of Proposition 6, we derive

s(e)(x∞(s+ δ) | s+ δ) = s(e)(xQ(s+ δ) | s+ δ)

s(e)(x∞(s) | s) = s(e)(xQ(s) | s)

and so
s(e)(xQ(s+ δ) | s+ δ) = s(e)(xQ(s) | s).

Eq. (21) Discussion follows the same line as equalities (20).
⊓⊔

A.2 General problem

Proof of Proposition 9.
We proceed by contradiction. Let x∗ = [x∗1, . . . , x

∗
i ] be a vector of interventions and assume

that for some k ≤ i, intervention x∗k is not optimal for the 1-Intervention capacitated problem
on interval Ik with initial stock level s(ek−1)(x∗) at epoch ek−1, i.e.,

LIk

(
x∗k

∣∣∣ s(ek−1)(x∗)
)
> min

x∈[qk−Qk,qk]
LIk

(
x

∣∣∣ s(ek−1)(x∗)
)
.

Now, let us focus on the 1-Intervention problem on interval Ik. Since x∗k is suboptimal for
the capacitated problem, it must be either x∗k < xQ or xQ < x∗k. If x∗k < xQ, we must have
q−Q < xQ ≤ x∞ and we set ỹ = xQ; otherwise we must have x∞ ≤ xQ < q and we set ỹ = xQ.
In any case ỹ is optimal for the capacitated 1-Intervention problem; moreover we have

s(ek+1−1)([x∗1, . . . , x
∗
k−1, ỹ]) = s(ek+1−1)(x∗)

where the equality is guaranteed by Proposition 6 (both x∗k and ỹ induce the same stock level as
the optimal intervention x∞ or x∞).

Thus, for vector of interventions y = [y1, . . . , yi] with yj = x∗j for j ̸= k and yk = ỹ we have
from equation (22)

LJi ([y1, . . . , yi]) =
∑i

h=1 LIh

(
yh

∣∣ s(eh−1)(y)
)

<
∑i

h=1 LIh

(
x∗h

∣∣ s(eh−1)(x∗)
)
= LJi ([x

∗
1, . . . , x

∗
i ])

which contradicts optimality of x∗ for problem P(i). ⊓⊔

Proof of Proposition 10.
Property is guaranteed by the two following claims for all h ≤ i
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A. s(eh−1)(x∗) = s(eh−1)(y∗) =⇒ LIh

(
x∗h

∣∣ s(eh−1)(x∗)
)
= LIh

(
y∗h

∣∣ s(eh−1)(y∗)
)
;

B. s(eh−1)(x∗) ̸= s(eh−1)(y∗) =⇒ max
(
LIh

(
x∗h

∣∣ s(eh−1)(x∗)
)
, LIh

(
y∗h

∣∣ s(eh−1)(y∗)
))

= L∞
Ih

.

Claim A is guaranteed by Proposition 9. With respect to claim B, observe that, according
to equation (16) of Proposition 7, L∞

Ih
is a lower bound for both LIh

(
x∗h

∣∣ s(eh−1)(x∗)
)

and
LIh

(
y∗h

∣∣ s(eh−1)(y∗)
)
, thus the equality also implies LIh

(
x∗h

∣∣ s(eh−1)(x∗)
)
= LIh

(
y∗h

∣∣ s(eh−1)(y∗)
)
.

We prove claim B by absurdity. We assume that an index h ≤ i exists such that

s(eh−1)(x∗) ̸= s(eh−1)(y∗) and max
(
LIh

(
x∗h

∣∣∣ s(eh−1)(x∗)
)
, LIh

(
y∗h

∣∣∣ s(eh−1)(y∗)
))

> L∞
Ih
,

and get to some contradiction.
Let h′ be the minimum of such indices, and let l be the last index before h′ such that

s(el−1)(x∗) = s(el−1)(y∗). Note that such an index l exists as the equality holds at least for l = 1

(possibly l = h′ − 1), and observe that we have the following Facts:

(a) s(el−1)(x∗) = s(el−1)(y∗) and s(ek−1)(x∗) ̸= s(ek−1)(y∗) for k = l+ 1, . . . , h′; by definition of
h′ and l.

(b) LIk

(
x∗k

∣∣ s(ek−1)(x∗)
)
= LIk

(
y∗k

∣∣ s(ek−1)(y∗)
)
= L∞

Ik
for k = l + 1 . . . , h′ − 1; by definition

of h′ and l.

(c) LIl

(
x∗l

∣∣ s(el−1)(x∗)
)
= LIl

(
y∗l

∣∣ s(el−1)(y∗)
)
= L∞

Il
= 0; this follows from Proposition 9,

which guarantees that x∗l and y∗l are both optimal for the same 1-Intervention capacitated
problem, from Fact (a) which implies x∗l ̸= y∗l , and from equation (14) of Proposition 7 show-
ing that two distinct optimal intervention for the same 1-Intervention capacitated problem
are allowed only if the optimal loss is zero.

(d) L∞
Ik

= 0 for k = l, . . . , h′ − 1; this follows from equation (19) of Proposition 8, which
guarantees that L∞

Ik
> 0 implies s(ek+1−1)(x∗) = s(ek+1−1)(y∗) in contradiction with Fact

(a).

(e) LIk

(
x∗k

∣∣ s(ek−1)(x∗)
)
= LIk

(
y∗k

∣∣ s(ek−1)(y∗)
)
= 0 for k = l, . . . , h′ − 1; this is a straight

consequence of Proposition 9, which guarantees that x∗k and y∗k are both optimal for the
corresponding 1-Intervention capacitated problem on intervals Ik, and from Facts (b), (c)
and (d).

(f) s(ek−1)(y∗) − s(ek−1)(x∗) =
∑k−1

j=l (y
∗
j − x∗j ) for k = l + 1, . . . , h′; this follows from Fact (e)

and equations (2) – (6).

Now, let us assume w.l.o.g. that s(eh′−1)(y∗) > s(eh′−1)(x∗) and discuss the possible cases.
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• max
(
LIh′

(
x∗h′

∣∣ s(eh′−1)(x∗)
)
, LIh′

(
y∗h′

∣∣ s(eh′−1)(y∗)
))

= LIh′

(
x∗h′

∣∣ s(eh′−1)(x∗)
)
> L∞

Ih′
.

Then, x∗h′ ∈ XQ
Ih′

(s(eh′−1)(x∗)), but x∗h′ /∈ X∞
Ih′

(s(eh′−1)(x∗)) and, according to equation
(15) of Proposition 7, we have two possible cases:

– Case x∗h′ = qh′ < x∞Ih′
(s(eh′−1)(x∗)). According to Fact (f), inequality s(eh′−1)(y∗) >

s(eh′−1)(x∗) implies that at least one index k < h′ exists such that y∗k > x∗k, and by
defining k̂ as the last of such indices (l ≤ k̂ < h′), we have that s(ek−1)(y∗)−s(ek−1)(x∗)

is monotonically non-increasing with respect to k starting from k̂ + 1 up to h′.

Now consider the vector of interventions z with zk = x∗k for k ̸= k̂ and zk̂ = x∗
k̂
+ δ for

δ = 1 ≤ min(s(eh′−1)(y∗) − s(eh′−1)(x∗), x∞Ih′
(s(eh′−1)(x∗)) − qh′); observe that from

equations (2) – (6) we easily derive the following Facts:

(i) s(ek−1)(z) = s(ek−1)(x∗) and LIk

(
zk

∣∣ s(ek−1)(z)
)
= LIk

(
x∗k

∣∣ s(ek−1)(x∗)
)

for
k = 1, . . . , k̂;

(ii) s(ek−1)(z) = s(ek−1)(x∗) + δ ∈ [s(ek−1)(x), s(ek−1)(y)] for k = k̂ + 1, . . . , h′;

(iii) LIk

(
zk

∣∣ s(ek−1)(z)
)
= LIk

(
x∗k

∣∣ s(ek−1)(x∗)
)
= 0 for k = k̂, . . . , h′ − 1;

As for LIh′

(
zh′

∣∣ s(eh′−1)(z)
)

and LIh′

(
x∗h′

∣∣ s(eh′−1)(x∗)
)

we observe that from Fact
(ii) we have

s(eh′−1)(z) = s(eh′−1)(x∗) + δ,

and according to equations (20) of Proposition 8, we get

zh′ = qh′ = xQIh′
(s(eh′−1)(z)),

LIh′

(
zh′

∣∣ s(eh′−1)(z)
)

= LQ
Ih′

(s(eh′−1)(z))

= LQ
Ih′

(s(eh′−1)(x∗))− δ

= LIh′

(
x∗h′

∣∣ s(eh′−1)(x∗)
)
− δ

< LIh′

(
x∗h′

∣∣ s(eh′−1)(x∗)
)
,

s(eh′+1−1)(z) = s(eh′+1−1)(x∗).

The first equality shows that zh′ = qh′ is the optimal intervention for the 1-Intervention
capacitated problem on interval Ih′ given the initial stock level s(eh′−1)(z). The second
equality implies that vector of interventions z attains a smaller loss in interval Ih′ with
respect to x∗. The third equality guarantees that starting from epoch eh′+1 onward
the stock level induced by vector z is unchanged with respect to x∗, and so are the
losses. In conclusion, we have LJi ([z1, . . . , zi]) < LJi ([x

∗
1, . . . , x

∗
i ]), in contradiction

with the optimality of x∗ for P(i).

– Case x∗h′ = qh′ −Qh′ > x∞Ih′
(s(eh′−1)(x∗)). We first observe that from equations (18)
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of Proposition 8 we obtain

x∞Ih′ (s
(eh′−1)(y∗)) = x∞Ih′ (s

(eh′−1)(x∗))−
(
s(eh′−1)(y∗)− s(eh′−1)(x∗)

)
< x∞Ih′ (s

(eh′−1)(x∗))

< x∗h′ = qh−Qh′ ≤ 0

and derive that y∗h′ = xQIh′
(s(eh′−1)(y∗)) = qh′ −Qh′ = x∗h′ .

Moreover, note that x∞Ih′ (s
(eh′−1)(y∗))− (qh′ −Qh′) < s(eh′−1)(x∗)− s(eh′−1)(y∗) < 0.

Thus, setting δ = s(eh′−1)(x∗)− s(eh′−1)(y∗) and s = s(eh′−1)(y∗) we can obtain from
equations (21) of Proposition 8 the following chain of inequalities

LIh′

(
x∗h′

∣∣∣ s(eh′−1)(x∗)
)
= LQ

Ih′
(s(eh′−1)(x∗))

= LQ
Ih′

(s(eh′−1)(y∗) + s(eh′−1)(x∗)− s(eh′−1)(y∗))

= LQ
Ih′

(s(eh′−1)(y∗)) +
(
s(eh′−1)(x∗)− s(eh′−1)(y∗)

)
< LQ

Ih′
(s(eh′−1)(y∗)) = LIh′

(
y∗h′

∣∣∣ s(eh′−1)(y∗)
)
,

in contradiction with LIh′

(
x∗h′

∣∣ s(eh′−1)(x∗)
)
≥ LIh′

(
y∗h′

∣∣ s(eh′−1)(y∗)
)
.

• max
(
LIh′

(
x∗h′

∣∣ s(eh′−1)(x∗)
)
, LIh′

(
y∗h′

∣∣ s(eh′−1)(y∗)
))

= LIh′

(
y∗h′

∣∣ s(eh′−1)(y∗)
)
> L∞

Ih′
.

Discussion mirroring that of previous point.

This concludes the argument. ⊓⊔

Proof of Proposition 11.
We proceed by induction on the dimension i of the optimal vector x for P(i). The inductive

hypothesis is that an optimal vector of interventions for P(i) is also optimal for P(h) for all
1 ≤ h < i.

Base case. Let i = 2 and x = [x1, x2] be an optimal vector of interventions for P(i). We
show that x satisfies the inductive hypothesis. Proposition 9 guarantees that intervention x1 is
optimal for the 1-Intervention problem on interval I1 with initial stock level s(0); but as I1 = J1

vector [x1] is also optimal for problem P(1).

Inductive step. Let us assume that the inductive hypothesis holds for some i ≥ 2 and show
that also holds for i+ 1.

We proceed by contradiction. Let x = [x1, . . . , xi+1] be an optimal vector of interventions
for P(i + 1) which, for some h ≤ i, is not optimal for P(h), and let k be the minimum of such
indices.

Let y be any optimal vector of interventions for P(i) and, according to the inductive hypoth-
esis, also for P(h), h = 1, . . . , i− 1.
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By construction of k, x is optimal for P(k− 1) and sub-optimal for P(k). On the other side,
by inductive assumption, y is optimal for both P(k − 1) and P(k). Thus, from equation (23) it
is immediate to derive

LIk

(
xk

∣∣∣ s(ek−1)(x)
)
> LIk

(
yk

∣∣∣ s(ek−1)(y)
)
,

which, on the basis of Proposition 9, excludes the case s(ek−1)(x) = s(ek−1)(y). We conclude
the discussion observing that the latter two conditions contradict the statement of Proposition
10. ⊓⊔

Proof of Proposition 12. We consider only the case i = w. Discussion for i < w follows
the same line, just on a shorter time horizon. If LJw ([01, . . . , 0w]) = 0 then 0 is optimal and we
have nothing to show. Otherwise, let h be the last epoch when the null vector induces a loss
(i.e., h = max{h | L(h)(0) > 0}) and let y be an optimal vector of interventions.

If s(h)(y) = s(h)(0) then we obtain the optimal vector of interventions x∗ by setting x∗j = yj

for ej ≤ h and x∗j = 0 for ej > h. Observe that x∗ produces the same effect (stock level and
loss) as y up to epoch h, and the same effect as 0 (with null loss) from h onward, which implies
LJw ([x∗1, . . . , x

∗
w]) ≤ LJw ([y1, . . . , yw]) and s(m)(x∗) = s(m)(0).

To examine the case s(h)(y) ̸= s(h)(0), let us assume w.l.o.g. that we have a surplus loss at
epoch h (i.e., l(h)+(0) > 0) and necessarily s(h)(y) < s(h)(0) = C.

Let ek be the last intervention epoch before h and ek the first intervention epoch such that
s(h)([y1, . . . , yk, 0k+1, . . . , 0k]) < C. Clearly we have ek ≤ ek ≤ h, s(h)([y1, . . . , yl, 0l+1, . . . , 0k]) =

C for all l < k and yk ̸= 0.

Focusing on the 1-Intervention problem on interval [ek, h] with stock level s(ek−1)(y) at epoch
ek − 1 we observe that the stock level induced at epoch h by the null intervention at epoch ek is
C while the stock level induced by intervention yk is smaller than C. According to Proposition
6 we can have two interventions producing different stock levels at the end of the interval only
when the optimal loss for the uncapacitated problem is zero. Moreover, according to equation
(17) of Proposition 7 minimum modulus optimal interventions x∞ and xQ for the uncapacitated
and capacitated problems induce at the end of the interval the same stock level as the null
intervention. Summing up, we have L[ek,h]

(
[xQ, 0k+1, . . . , 0k]

∣∣ s(ek−1)(y)
)
= 0 with stock level

C at epoch h.
Finally, observe that starting with a stock level equal to C at epoch h the sequence of null

interventions at epochs ei with i > k produces exactly the same effect, in terms of losses and
stock levels, on the interval [h,w]; in particular, by construction of h the total loss induced in
this interval is zero.

Now, let us define a vector of interventions x as follows: xj = yj for j < k, xk = xQ, and
xj = 0 for j > k. We are ready to show that x is optimal.
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Indeed,

LJw ([x1, . . . , xw]) = L[e1,ek−1]

(
[y1, . . . , yk−1]

∣∣ s(0) )+
L[ek,h]

(
[xQ, 0k+1, . . . , 0k]

∣∣ s(ek−1)(y)
)
+

L[h+1,w] (0 | C)

= L[e1,ek−1]

(
[y1, . . . , yk−1]

∣∣ s(0) )
≤ LJw ([y1, . . . , yw]) .

Finally, condition s(m)(x) = s(m)(0) comes by observing that by construction s(h)(x) =

s(h)(0) and starting from h all interventions in x are zero. ⊓⊔

Proof of Proposition 13. We first observe that for a given i < w, we have by construction

LJi ([x
∗
1, . . . , x

∗
i ]) = LJi−1

(
[x∗1, . . . , x

∗
i−1]

)
+ LIi

(
x∗i

∣∣∣ s(ei−1)(x∗)
)

(28)

where x∗ = [x∗1, . . . , x
∗
i ] is an optimal vector for the problem P(i), and

L[J̄i,δ]
([x̄1, . . . , x̄i]) = LJi−1 ([x̄1, . . . , x̄i−1]) + L[Īi,δ]

(
x̄i

∣∣∣ s(ei−1)(x̄)
)

(29)

where x̄ = [x̄1, . . . , x̄i] is the optimal vector of interventions for the augmented problem P̄(i, δ)

and the last term is the loss in the augmented interval Īi depending on the intervention x̄i

implemented at epoch ei and on the stock level s(ei−1)(x̄) determined at epoch ei − 1 by all
previous interventions.

Here we assume that x∗ is an optimal vector that satisfies condition stated in Proposition 12
(i.e., s(f)(x∗) = s(f)(0) for f = ei+1 − 1) so that

L[J̄i,δ]
([x∗1, . . . , x

∗
i ]) = LJi ([x

∗
1, . . . , x

∗
i ]) + |δ|. (30)

Indeed, as s(f)(x∗) = s(f)(0) for f = ei+1 − 1, the total loss obtained in the augmented interval
J̄i is given by the loss obtained in interval Ji plus the loss obtained at epoch ei+1 which is |δ| by
construction.

Now, Proposition 11 guarantees that partial vectors [x̄1, . . . , x̄i−1] and [x∗1, . . . , x
∗
i−1] are op-

timal on interval Ji−1 and we have

LJi−1 ([x̄1, . . . , x̄i−1]) = LJi−1

(
[x∗1, . . . , x

∗
i−1]

)
. (31)

Thus, to prove optimality of x̄ for interval Ji it suffices to show that

LIi

(
x̄i

∣∣∣ s(ei−1)(x̄)
)
≤ LIi

(
x∗i

∣∣∣ s(ei−1)(x∗)
)
.

We prove this latter inequality by contradiction. If

LIi

(
x̄i

∣∣∣ s(ei−1)(x̄)
)
> LIi

(
x∗i

∣∣∣ s(ei−1)(x∗)
)
, (32)
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then there must be at least one epoch h ∈ Ii with a positive loss, which according to equations
(12) of Proposition 6, does not change the stock and loss (w.r.t. 0) at later epochs and thus we
have

L[Īi,δ]

(
x̄i

∣∣∣ s(ei−1)(x̄)
)
= LIi

(
x̄i

∣∣∣ s(ei−1)(x̄)
)
+ |δ|. (33)

Using equations (28) – (33) we can derive the following chain of inequalities
L[J̄i,δ]

([x̄1, . . . , x̄i]) = [by eq. (29)]
= LJi−1 ([x̄1, . . . , x̄i−1]) + L[Īi,δ]

(
x̄i

∣∣ s(ei−1)(x̄)
)
= [by eq. (33)]

= LJi−1 ([x̄1, . . . , x̄i−1]) + LIi

(
x̄i

∣∣ s(ei−1)(x̄)
)
+ |δ| = [by eq. (31)]

= LJi−1

(
[x∗1, . . . , x

∗
i−1]

)
+ LIi

(
x̄i

∣∣ s(ei−1)(x̄)
)
+ |δ| > [by eq. (32)]

> LJi−1

(
[x∗1, . . . , x

∗
i−1]

)
+ LIi

(
x∗i

∣∣ s(ei−1)(x∗)
)
+ |δ| = [by eq. (28)]

= LJi ([x
∗
1, . . . , x

∗
i ]) + |δ| = [by eq. (30)]

= L[J̄i,δ]
([x∗1, . . . , x

∗
i ])

proving that x̄ cannot be an optimal vector of interventions for the augmented problem, in
contradiction with the hypothesis. ⊓⊔

Proof of Proposition 14. We analyze the augmented problem P̄(i − 1, δ) proceeding by
cases with respect to the sign of δ = x∞(Si)− xQ(Si). For sake of clarity the fictitious demand
at epoch ei used to build P̄(i − 1, δ) is denoted by d̄i, not to be confused with d(ei) which is
the demand at epoch ei for problem P(i). According to equations (2) – (6), we indicate with
s̄(ei)(y) = max(0,min(C, s(ei−1)(y) + d̄i)) the stock level induced by a vector of decisions y at
epoch ei in the augmented problem.

Case δ > 0. When δ > 0 we know the following Facts:

(a) x∞(Si) > xQ(Si) = qi (from Proposition 7).

(b) d̄i = −s(ei−1)(0)−δ = −Si−δ and s̄(ei)(0) = 0 (by construction of the augmented problem).

(c) An optimal vector of interventions x̄ for the augmented problem P̄(i− 1, δ) exists such that
s̄(ei)(x̄) = s̄(ei)(0) = 0 (from Proposition 12 and Fact (b)).

(d) x̄ is an optimal vector of interventions for problem P(i− 1) (from Proposition 13).

(e) Any optimal vector of interventions y for P(i− 1) satisfies the equation

L[J̄i−1,δ]
([y1, . . . , yi−1]) = L∗

Ji−1
+max(0, δ − (s(ei−1)(y)− Si)). (34)

Equation (34) holds by construction of augmented problem, equation (5) and Fact (b) applied
to virtual stock of the augmented problem at epoch ei: s(ei−1)(y) + d̄i = s(ei−1)(y)− Si − δ.

(f) ∆
def.
≡ (L∗

Ji−1
+ δ) − L∗

[J̄i−1,δ]
∈ [0, δ] (directly from L∗

[J̄i−1,δ]
∈

[
L∗
Ji−1

, L∗
Ji−1

+ δ
]

where the
lower bound comes from equation (34); and the upper bound derives from equation (34)

37



applied to the vector y that, according to Proposition 12, is optimal for P(i − 1) with
s(ei−1)(y) = Si).

(g) s(ei−1)(x̄) = Si +∆. (according to: Fact (f), Fact (d), equation (34) applied to x̄, and Fact
(c) that guarantees s(ei−1)(x̄) + d̄i ≤ 0; we have ∆ = L∗

Ji−1
+ δ − L∗

[J̄i−1,δ]
= δ −max(0, δ −

(s(ei−1)(x̄)− Si)) = s(ei−1)(x̄)− Si).

We also observe that following Fact (g), and according to Fact (a), equation (20) of Propo-
sition 8 and equation (16) of Proposition 7 we have

xQ(Si +∆) = xQ(Si) = qi,

x∞(Si +∆) = x∞(Si)−∆,

LQ
Ii
(Si +∆) = L∞

Ii
+ (x∞(Si)−∆)− xQ(Si) = L∞

Ii
+ δ −∆.

(35)

Now, let us consider x∗ = [x̄1, . . . , x̄i−1, qi] and an optimal vector of interventions y for P(i).
Observe that, by construction, x∗ is optimal for P(i − 1) and LJi ([x

∗
1, . . . , x

∗
i ]) = L∗

Ji−1
+

LIi

(
x∗i

∣∣ s(ei−1)(x∗)
)

with LIi

(
x∗i

∣∣ s(ei−1)(x∗)
)
= LQ

Ii
(Si+∆). On the other hand y is optimal

also for P(i− 1) and LJi ([y1, . . . , yi]) = L∗
Ji−1

+ LIi

(
yi

∣∣ s(ei−1)(y)
)
.

Thus, to prove the optimality of x∗ for P(i) it suffices to show that LIi

(
x∗i

∣∣ s(ei−1)(x∗)
)
=

LIi

(
yi

∣∣ s(ei−1)(y)
)
. Let us proceed by cases.

• If ∆ = δ, then from (35) we have LIi

(
x∗i

∣∣ s(ei−1)(x∗)
)
= L∞

Ii
while, according to Proposi-

tion 7 and Proposition 8, we get L∞
Ii

≤ LIi

(
yi

∣∣ s(ei−1)(y)
)

where a strict inequality would
be in contradiction with the optimality of y.

• If ∆ < δ, let us indicate with s(ei−1)(y) = Si + γ the stock level induced by y at epoch
ei − 1.

– If γ = ∆, then LIi

(
x∗i

∣∣ s(ei−1)(x∗)
)
= LQ

Ii
(Si+∆) by construction and LQ

Ii
(Si+∆) =

LIi

(
yi

∣∣ s(ei−1)(y)
)

from Proposition 9.

– If γ < ∆, then from equation (20) of Proposition 8 we get LIi

(
yi

∣∣ s(ei−1)(y)
)
>

LIi

(
x̄i

∣∣ s(ei−1)(x̄)
)

in contradiction with optimality of y for P(i).

– If γ > ∆, observe that, according to equation (34) we have L[J̄i−1,δ]

(
[x∗1, . . . , x

∗
i−1]

)
−

L[J̄i−1,δ]
([y1, . . . , yi−1]) = δ−∆−max(0, δ−γ) > 0 which is in contradiction with the

optimality of x̄ for the augmented problem P̄(i− 1, δ).

Finally, equality L∗
Ji

= L∗
[J̄i−1,δ]

+L∞
Ii

straightly derives from equalities L∗
Ji

= LJi ([x
∗
1, . . . , x

∗
i ]) =

L∗
Ji−1

+ LQ
Ii
(Si +∆) = L∗

Ji−1
+ L∞

Ii
+ δ −∆ and the definition of ∆.

Case δ < 0. When δ < 0 we we can carry out a discussion mirroring the previous one.
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Case δ = 0. When δ = 0 we have by construction d̄i = 0 and x∞(Si) = xQ(Si), hence
LQ
Ii
(Si) = L∞

Ii
. Let x̄ = [x̄1, . . . , x̄i−1] be the optimal vector of interventions for augmented

problem P̄(i− 1, δ) such that s̄(ei)(x̄) = s̄(ei)(0) as guaranteed by Proposition 12. Observe that
not only is vector x̄ optimal for P(i− 1) as guaranteed by Proposition 13, but it also satisfies

s(ei−1)(x̄) = Si, (36)

L[J̄i−1,δ]
([x̄1, . . . , x̄i−1]) = LJi−1 ([x̄1, . . . , x̄i−1]) = L∗

Ji−1
; (37)

equality (36) straightly derives from conditions s̄(ei)(x̄) = s̄(ei)(0) and d̄i = 0, and from equations
(2)-(6) applied to the augmented problem; equality (37) comes from d̄i = 0 and optimality of x̄
for P(i− 1).

Morever, vector x∗ = [x̄1, . . . , x̄i−1, x
Q(Si)] produces on interval Ji a loss

LJi ([x
∗
1, . . . , x

∗
i ]) = L∗

Ji−1
+ LIi

(
x∗i

∣∣∣ s(ei−1)(x∗)
)

= L∗
Ji−1

+ LQ
Ii
(Si) (from s(ei−1)(x∗) = s(ei−1)(x̄), equation (36), and x∗i = xQ(Si))

= L∗
Ji−1

+ L∞
Ii (from x∞(Si) = xQ(Si)).

Observe that L∗
Ji−1

+ L∞
Ii

is a lower bound for any vector of interventions on interval Ji which
proves the optimality of x∗ for P(i).

Finally, equality L∗
Ji

= L∗
[J̄i−1,δ]

+ L∞
Ii

straightly derives from equality LJi ([x
∗
1, . . . , x

∗
i ]) =

L∗
Ji−1

+ L∞
Ii

, optimality of x̄ for P(i) and equation (37). ⊓⊔

Proof of Theorem 3.
The algorithm starts with some initialization and computes vectors ŝ, l+, l−, and s repre-

senting, respectively, virtual stock, surplus loss, stockout loss, and stock level induced by the
null vector of interventions x = 0 on all epochs T (lines 1–8). The computation is clearly done
in O(m) time.

In the second part, three fundamental steps are performed.

1. Lines 9 – 11. A 1-Intervention problem is solved in O(m − ew) time by procedure
Vehicle-Intervention on the interval Iw with initial stock level s(ew−1)(0) and producing
corresponding minimum modulus optimal interventions x∞, xQ and optimal values L∞,
LQ for the uncapacitated and capacitated problem, respectively; the stock level at epoch
m is s(m)(xQ) = s(m)(0).

2. Line 12. The augmented problem P̄(w − 1, δ) is solved with δ = x∞ − xQ in O(ew) time
by algorithm Global-Backward-Recursive producing an optimal vector of interventions
x and the corresponding optimal value L.

3. Lines 13 – 14. The solutions of the two problems are chained in O(1) time to form the
optimal vector of interventions x∗ for P(w) such that s(m)(x∗) = s(m)(0). and the corre-
sponding optimal value L∗.
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Correctness of the first step is guaranteed by (Theorem 2); correctness of the third step is
guaranteed by (Proposition 14). Correctness of the second step is proved in the following.

We proceed by induction on the number i of stages to show that problem P̄(i, δ) is solved by
algorithm Global-Backward-Recursive which produces an optimal vector of interventions x∗

in O(ei+1) time.

Base cases
For i = 0, we do not have any decision epochs and the procedure consistently returns in O(1)

time the empty vector as optimal vector of interventions x∗ and |δ| as optimal value L∗.
For i = 1, the augmented problem P̄(1, δ) reduces to a 1-Intervention problem on augmented

interval Ī1 which is consistently initialized at lines 2 – 5 in O(1) time and solved by algorithm
Vehicle-Intervention at line 7 in O(ei+1), which returns the corresponding optimal interven-
tions xQ, x∞, and optimal values LQ and L∞. The next recursive call for P̄(0, x∞−xQ), returns
an empty vector of interventions and a loss |x∞ − xQ|. Thus, the procedure consistently returns
x∗ = [x∞] as one-intervention optimal vector of interventions and L∗ = LQ = L∞ + |x∞ − xQ|
as total loss (latter equality guaranteed by equation (16) of Proposition 7).

Inductive step.
Let i > 1 and assume that algorithm Global-Backward-Recursive solves problem P̄(i−1, δ)

in O(ei) time. We show that algorithm Global-Backward-Recursive also solves problem P̄(i, δ)

in O(ei+1).
Similarly to the case of i = 1, also for i > 1, data for the 1-Intervention problem on augmented

interval Īi are computed in O(1) and corresponding problem is solved in O(ei+1−ei) by algorithm
Vehicle-Intervention, which returns the corresponding optimal interventions xQ, x∞, and
optimal values LQ and L∞.

From the inductive hypothesis, augmented problem P̄(i− 1, x∞−xQ) is solved by algorithm
Global-Backward-Recursive in O(ei) producing an optimal vector of interventions x and its
optimal value L.

According to Proposition 14, at last step the optimal vector of interventions x∗ for the
augmented problem P̄(i, δ) is given by [x, xQ] and its optimal value is given by L∗ = L∞ + L.
The overall time complexity is O(ei+1). ⊓⊔

A.3 Table of notation

Notation Meaning
Problem parameters
C Capacity of the station.
T = {1, . . . ,m} Set of epochs.
d = [d(1), . . . , d(m)] Vector of net flow in the time horizon.
V = {v1, . . . , vw} Set of the vehicles.
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Notation Meaning
H = {e1, . . . , ew} ⊆ T Set of epochs in which the station is visited by the vehicles.
Q = [Q1, . . . , Qw] Vector of the capacity of vehicles.
q = [q1, . . . , qw] Vector of the bike load of the vehicles.
Variables
x = [x1, . . . , xw] Vector of the interventions.
s = [s(1), . . . , s(m)] Vector of stock levels in the time horizon.
ŝ = [ŝ(1), . . . , ŝ(m)] Vector of virtual stock in the time horizon.
l+ = [l(1)+, . . . , l(m)+] Vector of surplus losses.
l− = [l(1)−, . . . , l(m)−] Vector of stockout losses.
L Total amount of lost requests.
Interval optimization
e ∈ T Starting epoch for interval optimization.
e ∈ T Ending epoch for interval optimization.
s[e,h](x) Minimum stock level in epoch interval [e, h] ⊆ T .
s[e,h](x) Maximum stock level in epoch interval [e, h] ⊆ T .
h(+)(x) First epoch in which a surplus loss is present, if any, +∞ otherwise.
h(−)(x) First epoch in which a stockout loss is present, if any, +∞ otherwise.
X∞ = [x∞, x∞] Range of optimal interventions for the uncapacitated case.
L∞, x∞ Optimal loss and minimum modulus optimal intervention for the uncapacitated case.
XQ = [xQ, xQ], LQ, xQ Same as above for the capacitated problem.
Time horizon optimization
Ii Ii = [ei, ei + 1, . . . , ei+1 − 1] for i = 1, . . . , w − 1, Iw = [ew, . . . ,m].
Ji Ji = [e1, e2, . . . , ei+1 − 1] for i = 1, . . . , w − 1, Jw = [e1, . . . ,m].
Īi, J̄i Augmented intervals Īi = Ii ∪ {ei+1}, J̄i = Ji ∪ {ei+1}.

P(i) P(i)
def.
≡ min[x1,...,xi] LJi ([x1, . . . , xi]), optimization problem (7) on interval Ji.

P̄(i, δ) P̄(i, δ)
def.
≡ min[x1,...,xi] L[J̄i,δ]

([x1, . . . , xi]), the augmentation of problem P(i) to J̄i with
extra loss δ.

L∗
Ji

, L∗
[J̄i,δ]

Optimal values of P(i) and P̄(i, δ).
[x1, . . . , xi] Subvector of first i-th components of the vector of interventions x.
LJi ([x1, . . . , xi]) Loss induced by interventions [x1, . . . , xi] in interval in interval Ji.
L[J̄i,δ]

([x1, . . . , xi]) Loss induced by interventions [x1, . . . , xi] in interval J̄i for the augmented problem.
LIi (x | s ) Loss induced by intervention x in interval Ii depending on initial stock level s at epoch

ei − 1.
Rich notation
Throughout the manuscript, the dependency of different quantities on different variables is highlighted. Example
of this highlighting through notation are reported in this section of the table.
s(h)(x) Stock level at epoch h resulting from intervention x (for 1-Intervention problem).
s(x) Vector of stock levels resulting from the vector of interventions x.
s(h)(x) Stock level at epoch h induced by interventions in vector x up to epoch h.
L[e,h](x | s) Loss induced on interval [e, h] by intervention x at epoch e given an initial stock level s.
X∞

Ik
(s) = [x∞

Ik
(s), x∞

Ik
(s)],

x∞
Ik
(s), L∞

Ik
(s)

Set of optimal interventions, minimum modulus optimal intervention and optimal loss
for the 1-Intervention uncapacitated problem on interval Ik, with their dependency on
initial stock level s being highlighted.

Table II: Table of notation
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