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There has been a significant increase in the availability of global high- Received 23 April 2023

resolution land cover (HRLC) datasets due to growing demand and Accepted 27 August 2023

favorable technological advancements. However, this has brought forth

the challenge of collecting reference data with a high level of detail for Hi ) .
. X . X . R igh-resolution land cover;

gIobaI_extents..Whlle.photo-lnterpretatlon is considered o_ptlmal for global land cover; training

collecting quality training data for global HRLC mapping, some data; reference data; data

producers of existing HRLCs use less trustworthy sources, such as quality

existing land cover at a lower resolution, to reduce costs. This work

proposes a methodology to extract the most accurate parts of existing

HRLCs in response to the challenge of providing reliable reference data

at a low cost. The methodology combines existing HRLCs by

intersection, and the output represents a Map Of Land Cover Agreement

(MOLCA) that can be utilized for selecting training samples. MOLCA's

effectiveness was demonstrated through HRLC map production in Africa,

in which it generated 48,000 samples. The best classification test had an

overall accuracy of 78%. This level of accuracy is comparable to or better

than the accuracy of existing HRLCs obtained from more expensive

sources of training data, such as photo-interpretation, highlighting the

cost-effectiveness and reliability potential of the developed

methodology in supporting global HRLC production.

KEYWORDS

1. Introduction

There has been a notable surge in the production of maps that represent land cover (LC) in the last
years (Brown et al. 2022; Karra et al. 2021; Potapov et al. 2022; Zhang et al. 2021). The increasing use
cases for LC (Abe et al. 2018; Birhanu et al. 2019; Cui et al. 2011; Enoguanbhor et al. 2019; GCOS
2021; Haddad et al. 2015; Picoli et al. 2018) have been linked to advancements in raw data acqui-
sition and processing power (Belward and Skeien 2015), as well as a change in data policy. The
adoption of a free and open Landsat data policy by USGS (United States Geological Survey) in
2008 facilitated the use of Landsat archives for various purposes, including LC production (Wood-
cock et al. 2008; Zhu et al. 2019). The launch of several Sentinel missions under the Copernicus
program has also provided free and open access to data (Copernicus Open Access Hub 2023).
The usefulness of LC data for various applications provides an incentive for maintaining and
improving current missions and has led to the development of LC with a high level of detail and
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large extents, such as global High-Resolution Land Cover (HRLC). Only in 2020, two global HRLCs
were released — European Space Agency’s (ESA) World Cover and Esri Land Cover. What is more,
the first near-real-time land cover global mapping providing Dynamic World dataset has been
launched (Brown et al. 2022).

Although the emergence of global HRLC is an impressive accomplishment, its accuracy varies
from 60 to 80% (Garcia-Alvarez et al. 2022). GlobeLand30 (GL30) and Esri Land Cover, recently
released HRLCs, have reported on their respective official websites slightly higher levels of accuracy,
reaching up to 86%. One of the aspects that directly affect the accuracy of LC products is the quality
of reference data used for training machine learning algorithms for their production (Moran-Fer-
nandez, Bélon-Canedo, and Alonso-Betanzos 2022). It is particularly difficult to collect reference
data for global HRLCs. There are different studies on weak learning, attempting to alleviate the
issue of high demand for training data, however, they are not widely used for large-scale mapping
(Lu et al. 2017; Wang et al. 2020; Zeng et al. 2023). The review of 16 global HRLCs showed that the
common approaches for training data selection include photo-interpretation, reuse of existing LC
data at various resolutions, and sometimes a combination of photo-interpretation and use of exist-
ing LC data. Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC),
World Settlements Footprint (WSF), Global Surface Water (GSW), Forest/Non-forest (FNF),
Dynamic World, and Esri Land Cover are the datasets produced exclusively based on photo-
interpretation (Brown et al. 2022; Gong et al. 2013; Karra et al. 2021; Li et al. 2017; Marconcini
et al. 2020). Dynamic World and Esri Land Cover share the same dataset provided by an extensive
crowdsourcing campaign organized within Dynamic World project. These two HRLCs are derived
by deep learning techniques, that require an even larger set of training instances compared to other
machine learning techniques (Scott et al. 2017). GL30 and Tree canopy cover training datasets were
derived by photo-interpretation supported by information from existing land cover data at different
resolutions (Chen et al. 2015; Hansen et al. 2013). The first release of the Global Cropland dataset was
based on photo-interpreted samples (Potapov et al. 2022). The next releases were derived by sampling
products of the previous releases. GHS was completely based on the use of existing low-resolution LC
and HRLC datasets, and in the case of second and subsequent releases, also land cover dataset of the
previous release was integrated (Corbane et al. 2017; Pesaresi et al. 2016; Schiavina et al. 2022).
The LCs were put together through a weighted voting schema to give more weight to HRLCs.
The literature on ESA’s World Cover suggests the use of medium-resolution LC and HRLCs for
training data extraction, but the way of combining them is not clear (Van De Kerchove et al.
2021). The Global Mangrove Watch (GMW) training dataset used a union of existing HRLC and
low-resolution LC datasets (Bunting et al. 2022). Global impervious surface map used a combination
of existing LC data, and other auxiliary data to supply training samples (Zhou et al. 2020). The Global
Land Cover with a Fine Classification System at 30-m (GLC_FCS30) training dataset was created by
selecting homogeneous portions of some medium-resolution LCs (Zhang et al. 2021). Global Urban
Footprint (GUF) and Global Distribution of Mangroves USGS (GDM USGS) were generated by
unsupervised classification, therefore the training samples were not used (Esch et al. 2018; Giri
et al. 2011).

It is evident that global HRLC producers are experimenting with various approaches for obtain-
ing training data. The reason for that might be the high cost of global data collection. However,
caution is needed while trying to optimize training data collection, because there is a risk to reduce
the reliability of data. For example, crowdsourcing photo-interpretation is faster compared to
photo-interpretation by experts, it is less reliable (Fritz et al. 2017; See et al. 2022; Tarko et al.
2021). Existing maps can provide a large number of samples quickly and low-priced, but may pro-
pagate errors and introduce new errors due to the incompatible legend (Hermosilla et al. 2022;
Radoux et al. 2014). Some versions of GHS, Global impervious surface map, and GLC_FCS30
reported some strategy on accounting for the accuracy of the existing datasets (i.e. voting schema
or selecting homogeneous areas only). On the opposite, GMW opted for the union of two maps.
This means that there is no control over the propagation of errors of both maps to the training data.
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This paper presents an innovative methodology for extracting reliable training samples by reus-
ing and combining existing HRLC datasets. The output of the methodology is suitable for being a
pool of training samples for the production of new land cover datasets. The methodology was devel-
oped to address the major issue of existing HRLC in the role of the reference data - low reliability.
The methodology and its effectiveness are presented through the use case in Sub-Saharan Africa. In
this use case, around 48,000 training samples were extracted exclusively by combining 7 existing
HRLCs in the region of interest (ROI). The methodology ensured that the selected training points
were depicting exclusive consensus among the HRLCs which consecutively increased the reliability
of the outputs. They were used to train Random Forest (RF) algorithm by utilizing the compu-
tational and data access capabilities of the Google Earth Engine platform. Three separate classifi-
cation tests were applied: one with all bands of Planet imagery, one with all Sentinel-2 bands,
and one with only four Sentinel-2 bands. Accuracy assessment of different classification tests
showed that the most successful classification exercise is the one with all Sentinel-2 bands, with
an overall accuracy (OA) of 78%. This level of accuracy is on par with or higher than the accuracy
of the existing HRLCs produced from more expensive sources, such as photo interpretation. This
speaks about the potential of the developed methodology to support land cover production by redu-
cing costs and maintaining reliability.

2. Region of interest

The ROI was determined by the availability of validation samples for the later stages of this work. It
consists of 50 detached squared areas of approximately 750 km* depicted by red polygonal shapes in
Figure 1, spanning a total area of approximately 38, 000 km? across the Central African Republic,
Somalia, the Democratic Republic of the Congo, and Uganda.

3. Data

Various sources of data were used for various stages of this work. They are presented in the follow-
ing subsections.

3.1. Datasets for extracting training samples

The training dataset was extracted from a new dataset built upon seven existing HRLC maps avail-
able in the ROI with a baseline year close to 2019. Six of those maps have a global extent, while one

CentrallAfrican]Repy

Figure 1. Region of interest.
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of them has a continental extent, thus they cover ROI completely. Regarding the typology of the
existing HRLC maps, they can be divided into general and thematic LC maps. A map that encom-
passes all LC types in a landscape is referred to as a general LC map. Conversely, if a map depicts
one or a few specific LC types, it is considered a thematic LC map. In the case of the latter, the map
features a class representing a specific LC type, along with a class that encompasses all other LC
types (e.g. Forest and Non-Forest categories). Three existing HRLC maps used in this work are gen-
eral, and four are thematic maps depicting Built-up areas, Forest, or Water.

FROM-GLC consists of irregular time series of generic LC maps released by Tsinghua University
(Gong et al. 2019, 2013; Li et al. 2017). The 2017 map at 10 m resolution was utilized in this work
(Gong et al. 2019). Its legend consists of 10 classes: Cropland, Forest, Grass, Shrub, Wetland, Water,
Tundra, Impervious, Bare land, and Snow/Ice. It is provided in 10° x 10° tiles in World Geodetic
System 1984 (WGS84) Coordinate Reference System (CRS). The reported OA of this map is 73%.

The GL30 is regular time series of generic LC maps at 30 m resolution created by the National
Geomatics Center of China (NGCC) (Chen et al. 2015). The GL30 legend comprises of 10 classes,
including Cultivated land, Forest, Grassland, Shrubland, Wetland, Water bodies, Tundra, Artificial
surfaces, Bare land, and Permanent snow and ice. The 2020 product was the input of this work. Its
OA is 86%, as reported on GL30 official website. The product is distributed in Universal Transverse
Mercator (UTM) projection. The tile size of GL30 is location-dependent. The major part of tiles
(between 60°N and 60°S) are 5° x 6° size, but they can be 5° x 12° or larger.

The ESA Climate Change Initiative (CCI) LC team has created a 20 m resolution LC prototype
for Africa, hereafter referred to as the CCI Africa Prototype (Santoro et al. 2017). This map rep-
resents the state of LC in Africa in the year 2016. It has 10 general classes: Trees cover areas, Shrubs
cover areas, Grassland, Cropland, Vegetation aquatic or regularly flooded, Lichen and mosses/
sparse vegetation, Bare areas, Built up areas, Snow and/or ice, and Open water. It can be accessed
as a single GeoTiff file in WGS84 CRS covering the entire African continent. The accuracy of the
CCI Africa Prototype was estimated in four countries: Kenya, Gabon, Ivory Coast, and South Africa
(Lesiv et al. 2019). The results showed an OA of 44% for South Africa, 47% for Ivory Coast, 56% for
Kenya, and 91% for Gabon.

The Global Human Settlement Built-up (GHS BU) is a collection of thematic maps that differ-
entiate between built-up and non-built-up surfaces (Corbane et al. 2017; Pesaresi et al. 2016)pro-
duced by the Joint Research Center (JRC) of the European Commission. There are various GHS
BU products that vary in terms of their input imagery, baseline year, and production method.
The particular product used in this work, GHS BU SINODSM, is based on Sentinel-1 imagery
from 2016 and has two classes, Built-up and Non built-up. This product is distributed as a zip
file of 2° x 2° tiles covering the whole globe. The tiles have a Web Mercator projection
(EPSG:3857) as its original Coordinate Reference System. The accuracy of GHS BU SINODSM
is only described qualitatively in comparison to another LC dataset (Corbane et al. 2017).

Another thematic LC product dedicated to built-up areas is WSF from German Aerospace Cen-
ter — DLR (Marconcini et al. 2021, 2020). It features two classes, labeled as settlements and non-
settlements. The product includes two maps with a spatial resolution of 10 m, one for 2015 and
another for 2019. The later map was used in this work. The WSF is available in 2° x 2° tiles in
WGS84 CRS. The WSF for 2019 has OA = 84% and a Kappa = 0.65, but the information about
UA, and PA are not available yet.

The GSW family is a collection of multi-temporal thematic LC maps that focus on several aspects
of inland water bodies (Pekel et al. 2016). The thematic maps are annual maps for 36 years from
1984 to 2020. They are produced by JRC. The product offerings of GSW include monthly water
history, seasonality, yearly history, water occurrence, change intensity, recurrence, transitions,
maximum water extent, monthly recurrence, and metadata. For the purposes of this work, the
yearly history for 2019 was used. Yearly history includes two water classes, seasonal and permanent,
which were merged and treated as a single class - Water. The User’s accuracy (UA) and Producer’s
accuracy (PA) of the whole time series, including 2019 map, is higher than 95%.
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FNF is a thematic LC map that categorizes forested regions across the world (Shimada et al.
2014). Developed by the Japan Aerospace Exploration Agency (JAXA), it offers a multi-temporal
representation of forest areas, with irregular time intervals. The map covers the time periods
from 2007 to 2010 and from 2015 to 2020, and classifies areas as forest, water, and not water,
with a resolution of approximately 25 m. FNF for 2019 was used in this work. The accuracy of
this specific product is not reported. The product is distributed in two tile sizes: 1° x 1° or
5° x 5° from its official website.

3.2. Satellite imagery and auxiliary data for classification

Besides the training dataset, input data for classification were two types of satellite imagery -
Sentinel-2 and Planet, and one DEM (Digital Elevation Model) dataset - CGIAR-CSI (Consultative
Group on International Agricultural Research - Consortium for Spatial Information) SRTM
(Shuttle Radar Topography Mission) DEM.

The Sentinel-2 mission is part of the Copernicus program and was developed by the European
Space Agency (ESA) (ESA 2023). It consists of two satellites, Sentinel-2A and Sentinel-2B, which
were launched into orbit in 2015 and 2017. These satellite platforms can capture high-resolution
images, with a resolution of 10 m, and cover the entire globe every five days. The Sentinel-2 mission
produces images in 13 different spectral bands, including 8 with 10 m resolution, 4 with 20 m
resolution, and 1 with 60 m resolution. All the images produced by Sentinel-2 are freely accessible
to the public.

Planet-NICFI Basemaps for Tropical Forest Monitoring is a product distributed through
Norway’s International Climate and Forest Initiative (NICFI) which gives access to Planet’s
high-resolution optical imagery over the tropical regions. The product incorporates the products
from different Planet missions into analysis-ready mosaics distributed on a monthly and biannual
basis, freely distributed for research and non-commercial use. The basemaps can be accessed
directly through the Google Earth Engine (GEE) platform, offering orthorectified and mosaicked
images with a spatial resolution of 4.77 m. The dataset consists of three visible bands and one
near-infrared band, which can be utilized to identify LC and vegetation types.

The CGIAR-CSI SRTM DEM is a digital elevation model used to support classification. It is a
product of the CGIAR-CSI, which is a revised version of the original SRTM of NASA (National
Aeronautics and Space Administration) (Jarvis et al. 2008). The resolution of the product is 90 m
at the equator. The revision process involved interpolation and the utilization of additional
DEM:s, with the goal of filling in any gaps in the original SRTM dataset. The CGIAR-CSI SRTM
DEM is available for non-profit use at no cost.

4, Methodology
4.1. Conceptualization

Training data were extracted from a new dataset obtained by combining existing HRLCs described
in Section 3.1. Existing HRLCs are combined by intersection so that only the areas that have unan-
imous agreement among them are retained (Figure 2). Any pixels that exhibit divergent values
among the intersected HRLCs are considered non-agreement and are thus set to null. The resulting
output dataset is named a Map of Land Cover Agreement (MOLCA).

Theoretically speaking, the MOLCA is likely to have high accuracy because a consensus among
multiple datasets increases the probability of accurate pixel classification. Correctly classified pixels
are expected to be consistently present across various datasets due to the classification procedure’s
goal of accurate classification. Conversely, errors may occur due to various factors such as
inadequate training data, unsuitable classification algorithms, imprecise satellite imagery, the com-
plexity of land cover types, and atmospheric disturbances like cloud cover. Since existing HRLCs are
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Map of Land Cover
Agreement (MOLCA)

Figure 2. lllustration of the derivation of the Map Of Land Cover Agreement — MOLCA.

created by different agencies and procedures, it is unlikely that errors in different datasets will be
replicated across multiple datasets. MOLCA’s accuracy evaluation shows an OA of 96% in RO,
with most classes having high UA and PA above 90%. This level of accuracy is significant, consider-
ing that even expert photo interpreters can make mistakes while labeling samples (Brown et al.
2022; Sun, Chen, and Zhou 2016).

In order to have an effective MOLCA derivation procedure, CRS, resolution and legend of the
existing HRLCs had to be harmonized. These characteristics vary in existing HRLCs because of the
lack of standard production procedures; however, if they are not harmonized, there is a risk that
MOLCA production would not yield any result because the intersection procedure eliminates
differences.

The baseline year of input existing HRLCs varied between 2016 and 2020, therefore this is the
time frame of representativeness of MOLCA. This temporal variation is not an issue as any land
cover change that might have occurred during the time between the oldest and most recent
HRLC inputs is removed in the intersection, and therefore will not impact the quality of MOLCA.

4.2. MOLCA creation and training data extraction

The MOLCA derivation procedure was designed and developed in the ESA CCI HRLC project. The
focus of the project was on three macro-regions of the world that are prone to stronger effects of
climate change: Amazon, Siberia, and Sub-Saharan Africa. MOLCA was produced in all three
macro-regions (Bratic and Brovelli 2023), but in this study, only the portions of it falling in the
ROI were used.

The procedure of MOLCA derivation was based on GRASS GIS and Python (GRASS Develop-
ment Team 2022; Python Software Foundation 2022). Python use was either independent of GRASS
GIS, or was utilized to automatize GRASS GIS operations. The workflow of the procedure is
depicted in Figure 3.
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Figure 3. Overview of MOLCA production workflow.

The MOLCA creation started with downloading existing HRLCs in regions of interest. This
was performed with custom Python scripts, or manually when automatization was not
possible. Tiles of each HRLC were stored in a subfolder of one main folder containing all existing
data.

The legends of these input HRLCs were meticulously compared to determine the corresponding
classes. The classes that consistently appeared across multiple datasets were designated as the target
classes for MOLCA. Consequently, a correspondence table was established for each existing HRLC
dataset, aligning their legends with the target legend of MOLCA. This process can be referred to as
the harmonization of legends between existing HRLCs and the desired legend of MOLCA. The
legend harmonization was done manually because the same class might have a different name
and code in different HRLCs. Based on correspondence tables, txt files with reclassification rules
were created to be used in later steps. The reclassification rules contain information about the orig-
inal raster value and target raster value, and optionally target class label. The comprehensiveness of
the legend of MOLCA was determined by the comprehensiveness of the input HRLC datasets. It
contains Bareland, Built-up, Cropland, Forest, Grassland, Permanent ice and snow, Shrubland,
Water, and Wetland classes.

A reference HRLC dataset was selected to serve as guidance for the CRS, extent, and spatial res-
olution of the MOLCA tile, but it was not used as an input dataset for MOLCA. Since MOLCA was
generated in the CCI HRLC project, a tile of CCI HRLC product, which has a size of 100 km x 100
km, a resolution of 10 m, and WGS84 CRS was selected.

Different datasets come in different tiling systems. For this reason, it is necessary to find the
matching tiles across the datasets. By using the os, rasterio, and geopandas libraries in Python,
we created a script with an algorithm for matching tiles. The algorithm iterates through a folder
with reference dataset tiles, extracts the extent of the tiles, and saves them in a vector along with
the tile path information. Subsequently, it iterates through a folder with existing non-reference
datasets, extracts the extent of the tiles, converts them into the reference CRS, and saves them in
another vector, keeping information about the tile path. Finally, the two vectors are intersected.
The resulting vector contains an attribute with the reference dataset path and an attribute with
paths of spatially corresponding tiles of other non-reference HRLCs. The vector attributes were
saved as a CSV file.

We also created an algorithm for MOLCA generation which performs harmonization of differ-
ent characteristics of input HRLCs and for the extraction of their areas of agreement.

The choice of CRS upon creation of the GRASS GIS database determines the CRS to which all
imported datasets will be reprojected. In this case, it was WGS84.
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Based on the CSV file of matching tiles across different datasets, the MOLCA generation algor-
ithm imports data for MOLCA creation. The algorithm first imports a tile of reference dataset and
defines the GRASS GIS region according to it. The GRASS GIS region determines the extent and
resolution at which the raster processing operations will be performed. The reference dataset is
also reclassified to MOLCA legend. Then, all tiles of non-reference HRLCs that are available in
the same location as the tile of the reference dataset are imported. In case some portions of non-
reference tiles cross the extent, those portions were discarded on the import by using the appropri-
ate flag. Some tiles of non-reference might be smaller than the reference dataset. Therefore, for each
reference tile, the algorithm checks if a non-reference HRLC has more than one spatially corre-
sponding tile. In the event of multiple tiles, they are imported and merged together. Subsequently,
the tiles of non-reference existing HRLCs are reclassified to the MOLCA target legend.

At this point of the procedure, the datasets are harmonized with respect to CRS, extent, and
legend. There is no need to resample them to the same resolution because this is done on the fly
due to the GRASS GIS region definition. Next, the algorithm computes cross-product from non-
reference datasets. The cross-product is a raster map that has different values for each distinct com-
bination of class values found within the input raster layers. Cross-product also includes labels of
classes included in the combinations. These cross-product labels are parsed and analyzed to identify
agreement labels, characterized by having the same label for each input HRLC or the same label for
at least two HRLCs, with other labels designated as NULL. The agreement labels and their associ-
ated values are subsequently converted into reclassification rules. Finally, the cross-product is
reclassified into the MOLCA.

The total number of pixels in MOLCA within the ROI of this study was 82,650,430, which covers
around 21% of ROL. A stratified random sampling strategy was employed to select 8000 training
samples from each MOLCA class. The number of pixels of Bareland and Wetland classes was
below 8000, therefore all available pixels of these two classes were selected. The number of Bareland
samples was 22, and the number of Wetland samples was 6. Unfortunately, there were no pixels of
Ice and snow (permanent) in MOLCA, so training samples of this class were not available for train-
ing RF, and consequently they were absent from the final classification, even though this class is
present on the ground in ROL In total, there were around 48,000 training samples extracted.

4.3. Classification

The advancement of technology and the availability of free and open remote sensing data has
enabled the development of cloud tools and services for analyzing and mapping Earth’s surface
at a global scale. As such, in the current work was adopted and utilized GEE, a cloud-based platform
that provides access to planetary-scale computation and a vast data catalog (Gorelick et al. 2017), to
pre-process Sentinel-2 and Planet images and to apply Random Forest algorithm. One of the key
advantages of GEE is its ability to access a vast amount of remote sensing data (historical and
near-real time), including observations from missions like Landsat, Sentinel, and MODIS. The abil-
ity to perform large-scale, time-series geospatial analyzes makes it preferable in various research
domains, e.g. land cover and crop mapping, deforestation, water and air quality monitoring,
and, disaster domain (Brovelli, Sun, and Yordanov 2020; Hirschmugl et al. 2020; Yang et al.
2022; Yordanov and Brovelli 2021).

The GEE platform provides a range of algorithms and tools suitable for land cover classification,
such as supervised and unsupervised classification, pixel- or object-based machine learning algor-
ithms, and image analysis. Both collections used in this work, Sentinel-2 and Planet-NICFI, were
accessible from the data catalog, only the latter is available upon free registration. In overview,
three variations of the datasets as input were used Sentinel-2 allB (using all available bands); Senti-
nel-2 4B (using only the Red, Green, Blue, and Near-Infrared bands) and Planet 4B (the Red, Green,
Blue, and Near-Infrared bands). The described below processing steps are similar to all datasets
with small differences during the filtering stage for Planet 4B. In addition to the satellite imagery
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was used elevation information derived from CGIAR-CSI SRTM DEM, namely elevation and slope
inclination. Additional feature datasets produced locally were used in GEE as imported assets,
namely, regions of interest ROI (see Figure 1), training samples (Section 4.1), and validation
point samples (Section 4.4).

A relatively standard processing workflow for image classification is usually subdivided into four
main steps — import and filtering, preparation of the training information, model training, and
model evaluation.

Import and filtering - at this stage all datasets were imported into the working environment. The
Sentinel-2 and Planet collections were called image collections, while the additional data related to
the ROJ, training, and testing points as feature collections from the user’s private asset storage. Both
of the image collections were primarily filtered according to a time period of interest (01 January-31
December 2017) and ROL

The period of interest was selected somewhat arbitrarily. The input training data represent the
time period between 2016 and 2020. We chose a specific time frame for our study because the gen-
eral HRLCs contribute the most to the creation of the classes in MOLCA that is a source of training
data (i.e. thematic maps contribute just to one class at a time). Since the general maps are for 2016,
2017, and 2019, the year of the map in the middle was selected, but it could have been any year
between 2016-2020.

A further pre-processing step was needed to remove the effect of cloud cover in the optical
images, which particularly in the tropical region can significantly reduce the number of usable
images. In the case of Sentinel-2 were performed two strategies — (1) the images were filtered to
be containing less than 10% cloud cover according to the ‘cloudy pixel percentage’ property and
(2) the left cloudy pixels were removed using the cloud bitmasks. On the other hand, in the case
of Planet datasets such cloud filtering was not possible as the Planet images are, in fact, monthly
mosaics, therefore, for them, it was only possible to filter by date and in a period of one year
were available 12 images.

The DEM was also imported and using the “Terrain’ function container was computed also the
slope.

Preparation of the training information — during this stage of processing the bands that will be
used for the model were defined, i.e. three separate lists containing the band names were created
according to each variation of the dataset (Sentinel-2 allB/4B and Planet 4B). In addition, all training
and validation point datasets were used to sample the image collections using the ‘sample Regions’
function.

Model training - several machine learning models are available for use in the GEE environment
(e.g. Random Forest, Support Vector Machine, etc.). The adopted approach in this work was to
apply a supervised pixel-based classification. In particular, for the aim of land cover classification,
it was chosen Random Forest algorithm (Breiman 2001) which is a type of ensemble learning algor-
ithm that combines multiple decision trees to improve the accuracy and robustness of a model. It
works by constructing a set of decision trees based on randomly sampled subsets of the training
data. Each decision tree is built by recursively splitting the data into smaller subsets based on the fea-
tures that provide the most information gain for the classification task. The splitting process continues
until a stopping criterion is met, such as reaching a certain depth or achieving a minimum number of
samples in each leaf node. Random Forest is a powerful machine learning algorithm which can handle
both categorical and continuous datasets and is less prone to overfitting, which makes it preferable
and widely adopted in many geospatial applications. In fact, it delivers reliable results and is one
the most used machine learning models implemented in the GEE system (Yang et al. 2022).

Even though several models are available for the users, some other popular frameworks as scikit-
learn, XGBoost, TensorFlow or PyTorch, cannot be directly used in GEE, and would require outside
of the environment trainings. For the current application, the Random Forest classifier was used
with a very straightforward parameterization using a forest of 100 decision trees which yielded a
satisfactory compromise between accuracy and computational load.
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Model evaluation - to evaluate the performance of the built model were used the implemented
algorithms in GEE containers related to estimating the outputs’ accuracies, namely, the error matrix
computation from which was possible to compute the Overall Accuracy and Cohen’s Kappa coeffi-
cient for each input and validation iteration. The details about the validation datasets are described
in detail in the following Section 4.4.

4.4. Validation approach

One part of the validation dataset consisted of validation samples used for MOLCA validation.
Following the logic of reference data collection by photo-interpretation, where the consensus of
multiple annotators indicates classes that are easy to recognize and annotate (Brown et al. 2022),
manyfold agreement of existing HRLCs based on which MOLCA is created indicate easy-to-classify
areas. Since MOLCA is most likely to represent easy-to-classify areas, the same is true for the sample
points used for its validation. For this reason, additional samples were added in hard-to-classify
areas to have a more balanced validation dataset. Samples in easy-to-classify areas were selected fol-
lowing a stratified random sampling strategy. Stratification was done based on MOLCA classes, and
therefore the size of each stratum was equal to the size of the corresponding MOLCA class. The total
number of samples was estimated following the Equation (1) (Cochran 1977) in which n is the
number of sample plots, E is the acceptable margin of error for the sample, z, is the z-value on
the normal distribution corresponding to a certain level of confidence, p represents the expected
accuracy, and g = 1-p.

p*q
() (1)

The parameters inserted in the Equation (1) are: p = 50%, E = 3%, and z, = 1.96 (for the confi-
dence interval of 95%).

The equation resulted in 1068 samples for validation. Some of these samples were rejected
during photo-interpretation due to uncertainty. To make up for the eliminated samples, 130
additional samples were included. The distribution of samples among strata was equal. So, there
were 195 samples per strata, except for Bareland and Wetland classes. As these two classes had
fewer than 195 pixels in MOLCA, obtaining more samples was impossible. Consequently, the maxi-
mum number of samples for these two classes was determined by the maximum number of pixels in
MOLCA, which was 22 for Bareland and 6 for Wetland. Random selection was used to choose
samples in each stratum, except for Bareland and Wetland, where all of their pixels were used as
samples.

The definition of hard-to-classify areas was done based on areas of discrepancy between GL30
and CCI Africa Prototype. The number of samples in hard-to-classify areas was determined in
the same way as for easy-to-classify areas, but it was increased to 1085 to take into account a mini-
mum of 3 samples per strata. Strata in the case of hard-to-classify areas were confusion types
between GL30 and CCI Africa Prototype. The distribution of samples per stratum was done pro-
portionally to the stratum size.

The selection of the location of both easy-to-classify and hard-to-classify samples was done in
GRASS GIS, then a photo-interpretation survey design was prepared in Open Foris Collect (Open
Foris Team 2021), and finally, the photo-interpretation was done with Collect Earth software
(Bey et al. 2016). Photo-interpretation survey design integrates information about the location
of the points, plot size, list of classes to be assigned to photo-interpreted samples, subjective
confidence measure of photo-interpreter, photo-interpreter username, and date of photo-
interpretation. The survey is imported into Collect Earth where it serves as a guide to label
samples. Collect Earth provides Google Earth imagery and temporal profiles of vegetation indices
from Landsat7/8, Sentinel-2, and MODIS imagery. Based on this information, a photo interpreter
assigns class labels to the samples as well as the subjective level of confidence in photo

n—=
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interpretation. The size of the sample plot was 30 m x 30 m to take into account the potential
location error of VHR images.

Eventually, 1683 confident validation samples were obtained — 1050 in easy-to-classify areas, and
633 in hard-to-classify areas.

Accuracy was evaluated for all three classification outputs — Sentinel-2 4B, Sentinel-2 allB, and
Planet 4B. The evaluation was done separately for areas that were easy-to-classify, areas that were
hard-to-classify, and for a combination of both types of areas. The evaluation utilized standard accu-
racy metrics, such as OA, PA, and UA (Story and Congalton 1986), which were calculated from
error matrices that were derived from validation samples and the classification outputs.

4.5. Comparison with existing land cover maps

To evaluate the success of MOLCA in the role of training samples, we compared the land cover
product obtained from MOLCA (i.e. Sentinel-2 allB) with several land cover products obtained
from samples collected with traditional approaches. The datasets which participated in MOLCA
creation were not considered for the comparison because the results would be biased. The compari-
son was done with World Cover for 2020 (Van De Kerchove et al. 2021), Esri land cover for 2017
(Karra et al. 2021), and the Dynamic World for 2017 (Brown et al. 2022). This was done by estimat-
ing the accuracy of these three datasets with all validation samples collected for our study and com-
paring the results to the accuracy results of the Sentinel-2 allB. The accuracy estimations were done
on GEE since all three datasets are directly accessible through it. To condense the extensive dataset
comprising the classification results of each individual Sentinel-2 tile from the complete Sentinel-2
archive within the Dynamic World, a median value was calculated for tiles from year 2017 within
the Region of Interest (ROI), thereby reducing it to a singular temporal dimension. The datasets
were reclassified to the legend of the validation dataset, and then they were sampled in the location
of validation points on GEE. In the case of the Esri land cover dataset, the Grassland and Shrubland
classes are merged into a single class — Rangeland. For the comparison with this dataset, these two
classes were merged into a single class for our land cover map too.

Finally, the error matrix was computed for each dataset by cross-tabulating classes of the existing
HRLCs with classes of validation dataset. Subsequently, OA, PA, and UA were computed too.

5. Results and discussion
5.1. Validation results

The results of OA for three different classification tests with three different validation datasets are
presented in Table 1. The study found that the accuracy was highest for the Sentinel-2 allB product,
which suggests that including more bands in the classification improves the classifier’s ability to dis-
tinguish among different classes. Additionally, when comparing the accuracy of two products based
on the same number of bands (namely, Planet 4B and Sentinel-2 4B), it was found that the accuracy
of Planet 4B was slightly higher. This could be due to the higher resolution of Planet imagery. The
accuracy of Sentinel-2 4B and Planet 4B products was lower than the accuracy of Sentinel-2 allB.
Therefore, the following more detailed accuracy results are focused on analyzing the results of Sen-
tinel-2 allB.

Table 1. OA of land cover products with different validation datasets.

Validation dataset

Classification test All areas Easy-to-classify Hard-to-classify
Planet 4B 73% 88% 49%
Sentinel-2 4B 68% 84% 41%

Sentinel-2 allB 78% 93% 52%
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Table 2. Accuracy of Sentinel-2 allB product with all samples.

Ice and

Bareland  Built-up Cropland Forest Grassland ~ snow  Shrubland Water  UA PA OA
Bareland 0%
Built-up 213 7 2 14 6 88% 98%
Cropland 1 99 18 36 13 59%  60%
Forest 1 17 282 29 2 68 71% 88%
Grassland 2 2 37 13 190 66 1 61%  65% 78%
Ice and snow 0%
Shrubland 1 1 5 2 25 311 90%  67%
Water 1 4 1 205 97%  100%

Table 3. Accuracy of Sentinel-2 allB product with hard-to-classify samples.
Built-up  Cropland  Forest  Grassland Ice and snow  Shrubland  Water UA PA OA

Built-up 1 4 2 11 6 4%  100%
Cropland 34 1 12 1" 50% 38%
Forest 15 29 27 2 68 47% 76%
Grassland 31 13 52 60 1 33% 43%  52%
Ice and snow 0%
Shrubland 5 1 18 123 84% 46%
Water 1 4 1 19 76% 95%

Table 4. Accuracy of Sentinel-2 allB product with easy-to-classify samples.

Bareland Built-up  Cropland Forest  Grassland  Shrubland  Water UA PA OA
Bareland 0%
Built-up 212 3 3 97% 98%
Cropland 1 65 7 24 2 66% 86%
Forest 1 2 183 2 97% 9%6%  93%
Grassland 2 2 6 138 6 90% 79%
Shrubland 1 1 1 7 188 95% 96%
Water 186 100%  100%

A more detailed result of the validation of Sentinel-2 allB with all validation samples,
easy-to-classify, and hard-to-classify samples are presented with standard error matrixes in Tables
2-4, respectively. In these tables, validation reference data is represented by columns, while classifi-
cation is represented by rows.

In the case of validation with all samples (Table 2), it is evident that the Water class had the high-
est accuracy with both UA and PA close to 100%. The Built-up class also had high accuracy with a
PA of 98% and a UA of 88%. The Forest class had good accuracy with an 88% PA and a 71% UA, but
there was some overestimation due to Shrubland contamination. The Shrubland class was moder-
ately underestimated with a PA of 67%, likely due to commission errors with Forest and Grassland
classes. However, the UA was not significantly affected, at 90%. The Cropland and Grassland classes
had moderate accuracy with UA and PA ranging from 59 to 65%. Both classes were overestimated -
Grassland on the damage of Shrubland predominately, and the Cropland class on the damage of
Grassland. The omission error of both classes was related to confusion among each other. The Bare-
land and Ice and snow (permanent) classes had a PA of 0%, and it was not possible to calculate UA
in the absence of at least one correctly classified pixel in the location of validation points of those
classes. The Ice and snow (permanent) class was not present in the classification products at all
because it was not present in the training dataset, while the number of Bareland training samples
was limited.

When accuracy assessed in hard-to-classify areas is concerned (Table 3), the Water class has the
highest accuracy, but it is not very high and seems to be overestimated by contaminating the Forest
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class. The Shrubland class appears to be significantly underestimated (e.g. UA = 46%) due to the
misclassification of Forest, Grassland, Cropland, and Built-up. On the other hand, the Built-up
class is severely overestimated (e.g. PA = 4%). The overestimation of Built-up comes at the expense
of Grassland and Shrubland mostly. The PA of Built-up is 100%, which indicates absolute accuracy,
but it is based on a single sample of this class that is not representative. The accuracy of Grassland
and Cropland is low, as they are confused with each other and also with other classes such as Shrub-
land. There were two validation samples of Ice and snow (permanent), but this class is not present
in the products, and hence its omission error is 100%. Lastly, there were no Bareland samples in
areas that are difficult to classify, and no classified pixels of Bareland in the locations of samples,
and therefore this class is not present in the error matrix.

The validation results for easy-to-classify areas (Table 4) show high accuracy of many individual
classes, such as Water, Forest, Shrubland, and Built-up. The accuracy of Grassland is relatively
good, with a UA of 90%. However, PA is somewhat lower, indicating an underestimation of this
class, mainly due to the overestimation of Cropland. The accuracy of Cropland is good based on
the PA (86%), while the UA is slightly low (66%) due to the commission error over Grassland.

The accuracy results show expected behavior — higher accuracy in easy-to-classify areas than in
hard-to-classify areas. Grassland and Cropland are the most challenging classes to classify, even in
easy-to-classify areas. Additionally, the error matrix indicates a high omission error for the Shrub-
land class in hard-to-classify areas, which is also observed in the error matrix for all areas. In hard-
to-classify areas, the Built-up class appears to be severely overestimated. However, this discrepancy
is likely due to the limited number of validation samples available for this class in hard-to-classify
areas.

The land cover map that is the result of Sentinel-2 allB classification is shown in Figure 4. The
upper part of the figure shows the land cover product for complete ROI, the left lower part shows a
zoomed subset of the land cover map, and the right lower part represents Google Image for the
zoomed area. The zoomed subset of ROI that is in the central-southern part of ROI on the border
between the Democratic Republic of Congo and Uganda.

Visual inspection of the land cover map shows that it generally corresponds to what is visible in
the basemap of Google imagery. For example, the forest, water, and built-up areas seem to be well
detected. On the other hand, also some confusion between grassland and cropland is visible, which
corresponds to the accuracy figures. In the zoomed area, a particularly critical region is displayed.
Namely, in the southeast of the zoom area, there is Rwenzori mountain. It is critical for two reasons:
it has high cloud coverage, and also it is the only area within ROI with Ice and snow (permanent)
class. Reconstruction of cloudy images was not completely successful, and class Ice and snow (per-
manent) was not available in the training dataset so these two factors affected the outcome of the
classification in the Rwenzori mountain area. It can be seen that there are rather large, unusually
homogeneous patches of Shrubland, that are probably a consequence of cloud reconstruction.
Also, there are many pixels of Built-up areas which are probably classified instead of Snow and
ice and Bareland classes.

5.2. Comparison results

The accuracy of World Cover, Dynamic World and Esri land cover was estimated based on all vali-
dation samples collected for our study. The accuracy of these three datasets, together with the accu-
racy of Sentinel-2 allB product is reported in Table 5. It can be seen that the OA of Sentinel-2 allB is
higher than the accuracy of other datasets. The existing HRLC with the highest OA among the ones
included in the comparison is World Cover. The UA and PA of World Cover are not drastically
different than the ones of Sentinel-2 allB. The major difference is the extremely low PA of the Crop-
land class in the case of World Cover. Similarly, the other two datasets have extremely low PA for
the Cropland class, but also low UA for the Forest class compared to World Cover and Sentinel-2
allB.
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Figure 4. Land cover map obtained in Sentinel-2 allB classification test.
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Table 5. Comparison of the accuracy of World Cover, Dynamic World and Esri land cover with the accuracy of Sentinel-2 allB

product.

World Cover Dynamic World M M

PA UA PA UA PA UA PA UA

Bareland 0% 0% 33% 6% 0% 0% 0%
Built-up 80% 98% 98% 88% 98% 93% 88% 98%
Cropland 6% 85% 9% 20% 4% 60% 59% 60%
Forest 94% 60% 95% 43% 95% 41% 71% 88%
Grassland 63% 56% 27% 72% 51% 80% 61% 65%
Shrubland 72% 75% 57% 81% 90% 67%
Water 98% 99% 93% 97% 100% 97% 97% 100%
Wetland 0% 0%
Ice and snow 50% 100% 100% 40% 0%
0OA 72% 64% 67% 78%

6. Conclusions

This paper presents a way to extract the most reliable parts of the existing HRLC datasets that can
serve as training data for creating a new HRLC map. The use case of land cover production in one
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ROI in Africa served as a base to describe the methodology and its effectiveness. The objective was
to provide an innovative and reliable low-cost dataset to address the challenge of training reference
data collection. The challenge is particularly emphasized in the case of global land cover production
in which producers sometimes opt for lower reliability to reduce costs. However, the reliability of
reference data is essential because it directly affects the quality of land cover products based on
them.

The methodology proposes combining existing HRLCs by intersection. The outcome is a new
dataset - MOLCA - that consists only of areas in which all existing HRLCs show consistent infor-
mation about LC class. In the use case, MOLCA was a pool to extract around 8000 samples per class
available in MOLCA. The samples were used to train the RF algorithm with Sentinel-2 or Planet
NICFI imagery, and subsequently to produce the land cover. There were three land cover maps pro-
duced with three different classification tests — Sentinel-2 allB, Sentinel-2 4B, and Planet4B. The
accuracy of all three land cover maps was estimated against three different sets of validation samples
- easy-to-classify, hard-to-classify, and a combination of the previous two.

Different classification tests allowed observing that the accuracy of image classification improves
as the number of bands or resolutions increases. However, the number of bands seems to be more
important than the resolution. Le. classification test of Sentinel-2 allB (12 bands at 10 m resolution)
was better performing than Planet 4B (4 bands at 4.77 m resolution). This is probably because
machine learning algorithms have more features to learn from when there are more bands involved
in the classification. In any case, it is important to be aware that there are different factors affecting
the accuracy, except the quality of training data.

Different validation exercises allowed a more detailed insight into accuracy. Some of the
obtained results are expected, i.e. that the accuracy will be higher in the easy-to-classify areas
than in hard-to-classify areas. On the other hand, it is curious to observe some extreme behavior
such as the high accuracy of the Water class in hard-to-classify areas in which all the other classes
show a low accuracy; or relatively low UA of Cropland and PA of Grassland in easy-to-classify areas.

To compare the HRLC dataset obtained in this study with existing HRLCs, the focus was on
accuracy estimation of these datasets using a combination of easy-to-classify and hard-to-classify
samples. This is because the combination of two types of samples provides a more balanced and
accurate assessment of the classification performance. In the comparison of Sentinel-2 allB with
World Cover, Dynamic World, and Esri land cover datasets it was shown that Sentinel-2 allB
has the highest OA among these datasets — 78%. Since the validation dataset was prepared for vali-
dation of the classification results of this study, it can be considered that the OA of the World Cover
dataset is relatively similar to the one of Sentinel-2 allB (72%), while the other two datasets have OA
lower for 10% or more.

The existing HRLCs which were used for the comparison are produced from photo-interpreted
training samples, which are considered more reliable than using existing LC as a reference, but the
procedure of obtaining them is laborious. On the opposite, MOLCA is based on existing LC, and it
gives similar or better results at a significantly lower cost because less time and personnel are needed
to obtain a big amount of samples (e.g. millions in this use case). Therefore, MOLCA qualifies as a
suitable source of training samples for global land cover production. In fact, it could be particularly
valuable for deep learning algorithms that require a substantial amount of training samples (Scott
et al. 2017).

One limitation of the MOLCA approach is that it can fail to provide pixels of some classes that
are present in the landscape. In this study, class Ice and snow (permanent) was missing, and it
affected accuracy because those areas were classified as Built-up, as a consequence. Similarly, the
number of samples was very small for Bareland and Wetland classes. This problem seems to be typi-
cal for the classes with small proportions in the landscape. Nevertheless, this drawback could poten-
tially be solved by adapting the current methodology. One setback of the current methodology is
that it does not check if all input HRLCs contain all target classes. If an input HRLC does not con-
tain a particular class, then the MOLCA procedure will automatically eliminate that class due to the
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intersection procedure. The methodology could be adapted to integrate this step of verification
if all input data contain all the classes, and if that is not the case, to exclude the dataset that
misses one target class only when the creation of pixels of that class is concerned. An additional
adaptation could be to introduce a voting schema for classes with small proportions, so that if
the majority of input datasets agree on that class, MOLCA takes that value. However, in this
case, it is necessary to take care that the reduction of rigidity does not cause the reduction
of reliability.

Another way to address this limitation, if the adaption of methodology does not solve it, is to use
a photo-interpretation to get the samples of missing classes. This would increase the costs compared
to using only MOLCA samples, however, it would be still less expensive than providing all samples
of all classes by photo-interpretation.

Future work will be focused on including existing HRLCs that are currently not involved in
MOLCA production. Hopefully, this will further refine MOLCA, and help to address current
limitations.
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