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Abstract. We present a new computational model for the numerical simula-

tion of blood flow in the human left heart. To this aim, we use the Navier-Stokes
equations in an Arbitrary Lagrangian Eulerian formulation to account for the

endocardium motion and we model the cardiac valves by means of the Resistive

Immersed Implicit Surface method. To impose a physiological displacement of
the domain boundary, we use a 3D cardiac electromechanical model of the

left ventricle coupled to a lumped-parameter (0D) closed-loop model of the re-

maining circulation. We thus obtain a one-way coupled electromechanics-fluid
dynamics model in the left ventricle. To extend the left ventricle motion to the

endocardium of the left atrium and to that of the ascending aorta, we intro-
duce a preprocessing procedure according to which an harmonic extension of

the left ventricle displacement is combined with the motion of the left atrium

based on the 0D model. To better match the 3D cardiac fluid flow with the
external blood circulation, we couple the 3D Navier-Stokes equations to the 0D

circulation model, obtaining a multiscale coupled 3D-0D fluid dynamics model

that we solve via a segregated numerical scheme. We carry out numerical sim-
ulations for a healthy left heart and we validate our model by showing that

meaningful hemodynamic indicators are correctly reproduced.
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GMRES Generalized Minimal Residual
LA Left Atrium
LES Large Eddy Simulation
LH Left Heart
LV Left Ventricle
MV Mitral Valve
NS Navier-Stokes
PV Pulmonary Valve
RA Right Atrium
RIIS Resistive Immersed Implicit Surface
RV Right Ventricle
TV Tricuspid Valve
VMS Variational Multiscale
WSS Wall shear Stress

1. Introduction. The study of cardiac blood flow aims at improving the knowl-
edge of the heart physiology, assessing the pathological conditions and potentially
helping therapeutical treatment and the design of surgical interventions. In the
clinical routine, blood flow analysis is conventionally based on non-invasive imaging
techniques. However, the space and time resolution of the available techniques is not
accurate enough to capture small-scales features like recirculation regions, possible
regions of transition to turbulence and small coherent structures [75]. Moreover,
imaging techniques cannot accurately provide relevant fluid dynamics indicators
such as wall shear stress (WSS), turbulent kinetic energy dissipation, or the oscil-
latory stress index, which are correlated with the function and remodeling of the
heart and vessels [80, 25, 75, 115, 53]. In this respect, numerical simulations – also
known as in silico models – of the heart and circulation represent a valuable tool
to quantitatively assess the cardiac function and to enhance the understanding of
cardiac dysfunction.

The hemodynamics in the heart chambers is characterized by different complex
features that computational modeling needs to take into account [25]. The mathe-
matical problem is defined in complex geometries, and there is a strong interaction
between the myocardial structure and the blood flow due to the electromechan-
ical activity of the heart. This yields a complex coupled problem among elec-
trophysiology, mechanics and fluid dynamics. Furthermore, the topology of the
domain changes during the heartbeat due to the presence of unidirectional cardiac
valves, affecting the dynamics of the intracardiac flow. In addition, the blood flow
regime is known to be neither laminar, nor fully turbulent, but rather transitional
[20, 110, 117, 111]. Eventually, the flow in the heart is strictly coupled with the
flow in the pulmonary and systemic circulation.

The aim of this work is to introduce an accurate computational model account-
ing for all the features of the hemodynamics in the left heart (LH): the motion
of the surrounding cardiac tissue, the dynamics of aortic valve (AV) and mitral
valve (MV), transitional flow effects, and the flows and pressures in the rest of the
cardiocirculatory system. Moreover, the present study represents a significant step
towards a high fidelity fluid dynamics model of the whole human heart.

A key point in 3D hemodynamic models is the treatment of the boundary dis-
placement, especially in the cardiac chambers, were the blood motion is driven by
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the heart contraction and relaxation. Boundary displacement can be mainly mod-
eled according to the following two paradigms: Fluid-Structure-Interaction (FSI)
models and Computational Fluid Dynamics (CFD) simulations under a prescribed
wall motion. In cardiac FSI problems, the fluid model is coupled with an elec-
tromechanics (EM) model and the coupling is explicitly solved, entailing a high
computational effort [114, 112, 57, 113, 26, 48, 21, 89, 88]. In prescribed displace-
ment CFD simulations, on the other hand, the influence of the cardiac walls motion
is modeled by analytical laws [98, 28, 97, 117, 30, 15, 116, 91], by patient-specific
image-based reconstructions [45, 103, 25, 70, 68, 69], or via the displacement field
computed from a previous EM simulation [14, 57, 102].

A possible approach to account for the coupling between the flow field of the
region of interest and the one of the remaining circulation is the geometric multiscale
modeling [82]. The specific region of interest (a vessel or one of the heart chambers)
is represented by a 3D model, while the remaining part of the circulation is simulated
by models featuring a lower geometric dimension, as 0D [19, 92, 82, 73, 60] or 1D
[82, 106, 41, 40] models. With the term 0D models, we refer to lumped-parameter
models where the dependence on the spatial coordinates is completely neglected, and
a uniform spatial distribution of pressures and flowrates in any specific compartment
is assumed [82, 93].

We model the blood flow by the incompressible Navier-Stokes (NS) equations
in an Arbitrary Lagrangian Eulerian (ALE) formulation to account for the moving
boundary, whereas the AV and MV are immersed in the domain by the Resistive
Immersed Implicit Surface (RIIS) method [35, 45]. In order to account for the
transitional flow regime, the Variational Multiscale - Large Eddy Simulation (VMS-
LES) turbulence model is considered [17, 43, 117]. This model has the advantage of
acting also as a stabilization method for the CFD numerical scheme. The motion
of the wall is derived from an EM simulation on the left ventricle (LV) [84, 84] and
then extended to the whole boundary of the domain of interest by means of an
original preprocessing procedure, suitably considering a volume-based definition of
the displacement of the left atrium (LA). By prescribing the EM-based velocity at
the endocardial wall, we enforce a one-way (kinematic) coupling condition between
EM and CFD in the LV. Furthermore, to address the interdependence between the
fluid dynamics of the LH and the remaining cardiovascular system, we couple the
3D CFD model to the lumped-parameter (0D) model proposed in [84] representing
the whole cardiovascular system.

We numerically simulate the hemodynamics of the LH in physiological conditions.
We analyze the obtained complex blood flow pattern, and we validate our model by
comparing meaningful hemodynamic indicators with data available in the literature.

This paper is organized as follows: in Section 2, we briefly recall the lumped-
parameter circulation model of the cardiovascular system we employ; in Section 3,
we describe the mathematical model for the moving-domain hemodynamics in the
LH with the immersed valves. In particular, we introduce the preprocessing proce-
dure to reconstruct the displacement on the whole domain boundary based on an
EM simulation of the LV in Section 3.3, while we present the reduced valve dynam-
ics model in Section 3.4. The coupling between the 0D circulation model and the
3D CFD model is described in Section 4. Section 5 is devoted to the description of
the numerical approximation of each component of the model and the segregated
scheme we propose for their coupling. Numerical results are reported in Section 6
and conclusions are drawn in Section 7.
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Figure 1. The 0D circulation model.

2. A 0D circulation model of the whole cardiovascular system. We em-
ploy the closed-loop lumped-parameter (0D) circulation model that was proposed
in [84] (see also [19, 52]). As represented in Figure 1, in this model the systemic
and pulmonary circulations are represented by resistance-inductance-capacitance
(RLC) circuits, one for the arterial part and one for the venous part. The resistance
R models viscosity effects, the inductance L inertial effects, and the conductance
C the compliance of vessels. The four heart chambers (cardiac circulation, Fig-
ure 1) are modeled by elements with time-varying elastance E(t); the four valves
by non-ideal diodes. Let Vi(t), pi(t) and Ei(t), with i = LA, LV, RA, RV be re-
spectively the volume, pressure and elastances of the four heart chambers: left
atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV); Qj(t),
with j = MV, AV, TV, PV the flowrates through the mitral valve (MV), aortic
valve (AV), tricuspid valve (TV) and pulmonary valve (PV). QSYS

AR (t), QSYS
VEN(t) and

pSYS
AR (t), pSYS

VEN(t) are the flowrates and pressures in the systemic circulation in the
arterial and venous parts, respectively; similarly for QPUL

AR (t), QPUL
VEN(t) and pPUL

AR (t),
pPUL

VEN(t) in the pulmonary circulation. The 0D closed-loop circulation model of the
whole cardiovascular system reads [84]: for any t ∈ (0, Tf ):

dVLA(t)

dt
= QPUL

VEN(t)−QMV(t), (1a)

dVLV(t)

dt
= QMV(t)−QAV(t), (1b)
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dVRA(t)

dt
= QSYS

VEN(t)−QTV(t), (1c)

dVRV(t)

dt
= QTV(t)−QPV(t), (1d)

CSYS
AR

dpSYS
AR (t)

dt
= QAV(t)−QSYS

AR (t), (1e)

CSYS
VEN

dpSYS
VEN(t)

dt
= QSYS

AR (t)−QSYS
VEN(t), (1f)

CPUL
AR

dpPUL
AR (t)

dt
= QPV(t)−QPUL

AR (t), (1g)

CPUL
VEN

dpPUL
VEN(t)

dt
= QPUL

AR (t)−QPUL
VEN(t), (1h)

LSYS
AR

RSYS
AR

dQSYS
AR (t)

dt
= −QSYS

AR (t)− pSYS
VEN(t)− pSYS

AR (t)

RSYS
AR

, (1i)

LSYS
VEN

RSYS
VEN

dQSYS
VEN(t)

dt
= −QSYS

VEN(t)− pRA(t)− pSYS
VEN(t)

RSYS
VEN

, (1j)

LPUL
AR

RPUL
AR

dQPUL
AR (t)

dt
= −QPUL

AR (t)− pPUL
VEN(t)− pPUL

AR (t)

RPUL
AR

, (1k)

LPUL
VEN

RPUL
VEN

dQPUL
VEN(t)

dt
= −QPUL

VEN(t)− pLA(t)− pPUL
VEN(t)

RPUL
VEN

, (1l)

where, by denoting with pEX the external pressure and V0,i the resting volume of
each cardiac chamber, the atrial and ventricular pressures are defined as

pi(t) = pEX(t) + Ei(t) (Vi(t)− V0,i) , with i = LA, LV, RA, RV, (2)

and the flowrates across the valves as

Qj(t) =
pup,j(t)− pdown,j(t)

Rj(pup,j(t), pdown,j(t))
, with j = MV, AV, TV, PV. (3)

In Eq. (3), Rj(pup,j(t), pdown,j(t)) is the valve resistance, being pup,j, pdown,j the pres-
sure upstream and downstream the valve j respectively, with j = MV, AV, TV, PV
(see Figure 1).

3. A 3D fluid dynamics model of the left heart. In this section, we introduce
the 3D fluid dynamics model of the LH. Specifically, we present the NS equations in
ALE frawework with RIIS modelling in Section 3.1; the LH model and the bound-
ary conditions (BCs) we employ are described in Section 3.2. We introduce the
preprocessing procedure to compute the LH displacement in Section 3.3, and the
valves dynamics in Section 3.4.

3.1. The NS-ALE-RIIS equations. Let Ωt ⊂ Rd be the fluid domain at a spe-
cific time instant t > 0 (current configuration), with a sufficiently regular boundary
∂Ωt ≡ Γt oriented by the outward pointing normal unit vector n. We denote as ΓD

t

and ΓN
t the portions of the boundary where, respectively, Dirichlet and Neumann

type BCs are prescribed, with Γt = ΓD
t ∪ ΓN

t and
◦

ΓD
t ∩

◦
ΓN
t = ∅. Let Ω̂ ⊂ Rd be the

reference configuration of Ωt, and ∂Ω̂ ≡ Γ̂ its sufficiently regular boundary, as we
display in Figure 2.
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Figure 2. Fluid domain in reference configuration (left), ALE
map x = At(x̂) and domain in current configuration (right). In the
current configuration, the domain Ωt is bounded by Γt = ΓD

t ∪ΓN
t ;

Σk is an immersed surface modeled by means of the RIIS method.

We introduce the ALE map At which associates, at each t ∈ (0, Tf ), a point

x̂ ∈ Ω̂ to a point x ∈ Ωt [42]:

At : Ω̂→ Ωt : x = At(x̂) = x̂+ d̂(x̂, t), (4)

being d̂ the domain displacement with respect to the reference configuration Ω̂.
For every function w defined in the current configuration, we denote by ŵ = w ◦
At the corresponding function in the reference frame. Similarly, w = ŵ ◦ A−1

t .

Assuming d̂Γ(x̂, t) as known on the whole boundary Γ̂ at any time t ∈ (0, Tf ),
we can prolongate it to the fluid domain by solving, at each time, the following
harmonic extension problem:{

−∆d̂ = 0 in Ω̂,

d̂ = d̂Γ on Γ̂.

(5a)

(5b)

Eq. (5), together with Eq. (4), allows to compute the current domain Ωt = At(Ω̂),
for all t ∈ (0, Tf ). The ALE velocity is eventually obtained as

uALE =

(
∂d̂

∂t

)
◦ A−1

t . (6)

In the heart chambers, blood can be regarded as a Newtonian, incompressible
fluid and modeled by means of the incompressible Navier-Stokes (NS) equations
[80, 77, 99, 100]. Let u be the fluid velocity, p the pressure. The motion of the do-
main is accounted for by expressing the NS equations in an ALE framework [42, 31].
The action of the cardiac valves on the fluid field is simulated thanks to the RIIS
method [35, 45]. It lays in the class of immersed boundary - fictitious domain
methods, and it represents a moving immersed surface in an Eulerian framework,
without requiring the use of a surface-conforming mesh. Specifically, we introduce
an additional resistive term into the momentum balance of the NS equations, penal-
izing a kinematic condition, i.e. the adherence of the blood to m immersed moving
surfaces Σk:

Σk = {x : ϕk(x) = 0} , with k = 1, . . . ,m. (7)
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In Eq. (7), ϕk(x) is a signed-distance function that implicitly describes the k–th
immersed surface. In particular, we denote by Rk the resistance coefficient; the
resistive term has support in a narrow layer around Σk, represented by a smoothed
Dirac delta type function:

δΣk,εk(ϕk(x)) =


1 + cos(πϕk(x)/εk)

2εk
if |ϕk(x)| ≤ εk,

0 if |ϕk(x)| > εk,

and εk > 0 is a suitable parameter representing half of the thickness of the leaflet,
with k = 1, . . . ,m.

The incompressible NS equations in ALE framework endowed with the RIIS
method read: find u, p such that:

ρ
∂̂u

∂t
+ ρ

((
u− uALE

)
· ∇
)
u−∇ · σ(u, p)

+

m∑
k=1

Rk
εk
δΣk,εk(ϕk)

(
u− uALE

)
= 0 in Ωt × (0, Tf ),

∇ · u = 0 in Ωt × (0, Tf ),

u = g on ΓD
t × (0, Tf ),

σ(u, p)n = h on ΓN
t × (0, Tf ),

u = u0 in Ω0 × {0}.

(8a)

(8b)

(8c)

(8d)

(8e)

We will refer to this formulation as NS-ALE-RIIS formulation; in particular, ∂̂u∂t =
∂u
∂t + (uALE · ∇)u is the ALE derivative, ρ the fluid density and σ(u, p) the stress
tensor defined for Newtonian, incompressible and viscous fluids as σ(u, p) = −pI+

2µε(u). µ is the dynamic viscosity and ε(u) = 1
2

(
∇u+ (∇u)

T
)

the strain-rate

tensor. The functions g and h are the Dirichlet and Neumann data that will be
discussed in the next section, while u0 the initial velocity.

3.2. The LH geometry model and boundary conditions. We consider a re-
alistic LH geometry provided by Zygote [55], an accurate 3D model of the heart
obtained with CT scan data. The LH is constituted by the LA, LV and a portion
of the ascending aorta (AA). The two cardiac chambers (LA, LV) are separated by
the MV, whereas the AV separates the LV from the AA. The oxygenated blood is
collected from the pulmonary veins, the inlets of our domain. The four pulmonary
veins are connected to the upper part of the LA. In the geometry considered there
are four pulmonary veins, but one of them is splitted into two inlets, thus, our
LH geometry is characterized by five inlet sections, as displayed in Figure 3. The
blood is then pushed into the systemic circulation through the outlet section of the
AA. As reported in Figure 3a, we decompose the geometry into three subdomains:

Ωt = Ω
LA

t ∪ Ω
LV

t ∪ Ω
AA

t , namely the LA ΩLA
t , the LV ΩLV

t and the AA ΩAA
t . The

boundary is split as Γt =
(⋃5

i=1 Γ
PVeini

)
∪Γ

AA

t ∪Γ
w

t , where we denote with ΓPVeini ,

i = 1, . . . , 5 the five inlet sections of the four pulmonary veins, with ΓAA
t the outlet

section of the ascending aorta, and with Γw
t the endocardium (see Figure 3b). The

boundary portions ΓPVeini , i = 1, . . . , 5 are fixed. As displayed in Figure 3c, we im-
merse two surfaces ΣMV and ΣAV, namely the MV and the AV, in the LH domain.
More details on valves dynamics are given in Section 3.4.
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(a) (b) (c)

Figure 3. The LH geometry: (A) the three subdomains Ωt =

Ω
LA

t ∪ Ω
LV

t ∪ Ω
AA

t ; (B) the boundary portions of the LH geome-

try Γt =
(⋃5

i=1 Γ
PVeini

)
∪ Γ

AA

t ∪ Γ
w

t ; (C) in yellow, the immersed

surfaces ΣMV and ΣAV (respectively in their open and closed con-
figurations); in red, the Neumann data (for both inlet and outlet
sections); in green the Dirichlet datum at wall.

We prescribe the pressure in the pulmonary veins pIN(t) on the five inlet sections
of our computational domain, yielding the following Neumann BC:

σ(u, p)n = −pINn, on ΓPVeini × (0, Tf ), i = 1, . . . , 5. (9)

On the outlet section ΓAA
t , we prescribe a Neumann BC by setting the outlet pres-

sure pOUT(t):

σ(u, p)n = −pOUTn, on ΓAA
t × (0, Tf ). (10)

Thus, the Neumann boundaries are ΓN
t =

⋃5
i=1 ΓPVeini ∪ ΓAA

t . More details on the
way we compute inlet and outlet pressures pIN(t), pOUT(t) are given in Section 4.
Eventually, we prescribe the boundary ALE velocity on the endocardium (wall) by
time differentiating the wall displacement dΓ (that will be introduced in Section
3.3) in the current configuration:

u = uALE =
∂d̂Γ

∂t
◦ A−1

t , on Γw
t × (0, Tf ). (11)

Hence, the Dirichlet boundary is ΓD
t = Γw

t . A graphical sketch of the whole set of
BCs is given in Figure 3c.

3.3. Displacement modeling. The mathematical problem describing the hemo-
dynamics of the LH is solved by prescribing a given displacement field denoted as

d̂Γ on the endocardium. In particular, the latter is used as Dirichlet datum on Γw
t

for the NS-ALE-RIIS problem in Eq. (11), and for the geometric problem in Eq.

(5b) on the whole boundary Γ̂. In the following, we present a procedure aimed at
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Figure 4. Boundary portions of the LH geometry in reference
configuration. This splitting of the domain is used to define the
Laplacian problem (13).

computing a physiological LH displacement d̂Γ on Γ̂ starting from an EM simulation
of the LV.

We split the wall as Γ̂w = Γ̂w,LV ∪ Γ̂w,LA ∪ Γ̂w,AA, being respectively the walls

of LV, LA and AA, as shown in Figure 4. Let d̂LV,AA and d̂LA two displacement
fields acting on the whole LH which account respectively for the motion of the LV,

AA (d̂LV,AA) and the LA (d̂LA), respectively. We define the displacement on the
whole LH as

d̂Γ(x̂, t) = d̂LV,AA(x̂, t) + d̂LA(x̂, t), on Γ̂× (0, Tf ). (12)

Thus, we model the LH displacement as the sum of two contributions: a displace-
ment coming from an EM simulation of the LV that we extend to the whole LH
domain and an ad-hoc designed displacement for the LA. In the following, we de-
scribe how we compute the aforementioned displacement fields. In Algorithm 1, we
summarize the main steps required in the preprocessing procedure; in Figure 5, we
represent these steps with boxes numbered as the lines in Algorithm 1. We point
out that, since the displacement at the LV is computed through an EM simulation,
and we prescribe this data at walls of the fluid domain, we are enforcing a one-way
(kinematic) coupling condition between EM and CFD in the LV.

3.3.1. EM of a LV and harmonic extension on the whole LH geometry. We describe
how we compute the LV displacement through an EM simulation and then its
extension onto the whole LH geometry. The steps here introduced correspond to
boxes 1-4 in Figure 5 and, analogously, to lines 1-4 of Algorithm 1.

We use the EM model developed in [84] consisting of a cardiac EM model of the
LV coupled to the 0D circulation model introduced in Section 2. More specifics on
this model, and on the setting we employ to carry out the cardiac EM simulations
are given in Appendix B. In addition, since the one-way coupling approach ignores
the dynamic balance among CFD and EM, the pressure in the LV during the iso-
volumetric phases (i.e. when both valves are closed) is not well defined [102, 79].
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Algorithm 1 Preprocessing procedure to compute LH displacement

Input Ω̂, Γ̂

Output d̂Γ

1: LV-EM simulation → d̂EM
LV on Ω̂LV, s × (0, Tf )

2: Extract solution on LV endocardium → d̂EM
LV, endo on Γ̂w, LV × (0, Tf )

3: d̂EM
LV, endo → Laplace - Beltrami (Eq. (13) → d̂∗ on Γ̂ \ Γ̂w, LV × (0, Tf )

4: Compute d̂LV,AA on Γ̂× (0, Tf ) (Eq. (14))

5: Compute ϕ̂ on Γ̂

6: Solve the geometric problem (5) with Dirichlet datum: d̂LV,AA on Γ̂× (0, Tf )
7: Compute VLV(t), VAA(t), ∀t ∈ (0, Tf )
8: Compute A(t), ∀t ∈ (0, Tf ) (Eq. (18))
9: Solve the 0D circulation model → VLA(t) = V 0D

LA (t)
10: Compute Φ(t), ∀t ∈ (0, Tf )

11: Compute êLA
G on Γ̂

12: Compute B(t), ∀t ∈ (0, Tf )
13: Solve the ODE in Eq. (20) → gLA(t), ∀t ∈ (0, Tf )

14: d̂LA = ϕ̂ êLA
G gLA on Γ̂× (0, Tf )

15: d̂Γ = d̂LV,AA + d̂LA, on Γ̂× (0, Tf )

Figure 5. Displacement procedure. Boxes numbers are referred
to lines in Algorithm 1.

To overcome this issue, that would however regard only a short portion of the hear-
beat, we neglect the isovolumetric phases obtained in the EM simulation for our
CFD simulation.

Let d̂EM
LV (x̂, t) be the displacement of the LV, solution of the EM model and

defined in the LV myocardium in Ω̂LV, s × (0, Tf ). We show the LV in its reference
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(a) Reference configuration (b) Systole (c) Diastole

Figure 6. EM simulation of the LV: (A) LV in its reference con-
figuration; (B), (C) LV during systole and diastole colored by dis-
placement magnitude.

configuration (Ω̂LV,s) in Figure 6a; we display snapshots of the numerical solution
during systole and diastole in Figures 6b and 6c, respectively. Moreover, we also

report the EM solution in Figure 5, box 1. Let then d̂EM
LV,endo(x̂, t) on Γ̂w,LV×(0, Tf )

be the displacement field restricted to the LV endocardium – wall of the LV fluid
domain – as shown in Figure 5, box 2.

We compute a displacement d̂*, acting on LA and AA only, as the solution
of a vectorial Laplace-Beltrami problem. Specifically, we extend the ventricular

displacement d̂EM
LV,endo(x̂, t) on LA and AA, by keeping the pulmonary veins fixed

(see Figure 5, box 3):
−∆Γ̂d̂* = 0 on Γ̂ \

(
Γ̂w, LV ∪

(
5⋃
i=1

Γ̂PVeini

))
× (0, Tf ),

d̂* = d̂EM
LV, endo on γ̂ring × (0, Tf ),

d̂* = 0 on ∂Γ̂PVeini × (0, Tf ), i = 1, . . . , 5,

(13a)

(13b)

(13c)

being γ̂ring = Γ̂w, LV ∩
(

Γ̂ \ Γ̂w, LV
)

. We then define the displacement d̂LV,AA(x̂, t)

on Γ̂× (0, Tf ) as:

d̂LV,AA =

{
d̂EM

LV, endo on Γ̂w, LV × (0, Tf ),

d̂* on Γ̂ \ Γ̂w, LV × (0, Tf ).
(14)

By combining d̂* and d̂EM
LV, endo as in Eq. (14), the resulting d̂LV,AA is hence defined

on the whole LH boundary Γ̂, as shown in Figure 5, box 4. Thus, d̂LV,AA is obtained
by extending the EM-based LV displacement on the LH: the LV is moving according
to the EM result and the AA according to the harmonic extension of the ventric-
ular motion. As a consequence, at this stage, we are still not accounting for any
contribution coming from the LA motion. As a matter of fact, a simple extension
of the LV displacement would bring to a non physiological LA volume behavior,
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(a) t = 0.0 s (b) t = 0.15 s (c) t = 0.30 s (d) t = 0.50 s (e) t = 0.90 s

Figure 7. LH geometry warped by d̂Γ at different times during a
heart cycle.

having then a direct impact on the fluid dynamics simulation, for instance in terms
of non-physiological flowrates and pressures. For this reason, in Section 3.3.2, we
propose a simplified model to account for a physiological LA motion.

3.3.2. Modeling the LA motion. In absence of an EM model of the whole LH (or
of the isolated LA), we propose a simplified model to compute the displacement of
the whole LH, by also considering the LA physiological motion.

Let d̂LA(x̂, t) be the (unknown) displacement of the LA introduced in Eq. (12).
As in [117], we assume that the LA displacement can be modelled by separation of
variables, and that it is directed towards its center of volume x̂LA

G . We introduce

êLA
G as the unit vector directed towards x̂LA

G as êLA
G (x̂) =

x̂−x̂LA
G

|x̂−x̂LA
G |

, where | · | is the

Euclidean norm. Thus, we define d̂LA as

d̂LA(x̂, t) = ϕ̂(x̂)êLA
G (x̂)gLA(t), on Γ̂× (0, Tf ), (15)

being gLA(t) a time-dependent function; ϕ̂(x̂) is a smooth scalar function – com-

puted via Laplace-Beltrami problem – that we introduce to limit the action of d̂LA

on the LA. Specifically, as displayed in Figure 5, Box 5, ϕ̂ : Γ̂ → [0, 1] is null on
the LV, AA, positive on the LA, smoothly vanishing on the pulmonary veins.

Eq. (15) introduces some simplifications since – differently from the LV – we are
not considering the solution of a suitable EM model. We make these assumptions
in order to model the LA displacement in all those cases in which this might not be
available as input data: cases in which an EM model is available for the LV only (as
in this case) or imaging data given for the LV solely. As a matter of fact, imaging
data routinely acquired in diagnostic exams are suitable for reconstructing only
the LV as a 3D domain, while in most cases the LA is only visible through single
2D images unsuitable for a 3D reconstruction. Thus, CFD simulations are usually
carried out on the LV only, discarding the effects of the atrial flow. This extension
procedure can hence be used to fill the missing data and to perform numerical
simulations on the whole left part of the heart.



GEOMETRIC MULTISCALE MODEL FOR THE BLOOD FLOW IN THE LEFT HEART 13

Figure 8. Volumes of LA, LV and AA achieved applying the dis-

placement – d̂Γ defined in Eq. (12) – to Γ̂ .

To compute gLA(t), we consider the LH volume time-derivative and we express
it through the Reynolds transport theorem (RTT) [64] as

dVLH

dt
=

d

dt

∫
Ωt

dx
RTT
=

∮
Γt

uALE · ndx =

∮
Γt

∂

∂t
dΓ · ndx, (16)

being VLH the LH volume. By recalling that for a generic function w holds that
w = ŵ ◦ A−1

t , we use Eq. (12) and (15) mapped to the current configuration Γt in
Eq. (16) to get:

dVLH

dt
=

∮
Γt

∂

∂t
dLV,AA · ndx+

dgLA

dt

∮
Γt

ϕ eLA
G · ndx. (17)

Let VLA, VLV and VAA be the volumes of LA, LV and AA, with VLH(t) = VLA(t) +
VLV(t) + VAA(t); we define the fluxes in (17) as

A =

∮
Γt

∂

∂t
dLV,AA · ndx, B =

∮
Γt

ϕ eLA
G · ndx, (18)

Φ(t) =
dVLH(t)

dt
−A(t) =

dVLA(t)

dt
+

dVLV(t)

dt
+

dVAA(t)

dt
−A(t). (19)

Solving Eq. (17) for dgLA(t)
dt , yields the following Cauchy problem:

dgLA(t)

dt
=

Φ(t)

B(t)
, t ∈ (0, Tf ),

gLA(0) = gLA0
.

(20)

Since the Zygote’s geometry is generated at a time instant corresponding to the
70% of diastole in a heartbeat [55], we consider such instant as initial time t = 0

whence Ω̂ = Ω0, and gLA0 = 0. To compute VLA(t) in Eq. (19), we solve the 0D
closed-loop circulation model – tuned on the basis of the EM simulation1– and we
denote the LA volume computed as V 0D

LA (t). Thus, we set:

VLA(t) = V 0D
LA (t).

1In principle, one could directly adopt the LA volume obtained with the 3D-0D EM model
[84]. However, as previously explained, since we neglect the isovolumetric phases, we calibrate the

0D model to be consistent with the LV volume achieved.
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Figure 9. Immersed valve Σk with upwind and downwind control
volumes where average pressures are computed. Qk is the flowrate
across Σk. This picture corresponds to a simple a two-dimensional
fluid domain for the sake of simplicity.

As reported in Algorithm 1, in order to compute gLA(t), we first solve a pre-

liminary geometric problem, as the one in Eq. (5) but using d̂LV,AA as Dirichlet

datum on Γ̂× (0, Tf ). In this way, we compute once and for all the volumes VLV(t),
VAA(t) and the flux A(t). We solve the 0D circulation model to get VLA(t), and we
compute the flux Φ(t). Once we compute êLA

G , we calculate the flux B(t) to finally
get gLA(t) as solution of the Cauchy problem (20). The steps here mentioned are
aimed at computing gLA(t): they are shown in lines 6-13 of Algorithm 1 and gath-

ered in a single box in Figure 5. Once we get gLA(t), we can compute d̂LA as in
Eq. (15) and displayed in box 14 in Figure 5. The magnitude of the displacement

d̂LA is shown in the yellow box in Figure 5: it is non-null on the LA only, smoothly
vanishing towards the pulmonary veins and on the LV and the AA. We also report

glyphs of d̂LA showing that the LA displacement direction coincides with êLA
G . The

displacement dΓ can be eventually computed as in Eq. (12) and as reported in
Figure 5, box 15.

We implemented the whole procedure in PvPython [4]. EM simulations of the LV

and the geometric problem (5) with Dirichlet datum d̂LV,AA are carried out using
the in-house finite element library lifex [3] (more details will be provided in Section

6). We solved the Laplace-Beltrami problems to get d̂∗, and ϕ̂ using the harmonic
extension algorithms proposed in [36] and implemented in a public form of vmtk
[9, 1, 2].

In Figure 7, we finally report the LH geometry warped by d̂Γ at different time
steps during the heart cycle starting from the time of end diastole. Moreover, in
Figure 8, we show the volumes of LA, LV and AA obtained with our preprocessing
procedure. We measure ventricular end diastolic volume EDV = 148.04 ml, end
systolic volume ESV = 65.48 ml, stroke volume SV = EDV - ESV = 82.56 ml
and the ejection fraction EF = 100 SV/EDV = 55.77%. The results obtained are
consistent with values routinely acquired in healthy subjects [66, 112].

3.4. Valves dynamics. As discussed in Section 3.1, the effect of MV and AV on the
fluid is modeled by means of the RIIS method [35, 45]. The MV and AV geometries
are given by Zygote [55] in their closed and open configuration, respectively. To
bring the immersed surfaces from their open to closed configuration (and viceversa)
we prescribe a displacement field computed via Laplace-Beltrami problems, and
algorithms exploiting the closest-point distances [36]. We show the cardiac valves
in their fully closed and fully open configurations in Figure 10.
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(a) ΣAV (b) ΣMV

Figure 10. Cardiac valves in their fully closed and fully open
configurations.

We do not prescribe a priori the time at which valves open and close, as this is a
result of our numerical simulations. If a valve is closed, it opens when the pressure
jump across it becomes positive; viceversa, the valve closes when a condition of
reversed flow across the orifice area is detected [102]. The condition on the pressure
jump across the valve k, with k = MV, AV is checked by considering two control
volumes inside the upstream and downstream chambers, as shown in Figure 9. Let
pup

k (t) and pdown
k (t) be the average pressure inside each control volume, the valve k

opens when the pressure jump is positive, i.e. δpk(t) = pup
k (t)− pdown

k (t) > 0.
The closure condition at time t of reversed flow is satisfied when Qk(t) < 0, Qk

being the flowrate through the valve k. Hinging upon a mass balance, the sign
of Qk(t) is directly related to that of V̇LV(t). Therefore, the MV will close when

V̇LV(t) < 0, while the AV when V̇LV(t) > 0.

4. Coupling the 3D fluid dynamics model with the 0D circulation model.
In order to couple the 3D CFD model of the LH with the 0D circulation model of
the whole cardiovascular system, we first remove from the 0D model Eq. (1a), (1b),
(2) for i = LA,LV and (3) for j = MV,AV, and we replace them with the 3D model
of the LH. The coupling between the 3D and 0D models consists of the enforcement
of the continuity of flowrates and pressures on the “artificially chopped” boundaries,
i.e. inlet and outlet sections of the 3D domain: ΓPVeini , i = 1, . . . , 5 and ΓAA

t .
Referring to Figure 11, the LA pressure pLA(t) of the 0D model, appearing in Eq.

(1l), represents the pressure downwind the “PUL VEN” RLC system, i.e. the one
to be prescribed on the inlet sections of our 3D domain. Thus, we rename the latter
as pin

LA(t). Analogously, the systemic arterial pressure pSYS
AR (t), appearing in Eq.

(1e) and (1i), acts as the outlet pressure on the AA outlet section ΓAA
t . Moreover,

the flowrate QPUL
VEN(t), appearing in Eq. (1h) and (1l), represents the inlet flowrate

in the 3D model. Similarly, the flowrate QAV(t) in Eq. (1e) represents the outlet
flowrate in our 3D model. The interface conditions between the 3D and 0D models
are then expressed as:

pIN(t) = pin
LA(t), pOUT(t) = pSYS

AR (t), (21)

for the continuity of pressures, and

QIN(t) = −QPUL
VEN(t), QOUT(t) = QAV(t), (22)
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Figure 11. The geometric multiscale model: coupling between
the 3D CFD model of the LH and the 0D circulation model of the
remaining cardiocirculatory system.

for the continuity of flowrates2. QIN(t) and QOUT(t) are the inlet and outlet
flowrates respectively, defined as

QIN(t) =

5∑
i=1

∫
ΓPVeini

un(x, t) dx, QOUT(t) =

∫
ΓAA
t

un(x, t) dx, (23)

with un =
(
u− uALE

)
· n the relative normal velocity.

The resulting 0D model is the following: for any t ∈ (0, Tf ):

dVRA(t)

dt
= QSYS

VEN(t)−QTV(t), (24a)

2We define the sign of the flowrate in accordance with the outward unit normal n. Thus, an
inlet flowrate (entering velocity) will be, by definition, negative.
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dVRV(t)

dt
= QTV(t)−QPV(t), (24b)

dpSYS
AR (t)

dt
=

1

CSYS
AR

(
QAV(t)−QSYS

AR (t)
)
, (24c)

dpSYS
VEN(t)

dt
=

1

CSYS
VEN

(
QSYS

AR (t)−QSYS
VEN(t)

)
, (24d)

dpPUL
AR (t)

dt
=

1

CPUL
AR

(
QPV(t)−QPUL

AR (t)
)
, (24e)

dpPUL
VEN(t)

dt
=

1

CPUL
VEN

(
QPUL

AR (t)−QVEN
PUL (t)

)
, (24f)

dQSYS
AR (t)

dt
=
RSYS

AR

LSYS
AR

(
−QSYS

AR (t)− pSYS
VEN(t)− pSYS

AR (t)

RSYS
AR

)
, (24g)

dQSYS
VEN(t)

dt
=
RSYS

VEN

LSYS
VEN

(
−QSYS

VEN(t)− pRA(t)− pSYS
VEN(t)

RSYS
VEN

)
, (24h)

dQPUL
AR (t)

dt
=
RPUL

AR

LPUL
AR

(
−QPUL

AR (t)− pPUL
VEN(t)− pPUL

AR (t)

RPUL
AR

)
, (24i)

being

pin
LA(t) = pPUL

VEN(t)−RPUL
VENQ

PUL
VEN(t)− LPUL

VEN

dQPUL, 3D
VEN (t)

dt
, (25a)

pRA(t) = pEX(t) + ERA(t) (VRA(t)− V0,RA) , (25b)

pRV(t) = pEX(t) + ERV(t) (VRV(t)− V0,RV) , (25c)

QTV(t) =
pRA(t)− pRV(t)

RTV(pRA(t), pRV(t))
, (25d)

QPV(t) =
pRV(t)− pPUL

AR (t)

RPV(pRV(t), pPUL
AR (t))

. (25e)

Note that pLA(t) has been replaced by pin
LA(t) and, as reported in Eq. (25a), it

is obtained by solving Eq. (1l) for pin
LA(t). We gather the unknown variables of

Eq. (24) in a vector c(t) = (VRA(t), VRV(t), pSYS
AR (t), pSYS

VEN(t), pPUL
AR (t), pPUL

VEN(t),
QSYS

AR (t), QSYS
VEN(t), QPUL

AR (t))T and the left-hand side of Eq. (25) in a vector c̃(t) =
(pin

LA(t), pRA(t), pRV(t), QTV(t), QPV(t))T . We then collect the right-hand sides of
Eq. (24) and (25) in the vectors r(t, c(t), c̃(t)) and r̃(t, c(t)), respectively. Hence,
the reduced 0D model, enriched with suitable initial conditions, is expressed in a
compact form as


dc(t)

dt
= r(t, c(t), c̃(t)) t ∈ (0, Tf ),

c̃(t) = r̃(t, c(t)) t ∈ (0, Tf ),

c(0) = c0.

(26a)

(26b)

(26c)
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A graphical representation of the multiscale problem is given in Figure 11. The
overall 3D-0D continuous problem is expressed as: find u, p, c, c̃ such that:

ρ

(
∂̂u

∂t
+
((
u− uALE

)
· ∇
)
u

)
−∇ · σ(u, p)

+
∑

k

Rk

εk
δΣk,εk(u− uALE) = 0 in Ωt × (0, Tf ),

∇ · u = 0 in Ωt × (0, Tf ),

σ(u, p)n = −pin
LAn on ΓPVeini × (0, Tf ), i = 1, . . . , 5,

σ(u, p)n = −pSYS
AR n on ΓAA

t × (0, Tf ),

u = uALE on Γw
t × (0, Tf ),

u = 0 in Ω0 × {0},

−∆d̂ = 0 in Ω̂,

d̂ = d̂Γ on Γ̂,

uALE =

(
∂d̂

∂t

)
◦ A−1

t ,

dc(t)

dt
= r(t, c(t), c̃(t)) for t ∈ (0, Tf ),

c̃(t) = r̃(t, c(t)) for t ∈ (0, Tf ),

c = c0 for t = 0,

(27a)

(27b)

(27c)

(27d)

(27e)

(27f)

(27g)

(27h)

(27i)

(27j)

(27k)

(27l)

with k = MV, AV.

5. Numerical methods. In this section, we present the numerical methods to
solve the multiscale problem (27). Specifically, we present the numerical schemes
for the solution of the NS-ALE-RIIS equations, the geometric problem, and the
0D circulation model, respectively. Finally, we introduce the segregated numerical
scheme to solve the the coupled problem.

5.1. Space and time discretization of the NS-ALE-RIIS equations and
VMS-LES method. For the space discretization of Eq. (8), we introduce the
following infinite dimensional function spaces:

Vg :=
{
v ∈ [H1(Ωt)]

3 : v = g on ΓD
t

}
, Q := L2(Ωt). (28)

We employ the FE method for the spatial discretization and we denote with the
superscript h quantities associated to the FE discretization. We use the VMS-
LES method [17, 43, 28] to get an inf-sup stable FE approximation of the NS
equations. Moreover, this formulation is suitable both to control instabilities arising
from advection dominated problems, and to account for the transitional and nearly
turbulent regime that typically occurs in cardiac blood flow [17, 117].

For the time discretization, we partition the time domain inNt time steps of equal

size ∆t =
Tf

Nt
, and we denote with the subscript n quantities evaluated at time step

n: tn, with n = 0, . . . , Nt. We use the Backward Differentiation Formula (BDF)
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scheme of order σt = 1, 2, 3 to discretize the problem in time [43], and we use a semi-
implicit treatment of the non linearities by extrapolating the velocity field by means
of the Newton-Gregory backward polynomials of order σt, yielding the extrapolated
velocity uhn+1,EXT. From our numerical results, and consistently with the findings

of [43], we found that the semi-implicit VMS-LES formulation guarantees a stable
solution also for relatively “large” time-step sizes, differently from explicit numerical
schemes where the time step restriction is generally more severe [79]. By defining

the extrapolated relative velocity as uh∗ = uhn+1,EXT −u
ALE,h
n+1 , the fully discretized

linear semi-implicit VMS-LES formulation of the NS-ALE-RIIS equations with BDF
as time integration method reads: given uhn, . . . , u

h
n+1−σt

, for any n = 0, . . . , Nt−1,

find (uhn+1, p
h
n+1) ∈ Vhg ×Qh such that:

(
vh, ρ

αBDFu
h
n+1

∆t

)
Ωn+1

+
(
vh, ρ

(
uh∗ · ∇

)
uhn+1

)
Ωn+1

+
(
∇vh, µ∇uhn+1

)
Ωn+1

−
(
∇ · vh, phn+1

)
Ωn+1

+
(
qh,∇ · uhn+1

)
Ωn+1

+

(
vh,

m∑
k=1

Rk
εk
δΣk,n+1,εk

(
uhn+1 − u

ALE,h
n+1

))
Ωn+1

+S(vh, qh,uhn+1,u
ALE,h
n+1 ,uhn+1,EXT, p

h
n+1, p

h
n+1,EXT) =

(
vh,hn+1

)
ΓN
n+1

+
(
vh, ρ(uh∗ · n)−u

h
n+1

)
ΓN
n+1

+

(
vh, ρ

uhn,BDF

∆t

)
Ωn

,

for all (vh, qh) ∈ Vh
0 ×Qh, for all n ≥ σt − 1.

(29)

In Eq. (29), Ωn+1 is the domain at time step n + 1, as we detail in Section 5.2.
Moreover, the form S includes the stabilization and turbulence terms provided by
the VMS-LES method:

S(vh, qh,uhn+1,u
ALE,h
n+1 ,uhn+1,EXT, p

h
n+1, p

h
n+1,EXT) =(

ρuh∗ · ∇vh +∇qh, τM(uh∗)rM(uhn+1, p
h
n+1)

)
Ωn+1

+
(
∇ · vh, τC(uh∗)rC(uhn+1)

)
Ωn+1

+
(
ρuh∗ · (∇vh)T , τM(uh∗)rM(uhn+1, p

h
n+1)

)
Ωn+1

−
(
ρ∇vh, τM(uh∗)rM(uh∗ , p

h
n+1,EXT)⊗ τM(uh∗)rM(uhn+1, p

h
n+1)

)
Ωn+1

,

(30)

being rM(uh, ph) and rC(uh) the strong residuals of (8a) and (8b), defined respec-
tively as:

rM(uh, ph) = ρ
∂̂uh

∂t
+ ρ

((
uh − uALE

)
· ∇
)
uh +∇ph − µ∆uh

+

m∑
k=1

Rk
εk
δΣk,εk(ϕk)

(
uh − uALE

)
, (31a)

rC(uh) =∇ · uh, (31b)

where the temporal derivative in Eq. (31a) is approximated with BDF method of
the same order σt adopted for the temporal discretization in Eq. (29), and the
convective term is treated semi-implicitly. The stabilization parameters are chosen



20 ALBERTO ZINGARO, IVAN FUMAGALLI, LUCA DEDE’ ET AL.

as in [17, 43, 35, 45]:

τM(uh∗) =

(
σ2
t ρ

2

∆t2
+ ρ2 uh∗ ·Guh∗ + Crµ

2G : G +

m∑
k=1

R2
k

ε2
k

δ2
Σk,εk

(ϕk)

)− 1
2

,

τC(uh∗) =
(
τM(uh∗)g · g

)−1
,

being Cr = 15 · 2r a constant obtained by an inverse inequality depending on the
local velocity polynomial degree r [17, 43], while G and g are the metric tensor and
metric vector, respectively (see [17]).

In addition, to avoid possible instabilities on the boundaries where Neumann
BCs are set, we add the backflow stabilization term

(
vh, ρ(uh∗ · n)−u

h
n+1

)
ΓN
n+1

in

Eq. (29), being (w)− = min (w, 0). The advection velocity is treated semi-implicitly,
coherently with the way we consider the non-linearities in the main formulation [18].

5.2. Space discretization of the geometric problem. For the ALE lifting
problem in Eq. (5), we introduce the infinite dimensional function space V d̂Γ

:={
v̂ ∈

[
H1(Ω̂)

]d
: v̂ = d̂Γ on Γ̂

}
and the Galerkin formulation is expressed as: for

any n = 0, . . . , Nt,

find d̂hn ∈ Vh
d̂Γ

such that
(
∇d̂hn, ∇ŵh

)
= 0, for all ŵh ∈ Vh

0. (32)

The ALE velocity in the reference configuration is recovered by discretizing Eq. (6)
with the Backward Euler Method, as

ûALE,h
n+1 =

d̂hn+1 − d̂hn
∆t

. (33)

The domain Ωn+1 and the mesh T hn+1 are defined according to the ALE map

An+1(x) = x̂ + d̂hn+1 defined in Eq. (4), namely Ωn+1 = An+1(Ω̂) and T hn+1 =

An+1(T̂ h).

5.3. Time discretization of the 0D circulation model. We solve the system
of ODEs in Eq. (26) with a 4th order explicit Runge-Kutta method [81]. The time-
step size ∆t employed for its numerical discretization is the same used for the BDF
advancing scheme in the 3D problem.

5.4. A segregated scheme for the 3D-0D coupling. We show the overall nu-
merical scheme for the coupled problem for the CFD simulation of the LH in Algo-
rithm 2. A graphical representation of the whole algorithm is given in Figure 12.

After initialization, we compute the displacement field for a representative heart-
beat (NHB time steps), as explained in Section 3.3. We interpolate the displacement
field in time on the temporal grid required by the CFD problem via splines. Fur-
thermore, we assume the displacement field to be periodic for all the heartbeats
simulated. For each time step, we solve the geometric problem as explained in Sec-
tion 5.2; we compute the LV volume derivative and the pressure jumps across each
valve, which represent the indicators employed to determine the valves status, as
we discussed in Section 3.4. Given the inlet and outlet flowrates from the previ-
ous time step (QPUL

VEN,n, QAV,n), we solve the discretized circulation problem (see

Section 5.3). The inlet atrial and systemic arterial pressures, computed in the 0D
model, represent the interface conditions from the 0D to the 3D model. Specifically,
the pressures pin

LA,n+1, p
SYS
AR,n+1 are used as Neumann data for the inlet and outlet
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Figure 12. Sketch of the algorithm for the CFD simulation of the
LH. The coupling between the CFD and the circulation problem is
solved via a segregated numerical scheme.

BCs, respectively (as we explain in Section 4). Once the fluid dynamics problem is
solved as explained in Section 5.1, we integrate the normal relative velocity to com-
pute QPUL

VEN,n+1, QAV,n+1 as reported in Eq. (22). The flowrates stand as interface
data from the 3D to the 0D problem for the following time step. Thus, to advance
the coupled problem in time, we use a segregated numerical scheme in which we
solve, with the same time step size, the circulation and the fluid dynamics problems.
The restriction on the time-step size is given by the CFD problem, being also the
more expensive part to be solved. From our numerical tests, we found that the
usage of the same ∆t for the two problems guarantees that the solution is always
stable, motivating hence the usage of a segregated numerical scheme.

6. Numerical simulations. We perform numerical simulations on a LH mesh
built from the Zygote Solid 3D heart model [55]. To generate the mesh, we use
vmtk [9] and the pre-processing tools for cardiac geometries proposed in [36]. We
mesh each portion of the domain (LA, LV and AA) separately, with a non-uniform
mesh size, refining the mesh near the valves by an algorithm based on the closest-
point distances [36]. The three meshes are then connected in a conforming fashion
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Algorithm 2 Segregated scheme for the 3D-0D coupled problem

Initialization, n = 0.

Compute d̂Γn
for n = 0, . . . , NHB.

while n ≤ Nt do

Solve geometric problem.

Compute LV volume derivative and pressure jumps.

Update valves leaflet position.

Solve circulation : (cn+1, c̃n+1)
T

= Circulation(QPUL
VEN,n, QAV,n).

Compute interface data (0D → 3D) : (cn+1, c̃n+1)→ pin
LA,n+1, p

SYS
AR,n+1.

Solve fluid dynamics:
(
uhn+1, p

h
n+1

)T
= FluidDynamics(pin

LA,n+1, p
SYS
AR,n+1).

Compute interface data (3D → 0D) : uhn+1 → QPUL
VEN,n+1, QAV,n+1.

n← n+ 1.

end while

Figure 13. The LH tetrahedral mesh made of three conforming
meshes for the LA, LV and AA subdomains; a clip of the mesh
showing the local mesh refinement near the MV and AV.

to get the tetrahedral mesh in Figure 13. Specifically, to connect the three meshes,
we use the mesh-connection algorithm introduced in [36]. We use linear FE spaces
for velocity and pressures (P1 − P1); as time integration scheme, we employ the
BDF method of order 1, and a time-step size ∆t = 2.5 · 10−4 s. We summarize the
parameters we use for the setup of our numerical simulations in Table 2.

For the RIIS method, following arguments of [35, 45], we set Rk = 104 kg/(m2·s)
and εk = 0.6 mm, with k = MV, AV. Our choice of εk allows to have a physiologic
representation of the valves’ leaflets in a healthy subject and, with our setting of Rk,
to avoid flow penetration across the immersed surfaces [35]. In order to accurately
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ρ µ u0 Rk εk Tf THB

[kg/m3] [kg/(m · s)] [m/s] [kg/(m2·s)] [mm] [s] [s]

MV AV MV AV

1.06 · 103 3.5 · 10−3 0 104 104 0.6 0.6 2.0 1.0

h cells DOFs (P1 − P1) BDF ∆t
[mm] [-] [-] [-] [s]

min avg max u p total

0.4 1.2 4.1 1’627’795 806’295 268’765 1’075’060 1 2.5 · 10−4

Table 2. Parameters for the setup of the numerical simulations.

represent the valves by means of the RIIS method, the mesh size h must be chosen
small enough in the immersed surfaces region. Specifically, the minimum value of
h should be set such that εk is at least 1.5 times h [35]. Furthermore, we found
that the condition number of the linear system associated to the FE discretization
of the NS-ALE-RIIS equations becomes larger as Rk/εk increases. Thus, for Rk

we choose the minimum value that guarantees impervious valves. As displayed in
Figure 13, we have refined the mesh in the valves region to accurately represent the
leaflets as described by the RIIS method with our choices of εk. Since we neglect
the isovolumetric phases, we cannot set physiological opening and closing times of
the valves, thus we open and close them instantaneously (i.e. in one time step).
The physical parameters for blood are density ρ = 1.06 · 103 kg/m3 and dynamic
viscosity µ = 3.5 ·10−3 kg/(m·s); we start our simulation from a zero velocity initial
condition u0 = 0.

The mathematical models and numerical methods described in Sections 2, 3, 4
and 5 have been implemented in lifex [3, 8], a high-performance C++ library developed
within the iHEART project3, mainly focused on cardiac simulations, and based on
the deal.II FE core [11]. Numerical simulations are run in a parallel framework4. The
linear system arising from Eq. (29) is preconditioned with the aSIMPLE precon-
ditioner [29], and each of its blocks are preconditioned with an algebraic multigrid
preconditioner based on Trilinos [5]. The linear system is then solved at each time
step with the GMRES method.

In the following, we present our numerical results for the case of a healthy LH.
We simulate two heartbeats (Tf = 2 s) of period THB = 1 s and we discard

the first beat in order to disregard the effects of the unphysical initial condition
u0 = 0. This simulation required about 183 hours on a node with 56 cores. We show
numerical results on the last heartbeat and we shift the temporal domain in (0, THB).
In Figure 14, we report flowrates and pressures at the inlet and outlet sections of the
3D domain, which are the interfaces of the 3D-0D coupling. In Figure 15, we show
the average pressure in LA, LV and AA computed by averaging the pressure field
in control volumes in each chamber, as explained in Section 3.4. On the bottom

3iHEART - An Integrated Heart model for the simulation of the cardiac function, European
Research Council (ERC) grant agreement No 740132, P.I. Prof A. Quarteroni, 2017-2022.

4Numerical simulations were run either on the cluster iHEART (Lenovo SR950 8 x 24-Core Intel
Xeon Platinum 8160, 2100 MHz and 1.7TB RAM) available at MOX, Dipartimento di Matematica,
Politecnico di Milano and on the cluster GALILEO supercomputer (IBM NeXtScale cluster, 1022

nodes (Intel Broadwell), 2 x 18-Cores Intel Xeon E5-2697 v4 at 2.30 GHz, 36 cores/node, 26.572
cores in total with 128 GB/node) by CINECA.
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Figure 14. Flowrates (top) and pressures (bottom) at the inter-
faces of the 3D-0D model.

Figure 15. Flow properties to determine opening and closure of
valves. Top: average pressure in LA, LV and AA; bottom: time
derivative of LV volume. Average pressures in the chambers are
computed in the control volumes in the LH displayed on the right.

box, we report the LV volume time-derivative, which is the indicator adopted to
check for reversed flow across a valve and hence to determine the valves closing.
Considering that we open and close the valves istantaneously, the pressure exhibits
an oscillation immediately after this moments. From our numerical simulations,
we found that closing the cardiac valves by checking for a reverse flow condition
(instead of a negative pressure jump) completely prevents the pressure peaks after
valve closing. However, the peak at the opening of the valve is still present, and
we believe it might be related to the fact the valve opens in one time step, instead
of respecting a dynamic given by the interaction between the leaflets and the fluid.
For visualization purposes, the pressure fluctuations at the opening of the valves,
lasting for maximum four time steps, are removed from the picture.

The previous simulated heartcycle ends with the closing of the MV when the
total flow through its section changes sign; the pressure in the LV starts rising and
the AV opens when the pressure in the LV becomes larger than the one in the
AA. This time marks the beginning of the ejection phase in systole. We report
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(a) t = 0.0 s (b) t = 0.1 s (c) t = 0.2 s (d) t = 0.3 s (e) t = 0.4 s

(f) t = 0.5 s (g) t = 0.6 s (h) t = 0.7 s (i) t = 0.8 s (j) t = 0.9 s

Figure 16. Volume rendering of velocity magnitude during the
whole heartbeat.

the volume rendering of velocity magnitude and the pressure on a clip in the LV
apico-basal direction in Figures 16 and 17, respectively. During the LV contraction,
as shown in Figures 16b-16d, the blood flows from the LV to the AA, reaching large
values of velocity at the systolic peak t = 0.13 s. In particular, we measured a
maximum flowrate in the AV section equal to 493.30 ml/s, a maximum pressure in
the AA equal to 119.20 mmHg and a maximum ventricular pressure equal to 121.15
mmHg. The numerical results achieved are consistent with standard physiological
data [50, 22, 96]: a peak systolic pressure in the range 119 ± 13 mmHg [96]; a
maximum flowrate of about 489 ml/s [50]. A comparison between the biomarkers
we compute from our numerical simulations and clinical values found literature is
given in Table 3.

Specifically on the ejection phase, as shown in Figure 18, during the acceleration
phase (Figures 18a, 18b), the spatial profile of the velocity field is almost flat,
suggesting the development of a turbulent flow inside the AA. However, as the
systolic peak is reached, the blood continues to flow from the LV to the AA (Figures
18c-18e) but it decelerates. Differently from the acceleration stage, the velocity
profile is no longer flat but the flow is partially oriented towards the LV. The AV
closes when the flow becomes completely reverse on its section. Once the AV is
closed, the pressure in the LV suddenly decreases, until it becomes smaller than the
one in the LA: this marks the beginning of diastole with the opening of the MV.
The diastole is characterized by two filling stages: the E-wave and the A-wave. As
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(a) t = 0.0 s (b) t = 0.1 s (c) t = 0.2 s (d) t = 0.3 s (e) t = 0.4 s

(f) t = 0.5 s (g) t = 0.6 s (h) t = 0.7 s (i) t = 0.8 s (j) t = 0.9 s

Figure 17. Pressure on a clip in the LV apico-basal direction dur-
ing the whole heartbeat.

(a) t = 0.03 s (b) t = 0.06 s (c) t = 0.15 s (d) t = 0.21 s (e) t = 0.27 s

Figure 18. AV section warped by velocity during the ejection
phase. In trasparency: the AV represented by the RIIS method.

the E-wave starts (t ≈ 0.47 s), a high-speed flux coming from the LA is observed at
the MV section: the LV volume increases and the LA volume decreases. During the
A-wave (atrial kick, t ≈ 0.92 s), we observe a rapid contraction of the LA, as also
observed in Figure 8, producing a second high-speed flux through the MV section,
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Figure 19. Left: mean, first and third quartile of the space dis-
tribution of the velocity magnitude uMV in a control volume ΩMV

t

downstream the MV section. Right: flowrate computed on a sec-
tion downwind the AV (

∫
Γ∗
t
u · n)

Biomarker In-silico result In-vivo measurements Reference
LV stroke volume [ml] 82.6 95± 14 [66]

LV ejection fraction [%] 55.8 57.5± 7.5 [63]
Peak AV flowrate [ml/s] 493.3 ≈ 489 [50]

LV peak pressure [mmHg] 121.2 119± 13 [96]
Peak E-wave velocity [m/s] 0.96 0.89± 0.15 [104]
Peak A-wave velocity [m/s] 0.71 0.78± 0.26 [104]

EA ratio [−] 1.35 1.30± 0.57 [104]

Table 3. Biomarkers: comparison between numerical results and
clinical values acquired in healthy individuals.

but milder than the one characterizing the E-wave. Once the atrial kick is over,
and a reverse flow condition is detected on the MV section, the MV closes at the
beginning of a new heartbeat.

Figure 19 (left) shows the velocity magnitude uMV computed in our numeri-
cal simulations in a control volume immediately below the MV section, denoted
as ΩMV

t in the Figure. We compare our result with the velocity profile acquired
through trans-mitral valve spectral Doppler in a normal subject from [105] (nor-
mally acquired in a sample volume between the mitral leaflet tips [10]). Specifically,
we refer to Figure 4 of paper [105]. We observe that our model is able to correctly
reproduce amplitudes and shapes of the two characteristic waves in diastole, namely
E-wave and A-wave: as for our reference data, the first wave shows a stronger peak
than the second one. From the numerical results we measured maximum ampli-
tudes of E-wave and A-wave equal to 0.96 m/s and 0.71 m/s, respectively; an EA
ratio equal to 1.35 (ratio among E-wave and A-wave peak velocities). Our results
are consistent with physiological values commonly acquired in healthy subjects, as
we summarize in Table 3.

In Figure 19 (right), we show the flowrate on a section downind the AV. We
compare our result with the flowrate in a normal AA acquired through cardiac
magnetic resonance through-plane phase-contrast velocity mapping. Specifically,
we compare our numerical results with Figure 3 of paper [50]. By computing the
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(a) t = 0.0 s (b) t = 0.1 s (c) t = 0.2 s (d) t = 0.3 s (e) t = 0.4 s

(f) t = 0.5 s (g) t = 0.6 s (h) t = 0.7 s (i) t = 0.8 s (j) t = 0.9 s

Figure 20. Iso-contours of Q-criterion (Q(u) = 40 s−2) colored
according to velocity magnitude during a whole heartbeat.

flowrate at a section Γ∗t downwind the AV, we match accurately the systolic peak,
with amplitude equal to 493.26 ml/s against a peak approximately equal to 490
ml/s in the reference data.

We wish to point out that our numerical simulations are run on a template – even
though realistic – geometry [55] and fed with data coming from EM simulations and
0D circulation model tuned for a generic healthy subject. Thus, from our analysis we
can conclude that a qualitative good and satisfactory agreement can be found with
the in-vivo results available in literature, making hence the whole computational
model significant and reliable from an hemodynamic view point.

To identify coherent structures, we introduce the scalar function [54]:

Q(u) =
1

2

(
|ε(u)|2F − |ω(u)|2F

)
,

where ε(u) is the strain rate tensor introduced in Section 3.1, ω(u) = 1
2

(
∇u−∇Tu

)
the rotation tensor and | · |F the Frobenius norm of a tensor. The Q-criterion con-
sists of analysing the iso-contours of the positive part of Q(u): when Q(u) > 0, the
rotation of a fluid is predominant with respect to its stretching. In Figure 20, we
show the iso-contours of Q-criterion with Q(u) = 40 s−2 at different instants during
the whole heartbeat. At the beginning of the heartbeat (Figure 20a), we observe
the residual vortical structures in the LH from late diastole. As the AV opens and
the ejection phase starts, coherent structures are flushed out in the AA (Figures
20b-20d). During systole, the LA is filled and coherent structures coming from the
pulmonary veins impact in the middle of the LA, with still some visible structures
at the end of systole. As the MV opens, we observe the formation of four vortex
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Figure 21. Formation of ring shaped vortex during early diastole.
Top: iso-contours of Q-criterion (with Q(u) = 1000 s−2) coloured
according to velocity magnitude. Bottom: projection of the vortic-
ity on the normal direction (pointing towards the reader) of a slice
in the LV apico-basal direction.

rings coming from the pulmonary veins in the LA. As in the systolic filling, they
impact in the LA producing smaller coherent structures, during the E-wave and
A-wave, as described in [117]. At the same time, during E-wave, a big vortex ring
rolls through the MV leaflets (Figure 20f). The observed organized vortical pattern
rapidly evolves into a chaotic complex flow that fills the whole LV reaching its apex
(Figures 20g-20i). During the A-wave, a new vortex downstream the MV section
is formed, but weaker than the one seen during the E-wave (Figure 20j). The MV
closes, the vortex under its section is suddenly broken and, with the opening of the
AV, the new cycle begins and all the coherent structures are flushed out again.

In each subfigure of Figure 21, we show the iso-contours of Q-criterion with
Q(u) = 1000 s−2 on the top; the projection of the vorticity on the normal direction
of a slice in the LV apico-basal direction on the bottom. Specifically, we focus
on the region immediately under the MV section to better asses the formation
of vortical structures during diastole. We observe the formation of shear layers
on the leaflets of the MV producing different velocities on the two sides of the
leaflets. Shear layers roll on MV leaflets and enter in the main cavity producing
low-pressure circulation regions. The flow rotates in clockwise direction under the
anterior leaflet, counterclockwise under the posterior, as shown in the projection of
the vorticity in the slice’s normal direction. This process characterizes the formation
of the vortex ring that rolls through the MV leaflets (also shown in Figure 20),
with a larger velocity in the inner part with respect to the exterior part of the
ring. Once the vortex is formed, it evolves towards the LV apex and it breaks into
smaller coherent structures. Figure 22 shows the vortex formation under the MV
section via streamlines colored according to the velocity magnitude and a surface
Line Integral Convolution (LIC) visualization. We compare our numerical results
with 4D flow MRI visualizations available in Figure 3C of [32], and Figure 4 of [107],
respectively. The numerical simulation well predicts the high speed jet across the
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(a) Streamlines (b) Surface LIC

Figure 22. Vortex formation under the MV section at early di-
astolic peak: (A) Streamlines colored according to velocity mag-
nitude (t = 0.45 s); (B) Surface LIC visualization – with velocity
as integrator – on a slice colored according to velocity magnitude
(t = 0.48 s).

MV and the formation of vortical flow under its section described by the 4D flow
MRI data during the E-wave peak. Thus, our model captures the formation and the
dynamics of the vortex ring (also referred to as “O vortex” [28, 25]) during diastole,
a well studied cardiac hemodynamic feature whose characteristics and interactions
with the LV wall provide information about the diastolic function [12, 61, 25, 74].

7. Conclusions and future developments. We proposed a computational model
for the assessment of the left heart hemodynamics. Our model accounted for the
displacement of the domain boundary, the motion of the aortic and mitral valve,
the dynamics of the circulatory system, and transition to turbulence effects. We
carried out an electromechanical simulation of the left ventricle and, for the descrip-
tion of the motion over the whole domain boundary, we introduced an extension
procedure combined with a volume-based reduced model for the atrium. The 3D
CFD model of the left heart consisted of the Navier-Stokes equations in an Arbi-
trary Lagrangian Eulerian framework, with valves accounted for by means of the
Resistive Immersed Implicit Surface method. We coupled the 3D CFD model to a
closed-loop 0D circulation model of the whole cardiovascular system. We simulated
the blood flow in the left heart in physiological conditions by means of the proposed
methodology. The results were analyzed in terms of flow and pressure distribution,
velocity profiles through the valves, and turbulent coherent structures. Biomarkers
such as the stroke volume, the ejection fraction, the EA ratio and the pressure peaks
were compared with those available in the literature and accurately reproduced; a
comparison with Doppler echocardiography data and 4D flow magnetic resonance
imaging allowed to validate the computational model.

The novelty of the paper is threefold.

1. We introduced an original preprocessing procedure that combines i) an exten-
sion of a given left ventricular displacement on the whole left heart by means
of Laplace-Beltrami equations with physiological kinematic constraints; ii) a
reduced model for the motion of the atrium based on the volume variation
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dictated by a lumped-parameter circulation model. This yields an integrated
system in which fluid dynamics is one-way coupled to electromechanics in the
left ventricle. The extension procedure can also be employed to merge dis-
placement fields coming from different sources, such as a reconstruction from
diagnostic images, and may, thus, be applied also to patient-specific studies.
As the imaging data routinely acquired in diagnostic exams is often mainly
focused on the ventricle, the extension procedure that we proposed can be
used to complete the missing data.

2. We devised a coupled 3D-0D model made of the 3D CFD model of the left
heart and a 0D circulation model of the whole cardiovascular system. We
solved the coupled model with a segregated scheme and we developed com-
putational strategies to solve the integrated system made of fluid dynamics,
displacement, valves and circulation models.

3. We found that our numerical simulations yielded a qualitative and quantitative
good agreement with clinical data from different sources, making the whole
integrated multiscale model significant and realiable from an hemodynamic
view point.

A number of further directions of investigation will be considered. Introducing an
electromechanical model of the complete left heart would complete the description
of the cardiac contractility and hence allow the relaxation of the hypotheses we
made on the atrium motion. In addition, in the present work, we prescribed the
electromechanics-based displacement on the boundary of the fluid dynamics system,
hence enforcing a kinematic coupling condition between the two physics. Since
we are neglecting the dynamic balance (that is the equilibration of forces), the
pressure would not be well defined when both valves are closed. Thus, we neglect
the isovolumetric phases of the heart cycle. As done in [102], one could circumvent
this issue by introducing an additional penalty term in the Navier-Stokes equations
to control the intraventricular pressure during the isovolumetric phases.

To conclude, the present work can be viewed as a significant step forward to simu-
late the blood flow dynamics of the whole human heart, allowing to have a complete
description of the hemodynamics of the whole organ. This represents a challenging
task from a modeling point of view, that we aim to reach with intermediate stages.
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Appendix A. Setup of the circulation model. We detail the setup of the 0D
circulation model we use for the multiscale 3D-0D CFD simulation. Specifically, we
report the parameters employed in Table 4 and the initial state variables in Table 5.
The external pressure pEX(t) is set to 0.

Compartment Parameter Description Unit of measure Value
EA Active elastance [mmHg/ml] 0.06
EB Passive elastance [mmHg/ml] 0.07

Right dc Duration of contract. relative w.r.t. THB 0.335
atrium dr Duration of relax. relative w.r.t. THB 1.45 · 10−2

tc Initial time of contract. relative w.r.t. THB 0.80
V0,RA Resting volume [ml] 4.00
EA Active elastance [mmHg/ml] 0.65
EB Passive elastance [mmHg/ml] 0.05

Right dc Duration of contract. relative w.r.t. THB 0.335
ventricle dr Duration of relax. relative w.r.t. THB 1.45 · 10−2

tc Initial time of contract. relative w.r.t. THB 0.00
V0,RV Resting volume [ml] 10.00

Pulmonary RPUL
AR Resistance [mmHg · s/ml] 0.25

arterial CPUL
AR Capacitance [ml/mmHg] 5.00

system LPUL
AR Inductance [mmHg · s2/ml] 5.00 · 10−4

Pulmonary RPUL
VEN Resistance [mmHg · s/ml] 0.02

venous CPUL
VEN Capacitance [ml/mmHg] 100.00

system LPUL
VEN Inductance [mmHg · s2/ml] 5.00 · 10−5

Systemic RSYS
AR Resistance [mmHg · s/ml] 1.00

arterial CSYS
AR Capacitance [ml/mmHg] 2.00

system LSYS
AR Inductance [mmHg · s2/ml] 5.00 · 10−3

Systemic RSYS
VEN Resistance [mmHg · s/ml] 0.24

venous CSYS
VEN Capacitance [ml/mmHg] 60.00

system LSYS
VEN Inductance [mmHg · s2/ml] 5.00 · 10−4

Tricuspid Rmin Minimum resistance [mmHg · s/ml] 7.5 · 10−3

valve Rmax Maximum resistance [mmHg · s/ml] 75006.2
Pulmonary Rmin Minimum resistance [mmHg · s/ml] 7.5 · 10−3

valve Rmax Maximum resistance [mmHg · s/ml] 75006.2

Table 4. Parameters used in the circulation model.

Appendix B. The ventricular EM model. To carry out EM simulations, we
employ the EM model of the left ventricle proposed in [84]. Electrophysiology
is modeled through the Monodomain equation [44] coupled with the ten Tusscher-
Panfilov ionic model [101]. Subcellular generation of active force is modeled through
the activation model proposed in [83]. The passive behaviour of the tissue is mod-
eled via the Guccione strain energy density function [49]. We set generalized Robin
BCs at the epicardium and we impose energy-consistent BCs [83] on the rings of
the AV and MV. The fibers distribution is generated by the rule-based Bayer-Blake-
Plank-Trayanova algorithm [16, 78]. The 3D EM model of the LV is coupled to the
0D closed-loop circulation model of the whole cardiovascular system introduced in
Section 2. For the numerical approximation of the problem, we use linear finite ele-
ments (FE) for the space discretization. Specifically, in the EM model an intergrid
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Compartment Parameter Description Unit of measure Value
Right atrium VRA Volume [ml] 78.95

Right ventricle VRV Volume [ml] 154.00
Pulmonary arterial pPUL

AR Pressure [mmHg] 33.50
system QPUL

AR Flowrate [ml/s] 69.44
Pulmonary venous pPUL

VEN Pressure [mmHg] 16.16
system QPUL

VEN Flowrate [ml/s] 0.00
Systemic arterial pSYS

AR Pressure [mmHg] 91.68
system QSYS

AR Flowrate [ml/s] 63.71
Systemic venous pSYS

VEN Pressure [mmHg] 23.99
system QSYS

VEN Flowrate [ml/s] 65.40

Table 5. Initial state of the circulation model.

transfer operator [87] is adopted to employ a coarser grid for the elastodynamic
and a finer one for the electrophysiology, due to the higher resolution required by
the latter. The coupled EM problem is solved by means of the staggered numerical
scheme presented in [84].
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