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ABSTRACT: Life-cycle structural reliability assessment and risk analysis of deteriorating 
systems may involve the modeling of complex time-variant probabilistic processes. Although 
simulation methods are frequently the only viable tools to solve this kind of problems, they are 
time-consuming and might be computationally inefficient and unfeasible in practice if small 
probabilities of failure need to be estimated, particularly for large-scale reliability and risk 
analysis problems. To mitigate the computational effort of simulation methods in estimating the 
time-variant failure probability of deteriorating structures, a novel computational approach 
based on Importance Sampling and clustering-based data reduction techniques is proposed. The 
computational efficiency of the proposed methodology is demonstrated with practical 
applications to life-cycle reliability and seismic fragility of reinforced concrete structures 
exposed to corrosion. 
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1 INTRODUCTION 
Reliability assessment and fragility analysis 
of structural systems should account for the 
effects of aging and deterioration processes 
that may adversely affect the system 
performance over time (Biondini and 
Frangopol 2016). To this aim, the time 
evolution of the uncertainty effects must be 
properly considered since the impact of 
aleatory and epistemic uncertainties can be 
exacerbated by lifetime degradation of 
materials and components (Ellingwood 
2005). Therefore, structural performance 
metrics should be formulated as time-
variant probabilistic indicators (Ghosn et al. 
2016). However, the effective incorporation 
of such effects into structural reliability 
assessment and fragility analysis 
frameworks can be challenging for large-
scale structural systems and infrastructure 
networks (Silva et al. 2019). 

In this paper, a novel computationally 
efficient approach is proposed for the time-
variant structural reliability assessment and 

fragility analysis (Capacci 2020, Capacci 
and Biondini 2021). This approach is based 
on importance sampling and clustering 
techniques accounting for the time-variant 
formulation of the problem. The sample 
structural systems to be analyzed in the 
simulation process are efficiently selected 
to account for the time-variant modeling of 
uncertainties that are inherent to life-cycle 
structural reliability assessment and 
fragility analysis. 

The proposed methodology is applied in 
comparison with crude Monte Carlo 
simulation for probabilistic lifetime seismic 
response of reinforced concrete (RC) 
bridges exposed to corrosion processes. 
Then, reliability estimates are defined by 
weighting each failed sample based on their 
time-variant likelihood of occurrence. The 
calibration of time-variant seismic fragility 
curves is also investigated for different limit 
states, from damage limitation up to 
structural collapse, based on multi-stripe 
dynamic analysis. 
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2 TIME-VARIANT RELIABILITY AND 
SEISMIC FRAGILITY  

2.1 Lifetime structural reliability 
The probability of failure pf,s and reliability 
index 𝛽𝛽 = Φ−1�1− 𝑝𝑝𝑓𝑓,𝑠𝑠� associated with the 
attainment of the s-th limit state of a 
structural system can be formulated based 
on a safety factor Θs(Z)≤1 expressed as a 
function of a set of random variables Z that 
characterize the structural problem: 

𝑝𝑝𝑓𝑓,𝑠𝑠 = 𝑃𝑃[Θ𝑠𝑠(𝐙𝐙) ≤ 1] = ∫ 𝐼𝐼[Θ𝑠𝑠(𝐳𝐳) ≤ 1] ⋅ 𝑓𝑓𝐙𝐙(𝐳𝐳)𝑑𝑑𝐳𝐳𝐳𝐳  (1) 

where fZ(z) is the joint probability density 
function (PDF) of Z. 

The indicator function I[Θs(Z)≤1] is a 
Heaviside step function equal to 1 in the 
failure domain and 0 otherwise. For the 
sake of formal synthesis, the indicator 
function will be expressed using the 
following notation: 

𝐼𝐼𝑠𝑠[𝐳𝐳] = 𝐼𝐼[Θ𝑠𝑠(𝐳𝐳) ≤ 1] (2) 
The time-variant failure probability is 

expressed with respect to the random 
processes Z(t) generated based on time-
variant deterioration processes Δ(t) and 
time-invariant basic structural model 
random variables Κ, (e.g., material 
mechanical properties, structural geometry, 
etc.). Furthermore, deterioration processes 
Δ(t) are generally determined as a function 
of environmental hazard parameters He 
(e.g., concentration of aggressive chemical 
components, material permeability, etc.): 

𝐙𝐙(𝑡𝑡) = 𝐙𝐙[𝐊𝐊,𝚫𝚫(𝐇𝐇𝑒𝑒; 𝑡𝑡)] (3) 

2.2 Time-variant seismic fragility 
Seismic fragility analysis of a structural 
system provides the exceedance probability 
of safety conditions under earthquakes of 
given intensity, representing in probabilistic 
terms the capacity to sustain a prescribed 
seismic demand. In the following, fragility 
curves are defined as the exceedance 
probability of a prescribed damage state sb 
under a seismic intensity ib (Capacci 2020): 

𝑝𝑝𝑓𝑓,𝑠𝑠(𝑖𝑖𝑏𝑏) = 𝑃𝑃[𝑆𝑆𝑏𝑏 ≥ 𝑠𝑠𝑏𝑏|𝑖𝑖𝑏𝑏] (4) 

where Sb is a discrete random variable 
indicating the damage level suffered by the 
structure among the set of possible states. 

Analytical fragility curves rely on a 
direct relationship between seismic actions 
and the effects on the mechanical response 
of structural systems. The time-variant 
exceedance probability pf,s of a given 
damage state sb for a prescribed seismic 
intensity ib can be formulated as follows: 

𝑝𝑝𝑓𝑓,𝑠𝑠(𝑖𝑖𝑏𝑏 , 𝑡𝑡) = ∫ 𝐼𝐼𝑠𝑠[𝐳𝐳(𝑡𝑡)|𝑖𝑖𝑏𝑏] ⋅ 𝑓𝑓𝐙𝐙(𝑡𝑡)(𝐳𝐳)𝑑𝑑𝐳𝐳𝐳𝐳  (5) 

 
3 SIMULATION-BASED TECHNIQUES 

3.1 Monte Carlo simulation 
Monte Carlo Simulation (MCS) is a 
versatile tool for the numerical solution of 
multidimensional integrals based on the 
artificial generation of nj samples of the 
basic variables constituting the model 
uncertainties. Figure 1a shows a flowchart 
of crude MCS applied to life-cycle seismic 
fragility assessment. MCS allows 
estimating the expected value of the 
indicator function in the failure region, 
which corresponds to the failure probability: 

�̂�𝑝MCS(𝑡𝑡) = 1
𝑛𝑛𝑗𝑗
∑ 𝐼𝐼𝑠𝑠�𝐳𝐳𝑗𝑗(𝑡𝑡)�𝑛𝑛𝑗𝑗
𝑗𝑗=1  (6) 

where outcomes of the stochastic processes 
zj are simulated based on outcomes of the 
basic random variables of both the structural 
model κj and environmental hazard ηe,j: 

𝐳𝐳𝑗𝑗(𝑡𝑡) = 𝐳𝐳 �𝛋𝛋𝑗𝑗 , 𝛅𝛅𝑗𝑗�𝛈𝛈𝑒𝑒,𝑗𝑗; 𝑡𝑡�� (7) 

The sample deterioration process δj(tk) is 
usually generated at different time instants 
t=tk with k=1,…,nt based on the simulation 
of the environmental hazard parameters ηe,j. 
Then, the simulation of the basic variables 
κj leads to characterize the sample models 
zj(tk) and, finally, to carry out structural 
analysis to numerically estimate the failure 
probability at the prescribed time instants tk. 

One of the main drawbacks of crude 
MCS is that a large sample size is often 
needed to attain sufficiently accurate 
estimates for small failure probabilities. 
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3.2 Stationary Proposal Importance 
Sampling (SP-IS) 

The accuracy of the numerical estimate can 
be largely improved by reformulating the 
failure probability relying on the definition 
of an alternative distribution ψZ(z), referred 
to as sampling distribution or proposal 
distribution or Importance Sampling (IS) 
distribution (Melchers 1989). 

A novel Stationary Proposal Importance 
Sampling (SP-IS) is presented for 
application to time-variant reliability 
problems. Figure 1b shows the flowchart of 
the proposed SP-IS methodology for life-
cycle seismic fragility assessment. The 
time-variant probability of failure can be 
reformulated as follows: 

𝑝𝑝𝑓𝑓(𝑡𝑡) = ∫ 𝐼𝐼𝑠𝑠[𝐳𝐳] ⋅ 𝑓𝑓𝐙𝐙(𝑡𝑡)(𝐳𝐳)𝜓𝜓𝐙𝐙(𝐳𝐳)
𝜓𝜓𝐙𝐙(𝐳𝐳)𝑑𝑑𝐳𝐳𝐳𝐳  (8) 

The estimate of the failure probability is 
then formulated as the expected value of the 
weighted indicator function: 

�̂�𝑝IS(𝑡𝑡) = 1
𝑛𝑛
∑ 𝐼𝐼𝑠𝑠�𝐳𝐳𝑗𝑗� ⋅ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑛𝑛
𝑗𝑗=1  (9) 

where the weighting coefficient for the j-th 
sample wj(t) is defined as the ratio between 
the actual PDF fZ(t) and the sampling PDF 
ψZ evaluated in zj: 

𝑤𝑤𝑗𝑗(𝑡𝑡) = 𝑓𝑓𝐙𝐙(𝑡𝑡)�𝐳𝐳𝑗𝑗�
𝜓𝜓𝐙𝐙�𝐳𝐳𝑗𝑗�

 (10) 

It is worth mentioning that a drawback of 
IS-based methods can be encountered in the 
"curse of dimensionality", since such 
methods tends to provide inefficient 
estimates of the failure probability when a 
large number of basic random variable are 
involved in the sampling procedure (Au and 
Beck 2003). 

3.3 Clustering-based data reduction 
techniques 

A similar approach to Importance Sampling 
can be adopted exploiting data-reduction 
techniques, such as data clustering methods. 
Cluster analysis consists in dividing data 
into groups sharing similar properties. 
Clustering can be used for data reduction to 
develop small catalogs of models 
heuristically representative of broader 
groups of data. For example, K-means 
clustering has been adopted in Jayaram and 
Baker (2010) for lifeline risk assessment of 
a large-scale transportation network.  

A clustering-based technique is proposed 
for time-variant reliability problems. Figure 
1c presents a synthetic flowchart of the 
proposed technique for life-cycle seismic 
fragility assessment. This methodology 
consists in grouping into subspaces Zc the 
sample structural models zj(t) simulated 
throughout the lifetime of the deteriorating 
system. Structural analyses are then carried 
out on a single structural model per cluster 
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associated with the centroid zc of each 
subspace Zc, representative of the response 
of any structural model within the cluster. 
Finally, the time-variant failure probability 
estimate is obtained by weighting the 
indicator function of each failed sample by 
the time-variant observation frequency of 
samples within each cluster: 

�̂�𝑝CLST(𝑡𝑡) = 1
𝑛𝑛𝑐𝑐
∑ 𝐼𝐼𝑠𝑠[𝐳𝐳𝑐𝑐] ⋅ 𝑤𝑤𝑐𝑐(𝑡𝑡)𝑛𝑛𝑐𝑐
𝑐𝑐=1  (11) 

where the weighting coefficient for the c-th 
sample wc(t) is estimated as the time-variant 
sample frequency of the cluster based on the 
simulated structural models zj(t): 

𝑤𝑤𝑐𝑐(𝑡𝑡) = 1
𝑛𝑛𝑗𝑗
∑ 𝐼𝐼�𝐳𝐳𝑗𝑗(𝑡𝑡) ∈ 𝐙𝐙𝑐𝑐�
𝑛𝑛𝑗𝑗
𝑗𝑗=1  (12)  

4 APPLICATIONS 

4.1 Lifetime collapse reliability of a beam 
The collapse analysis of a beam is presented 
as a benchmark for time-variant reliability 
analysis (Biondini 2008). Figure 2 shows 
the collapse mechanism and the bending 
moment diagram at collapse of a beam of 
total length 2l=6m loaded at midspan by a 
concentrated force ΘQ considering perfect 
plasticity with plastic bending moment Mp.  

The time-variant collapse probability is 
expressed as follows: 

𝑝𝑝𝑓𝑓(𝑡𝑡) = 𝑃𝑃[Θ(𝑡𝑡) ≤ 1] (13) 

where the collapse load multiplier is the 
safety factor with respect to beam failure: 

Θ(𝑡𝑡) = 3𝑀𝑀𝑝𝑝(𝑡𝑡)
𝑄𝑄𝑄𝑄

 (14) 

By assuming l as deterministic, if both Q 
and Mp are statistically independent 
lognormal random variables, the collapse 
load multiplier Θ is also lognormal (Ang 
and Tang 2007). The statistical descriptors 
of load Q and moment Mp are listed in Table 
1. The loading is assumed to be independent 
on time, whilst the plastic moment is 
characterized by linearly decaying mean 
µM(τ) and linearly increasing CoV δM(τ) in 
terms of the time variable τ=t/th expressing 
the time instant t normalized to a given 
horizon time th. 

 

Table 1. Statistical descriptors of the time-variant 
lognormal independent random variables Q and Mp. 

Random Variable Load Q Moment Mp 
Mean Value μ 100 kN (1-τ/3)∙210 kNm 
CoV δ 0.12 0.15+0.15τ 

 
These functions are chosen to simulate 

severe deterioration progressively reducing 
the expected beam capacity and increasing 
its variability. The reliability index under 
these assumptions can be evaluated 
analytically. The initial value β(t=0)=3.86 
decays over time to β(t=th)=0.94 as shown 
in Figure 3. 

This solution is compared with the time-
variant reliability index estimated using 
simulation-based techniques. Based on the 
marginal distributions fQ and fMp(t), sampling 
both the load Q and moment Mp(tk) at 
different instants tk allows evaluating the 
distribution of the sample safety factor. The 
MCS failure probability estimate is 
obtained as follows: 

�̂�𝑝MCS(𝑡𝑡𝑘𝑘) = 1
𝑛𝑛𝑗𝑗
∑ 𝐼𝐼 �3

𝑄𝑄
𝑚𝑚𝑗𝑗(𝑡𝑡𝑘𝑘)
𝑞𝑞𝑗𝑗

≤ 1�𝑛𝑛𝑗𝑗
𝑗𝑗=1  (15) 

 
Figure 3. Time-variant reliability index. 
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Importance Sampling can be adopted to 
improve the accuracy of the reliability 
estimates by simulating Q and Mp based on 
alternative proposal distributions. The 
sample set is generated based on lognormal 
statistically independent proposal 
distributions Q and Mp with descriptors 
collected in Table 2. Since the safety factor 
Θ is inversely proportional to Q, the mean 
value of the concentrated force has been 
increased from 100 to 120 kN, inflating the 
likelihood of sampling more severe though 
unlikely load demands that may lead to 
failure. Conversely, since Θ is directly 
proportional to Mp, the mean value has been 
set equal to 100 kNm whilst the actual time-
variant mean value µM(t) linearly varies 
from 210 to 140 kNm. The coefficients of 
variation of the proposal marginal 
distributions of moment Mp and load Q have 
also been raised to 0.30, increasing the 
likelihood of sampling values of both RVs 
far from their respective central values.  

Based on the generation of nj
IS samples, 

the IS estimate of the time-variant failure 
probability is obtained as follows: 

�̂�𝑝IS(𝑡𝑡𝑖𝑖) = 1
𝑛𝑛𝑗𝑗
IS ∑ 𝐼𝐼 �3

𝑄𝑄

𝑚𝑚𝑝𝑝,𝑗𝑗

𝑞𝑞𝑗𝑗
≤ 1� ⋅ 𝑤𝑤𝑗𝑗(𝑡𝑡𝑘𝑘)

𝑛𝑛𝑗𝑗
IS

𝑗𝑗=1  (16) 

where the time-variant weighting 
coefficients wj(tk) depend on the actual and 
proposal distributions as follows: 

𝑤𝑤𝑗𝑗(𝑡𝑡) = 𝑓𝑓𝑄𝑄�𝑞𝑞𝑗𝑗�
𝜓𝜓𝑄𝑄�𝑞𝑞𝑗𝑗�

⋅
𝑓𝑓𝑀𝑀𝑝𝑝(𝑡𝑡)�𝑚𝑚𝑗𝑗�

𝜓𝜓𝑀𝑀𝑝𝑝�𝑚𝑚𝑗𝑗�
 (17) 

Figure 4 shows the scatterplots with 
5·105 samples of MCS simulation for τ=0.0, 
0.5, and 1.0 (in gray scale with increasing 
shades, Figures 4a,b,c), and for the IS 
simulation regardless of the reference time 
(Figure 4d). In each scatterplot, the line 
represents the limit state function 
separating the sample set into failure 
domain (below) and safe domain (above). 
The MCS samples tend to migrate along the 
ordinate due to the progressive reduction of 
the mean plastic moment µM and increase of 
its CoV δM. Unlike crude time-variant MCS, 
the IS samples are time-invariant since the 
proposal distribution does not depend on τ. 

Table 2. Statistical descriptors of the proposal 
lognormal independent distributions for Q and Mp. 

Random Variable Load Q Moment Mp 
Mean Value μ 120 kN 100 kNm 
CoV δ 0.30 0.30 

 
Figure 5 shows the evolution in time of 

the reliability index estimates computed by 
crude MCS simulation (in blue) and the 
proposed IS approach (in red). The 
estimates are compared with the exact 
solution (horizontal dashed black lines). 
The accuracy of both estimates intuitively 
increases with the number of simulations, 
but the IS estimate shows good agreement 
with the exact one after about 103 samples.  

 

 
Figure 4. Scatterplots of MCS samples generated at 

(a) tk=0, (b) tk=0.5th, (c) tk=th, and (d) IS samples 
generated from the proposal distribution. 

 

 
Figure 5. MCS and IS estimates of the time-variant 

reliability index vs. the sample size at different times. 
Furthermore, the CoV of the failure 
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probability estimate obtained via crude 
MCS increases with the value of β to be 
estimated, as made evident in the results for 
different values of τ. Conversely, the 
accuracy of IS estimates is not significantly 
affected at different time instants. 

The rate of convergence of MCS and IS 
is also shown in Figure 6, which represents 
the time evolution of the percentage error in 
the reliability estimates with 106 samples in 
comparison with the exact solution. The 
results confirm the trend observed in Figure 
5: the IS estimate is providing a maximum 
percentage error of about 0.02%, whilst the 
MCS estimate floats in time with a positive 
trend due to the larger accuracy of the 
method in evaluating larger and larger 
failure probabilities and, in turn, smaller 
and smaller reliability indices. Other 
quantitative metrics of the estimate 
accuracy could be defined based on the 
statistical estimators of the variance of the 
failure probability (Melchers and Beck 
2018, Capacci and Biondini 2021).  

 

 
Figure 6. Time-variant normalized error of reliability 
estimates based on MCS and IS sampling approaches. 

 
4.2 Lifetime seismic fragility of a RC bridge 
The time-variant seismic fragility of the 
three-span continuous RC bridge shown in 
Figure 7 is investigated (Bouassida et al. 
2012, Capacci 2020). The bridge piers are 
exposed to a chloride diffusive attack on the 
with concentration Cs. The concrete cover is 
60mm. Each reinforcing steel bar suffers the 
same chloride-induced corrosion process. 
The percentage of steel mass loss δs of the 
bars is hence assumed as representative of 
the damage effects suffered by the bridge.  

 
(a) 

 

(b) 
Figure 7. RC bridge: (a) main geometrical 

dimensions and (b) cross-section of the piers. 
 
The 1D Fick’s diffusion equation is used 

to assess the corrosion initiation time tcr: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) = 𝐶𝐶𝑠𝑠 ⋅ �1 − erf � 𝑥𝑥
2�𝐷𝐷(𝑡𝑡)⋅𝑡𝑡

�� (18) 

with concrete diffusivity D(t) defined in 
terms of reference diffusivity coefficient De, 
aging coefficient a, and annual average 
temperature T [°C] (Stewart et al. 2011): 

𝐷𝐷(𝑡𝑡) = 𝐷𝐷𝑒𝑒 �
0.076
𝑡𝑡
�
𝑎𝑎

exp � 40
8.314×10−3

� 1
293

− 1
273+𝑇𝑇�

�� (19) 

After corrosion onset at time tcr, the 
deterioration δs is evaluated based on the 
corrosion rate expressed in terms of current 
density icorr [µA/cm2], pristine bar diameter 
𝜙𝜙0 [mm], and pitting factor Rf: 

𝛿𝛿𝑠𝑠(𝑡𝑡) = 0.0116𝑅𝑅𝑓𝑓
𝜙𝜙0

⋅ ∫ 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡
𝑡𝑡𝑐𝑐𝑐𝑐

 (20) 

The current density is related to temperature 
T based on a reference current density at 
T=20°C, i.e. icorr,20, as follows: 

𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,20{1 + 𝐾𝐾[𝑇𝑇(𝑡𝑡) − 20]} (21) 
where and the scale coefficient K is equal to 
0.025 and 0.073 for T<20°C and T>20°C, 
respectively. The temperature profile T(t) is 
defined by simulating seasonal temperature 
variations around an average temperature 
𝑇𝑇� = 15°𝐶𝐶  by sinusoidal functions with 
amplitude dependent on hot and cold 
seasons assumed to have 50%-50% 
duration with maximum and minimum 
temperatures Tmin=5°C and Tmax=25°C, 
respectively (Bastidas-Arteaga et al. 2013).  
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Damage state exceedance for the bridge 
system Z is associated with the attainment 
of progressively restrictive conditions on 
the maximum response curvature χb at the 
base of the bridge piers, informative of the 
accumulation of excessive plastic strains in 
critical regions after the occurrence of the 
k-th ground motion of intensity ib. Fragility 
analysis is based on the following factor: 

Θ𝑠𝑠[𝐙𝐙(𝑡𝑡)|𝑖𝑖𝑏𝑏] = 𝜒𝜒𝑏𝑏[𝐙𝐙(𝑡𝑡),𝑖𝑖𝑏𝑏]
𝜒𝜒�𝑠𝑠[𝐙𝐙(𝑡𝑡)]  (22) 

where �̅�𝜒𝑠𝑠  is the capacity threshold of the 
s-th limit state. The four limit states listed in 
Table 3 are considered, where the capacity 
thresholds are based on first yielding 
curvature χy, plastic curvature  χp=χu–χy, and 
ultimate curvature χu. 
 
Table 3. Bridge pier curvature capacity thresholds. 

Damage State Limit Curvature �̅�𝜒𝑠𝑠 
Slight Damage s=1 𝜒𝜒y 
Moderate Damage s=2 𝜒𝜒y +0.3𝜒𝜒p 
Extensive Damage s=3 𝜒𝜒y +0.6𝜒𝜒p 
Nominal Collapse s=4 𝜒𝜒u 

 
Model uncertainties are considered by 

modeling the parameters of chloride 
exposure, corrosion rate, and mechanical 
properties as random variables with 
distributions and parameters collected in 
Table 4. Concerning the record-to-record 
variability, a set of 20 artificial ground 
motions compliant with the elastic response 
spectrum given by Eurocode 8 for soil type 
B is considered (CEN-EN 1998-1: 2004). 

The steel damage index δs is considered 
as the only random variable sampled based 
on a stationary proposal distribution. A 
mixed proposal distribution is assumed: 
65% of the realizations are non-null and 
non-unitary damage indices sampled from a 
standard beta distribution with parameters 
α=0.8 and β=1.5; no damage and full 
damage conditions are associated with 
discrete probabilities P[δs=0]=30% and 
P[δs=1]=5%, respectively. Figure 8 shows 
the overall CDF of the proposal distribution 
for the damage index (in red) compared 
with the actual time-variant CDF. 

 
Figure 8. Stationary proposal distribution (red line) 
and empirical CDFs (black line) of the steel damage 

index δs at different times (∆t=20 years). 

The corrosion effects in terms of 
reinforcing steel bar cross-section reduction, 
ultimate steel strain εsu, and concrete cover 
compressive strength fc are related to the 
damage index δs based on the model 
proposed in Biondini and Vergani (2015). 
The time-variant structural capacity of the 
deteriorating bridge piers is evaluated in 
terms of bending moment M vs curvature χ. 
The capacity curves linearized at cracking, 
yielding and ultimate are presented in 
Figure 9 for at different time instants and 
different simulation techniques. 

Figure 9a shows 104 M−χ relationships 
calibrated at time t=0, i.e., when corrosion 
is not yet initiated and δs,j=0 ∀j. The 
transparency of each line is increased to 
graphically perceive the variation in time of 
the occurrence frequency of different M−χ 
trends. Then, given the simulation of the 
damage index δs at prescribed time instants, 
it is possible to evaluate the impact of 
chloride-induced corrosion. The simulation 
is performed to evaluate M−χ relationships 
every ten years from the pristine condition 
up to 80 years, for a total number of time 
instants nt=9. 

As an example, Figure 9b shows the 
linearized M−χ relationships at times t=80 
years. Progressive deterioration severely 
impairs the mechanical properties of the 
piers cross-section in terms of strength and 
ductility, respectively due to the steel mass 
loss and ultimate steel strain reduction. 
Also, the cross-section stiffness is slightly 
reduced, mainly due to concrete cover 
strength reduction up to spalling.

80
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Table 4. Probabilistic distribution type and descriptors of the basic random variables. 

Random Variable Type μ σ 
Initial Concentration Cs [%wt./c] Truncated Positive Normal 3.0 0.30 μ 
Reference Diffusivity De [10−12m2/year] Truncated Positive Normal 15.8 0.20 μ 
Aging Parameter a [-] Uniform Beta 0.30 0.12 
Critical Concentration Ccr [%wt./c] Beta bounded in [0.2-2.0] 0.60 0.15 
Current Density at 20°C icorr,20 [µA/cm2] Lognormal 2.586 1.724 
Pitting Factor Rf [-] Gumbel 7.1 0.17 
Concrete Strength fc [MPa] Lognormal 38 5 
Steel Strength fy [MPa] Lognormal 500 30 

 

   
(a) (b) 

   
(c) (d) 

   
(e) (f) 

Figure 9. Lifetime linearized moment-curvature relationships at (a,c,e) t=0, (b,d,f) t=80 years based on (a,b) 
Monte Carlo simulation, (c,d) Stationary Proposal Importance Sampling, and (e,f) data reduction technique. 

The SP-IS approach is used to generate 
nj=103 mechanical parameters and steel 
damage indices to obtain the samples of 
M−χ relationships shown in Figure 9c,d for 
t=0 (Figure 9c) and t=80 years (Figure 9d). 
The transparency of each sample backbone 
curve depends on the time-variant IS 
weighting coefficient wj(t). In crude MCS, 

the structural performance decay is 
simulated at each time step, whilst in the 
SP-IS approach it is accounted for by the 
time-variant weighting coefficient. 

Concerning a clustering-based approach, 
K-means clustering is adopted to reduce the 
catalog down to nc=104 M−χ capacity 
curves. This technique groups the data into 
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nc clusters by progressively minimizing the 
dissimilarity between each observation and 
the centroid zc of the cluster Zc. The 
centroids are initially selected randomly, 
and the observations are assigned to the 
cluster with the closest centroid with 
respect to a suitable norm. After the initial 
assignment, an iterative procedure allows 
updating each centroid zc in the model 
parameters space and the subsequent re-
assigning all observations to the cluster 
with the closest centroid. 

Within this framework, a catalog of 
nt·104=9·104 simulations have been 
computed for moment-curvature pairs 
[M,χ]i at cracking (i=1), yielding (i=2) and 
ultimate (i=3). The Euclidean norm is used 
for the six modeling parameters, namely 
[M,χ]i with i=1,2,3. The reduced backbone 
M–χ catalog is reported in Figure 9e,f with 
varying line transparency depending on the 
occurrence frequency of observations 
within the related cluster at times t=0 
(Figure 9e) and t=80 years (Figure 9f). The 
comparison between graphs in Figure 9a,c,e 
and Figure 9b,d,f allow appreciating the 

same decreasing trend in cross-section 
strength and ductility across all applied 
methodologies.  

Time-variant seismic fragility analysis 
of the corroding RC bridge under ground 
motion is carried out based on multi-stripe 
non-linear dynamic analyses. The structural 
model consists of linear elastic beam 
elements for the bridge deck and nonlinear 
beam elements with lumped plasticity for 
the bridge piers. The lumped plasticity 
model is built on the computed time-variant 
M−χ capacity curves. The acceleration 
time-histories is scaled over six levels of 
peak ground acceleration (PGA), namely 
from 0.2g to 1.2g with steps of 0.2g. Figure 
10 allows comparing the failure probability 
associated to different limit states estimated 
with traditional MCS (black dots), SP-IS 
approach (red squares), and clustering-
based technique (blue diamonds). The 
results for both SP-IS and clustering-based 
methodologies based on the analyses of 103 
structural models are providing failure 
estimates similar to crude MCS based on 
nt·104 models investigated.

   
(a) (b) 

   
(c) (d)  

Figure 10. Failure probability estimates with traditional MCS (black dots), SP-IS (red squares), and clustering-
based technique (blue diamonds) every 10 years for limit states (a) sb=1, (b) sb=2, (c) sb=3, and (d) sb=4. 
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5 CONCLUSIONS 
Novel computational approaches based on 
importance sampling and data reduction 
techniques have been proposed to 
efficiently estimate the time-variant failure 
probability of deteriorating structures.  
Structural systems are simulated to account 
for the time-variant modeling uncertainties 
typical of life-cycle reliability problems. 
The methodologies have been validated on 
a simple benchmark and applied to the time-
variant seismic fragility assessment of a RC 
bridge under corrosion. The potentiality of 
the proposed methods emerges when time-
consuming analyses are required to 
investigate the structural response of 
systems characterized by a limited number 
of time-variant constitutive parameters.  

Convergence criteria based on 
sensitivity analysis are necessary to better 
identify boundaries and advantages for 
sample size selection (Capacci and 
Biondini 2021). Further research should be 
devoted to calibrating optimal proposal 
distributions and data reduction strategies 
and to evaluating feasibility limitations in 
time-variant risk-based assessment of aging 
large-scale structures (Messore et al. 2021). 
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