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Abstract. Structural Health Monitoring (SHM) via data-driven techniques can be 
based upon vibrations acquired by sensor networks. However, technical and economic 
reasons may prevent the deployment of pervasive sensor networks over civil structures, 
thus limiting their reliability in terms of damage detection. Moreover, the effects of 
environmental (and operational) variability may lead to false alarms. To address these 
challenges, a multi-stage machine learning (ML) method is here proposed by 
exploiting autoregressive (AR) spectra as damage-sensitive features. The proposed 
method is framed as follows: (i) computing the distances between different sets of the 
AR spectra via the log-spectral distance (LSD), providing also the training and test 
datasets; (ii) removing the potential environmental variability by an auto-associative 
artificial neural network (AANN), to set normalized training and test datasets; (iii) 
running a statistical analysis via the Mahalanobis-squared distance (MSD) for early 
damage detection. The effectiveness of the proposed approach is assessed in the case 
of limited vibration data for the laboratory truss structure known as the Wooden Bridge. 
Comparative studies show that the AR spectrum is a reliable feature, sensitive to 
damage even in the presence of a limited number of sensors in the network; 
additionally, the multi-stage ML methodology succeeds in early detecting damage 
under environmental variability. 

Keywords: Structural Health Monitoring; partially observed systems; environmental 
variability; AutoRegressive time series; neural networks. 

 

1. Introduction 

Infrastructures are becoming more and more important in our modern society, so that it 
is imperative to protect them from any damage due to aging, material deterioration or 
unexpected large excitations. Structural health monitoring (SHM) is aimed at assessing 
the health and safety of civil structures via e.g. vibration measurements [1]. A primary 
step of SHM is represented by early damage detection [2]; although it might look simple 
to implement such detection strategies, the accuracy of subsequent SHM steps (namely, 
damage localization and quantification) strongly depends on this first stage. 
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For this purpose, model-based and data-driven methods can be resorted. A model-
based approach needs an accurate model of the real structure [3-8] and, due to possible 
discrepancies between model prediction and data acquired on the field, algorithms are 
to be developed to update the model itself [9-11]. On the contrary, a data-based SHM 
strategy relies upon raw vibration measurements and statistical pattern recognition 
strategies [12-15]. This latter method, due to the ever-increasing complexity of real 
structures, seems more suitable for the implementation of SHM strategies. 

On their own, data-based methods consist of feature extraction and statistical 
analysis. Feature extraction digs into the data to provide damage-sensitive features 
extracted from the vibration measurements; statistical analysis then exploits such 
features to take a decision regarding the presence of damage via statistical approaches 
[1]. For this purpose, a comparison between feature datasets relevant to two different 
structural states is needed, e.g. in terms of a distance measure [16]. 

Any vibration-based SHM strategy depends on a stream of data coming from the 
sensors deployed over the structures [17-23]. The effectiveness and reliability of the 
entire SHM system depend on the sensitivity of the extracted features to damage, as 
usually obtained thanks to dense sensor networks whose deployment must be optimized 
[24]. Most of the civil structures in need of an SHM are usually complex and large-
scale, so that the installation of a large number of sensors may not be affordable. In such 
cases, the SHM procedure must be enhanced in order to obtain the maximum possible 
information from the limited number of sensors [25-27]. This important issue becomes 
even more difficult to deal with in the presence of environmental and/or operational 
variability. The said variability may introduce deceptive effects, which look very similar 
to those induced by a structural damage [12, 28-30]: false alarms and erroneous 
detections thus become major challenges for the SHM system. 

To account for the aforementioned challenges, a parametric spectral-based feature 
extraction approach is here proposed in conjunction with a multi-stage ML methodology 
for early damage detection. The feature extraction method first exploits an AR 
representation of the measured vibration responses, and then estimates their spectra by 
the Burg’s method. The proposed three-stage ML methodology next consists of: 
computing the distances between different sets of the AR spectra, via the LSD; removing 
the environmental variability by an AANN; computing the MSD for early damage 
detection. The proposed method is shown to be able to deal with the limited information 
regarding the structural behavior, as provided by a small number of sensors, accurately 
detecting damage of different severity. The effectiveness of the proposed approach is 
validated against the (limited) vibration data related to the laboratory truss structure 
known as the Wooden Bridge. Results here collected prove that the AR spectrum is a 
reliable damage-sensitive feature, even in the case of a largely unobserved structure; 
furthermore, the multi-stage ML method results successful in detecting early damage in 
the presence of an environmental variability. 

2. Feature extraction by AR modeling 

The present analysis is based on the estimation of the PSD of a signal from its 
representation in the time-domain, see e.g. [31, 32]. The spectral analysis can be carried 
out by means of nonparametric and parametric methods: the latter ones are model-based 
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and are able to account for a prior knowledge of the signal to get accurate spectral 
estimates. Starting from the model and relevant tuned parameters, the algorithm 
provides the corresponding power density spectrum.  

The most commonly used (linear) model for this purpose is the AR representation. 
Given the vibration signal 𝑦(𝑡), the representation reads: 

  (1) 

where: 𝑟(𝑡) is the residual error; 𝑝 is the order of the AR representation; θ1…θp are the 
model coefficients. To set the order 𝑝, the iterative methodology of Entezami and 
Shariatmadar [33] and based on the Ljung-Box Q-test has been here adopted. 

Using the model order and coefficients, the AR spectrum has been obtained with the 
Burg’s method, which is based on the minimization of the forward and backward 
prediction errors while satisfying the Levinson-Durbin recursion [32]. The AR spectrum 
𝑃(𝜔) is thus computed as: 

 
 

(2) 

where 𝜎!" denotes the variance of the model residuals. 

3. Multi-stage machine learning methodology 

3.1. Stage I: LSD 

Multivariate training and test datasets are first obtained through the AR spectra, 
estimated in relation to the normal and current states. The (dis)similarity between those 
spectra is then computed via the LSD, which is a symmetric distance measure [34]. 
Given the two discrete spectra 𝑃(𝜔) and 𝑃*(ω), the LSD is given by: 

 
 (3) 

𝑛# being the number of spectrum samples. Any difference between the two spectra, here 
assumed to be related with the baseline and to the current state of the structure at each 
sensor location, leads to an LSD value larger than zero. A deviation of 𝑃*(ω) from P(ω) 
is considered indicative of damage inception. 

If the structure of interest is monitored with ns sensors, and tests are repeated nm 
times, we use S1…Sc to denote the nc normal (undamaged) conditions in the baseline 
phase. The training dataset is thus given by X∈ℝ$!×$", where nx=nm×(nc-1): each 
column of this matrix is the LSD value relevant to two different normal conditions at 
the same sensor location. For the current structural condition Su in the monitoring phase, 
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the LSD values are computed between the spectra of the normal and the said current 
states, at the same sensor location: hence, the test matrix is given by Z∈ℝ$#×$", where 
nz=nm×nc. 

3.2. Stage II: AANN 

A feed-forward AANN is next used to remove the possible effects of the environmental 
variability from the formerly computed distance values. The adopted AANN consists of 
three hidden layers, being respectively the mapping, bottleneck, and de-mapping ones. 
With the adopted AANN architecture, the information is moved in the forward direction 
only, from the input to the output layers. The AANN provides a filtered representation 
of the input data, to get rid of variations due to the environmental variability. To set the 
hyperparameters of the AANN, the procedure has been performed in a least-squares 
sense via the mean-squared-error (MSE) between input and output, see alsoKramer [35] 
in relation to possible overfitting issues. 

Dealing with the distance values computed in the first stage for all the sensor 
placements and for all the test measurements, the AANN is initially trained to learn the 
correlations among the data in X. Once trained for the normal conditions, the network 
output is given as	𝐗0, and the residual Ex=𝐗-𝐗0 is used as the feature for damage detection. 
In the monitoring stage it is not necessary to re-train the AANN: by removing the 
environmental variability from Z, the output 𝐙* is obtained and the residual Ez=𝐙-𝐙* is 
adopted as the feature for the monitoring stage. 

3.3. Stage III: MSD  

The MSD is a multivariate statistical distance to quantify the (dis)similarity between 
two datasets, and it is here adopted for novelty detection [36]. To take a decision about 
the current state, the residual Ex in the baseline phase is used and the relevant mean 
vector mx∈ℝ$" and covariance matrix Sx∈ℝ$"×$" are computed. Next, each vector of 
Ez is adopted to compute the distances 𝑑&' in the following way: 

  (4) 

where 𝑖 = 1,2, … , 𝑛( and 𝐞𝐳$ 	is the 𝑖th vector of Ez. 
Finally, for damage detection each 𝑑&' value must be compared with a threshold 

limit: if the current state is undamaged, the corresponding MSD value is smaller than 
the threshold; if the MSD value is instead larger than the threshold, the current state is 
targeted as a damaged one. The threshold estimation is based on the MSD values 
relevant to the training data [37]: each feature vector of Ex is used as in Eq. (4) by 
replacing ez, and by using a standard confidence interval with a significance level the 
threshold is determined by the mean of the 𝑑&' entries and by the relevant standard 
deviation, see [36]. 

( ) ( )T 1 ,-= - -z x x z xe m S e m
i i iMd
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4. A case study: The Wooden Bridge 

We refer now to the experimental tests relevant to the Wooden Bridge [38]. Such 
structure was equipped with 15 accelerometers, and randomly excited by an electro-
dynamic shaker. The acquired measurements were supposed to represent both 
undamaged and damaged cases, with uncertainties related to the environment [12]. 

Details related to the test measurements are briefly reported in Table 1. As damage 
was represented by an added mass close to Sensor #4, the values reported in the table 
are to be considered proportional to the damage itself. The number of test measurements 
nt=20 was the same for the undamaged and damaged states. As customarily done in ML 
procedures, undamaged states HC1, HC2 have been adopted to define the baseline, so 
nc=2; states HC3 and DC1-5 have been instead used in the monitoring stage. 

Table 1. Structural states of the Wooden Bridge 
Condition Label Damage stage (g) Phase 

Undamaged HC1 - Baseline Undamaged HC2 - 
Undamaged HC3 - 

Monitoring Damaged 

DC1 23.5 
DC2 47.0 
DC3 70.5 
DC4 123.2 
DC5 193.7 

The AR model order has been first defined at each sensor location and for each test 
measurement, on the basis of the iterative approach proposed in [33] and applied to the 
HC1 and HC2 datasets; the average orders at all sensors have been then used in the 
monitoring stage. The AR spectrum at each sensor location has been then estimated by 
means of the Burg method: Fig. 1 shows some exemplary results related to Sensor #4. 
The main purpose of this comparison is to assess the sensitivity to damage of these 
features, keeping in mind that states DC1 and DC5 respectively feature the smallest and 
largest damage severity. Fig. 1(a) shows remarkable differences in the AR spectra for 
some frequencies; it is instead hard to detect an effect of damage on the AR coefficients. 
While the AR spectrum proves better than alternate structural features to infer a change 
in the structural health, it is difficult to detect damage through a direct comparison of 
the AR spectra. An approach based on this feature only, may not be efficient for cases 
characterized by a number of sensors and test measurements to handle.  

To assess the capability of the proposed procedure to detect damage by means of a 
limited observability of the structural response, 4 different scenarios have been defined 
according to Table 2. For each of them, the AR spectra of the sensors there listed have 
been accounted for by the proposed multi-stage ML methodology. In the first stage of 
the methodology, the training datasets have been respectively denoted as X1∈ℝ20×7, 
X2∈ℝ20×5, X3∈ℝ20×3, and X4∈ℝ20×1; the relevant distance calculation has been 
implemented to compute the LSD values of the AR spectra of HC2 with respect to the 
corresponding spectra of HC1. Next, the distance calculation has been run to measure 
the LSD values of the AR spectra regarding each of the current states and the 
corresponding spectra associated with the baseline: the resulting test datasets in the four 
scenarios have been denoted as Z1∈ℝ240×7, Z2∈ℝ240×5, Z3∈ℝ240×3, and Z4∈ℝ240×1. 
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Fig. 1. Comparison among the (a) AR spectra and (b) AR coefficients relevant to states HC1, DC1 

and DC5, at Sensor #4 location. 

Table 2. Considered sensor deployment scenarios 
Sensor deployment scenario Sensor labels 

1 2, 4, 6, 7, 9, 11, 15 
2 1, 3, 5, 12,14 
3 4, 8, 13 
4 14 

 
Fig. 2. Damage detection by the multi-stage ML methodology and the AR spectrum, using the 

statistical distance measure 𝑑%&: (a) scenario 1, (b) scenario 2, (c) scenario 3, (d) scenario 4 

In the second stage, the AANN has been used to remove the environmental effects. 
The number of neurons in the hidden layers has been determined with a cross-validation 
technique. The optimal number of neurons of the mapping and de-mapping layers and 
of the bottleneck has been set for all the scenarios. It is to be remarked that the bottleneck 
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layer has turned out to feature only 2-3 neurons for all the considered scenarios, which 
looks remarkable to make the AANN representation parsimonious enough. 

Using the trained AANN, the normalized training and test matrices Ex and Ez have 
ben next adopted for early damage detection. In Fig. 2, results are reported in terms of 
the 𝑑&' values for the different sensor deployment scenarios; in the graphs, the dashed 
horizontal lines represent the threshold limit related to the 95% confidence interval of 
the MSD values from training. Fig. 2(a)-(b), relevant to the two denser sensor networks, 
clearly show that states DC1-DC5 are correctly detected as damaged, as the 𝑑&' values 
all exceed the threshold. Additionally, the values are split appropriately so that the 
different states are characterized by MSD values proportional to the damage severity. 
The other way around, the 𝑑&' values relevant to the undamaged state HC3 look similar 
to those corresponding to states HC1 and HC2. Similar conclusions are drawn by Fig. 
2(c), even if the classification relevant to small damage severity can result hard. The 
other way around, Fig. 2(d) shows an inaccurate damage detection in the fourth scenario, 
for all the states but DC4 and DC5. Hence, one sensor only may not be effective for 
damage detection in the entire structure. 

To assess the beneficial effects of the AANN to remove the environmental effects, 
results have been also obtained without plugging in the corresponding stage of the 
proposed procedure. Fig. 3 shows the obtained results, as before for all the scenarios: 
graphs in Fig. 3(a)-(c) report dissimilarities in the 𝑑&' values, which are specifically 
highlighted in Fig. 3(b). Even if a still good detection capability is reported for states 
DC1-DC5, the values relevant to state HC3 partially exceed the threshold limit and lead 
to false alarms. Results in Fig. 3(d) are instead considered not acceptable, due to the 
number of fluctuations around the threshold limit. 

 
Fig. 3. Damage detection by the multi-stage ML methodology and the AR spectrum, avoiding to 
exploit the capability of the AANN to remove the environmental variability: (a) scenario 1, (b) 

scenario 2, (c) scenario 3, (d) scenario 4 
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Fig. 4. Damage detection by the conventional MSD technique to handle the AR coefficients: (a) 

scenario 1, (b) scenario 2, (c) scenario 3, (d) scenario 4 

A comparative analysis has been finally carried out by adopting the conventional 
MSD technique to handle the AR coefficients, all collected to build the training and test 
matrices. The Burg’s method has then been used to estimate the model coefficients. Fig. 
4 shows the relevant results, in a case characterized by 20 MSD values. The plot relevant 
to scenario 1 shows that there exist some false alarms, especially for state HC3. The 
results concerning scenarios 2, 3 and 4 prove instead that the traditional MSD technique 
fails in accurately detecting damage, due to number of false alarms. The proposed 
method thus outperforms the traditional MSD one in handling the AR coefficients.  

5. Conclusions 

In this paper, a methodology has been proposed to deal with damage detection in largely 
unobserved structures, accounting also for possible environmental effects. A parametric 
spectral-based feature extraction approach based on AR modeling has been adopted to 
estimate the AR spectrum, that has been shown to be a reliable damage-sensitive feature 
of the monitored structure. A multi-stage ML methodology has been also proposed to 
assemble the dataset by the LSD (stage 1), remove the environmental variability by an 
AANN (stage 2), and detect early damage by the MSD (stage 3). The experimental data 
related to the so-called Wooden Bridge have been finally exploited to assess the 
performance of the offered method. 

The AR spectrum has shown a noteworthy potential to detect damage in case of 
limited sensor deployments. As expected, robust and reliable results are not always 
guaranteed in such cases. Furthermore, the AANN enhances the performance of the 
proposed methodology by removing the effects of environmental variability. The 
method has been shown to outperform a traditional MSD technique handling the AR 
coefficients. 

In future activities, the proposed approach will be further developed to deal with 
structures subjected to ambient vibrations. Furthermore, still within the frame of limited 
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sensor deployments, the optimal configuration of the network and the corresponding 
damage detection capability will be evaluated. 
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