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 1 Introduction 

In the last decade, the Scientific Community challenged on 

minimizing the structures' price by manipulating material, 

fabrication and maintenance costs. Specifically, in the 

structural optimization field, great attention was dedicated 

to materials cost minimization aiming to achieve a slender 

structure with optimal resource utilization. In this sense, 

the traditional approach adopted by researchers and prac-

titioners is to optimize the design cost of structures while 

at the same time satisfying safety recommendations pro-

vided by specific standard regulations. 

As demonstrated in this paper, a significant part of the 

expenses is also the waste of material from the cutting 

process. In other words, minimising the amount of mate-

rial involved in the construction process without a carefully 

cutting design, for the minimization of waste, leads to in-

efficient cost optimization. Moreover, an higher environ-

mental impact can be also recognized and evaluated as 

the CO2 emission recorded at the production phase.    

Construction and demolition wastes were expected to ac-

count for around 23% of the overall solid waste stream. 

This waste ratio equates to more than 100 million tonnes 

every year. Over the world, several surveys corroborate 

the estimates from the United States. A percentage of the 

waste created by stock reduction is preventable, which 

means it is generated as a result of improper material uti-

lisation. The quantity of superfluous acquired materials, 

needless workmanship, wastes and trucking and tipping 

fees required to discharge the garbage would be reduced 

if the supplies were used more efficiently [1]. 

Indeed, efficient resource use is not just in the interests of 

the industrialist, but also of the world at large. The dis-

posal of trash from a stock-cutting operation may cause 

pollution, and excessive wasting may deplete our planet's 

precious supplies [2]. Cutting losses is possibly the most 

major source of steel waste. Cutting losses arise when nor-

mal steel lengths are shortened to fit the project's required 

lengths. A significant amount of the created steel waste 

according to Adham et al. [3] is related to cutting losses, 

which are mostly caused by: 

• dividing an order into separate, smaller orders

typically results in more waste due to fewer cut-

ting alternatives;
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• using inefficient cutting patterns in the cutting 

schedule results in the generation of avoidable 

waste that could be avoided through better stock-

cutting planning; 

• using the optimum cutting patterns may result in 

unavoidable waste which is the minimum waste 

generated if the optimum cutting patterns are 

used. 

In order to minimize waste, the cutting stock problem 

(CSP) represents a significant source of one-dimensional 

stock waste in the construction industry. 

2 State of Art 

Cutting and packing (C&P) problems of concrete and ab-

stract objects appear under various specifications (i.e. cut-

ting problems, knapsack problems, container and vehicle 

loading problems, pallet loading, bin packing, assembly 

line balancing, capital budgeting, changing coins, etc.) 

within disciplines such as Management Science, Infor-

mation and Computer Science, Engineering, Mathematics, 

and Operations Research. All of these problems have es-

sentially the same logical structure [4]. 

The most famous of these problems is the bin packing 

problem (BPP) which determines how to pack as many 

items as possible into a container or, in other words, min-

imize the number of containers (bins) used for the same 

stock of goods. Specifically, the BPP can be stated as fol-

lows. There are given n items, each with an integer weight 

𝑤𝑗 (j =  1. . . , n) and an infinite number of identical bins with 

integer capacity c. The goal is to load all the products into 

as few bins as possible so that the total weight packed in 

each bin does not exceed the limit [5]. 

Almost all the other C&P problems are variants (e.g. pallet 

loading problem) or generalizations (e.g. cutting stock 

problem) of the BPP. In particular, in civil engineering, the 

most common problem of diminishing waste due to the 

steel element cutting process can be solved with the cut-

ting stock problem. In summary, the cutting stock problem 

(CSP) tackles the practical question of cutting off needed 

pieces from stock material with the least trim loss. In more 

technical terms, the CSP can be defined starting from the 

BPP definition as follows. There are m item kinds, each 

with an integer weight 𝑤𝑗 (j =  1. . . , n) and an integer de-

mand 𝑑𝑗 (𝑗 =  1, . . . , 𝑚), as well as a huge number of identi-

cal integer capacity c bins. In the CSP literature, the bins 

are typically referred to as rolls, a word derived from early 

implementations in the paper industry, and cutting is com-

monly used rather than packing. The goal is to manufac-

ture 𝑑𝑗 copies of each item type 𝑗 (i.e., cut/pack them) us-

ing the fewest number of bins possible while ensuring that 

the total weight in every bin does not exceed the capacity. 

Moreover, the cutting stock problem can be classified as a 

one-dimensional and two-dimensional problem. A speci-

fied set of order lengths must be extracted from stock rods 

of a defined length in order to solve the one-dimensional 

cutting stock problem (1D-CSP). Usually, the goal is to use 

the fewest number of possible rods (material input). The 

two-dimensional two-stage constrained cutting problem 

(2D-2CP) aims to select the most valuable group of rec-

tangular objects from a single infinite-length-rectangular 

plate. Furthermore, the two-dimensional CSP can involve 

regular or irregular shapes, in the second case, the prob-

lem is called nesting and requires a more difficult solution 

[4]. 

These kinds of problems are complex combinatorial opti-

mization, which in mathematical terms is a strongly NP-

hard problem. For this reason, many linear programming, 

heuristic and metaheuristic approaches were proposed 

over the years [6]-[7]. The first approach to the C&P prob-

lems dates back to the sixties with Kantorovich [8]. Alt-

hough his approach is poor and only handles small-scale 

cases, it aids in understanding the statement of the prob-

lem. 

Numerous heuristic approaches (i.e. by solving, at first, 

the linear programming LP problem and then converting 

the LP result to an integer solution) take advantage of the 

problem's linear programming (LP) relaxation technique. 

This problem is often formulated as an integer program-

ming (IP) problem, and its linear programming (LP) relax-

ation is exploited in many heuristic algorithms. In mathe-

matics, the relaxation of a (mixed) integer linear program 

is the problem that arises by removing the integrality con-

straint of each variable and allows solving the integer pro-

gramming (IP) problem as a linear programming one. This 

relaxing technique converts an NP-hard optimization issue 

(integer programming) into a similar problem that can be 

solved in polynomial time. 

However, this method makes it impractical to take into ac-

count all cutting patterns which can be identified by the 

columns in the LP formulation, especially when the length 

of a single item is much smaller than the roll length. By 

solving the related knapsack issue, Gilmore and Gomory 

provided a novel method to identify the cutting patterns 

required to enhance the LP solution. Gilmore and Gomory 

[9] proposed a column generation approach inspired by 

Dantzig and Wolfe [10] for decreasing stock and bin pack-

ing concerns (BBP). Because enumerating all possible cut-

ting patterns would take an inordinate amount of time, it 

reduces valid patterns repeatedly and adds them to the 

issue based on their contribution to the objective function. 

The column generation approach made large-scale cutting 

stock issues solvable in a reasonable amount of time. 

In the following years, many algorithms were developed 

to solve the problem. While the most precise but compu-

tational and time-consuming are the more rigorous proce-

dure based on integer linear programming. However, in 

the last decade, several metaheuristic procedures have 

been implemented (e.g. Genetic Algorithm, Simulated an-

nealing and Tabu search, etc.) for this purpose. 

 

2.1 Use of cutting stock problem in truss solutions 

In the previous section, the general formulation of the Cut-

ting Stock problem has been introduced. In recent years, 

Academicals and practitioners have focused on the reuse 

of construction materials. Researchers have noted that 

performing cost and environmental optimization by man-

aging sectional and/or layout properties of structures re-

sult be insufficient for reaching the best outcome. The 
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building sector is a major contributor to material consump-

tion, energy use, greenhouse gas emission, and waste 

production (see e.g. [11], [12]).  

This problem can be solved basically in two ways: by min-

imizing the waste in the fabrication phase or by reusing 

stock materials from other structures. The first approach 

has been not sufficiently explored and this justifies the at-

tempt of authors to cover the gap in the research. The 

second path was deeply explored by Brütting et al. in var-

ious publications that treated the reuse of the construction 

stock elements. The idea of Brütting et al. is to use the 

principle of circular economy in order to reduce the cost 

and the environmental impact of structures. In a circular 

economy, manufactured goods are kept in use as long as 

possible through closed loops, which consist of repair, re-

use, and recycling. In particular, they were concerned 

about reuse because less energy is spent on reprocessing 

with respect to recycling. 

The first way to approach the reuse optimization problem 

has been developed in [13]. In this study, structural opti-

mization with stock constraints has been shown. 

For clarity, the term member has been used for a position 

or bar in a reticulated structure and member length is the 

distance between nodes at this position. The term element 

is used for the individual component of a stock. The stock 

has been reused from materials which have different di-

mensions. 

In Figure 1, it is possible to see the two ways to approach 

the problem: the 1-to-1 assignment of elements to posi-

tions in the truss (as in Stock A), and a cutting stock ap-

proach, where multiple members can be cut from individ-

ual elements (as in Stock B). 

 

Figure 1 (a) Cantilever truss, (b) stock A and assignment, (c) stock B 

and cutting stock configuration, used with permission from Brutting et 

al. [11]. 

In case (a), which is the assignment problem, the objec-

tive of the optimization is to avoid waste by minimizing the 

long distance between members and stock elements. In 

case (b) a cutting pattern which minimizes global waste is 

evaluated (number of required bins). Both cases were 

solved through a MILP (mixed-integer programming) pro-

cedure. Another problem addressed in the investigated pa-

per is that the lengths of the chosen elements may not 

correspond exactly to the lengths of the structure's mem-

bers once both problems have been solved. For this rea-

son, shape optimization is then used to reduce cut-off 

waste for the globally optimal assignment or bin-packing 

solutions by changing the placements of the structure 

nodes (coordinates). 

Finally, in this work, Brütting et al. exposed also a proce-

dure to optimize the configuration of stock or kit-of-parts 

such that its elements can be reused in various structures. 

This last consideration allowed to spread of the stock of 

reusing items in many structures and the outcome is an 

ulterior minimization of the waste. 

Ulterior amendments, with specific regard to the assign-

ment problem, were done by using the basic formulation 

in [14] where the assignment was coupled with a topolog-

ical optimization. After that, the truss was subjected to 

shape optimization. Is also noticeable the introduction of 

an absolute buffer/problem relaxation such that the inclu-

sion of short items in an optimal cutting pattern, during 

the selection phase, has been allowed. 

Moreover, in 2020, Brütting et al. [15] reported an entire 

structural optimization based on the principles introduced 

above. In this work simultaneous analysis and design ap-

proach have been performed, structural analysis is part of 

the optimization formulation by treating member end 

forces as well as nodal displacements and rotations as con-

tinuous state variables. 

Furthermore, designing a custom kit of parts whose com-

ponents have been prepared to be combined in various 

structural configurations, serving diverse purposes, repre-

sents an alternate approach to component reuse. 

In a recent paper, Brütting et al. [16] pointed out an in-

teresting comparison between results obtained by optimi-

zation by using the assignment approach and the CSP 

technique. A kit of parts has been evaluated for three dif-

ferent real-world application case studies. The kit-of-parts 

bars are tubular components joined with bolts at spherical 

joints. The structures' original topology and geometry are 

provided as input. The process consists of two steps. To 

allow for the reuse of similar bars in different structures, 

the structural geometries and kit-of-parts bars' length and 

cross-section dimensions are optimised in the initial stage. 

The second stage optimises the hole pattern for the spher-

ical joints' connection details, allowing each joint to be re-

used in many constructions. 

3 Mathematical formulation of the problem 

This section introduces the mathematical formulation of 

the CSP by using the column generation technique to re-

duce the problem’s computational cost. 

3.1 Bin Packing Formulation 

In order to understand how the cutting stock problem 

works it is necessary to introduce the mathematical for-

mulation of the one-dimensional bin packing problem. This 

problem aims to allocate a set of items into the minimum 

number of bins. At the initialization problem, the following 

parameters have been assumed: 

• I: set of items, indexed by 𝑖 ; 

• B: set of bins, indexed by 𝑏 ; 

• 𝑳𝒊: length of item 𝑖 ; 

• 𝑳: length of each bin; 

• 𝒙{𝒊,𝒃} ∈ {𝟎, 𝟏}: unitary if item 𝑖 is allocated to bin 𝑘, 

0 otherwise; 

• Item 𝒚{𝒊,𝒃} ∈ {𝟎, 𝟏}: unitary if bin 𝑏 is used, 0 other-

wise. 
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The mathematical formulation of the problem is: 

min ∑ 𝑦𝑏𝑏∈𝐵   (1) 

subjected to the following constraints: 

∑ 𝑥𝑖,𝑏 = 1 ⋁ 𝑖 ∈ 𝐼 𝑏∈𝐵   (2) 

∑ 𝐿𝑖𝑥𝑖,𝑏 < 𝐿𝑦𝑏  ⋁ 𝑏 ∈ 𝐵𝑏∈𝐵   (3) 

𝑥𝑖,𝑏 ≤ 𝑦𝑏  ⋁ 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵  (4) 

𝑥𝑖,𝑏 ∈ {0,1} ⋁ 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵  (5) 

𝑦𝑏 ∈ {0,1} ⋁ 𝑏 ∈ 𝐵   (6) 

The principal equation of the bin packing problem (1) 

simply minimizes the number of bins used to obtain the 

requested items.  

The mathematical equation was subjected to some con-

straints. In particular, the (2) equation means that each 

item must be assigned to a bin (i.e. each item should be 

cut from one of the paper rolls available). Additionally, the 

second condition (3) assures that the length of all items 

associated with a bin should not exceed the length of the 

bin and the third (4) entails that an item can be assigned 

to a bin if and only if that bin is used. Finally, equations 

(5) and (6) express the domains of the two decision vari-

ables 𝑥 𝑖,𝑏  and 𝑦𝑏. 

3.2 Column generation 

The bin packing problem is a very complex combinatorial 

problem. For simplifying this problem the Column Gener-

ation formulation is used in this work. 

In this formulation, the main element is no longer the bin, 

but the feasible cutting pattern, that is, the possible ar-

rangement of items in a bin. Since enumerating all feasible 

cutting patterns is prohibitively time-consuming, it gener-

ates valid patterns iteratively and adds them to the prob-

lem according to their contribution to the objective func-

tion. 

The first step is to set up the restrained master problem 

(RMP). The parameters involved in the column generation 

model are: 

• I: set of unique items (subset of items with 

unique distinct lengths), indexed by 𝑖 ; 

• P: set of paths, indexed by 𝑝 ; 

• 𝑳𝒊: length of item 𝑖 ; 

• 𝑸𝒊: quantity needed for item 𝑖; 

• 𝑳: length of each bin; 

• 𝑴𝒊,𝒑: matrix whose element (𝑖, 𝑝) defines the num-

ber of times item 𝑖 is included in path 𝑝; 

• 𝒙𝒑 ∈ 𝒁: number of times path 𝑝 is chosen. 

The mathematical formulation of the problem is: 

min ∑ 𝑥𝑏𝑝∈𝑃    (7) 

subjected to: 

∑ 𝑀𝑖,𝑝 𝑥𝑝 ≥ 𝑄𝑖  ⋁ 𝑖 ∈ 𝐼 𝑝∈𝑃   (8) 

𝑥𝑝 ∈ 𝑍      (9) 

The objective function of the RMP is the minimization (i.e. 

Equation (7)) of the number of paths used which is strictly 

correlated with the minimization of the number of bins. 

The objective function is subjected to two constraints. 

First, it needs to select the number of paths in a way such 

that every unique item appears at least as many times as 

needed and this is what is done in (8). In the second equa-

tion (9), a new constraint is introduced for the definition 

of the 𝑥𝑝  domain. 

The next step is to write the dual problem. The dual prob-

lem is a formulation correlated with the principal problem 

exposed above which is the primal. The dual problem is 

written in such a way that: 

• A mostly horizontal constraint matrix becomes a 

mostly vertical constraint matrix; 

• A minimization problem (see eq.s (1)-(7)) be-

comes a maximization problem (see Equation 

(10); 

• The objective value coefficients of the primal be-

come constraint right-hand side values of the 

dual; 

• The objective value coefficients of the dual are the 

dual values of the primal. 

Specifically, the dual problem can be formalised as fol-

lows: 

max ∑ 𝑄𝑖𝜆𝑖𝑖∈𝐼    (10) 

subjected to: 

∑ 𝑀𝑖,𝑝 𝜆𝑖 ≤ 1 ⋁ 𝑝 ∈ 𝑃 𝑝∈𝑃   (11) 

𝜆𝑖 ∈ 𝑍      (12) 

The 𝜆𝑖 is the dual value referring to a specific item con-

straint. Each dual value gives an indication of how profit-

able is to add the associate item to a new path.  

Moreover, to determine the best path to add it is necessary 

to set up the pricing problem where a new decision varia-

ble 𝑦𝑖 which represents how many times a certain item 𝑖 

appears in the new path. 

More in detail: 

max ∑ 𝜆𝑖𝑦𝑖𝑖∈𝐼    (13) 

subjected to the following constraints: 

∑ 𝐿𝑖𝑦𝑖 < 𝐿 𝑖∈𝐼    (14) 

𝑦𝑖 ∈ 𝑍      (15) 

Where Equation (14) ensures that the newly added path is 

feasible, and Equation (15) imposes the 𝑦𝑖 domain. 

Forehead, to decide if a certain path should be added to 

the RMP it needs to verify the gain obtained by the addition 

of the new path with the following formula: 

𝑐 − 𝑧 ≤ 0     (16) 
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Where 𝑐 is the original cost from the primal problem and 𝑧 

is the reduced cost computed in the pricing problem. Fi-

nally, by adoperate suitable substitutions: 

1 − ∑ 𝜆𝑖𝑦𝑖 < 0 𝑖∈𝐼   (17) 

The pricing problem can be rewritten in the following form: 

∑ 𝜆𝑖𝑦𝑖 ≥ 1 𝑖∈𝐼   (18) 

Until the previous condition is satisfied by the new gener-

ate path this one was added to the primal RMP and the 

procedure was iterated. In figure (2), the flow chart re-

lated to the column generation procedure and the solution 

to the pricing problem is shown.  

 

Figure 2 Column Generation algorithm for the solution of the CSP 

 

4 CSP within the structural optimization process 

In this section, practical applications in which CSP is im-

plemented within structural optimization have been 

shown. At first, the mathematical formulation of the opti-

mization process has been described by focusing on the 

OF chosen as the target function and the adopted struc-

tural constraints. Then, a detailed description of the case 

study chosen by the authors and the results obtained by 

the optimization process has been pointed out. 

4.1 Mathematical formulation of the optimization 

process 

 Respect to traditional optimization approaches (i.e [17]-

[18]) in which the OF represents the total weight of the 

structure as a sum of the mass of each element, in this 

study the target function has been evaluated by compu-

ting the amount of steel requested during the production 

phase. A ten-bar truss, comes from [19], has been 

adopted as case study for the application of the proposed 

method. To achieve this goal, a real-coded guided-Genetic 

Algorithm (GA) has been developed by the authors and 

cross-sectional areas of each element are chosen as de-

sign variables of the problem. CSP has been implemented 

within the optimization process and it has been inde-

pendently solved for all groups of elements with the same 

cross-sectional properties. Finally, the solution obtained 

by the CSP for each group has been adopted for the eval-

uation of the OF (𝑊(𝑥)) expressed as follows: 

 𝑊(𝑥) = 𝜌 ∑ 𝑛𝑔𝐴𝑔𝐿𝑔
𝑔=𝑘
𝑔=1   (19) 

𝑊(𝑥) represents the total mass of the purchased bars for 

each group 𝑔. Specifically, 𝑘 represents the total number 

of groups of elements with the same cross-sectional areas. 

𝑛𝑔, 𝐴𝑔  and 𝐿𝑔 are the cardinality, the cross-sectional area 

and the length of bins belonging to the same group 𝑔 of 

elements with the same cross-sectional area 𝐴𝑔, respec-

tively. 𝜌 is the mass density assumed to be equal for all 

members composing the structure.  

The statement of the entire optimization process is the fol-

lowing:  

min 𝑓(𝑥) = 𝑊(𝑥)   (20) 

Subjected to: 

𝑁{𝐸𝐷}

𝑁{𝑡,𝑅𝐷}
≤ 1,   (21) 

𝑁{𝐸𝐷}

𝑁{𝑐,𝑅𝐷}
≤ 1,   (22) 

𝑁{𝐸𝐷}

𝑁{𝑏,𝑅𝐷}
≤ 1,   (23) 

𝑢{𝑚𝑎𝑥,𝑥} ≤ 𝑢{𝑙𝑖𝑚,𝑥},   (24) 

𝑢{𝑚𝑎𝑥,𝑦} ≤ 𝑢{𝑙𝑖𝑚,𝑦}.   (25) 

Equations (21)-(25) represent the structural constraints 
of the problem. In detail, strength verifications about 

tensile stress (without any holes), compression stress 
and buckling instability according to Eurocode 3 (EN 
1993-12005 and EN 1993-2 2006) are introduced by 
Equations (21), (22) and (23) respectively. Another con-
straint to satisfy is the maximum deflection along 𝑥 and 𝑦 

directions (represented by Equations (24) and (25), re-
spectively). 
 
In Figures (3) and (4) a graphical representation related 

to the flow chart of the entire optimization process and a 

detail of the flow chart/pseudo code of the CSP procedure 

are shown. The entire procedure has been based on geo-

metrical assumptions which can be assumed fixed during 

the optimization process, as described within the first par-

allelogram of Figure (3). Then, population random gener-

ation of the first individuals has been realized and a pre-

liminary structural verification has been performed in 

order to solve the CSP only for feasible individuals with 

specific regard to structural safety (hence, individuals of a 

population which satisfy constraint conditions represented 

by Equations (21)-(25)). Once, the grouping strategy has 

been performed and elements of structure with the same 

cross-sectional areas have been collocated into the same 

group, CSP can be solved (see Figure (4)) independently 

by considering all elements of each group.  

As the output of the CSP procedure, the required number 

of bins and the corresponding optimal cutting patterns has 

been pointed out for each individual. Finally, the best in-

dividual has been selected for the evaluation of the fitness 

of OF. The entire procedure has been repeated until the 

stopping criteria (maximum number of generations) are 

fulfilled.   
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Figure 3 Flow chart of the optimization problem 

 
Figure 4 Flow chart/pseudo-code of the CSP procedure 

More information concerning the lower and upper bounds 

of the adopted design variables, their mechanical and ge-

ometric features, and details concerning the threshold val-

ues of structural constraints will be provided in the next 

sections in which the results obtained by the optimization 

process will be shown. 

4.2 Case study one: ten-bar truss 

In this section, the results of the optimization process with 

specific regard to the ten-bar truss case study are pointed 

out. Specifically, two optimization scenarios have been 

performed: 

• Scenario (a): optimization by considering CSP 

procedure (minimization of purchased steel bars); 

• Scenario (b): optimization via traditional ap-

proach by minimizing the total weight of the 

structure without considering the CSP procedure.  

In order to have a comparison between the two men-

tioned-above approaches, the CSP procedure has been 

performed at the end of (b) such that the total number of 

bins requested for the assemblage of the optimized struc-

ture has been evaluated.  

As reported in Figure (4), the structure is a trussed iso-

static  cantilever composed of 10 bars made of steel with 

a mass density of 𝜌 = 0.10 𝑙𝑏/𝑖𝑛3 (2.768 𝑘𝑔/𝑚3), elastic mod-

ulus 𝐸 = 10000 𝑘𝑠𝑖 (68.971 𝐺𝑃𝑎) and constrained by two 

pinned supports at nodes 5 and 6, respectively. A single-

loading condition 𝑃1 = 100 𝑘𝑖𝑝𝑠 (444.8 𝑘𝑁) has been as-

sumed. A set of 42 discrete values have been used for the 

possible cross-sectional areas for each member 𝐴 =

{
1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55,
 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97,
11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 1.99, 22.0, 22.9, 26.5, 30.0, 33.5  

} 

(𝑖𝑛.2 ). The displacements of the free nodes in both direc-

tions had to be less than ±2 𝑖𝑛. (±50.8 𝑚𝑚) and the allowa-

ble stress was set to ±25 𝑘𝑠𝑖 (±172.25 𝑀𝑃𝑎). Finally, for per-

forming the CSP procedure in both (a) and (b) optimization 

scenarios, the bin length for each cross-sectional area 

group has been imposed equal to 1020 in.  

Figure 5 Configuration of the in-plane 10-bar truss, measures are ex-

pressed in inches (in.) 

The algorithm has been performed by setting a population 

size of 200 individuals and the stopping criteria has been 

fixed to 200 maximum generations for an overall number 

of evaluations of 20,000 for both embedded CSP and tra-

ditional approach optimization. Finally, 10 runs have been 

performed and at each run, the optimal OF value ex-

pressed in terms of the total number of purchased bins 

and total structural weight has been stored. Tables (1)-(2) 

report the results of both optimization procedures.  

As expected, the optimization performed in (a) pointed out 

the best results in terms of the total number of purchased 
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bins with a significant reduction of total mass waste (or 

waste length) with respect to the minimum weight ap-

proach (b). On the contrary, the structural mass derived 

by (b) results to be lower than the one obtained by (a). 

However, the gain in terms of mass waste evaluated in (a) 

seems to be more significant than the loss in terms of 

structural weight detected in (b).     

Table 1 Result of the optimization via CSP (a) 

 Stock 

Mass 

(OF) 

Structural 

Mass        

[lb] 

Mass 

Waste    

[lb] 

Waste 

length 

[in] 

Best 6825.8 5792.0 1033.9 903.5 

μ  7320.1 6158.4 1161.7 903.5 

σ 308.6 257.1 98.4 0 

Table 2 Result of the optimization via traditional approach (b) 

 Stock 

Mass 

[lb] 

Structural 

Mass        

(OF) 

Mass 

Waste    

[lb] 

Waste 

length 

[in] 

Best 10323.4 5580.4 4743.0 2943.4 

μ 12133.9 5632.9 6501.0 4212.5 

σ 1343.2 64.2 1348.1 1021.6 

 

According to the outcomes of the optimization reported in 

Tables (1)-(2), the reduction of the total number of bins 

and waste appears more evident by observing Figures 

(5) and (6). They represent the optimal cutting pattern 

for both scenarios (a) and (b), respectively. Specifically, 

along the x-axis cross-section areas deriving by the 

grouping strategy are depicted while on the y-axis the 

length of each pattern expressed in inches is reported. 

Waste has been defined, for each area group, by the 

dashed area as the remaining length of bins after the 

cutting procedure.  

 

 
Figure 6 Optimal cutting pattern derived by optimization scenario (a) 

 
Figure 7 Optimal cutting pattern derived by optimization scenario (b) 

5 Conclusion and future developments 

In this paper, a novel procedure for the optimization of 

steel truss structures has been introduced aiming to eval-

uate the minimum number of bins (total mass of pur-

chased steel bars) and the optimal cutting pattern of a 

stock of elements has been evaluated by solving the Cut-

ting Stock Problem (CSP). A well-known in literature 10-

bar truss case study has been adopted to demonstrate the 

effectiveness of the proposed method. The outcomes of 

the research reveal how considering the cutting procedure 

within the optimization process brings a significant waste 

reduction with respect to the traditional approach in which 

only the total mass target function is minimized (1033.9 

vs 4743.0). Therefore, the former guaranteed a high level 

of performance and slenderness of the structure though a 

negligible loss of structural weight has been recognized 

with respect to the latter. In future developments, the pro-

posed approach will be performed on realistic complex civil 

engineering structures such that advantages related to 

cost and environmental aspects will demonstrate the use-

fulness of adopting the CSP procedure into optimization 

processes. 
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