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EXTINCTION PROBABILITIES IN BRANCHING PROCESSES WITH

COUNTABLY MANY TYPES: A GENERAL FRAMEWORK

DANIELA BERTACCHI1, PETER BRAUNSTEINS2,3, SOPHIE HAUTPHENNE3,
AND FABIO ZUCCA4

Abstract. We consider Galton–Watson branching processes with countable typeset X .
We study the vectors qpAq “ pqxpAqqxPX recording the conditional probabilities of ex-
tinction in subsets of types A Ď X , given that the type of the initial individual is x. We
first investigate the location of the vectors qpAq in the set of fixed points of the progeny
generating vector and prove that qxptxuq is larger than or equal to the xth entry of any
fixed point, whenever it is different from 1. Next, we present equivalent conditions for
qxpAq ă qxpBq for any initial type x and A,B Ď X . Finally, we develop a general frame-
work to characterise all distinct extinction probability vectors, and thereby to determine
whether there are finitely many, countably many, or uncountably many distinct vectors.
We illustrate our results with examples, and conclude with open questions.

Keywords: infinite-type branching process; extinction probability; generating function;
fixed point.
AMS subject classification: 60J80, 60J10.

1. Introduction

Branching processes are models for populations where independent individuals repro-
duce and die. If all individuals have the same reproduction law and live in a single
location, then the population can be modelled with a single-type branching process. If
individuals have specific characteristics (i.e. their location, or in general their “type”)
which impact the evolution of the population, then multitype branching processes are
suitable models. Here we focus on (discrete-time) multitype Galton–Watson branching
processes (MGWBPs) with countably many types (where countable includes the finite
case as well). These processes arise naturally as stochastic models for various biological
populations (see for instance [1, Chapter 7]). They can alternatively be interpreted as
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53, 20125 Milano, Italy.
2 Korteweg-de Vries Instituut, University of Amsterdam, Amsterdam, The Nether-

lands.
3 School of Mathematics and Statistics, University of Melbourne, Melbourne, Aus-

tralia.
4 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32,

20133 Milano, Italy.

E-mail addresses: daniela.bertacchi@unimib.it, p.t.m.braunsteins@uva.nl,

braunsteins.p@unimelb.edu.au, sophiemh@unimelb.edu.au, fabio.zucca@polimi.it.
Date: November 23, 2020.

1

http://arxiv.org/abs/2011.10071v1


2 D. BERTACCHI, P. BRAUNSTEINS, S. HAUTPHENNE, AND F. ZUCCA

branching random walks (BRWs) on an infinite graph where the types correspond to the
vertices of the graph (see for instance [22] and references therein).

One of the primary quantities of interest in a branching process is the probability that
the population eventually becomes empty or extinct. Extinction in MGWBPs can be of
the whole population (global extinction), in all finite subsets of types (partial extinction),
or more generally, in any fixed subset of types A (local extinction in A). To be precise, let
X denote the (countable) typeset, and let Zn “ pZn,xqxPX , where Zn,x records the number
of type-x individuals alive in generation n ě 0. For A Ď X , let EpAq be the event that
the process tZnuně0 becomes extinct in A, that is, the event that limnÑ8

ř
xPA Zn,x “ 0.

Let qpAq “ pqxpAqqxPX be a vector whose xth entry records the conditional probability
of local extinction in A, given that the population starts with a single type-x individual,
that is,

qxpAq :“ PpEpAq |Z0 “ exq,
where ex is the vector with entry x equal to 1 and all other entries equal to 0. In
particular, note that qpHq “ 1. We let q :“ qpX q be the vector containing the conditional
probabilities of global extinction, and we let q̃ “ pq̃xqxPX be the vector containing the
conditional probabilities of partial extinction, where

q̃x :“ P

ˆ č

A:|A|ă8

EpAq
ˇ̌
ˇZ0 “ ex

˙
.

Several authors have studied properties of q and q̃; see for instance [2, 10, 13, 23] and
most other references herein.

If the process is irreducible, meaning that an individual of any given type may have a
descendant of any other type, then

‚ when X is finite, q “ qpAq “ q̃ for all non-empty A Ď X , and
‚ when X is countably infinite and A is finite, q̃ “ qpAq (see for instance [9, Corol-
lary 1]).

More generally, for any non-empty A Ď X , it is known that

q ď qpAq ď q̃ ď 1;

in addition, these inequalities may be strict (see for instance [6] and [9]). Thus the vectors
qpAq are of independent interest. Other than the recent work of [17] (which focuses on
different questions than those considered here) and references in the remainder of this
section, little attention has been paid to properties of the vectors qpAq.

The vectors tqpAquAĎX are all solutions of a common fixed point equation. More
precisely, if Gpsq :“ pGxpsqqxPX records the probability generating function associated
with the reproduction law of each type (defined in (2.1)), then qpAq belongs to the set

S :“ ts P r0, 1sX : s “ Gpsqu. (1.1)

In other words, Ext Ď S, where

Ext :“ tqpAq : A Ď X u (1.2)
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is the set of extinction probability vectors. In this paper, we focus on the following three
main questions:

(i) Where are the elements of Ext located in S? (Section 3)
(ii) When does qpAq differ from qpBq for two sets A,B Ď X ? (Section 4)
(iii) How many distinct elements does Ext contain and can these elements be identified?

(Section 5)

While the answers to these questions are well established in the finite-type setting, much
less is known when there are infinitely many types. Below we discuss the background
behind each question and the contributions we make in this paper.

Question (i). It is well known that in the finite-type irreducible setting, the set of fixed
points S contains at most two elements: S “ Ext “ tq, 1u; see for instance [15, Chapter 2].
When there are countably many types, q is the minimal element of S [20, Theorem 3.1].
More recently, in [8] the authors proved that, for a class of branching processes with
countably infinitely many types called lower Hessenberg branching processes (LHBPs),
q̃ is either equal to 1 or to the maximal element of Szt1u. Theorem 1 of the present
paper implies that the same result holds for general irreducible MGWBPs. In particular,
if there is strong local survival, that is, if q “ q̃ ă 1, then Theorem 1 implies that
S “ Ext “ tq, 1u, as in the finite-type setting. In addition, this theorem also applies in
the reducible setting as we show in general that, for any fixed point s P S, if sx ă 1 then
sx ď qxptxuq.
Question (ii). Recent work addresses related questions: in [4] and [6], the authors provide
equivalent conditions for qpAq “ q for every non-empty A Ď X ; in [9], the authors give
sufficient conditions for qpAq ď qpBq that apply to any MGWBP and A,B Ď X , as well
as sufficient conditions for q ă qpAq ă q̃ that apply to block LHBPs. In Theorem 2 we
present a number of necessary and sufficient conditions for qxpAq ă qxpBq for any initial
type x; this is a significant improvement on [4, Theorem 3.3] and [6, Theorem 2.4] (see
Section 4 for details). One condition in Theorem 2 is the existence of an initial type
from which, with positive probability, the process survives in A without ever visiting B;
another is the existence of a sequence of types txnunPN such that

p1 ´ qxn
pBqq{p1 ´ qxn

pAqq Ñ 0 as n Ñ 8. (1.3)

A consequence of (1.3) is that, for any extinction probability vector qpAq ‰ q, we have
supxPX qxpAq “ 1 (Corollary 2). In particular, if all the entries of q̃ are uniformly bounded
away from 1, then there is strong local survival (q “ q̃ ă 1; Corollary 3).

Question (iii). When q ă q̃, the set of extinction probability vectors Ext may contain
more than two distinct elements. For instance, in processes that exhibit non-strong local
survival (q ă q̃ ă 1 “ qpHq), Ext contains at least three distinct elements; see for
instance [4, 14, 19, 21] for examples of such processes. In recent years, various examples
with more than three extinction probabilities have been constructed: for instance, [9]
contains examples with four and five distinct extinction probability vectors. The set Ext
can even contain uncountably many distinct elements, as shown in [6, Section 3.1]. In the
same paper, the authors leave open the question of whether Ext can be countably infinite.
Up to this point, the literature has focused primarily on specific examples. Here our goal
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is to develop a unified theory to characterise —and thereby count— the distinct elements
of Ext.

We start by restricting our attention to a more manageable subset of Ext,

ExtpAq :“ tqpAq : A P ΣpAqu, (1.4)

where A “ tAiuiPKA
is a (finite or infinite) collection of subsets of X and ΣpAq is the

smallest σ-algebra on
Ť

APAA containing A. The idea is to select A carefully so that (1)
either Ext ” ExtpAq or ExtpAq highlights some property of Ext, and (2) A satisfies some
minor assumptions, in which case we call A regular. We show that we can associate a
directed graph GA to A, and that if A is regular, then the analysis of ExtpAq reduces to
the analysis of GA. More specifically, in this graph, the vertices are the elements of KA,
and there is a directed edge from i to j if and only if qpAiq ě qpAjq, where these pairwise
relationships can be determined using Theorem 2. We show that there is an injective
function from the set of edgeless subgraphs of GA to the distinct elements of ExtpAq
(Theorem 3 and Lemma 2); furthermore, if GA does not contain a path of infinite length
(i.e. an ascending chain as defined on Page 13), we prove that this function is bijective
(Theorem 3 and Proposition 2(ii)). If GA contains ascending chains, then we show that
the set of edgeless subgraphs can be extended so as to define a bijection between this
extended set and the distinct elements of ExtpAq (Theorem 3 and Proposition 2(i)). These
results translate problems about the distinct extinction probability vectors into much
simpler problems about the graph GA. We use this framework to provide necessary and
sufficient conditions for ExtpAq to contain finitely many, countably many, or uncountably
many distinct elements (Theorem 4). To provide a rigorous exposition, we introduce an
equivalence relation „ on the set 2KA (see Definition 2) and then study properties of the
quotient set 2KA{„.

We apply our results to three examples. In Example 1, we consider a specific family of
irreducible branching processes where, by varying a single parameter, we can transition
smoothly between cases where the process has any finite number of extinction probability
vectors, a countably infinite number of extinction probability vectors, and an uncountable
number of extinction probability vectors (Proposition 4). This resolves the open question
in [6]. In Examples 2 and 3, we use our general framework to list all distinct extinction
probability vectors in two non-trivial examples: in Example 2, the number of distinct
elements of ExtpAq is the same as the number of edgeless subgraphs in GA, while in
Example 3, the number of distinct elements of ExtpAq is strictly larger than the number
of edgeless subgraphs in GA.

The paper is structured as follows. In Section 2 we introduce some definitions and nota-
tion, as well as some preliminary results. In Sections 3 and 4 we tackle Questions (i) and
(ii), respectively. In Section 5 we deal with Question (iii); more precisely, in Section 5.1
we introduce the concept of a regular family A, in Section 5.2 we define the equivalence
relation „ on 2KA and establish the relationship between 2KA{„ and the distinct elements
in ExtpAq, in Sections 5.3 we investigate the structure of the equivalence classes, and in
Section 5.4 we provide conditions for the number of distinct elements in ExtpAq to be
finite, countably infinite, or uncountable. In Section 6 we present our examples, and in
Section 7 we discuss open questions. All the proofs, along with some technical lemmas,
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can be found in Section 8. In a final appendix, we propose an iterative method to compute
the extinction probability vector qpAq for any A Ď X .

In this paper, we let 1 denote the infinite column vectors of 1s. For any vectors x and y,
we write x ď y if xi ď yi for all i, and x ă y if x ď y with xi ă yi for at least one entry i.
Finally, we use the shorthand notation Pxp¨q :“ Pp¨|Z0 “ exq and Exp¨q :“ Ep¨|Z0 “ exq.
We remark that, unless otherwise explicitly stated, our results hold for any generic, not
necessarily irreducible, MGWBP.

2. Preliminaries

2.1. Definitions. In an MGWBP tZnuně0 with countable typeset X , each individual
lives for one generation and, at death, independently gives birth to a (finite) random
number of offspring. For x P X and j “ pjyqyPX P N

X , let pxj denote the probability that
an individual of type x gives birth to jy children of type y, for all y P X . The associated
probability generating function is

Gxpsq :“
ÿ

j:|j|ă8

pxjs
j :“

ÿ

j:|j|ă8

pxj
ź

yPX

sjyy , s P r0, 1sX , (2.1)

where |j| :“ ř
yPX jy, and we let Gpsq :“ pGxpsqqxPX . Note that G : r0, 1sX Ñ r0, 1sX

is nondecreasing and continuous with respect to the pointwise convergence (or product)
topology on r0, 1sX . Let mxy :“ ExrZ1,ys “ pBGxpsq{Bsyq|s“1 be the expected number of
offspring of type y born to a parent of type x, and let pX , EX q be the directed graph with
vertex set X and edge set EX “ tpx, yq P X 2 : mxy ą 0u. We write x Ñ y if there is a
path from x to y in pX , EX q, and we write x Ø y if x Ñ y and y Ñ x. Note that x Ø x

because there is always a path of length zero from x to itself. The equivalence class rxsØ

of x with respect to Ø is called the irreducible class of x.

The MGWBP tZnu is called irreducible if and only if the graph pX , EX q is connected
(that is, there is only one irreducible class), otherwise it is reducible. We say that the
process is non-singular if, in every irreducible class, there is at least one type whose
probability of having exactly one child in that irreducible class is not equal to 1, or, in
other words, if for every x, there exists y Ø x such that PypřwØy Z1,w “ 1q ă 1. This

assumption is different from the usual one (which is, for every x there exists y Ø x such
that PypřwPX Z1,w “ 1q ă 1), but both definitions are equivalent for irreducible processes.

2.2. Properties of qpAq. For n ě 0 and A Ď X , we define qpnqpAq :“ pqpnq
x pAqqxPX where

qpnq
x pAq “ Px

˜
ÿ

ℓěn

ÿ

yPA

Zℓ,y “ 0

¸

is the probability of extinction in A before generation n, starting with a single type-x
individual. The sequence tqpnqpAquně0 is (pointwise) nondecreasing, and satisfies

$
’&
’%

qpnqpAq “ Gpqpn´1qpAqq, @n ě 1,

q
p0q
x pAq “ 0, @x P A,
q

p0q
x pAq “ Gxpqp0qpAqq @x R A.

(2.2)
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In addition, qpnqpAq converges to qpAq as n Ñ 8. This implies that, for every A Ď X ,
qpAq belongs to the set of fixed points S defined in (1.1) (note that q̃ also belongs to S).

We observe that q
p0q
x pAq “ PxpN pAqq, where N pAq is the event that the process never

visits A. In principle, if we knew qp0qpAq, we could iteratively apply Gp¨q and recover
qpAq as the limit of the sequence qpnqpAq. However, qp0qpAq is not uniquely characterised
by Equation (2.2). In other words, qp0qpAq is not necessarily the only element of the set
of fixed points

pSpAq :“ ts P r0, 1sX : s “ pGpAqpsqu,
where the function pGpAq : r0, 1sX Ñ r0, 1sX is defined by

pGpAq
x psq :“

#
0, if x P A
Gxpsq if x R A,

and can be interpreted as the generating function of the offspring distribution in the

modified process tẐpAq
n u where types in A produce an infinite offspring number with

probability one. Note that, if A ‰ H, then 1 R pSpAq. For B Ď X , we define the probability
that the process becomes extinct in B and never visits A as qpB,Aq :“ pqxpB,AqqxPX ,

where qxpB,Aq :“ PxpEpBq X N pAqq. The vectors qpB,Aq belong to pSpAq for all B (by
the same arguments as those used to show qpAq P S). The following result characterizes
qp0qpAq.
Proposition 1. The vectors qpX , Aq and qp0qpAq ” qpH, Aq are the (componentwise)

minimal and maximal element of pSpAq respectively.

Observe that qp0qpAq is uniquely identified by Equation (2.2) if and only if pSpAq is a
singleton, which, by Proposition 1, occurs if and only if qpX , Aq “ qp0qpAq; conditions for
pSpAq to be a singleton are given in Theorem 2. We also point out that, in the irreducible

case, qp0qpAq can be interpreted as the partial extinction probability vector of tẐpAq
n u; in

practice, qp0qpAq can then be computed numerically using the method developed in [16],
and qpAq can be approximated by functional iteration, however it is unclear whether this
algorithm converges. An alternative iterative method to compute the vector qpAq for any
A Ď X can be found in the Appendix.

3. The second largest fixed point

It is well known that q is the componentwise minimal element of S while, clearly, 1
is the maximal. The next theorem gives an upper bound, namely qxptxuq, for the xth
component of any fixed point, whenever it is different from 1. In the irreducible case, we
then have that q̃ is either the largest or second largest element of S: the largest when
q̃ “ 1, and the second largest when q̃ ă 1 (indeed, by [9, Corollary 4.1], q̃x “ qxptxuq).
Theorem 1. Suppose tZnuně0 is a non-singular MGWBP. If s ď Gpsq, then

(i) for all x P X , either sx “ 1 or sx ď qxptxuq;
(ii) if sx ă 1, then sy ď qyptyuq for all y P X such that y Ñ x;
(iii) if the process is irreducible and s ‰ 1, then s ď q̃.
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The following corollary gives further insights into the set of fixed points S when
qxptxuq “ qx for all x; note that qxptxuq “ qx ă 1 is usually called strong local sur-

vival in x.

Corollary 1. Suppose tZnuně0 is non-singular and let s P S.
(1) If qxptxuq “ qx for all x then, for every x P X , either sx “ 1 or sx “ qxptxuq. In

this case, any fixed point is an extinction probability vector, that is, Ext “ S.
(2) If tZnuně0 is irreducible and s ‰ 1, then s ď q̃. In particular, if q̃ “ q, then

S “ tq, 1u.

4. When is qpAq ‰ qpBq?
In order for two extinction probability vectors qpAq and qpBq to be different, it is

necessary for the process to have a positive chance of survival in the symmetric difference
of the sets A and B. More formally, letting SpAq :“ EpAqc denote the event that the
process survives in A, if PxpEpA△ Bqq “ 1 then PxpSpAqq “ PxpSpA X Bqq “ PxpSpBqq,
that is,

qpAq ‰ qpBq ñ D x P X s.t. PxpEpA△ Bqq ă 1.

A more powerful characterization of qpAq ‰ qpBq is given in the following theorem, which
is a significant improvement over [4, Theorem 3.3], where the equivalence between (i) and
(v) was proved with A “ X .

Theorem 2. For any MGWBP and A,B Ď X , the following statements are equivalent:

(i) there exists x P X such that qxpAq ă qxpBq
(ii) there exists x P X such that qxpAzBq ă qxpBq
(iii) there exists x P X such that qxpAq ă q

p0q
x pBq

(iv) there exists x P X such that, starting from x there is a positive chance of survival in
A without ever visiting B

(v) there exists x P X such that, starting from x there is a positive chance of survival in
A and extinction in B

(vi)

inf
xPX : qxpAqă1

1 ´ qxpBq
1 ´ qxpAq “ 0.

Moreover, if A “ X then each of the above conditions is equivalent to

(vii) ŜpBq is not a singleton.

Note that the equivalence between (i) and (iii) was proved in [6, Theorem 2.4].

Corollary 2. For any MGWBP, every extinction probability vector qpAq ‰ q, satisfies
supxPX qxpAq “ 1.

Remark 1. In [20, Lemma 3.3], the author showed that, if an MGWBP is irreducible,
all fixed points s ‰ q with infxPX sx ą 0 satisfy supxPX sx “ 1. However, the condi-
tion ‘infxPX sx ą 0’ was described as unsatisfactory. Corollary 2 proves that all extinction
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probabilities qpAq ‰ q satisfy supxPX qxpAq “ 1 under no assumptions (not even irre-
ducibility).

In the irreducible case, Corollary 2 easily implies the following result.

Corollary 3. Suppose that tZnu is irreducible. If supxPX q̃x ă 1 then q̃ “ q and S “
tq, 1u.

Corollary 3 applies to irreducible quasi-transitive MGWBPs (see for instance [4, Section
2.4] for the definition) where q̃ ă 1, extending [4, Corollary 3.2]; indeed, in that case the
coordinates of q̃ take their value in a finite set and they are all different from 1. It also
applies to MGWBPs with an absorbing barrier (see [7]) with q̃ ă 1, for which X “ N

and q̃x is decreasing in x.

5. The set of extinction probability vectors

We now turn our attention to the set Ext of extinction probability vectors. Our analysis
builds upon an important consequence of Theorem 2 (which we state in Corollary 4). We
start by defining relations between subsets A,B Ď X in a given MGWBP: we write

‚ A ñ B if survival in A implies survival in B from every starting point (that is,
PxpSpBq |SpAqq “ 1 for all x P X ),

‚ A œ B if there is a positive chance of survival in A and extinction in B from some
starting points (that is, PxpSpBq |SpAqq ă 1) for some x P X ),

‚ A ô B if survival in A implies survival in B and vice-versa from every starting
point,

‚ A ø B if there is a positive chance of survival in B and extinction in A from some
starting points and vice-versa.

Note that A ô A for all A Ď X . The next corollary is a straightforward consequence of
the equivalence between (i) and (v) in Theorem 2.

Corollary 4. Let A,B Ď X .

(1) A ñ B if and only if qpAq ě qpBq.
(2) A ô B if and only if qpAq “ qpBq.
(3) A ø B if and only if there is no order relation between qpAq and qpBq.
We point out that any of the six equivalent conditions in Theorem 2 can be used to

establish the relation between the pair A,B Ď X .

5.1. Regular families of subsets. We will use the pairwise relations between subsets of
X to study Ext. Rather than considering all subsets of X , it is often sufficient to restrict
our attention to a particular family of subsets. More precisely, we focus on

ExtpAq :“ tqpAq : A P ΣpAqu,
where A “ tA1, A2, . . . , AκA

u, with κA ď 8, Ai Ď X for all i P KA :“ t1, . . . , κAu, and
ΣpAq is the smallest σ-algebra on

Ť
iPKA

Ai containing all Ai. The idea is to select a
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suitable family A so that either Ext ” ExtpAq as in the examples in Section 6, and in [6,
Section 3.2] and [9, Example 1], or so that ExtpAq highlights some property of Ext as in
[6, Section 3.1]. Below we show that the analysis of ExtpAq is substantially simpler under
some minor regularity conditions on A and the associated MGWBP.

Definition 1. We call A regular if

(C1) for any i ‰ j P KA, we have Ai X Aj “ H;
(C2) for any i P KA, we have qpAiq ă 1;
(C3) there does not exist i ‰ j P KA such that Ai ô Aj;
(C4) if A P ΣpAq and IA :“ ti P KA : Ai ñ Au ‰ H then

Ť
iPIA

Ai ñ A;
(C5) if i P KA and Ji :“ tj P KA : Ai œ Aju ‰ H then Ai œ Ť

jPJi
Aj.

Condition (C1) allows an easy description of ΣpAq in terms of unions of sets in A; in
particular, under this condition, I ÞÑ Ť

iPI Ai is a surjective map from 2KA onto ΣpAq.
If in addition (C2) holds, then Ai ‰ H for all i P KA and the map is also injective.
Conditions (C2) and (C3) can be viewed as a preprocessing step which removes elements
from A that lead to non-distinct extinction probability vectors. In particular we observe
that (C3) “almost implies” (C2), meaning that, if (C3) holds then qpAiq “ 1 for at most
one i P KA (by Corollary 4). Thus, (C2) implies that q

`Ť
iPI Ai

˘ “ 1 if and only if
I “ H, in particular H R A. Conditions (C4) and (C5) are minor regularity assumptions
that we use to compare the number of distinct elements in ExtpAq and the cardinality of
the quotient set of 2KA with respect to a suitable equivalence relation (see Definition 2).
On the other hand, (C2) and (C3) allow us to study the cardinality of a particular subset
of this quotient set (see Definition 3 and Equation (5.1)).

5.2. Equivalent subsets of indices. Not all the elements of ExtpAq are necessarily
distinct. For instance, if Ai ñ Aj , then qpAi Y Ajq “ qpAjq. This motivates the next
definition.

Definition 2. The subsets I, J Ď KA are equivalent, and we write I „ J , if and only if

(i) for every i P I there exists j P J such that Ai ñ Aj, and
(ii) for every j P J there exists i P I such that Aj ñ Ai.

Observe that H „ I implies I “ H.

We are interested in the number of distinct elements in ExtpAq, which we denote
by |ExtpAq|. The next theorem implies that, if A is regular, then |ExtpAq| equals the
cardinality of the quotient set 2KA{„, that is, the number of equivalence classes.

Theorem 3. Given a family A and I, J Ď KA, consider the following relations:

(i) I „ J

(ii)
Ť

iPI Ai ô Ť
jPJ Aj

(iii) q
´Ť

iPI Ai

¯
“ q

´Ť
jPJ Aj

¯
.
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Then piiq ô piiiq.
If (C4) holds then piq ñ piiiq; if in addition (C1) holds then |ExtpAq| ď |2KA{„|.
If (C2) and (C5) hold then piiiq ñ piq and |ExtpAq| ě |2KA{„|.
5.3. Primitive subsets and ascending chains. In order to characterize |ExtpAq|, the
next step is to better understand the structure of the equivalence classes. To help visualise
these classes, we associate a directed graph GA “ pKA, EAq, with edge set EA :“ tpi, jq P
K2

A : Ai ñ Aju, to a given MGWBP and family A “ tA1, A2, . . . , AκA
u. Observe that

(P1) pi, jq, pj, kq P EA implies pi, kq P EA (by transitivity of the relation ñ),
(P2) pi, iq P EA for all i P KA,

and, under the regularity condition (C3),

(P3) GA contains no cycles (of length greater than one).

Note that inGA, there is a path from i to j if and only if pi, jq P EA. The next lemma states
that, given a directed graph pX,EXq satisfying (P1) and (P3), there exist an MGWBP
and a regular family A such that GA “ pX,EXq.
Lemma 1. Let pZ,EZq be a directed graph where

‚ Z is at most countable,
‚ there are no cycles (closed paths).

Then there exists an MGWBP and a regular family A “ tAiuiPZ such that Ai ñ Aj if
and only if there is a path from i to j in pZ,EZq.

For any subset I Ď KA, we define the subgraph induced in GA by I as

GArIs :“ pI, EArIsq, with EArIs :“ tpi, jq P I2 : Ai ñ Aju.
Definition 3. We call I Ď KA primitive if for all i, j P I, i ‰ j, we have Ai ø Aj.
Equivalently, a subset I is primitive if the induced subgraph GArIs is edgeless. We write
PA for the set of primitive subsets of KA.

The following properties are straightforward:

‚ I :“ H is primitive and, if (C2) holds, it is the only subset of KA such that
q
`Ť

iPI Ai

˘ “ 1;
‚ every singleton tiu is primitive.
‚ every subset of a primitive subset is primitive;
‚ if tInun is a sequence of primitive subsets of KA such that In Ď In`1 (for all n)
then

Ť
n In is primitive.

From the definition of „, if (C3) holds, then the equivalence class of a primitive subset
I is

rIs„ “
!
J Ď KA : J Ě I, @j P J, Di P I, Aj ñ Ai

)
. (5.1)

In particular, given two primitive subsets I1 ‰ I2 we have rI1s„ ‰ rI2s„. Hence PA can
be identified with a (possibly proper) subset of 2KA{„. This directly leads us to the next
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Relations:

A1 ñ A3, A2 ñ A1

A2 ñ A3, A2 ñ A4

GA:

1 3

2 4

PA ExtpAq
H 1

t1u qpA1q “ qpA1 Y A2q
t2u qpA2q
t3u qpA3q “ qpA1 Y A3q “ qpA2 Y A3q

“ qpA1 Y A2 Y A3q
t4u qpA4q “ qpA2 Y A4q
t1, 4u qpA1 Y A4q “ qpA1 Y A2 Y A4q
t3, 4u qpA3 Y A4q “ qpA2 Y A3 Y A4q

“ qpA1 YA2 YA3 YA4q

Figure 5.1. A regular family A “ tA1, A2, A3, A4u with its associated
directed graph GA, the set of primitive subsets PA, and the elements in
ExtpAq. There is a one-to-one correspondence between the primitive subsets
and the distinct elements in ExtpAq.

result about the map

fA : PA Ñ 2KA{„ s.t. fApIq “ rIs„.

Lemma 2. If A satisfies (C3) then fA is injective; in particular |PA| ď |2KA{„|.

We will see that in many situations, the injective map fA is actually bijective, in which
case, if A is regular, then by Theorem 3 there is a one-to-one correspondence between
the distinct extinction probability vectors in ExtpAq and the primitive subsets. We now
present two illustrative examples: in Figure 5.1, fA is bijective, and in Figure 5.2, fA is not
surjective because no primitive subset belongs to the equivalence class of I “ t3, 4, 5, . . .u.

2 1

3 4 5 6 7 . . .

Figure 5.2. The directed graph GA of a regular family A “
tA1, A2, A3, . . .u with an ascending chain. The set of primitive subsets is
PA “ tH, tiui“1,2,3,..., t1, juj“4,5,6,..., t2, juj“4,5,6,...u, and the set of represen-
tatives of pure ascending chains is CA “ tH, t3, 4, 5, . . . uu.
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In order for the map fA to be bijective in general, the domain PA of fA needs to be
extended. To understand how to extend PA, we need a more complete description of the
codomain 2KA{„ of fA. We consider the following subsets of every I Ď KA:

$
’&
’%

IM :“ ti P I : @j P I, j ‰ i, Ai œ Aju
Id :“ ti P I : Dj P IM , Ai ñ Aju
Ic :“ IzId.

Roughly speaking, IM contains the vertices with out-degree zero in GArIs, and Id is the
largest subset of I equivalent to IM (clearly, IM Ď Id, since Aj ñ Aj for every j P KA).
If we think of “ñ” as a partial preorder relation “ď” (it is a partial order relation if
(C3) holds), then IM can be interpreted as the primitive subset of maximal elements of
I, and Id as the subset of elements which are smaller than a maximal element. Finally,
Ic is the subset of elements which are not comparable with any maximal element of I; in
particular,

Ic “ ti P I : Ej P IM , Ai ñ Aju ” ti P I : @j P IM , Ai ø Aju ” ti P I : Ej P Id, Ai ñ Aju.
As an example, let I “ KA “ N for the family A considered in Figure 5.2; then IM “ t1u,
Id “ t1, 2, 3u, and Ic “ t4, 5, 6, . . .u.

Clearly I is primitive if and only if I “ IM ; moreover rIM s„ “ rIds„, and if I ‰ H
then rIds„ ‰ rIcs„. The next lemma states several other properties of the subsets IM , Id,
and Ic; in particular it extends the representation of the equivalence class of a primitive
subset given in (5.1) to that of a generic subset (Lemma 3(vii)).

Lemma 3. Let I, J Ď KA.

(i) I „ IM ô Ic “ H;
(ii) IM „ JM ô Id „ Jd;

Suppose that (C3) holds.

(iii) IM “ JM ô Id „ Jd;
(iv) I „ J ô IM “ JM and Ic „ Jc;
(v) I „ J for some primitive J if and only if Ic “ H;
(vi) if Ic ‰ H then Ic is infinite;
(vii) rIs„ “ tH Y W : H,W Ď KA, Hd „ Id, Wc „ Ic, Hc “ Wd “ Hu.

Any infinite sequence tinuně0 of distinct elements of KA such that Ain ñ Ain`1
will

be called an ascending chain. Under (C3), if Ic is non-empty then every element in Ic
belongs to an ascending chain (see the proof of Lemma 3(vi)). Any I Ď KA such that
I “ Ic (that is, Id “ IM “ H) will be called a pure ascending chain. From Lemma 3(vii),
any subset J equivalent to a pure ascending chain is also a pure ascending chain (that is,
if I “ Ic and J „ I, then J “ Jc).

Given two equivalent subsets I and J , observe that

ti P KA : Dj P I, Ai ñ Aju “ ti P KA : Dj P J,Ai ñ Aju.
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The largest subset equivalent to I, defined as I` :“ ti P KA : Dj P I, Ai ñ Aju, is a
natural representative of the equivalence class rIs„. We let

CA :“ tI Ď KA : DJ “ Jc, J
` “ Iu

be the set of representatives of pure ascending chains; note that CA is non-empty since
H P CA. Moreover J P CA if and only if J “ Jc and J “ J`.

Recall that the domain of fA is PA, which is non-empty (since H is primitive), and
that, by Lemma 2, fA is injective (under (C3)). The following proposition implies that
PA can be extended by means of CA to the set

IA :“ tpI, Jq P pPA ˆ CAq : I X J “ H, pJzI`q` “ Ju. (5.2)

Clearly tHu ˆCA and PA ˆ tHu are subsets of IA; in particular pH,Hq P IA. We define
the map

gA : 2KA{„ Ñ IA s.t. gAprIs„q “ pIM , pIcq`q.
Proposition 2. If A satisfies (C3), then gA is bijective; in particular,

(i) |2KA{„| “ |IA|,
(ii) if there are no ascending chains (i.e. CA “ tHu), then the map fA is bijective, that

is, every equivalence class contains one (unique) primitive subset.

Note that fA “ g´1

A
˝ h where h is the natural bijection from PA onto PA ˆ tHu. In

the example considered in Figure 5.1, CA “ tHu, hence IA “ PA ˆ tHu, while in the
example considered in Figure 5.2, CA “ tH, t3, 4, 5, . . . uu, and

JA “ tpI,Hq : I P PAu Y tpH, t3, 4, 5, . . .uq, ptiu, t3, 4, 5, . . .uqi“1,2u.
In Figure 5.3 we provide a modification of the example considered in Figure 5.2 that
illustrates why the condition I X J “ H is not sufficient in the definition of IA in order
for gA to be bijective: take I “ t41, 51, 61, . . .u and J “ t3, 4, 5, . . . u; we have I X J “ H,
but I` “ I Y J , so pJzI`q` “ H ‰ J . In this case, g´1

A
pI, Jq “ g´1

A
pI,Hq because

rI Y Js„ “ rIs„, so gA is not bijective. Additional examples where we identify JA are
given in Section 6.

2 1

3 4 5 6 7 . . .

41 51 61 71 . . .

Figure 5.3. The directed graph GA of a regular family with an ascending
chain (the edges implied by transitivity are omitted).

When combined, Theorem 3 and Proposition 2 allow us to identify the distinct elements
in ExtpAq.
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Proposition 3. If A is regular, then

ExtpAq “
!
q
´Ť

iPpIYJq Ai

¯
: pI, Jq P IA

)
, (5.3)

and distinct elements in IA correspond to distinct extinction probability vectors.

In the example considered in Figure 5.2, the distinct elements of ExtpAq are therefore

ExtpAq
“ tq pŤiPI Aiq : I P PAuŤ tq pA3 Y A4 Y A5 Y . . .q , q pA1 Y A3 Y A4 Y A5 Y . . .q , q pA2 Y A3 Y A4 Y A5 Y . . .qu .

(5.4)

5.4. The number of distinct elements in ExtpAq. Building on the results in the
previous section, we are now ready to discuss the number of distinct elements in ExtpAq,
|ExtpAq|. In particular, Propositions 2 and 3 lead to equivalent conditions for the number
of distinct elements in ExtpAq to be finite, countably infinite, or uncountable.

Theorem 4. Given a family A satisfying pC3q,
(i) |ExtpAq| is finite if and only if A is finite (that is, κA ă 8).

If (C2), (C3) and (C5) hold then

(ii)
|ExtpAq| ě |PA|. (5.5)

If, in addition, A is regular and CA “ tHu, then there is equality in (5.5).
(iii) If ExtpAq is countably infinite, then there exists a family A1 Ď A satisfying (C2)-

(C3)-(C5) with κA1 “ 8 such that either A1
1

ñ A1
2

ñ A1
3

ñ . . . or A1
1

ð A1
2

ð
A1

3
ð . . . . In particular if A is regular, one can choose A1 as a regular family.

If A is regular, then

(iv) ExtpAq is countably infinite if and only if PA and CA are both countable and at least
one of them is countably infinite.

(v) ExtpAq is uncountable if and only if either PA is uncountable or CA is uncountable.

Note that if A is regular, the condition ‘CA “ tHu’ is sufficient but not necessary for
the equality in (5.5) to hold. Indeed, in the example considered in Figure 5.2, CA ‰ tHu
while ExtpAq and PA are both countably infinite (see Equation (5.4)).

The next corollary gives a sufficient condition for the existence of an infinite regular
family whose associated graph is edgeless and, as a consequence, for the existence of
uncountably many distinct extinction probability vectors.

Corollary 5. If there exists a (infinite) collection of pairwise disjoint subsets A1, A2, . . .

of X such that for each i ě 1 there exists xi P X with

Pxi
pSpAiq X EpX zAiqq ą 0,

then there are uncountably many distinct extinction probability vectors.
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6. Examples

We are ready to answer two important questions:

(1) The first question was asked previously in [6]: Is it possible to construct an irre-
ducible MGWBP with countably infinitely many extinction probability vectors?
Theorem 4 not only suggests that the answer is positive, it also gives insight into
how such examples may arise. In Example 1 we not only answer this question
but we go further by constructing an irreducible family of processes where, by
varying a single parameter, we can transition smoothly between cases where the
process has any finite number of extinction probability vectors, a countably infi-
nite number of extinction probability vectors, and an uncountably infinite number
of extinction probability vectors.

(2) Given a regular family A, do we always have |ExtpAq| “ |PA|? If PA is either
finite or uncountable, then equality holds. Thus, by Theorem 4(v), we may only
have |ExtpAq| ą |PA| if PA is countable and CA is uncountable. In Example 2,
both PA and CA are countable, and thus |ExtpAq| “ |PA|, while in Example 3, PA

is countable and CA is uncountable, and thus |ExtpAq| ą |PA|. This means the
answer to the above question is negative.

Example 1 is an application of the results developed in Section 4 and 5, and Examples 2
and 3 highlight the framework developed in Section 5.

Example 1: From finitely many to uncountably many extinction probability

vectors. Consider a process with type set X “ N
2

0
, where

‚ individuals of type p0, 0q have one child of type p1, 0q with probability q, and 0
children otherwise;

‚ individuals of type p0, jq, j ě 1, have one child of type p0, j ´ 1q with probability
p ă 1, and 0 children otherwise;

‚ individuals of type pi, 0q, i ě 1, have one child of type pi, 1q with probability 1,
and one child of type pi` 1, 0q with probability q; and

‚ individuals of type pi, jq, i, j ě 1, have a geometric number of children of type
pi´ 1, jq with mean r´j`1, and one child of type pi, j ` 1q with probability 1.

A visual representation of these offspring distributions is given in Figure 6.1. We partition
X in two ways: by levels, Li :“ tpi, jqujě0 for i ě 0, and by phases Pj :“ tpi, jquiě0, for
j ě 0.

Consider the family A “ tL1,L2, . . .u. The next proposition implies that, for any
p, q ă 1, we can choose r such that the process has any finite number k ě 1 of extinction
probability vectors (p1{pk´1q ă r ď p1{k), which corresponds to

L1 ð L2 ð . . . ð Lk´1 ð Lk ô Lk`1 ô . . . ,

countably infinite many distinct extinction probability vectors (r “ 1), which corresponds
to

L1 ð L2 ð L3 ð L4 ð . . . ,
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0, 0 1, 0 2, 0 3, 0

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2

0, 3 1, 3 2, 3 3, 3 . . .

. . .

. . .

. . .

P3

P2

P1

P0

...
...

...
...

L0 L1 L2 L3

q q q

p

p

p

1

1

1

1

1

1

1

1

1

111

r´1r´1r´1

r´2r´2r´2

q

1

r´1

r´2

111p

Figure 6.1. A visual representation of the offspring distributions in Ex-
ample 1. The solid arrows represent Bernoulli distributions and bold dashed
arrows represent geometric distributions (the weights represent the corre-
sponding means).

or uncountably many distinct extinction probability vectors (r ą 1), which corresponds
to

L1 ø L2 ø L3 ø L4 ø . . . .

Moreover, the proposition implies that, when r ď 1, Ext “ ExtpAq. Note that in this ex-
ample, CA “ H, and when r ď 1, the only primitive subsets are singletons. In preparation
for the next result, for any A Ď X we let

ιpAq :“ minti ě 0: |Li X A| “ 8u,
and set ιpAq :“ 8 if the above set is empty.

Proposition 4. In Example 1,

(i) if r ă 1, then there is a finite number i˚ :“ minti ě 1: ri ď pu of distinct
extinction probability vectors, namely q “ q̃ if i˚ “ 1, and

q “ qpL1q ă . . . ă qpLi˚q “ q̃ if i˚ ě 2. (6.1)

In particular, if ιpAq ă i˚ then qpAq “ qpLιpAqq, whereas if ιpAq ě i˚ then qpAq “
q̃.
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(ii) if r “ 1, then there are countably infinite many distinct extinction probability
vectors, namely

q “ qpL1q ă qpL2q ă qpL3q ă . . . , (6.2)

and q̃. In particular, if ιpAq ă 8 then qpAq “ qpLιpAqq, whereas if ιpAq “ 8 then
qpAq “ q̃.

(iii) if r ą 1, then there are uncountably many distinct extinction probability vectors.

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2. The probabilities of extinction qp0,0qpL1q (lowest curve),
qp0,0qpL2q (second lowest curve), qp0,0qpL3q, . . . , as a function of r when
p “ 0.1 and q “ 0.5.

Figure 6.2 shows the distinct probabilities of extinction tqp0,0qpLiquiě1 as a function of
r when p “ 0.1 and q “ 0.5. Observe that, in accordance with Proposition 4, the number
of extinction probabilities increases by one at r “ i

?
p for each i ě 1. The probabilities

are computed using the iterative method presented in Appendix A.

We now consider what may happen if the family A is not chosen carefully (i.e. is not
regular). Consider the family A1 “ tL1

0
,L1

1
,L1

2
, . . .u, where

L
1
i “ ` 8ď

k“0

 pi, 2kq(˘ Y ` 8ď

k“0

 pk, 2i` 1q(˘, i ě 0.

Note that A1 does not satisfy (C5): indeed we have that L1
1

ñ Ť
jPJ1

L1
j, where J1 “

t0, 2, 3, 4, . . .u. The next proposition implies that, when r ą 1, PA1 is uncountable, while
ExtpA1q is countable; this shows that, without (C5), Theorem 4(ii) might not hold.

Proposition 5. If r ą 1, then L1
i ø L1

j for all i ‰ j and ExtpA1q is countably infinite.
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Figure 6.3. Left panel: The graph GA in Example 3. Right panel: The
graph GA in which particular subsets of vertices are highlighted.

Example 2: A BRW on a grid. Consider a branching process with typeset N ˆ N in
which the generating function of type pi, jq is

Gpi,jqpsq “ 1

3
` 1

2
s3pi,jq ` 1

12
s3pi,j`1q ` 1

12
s3pi`1,jq.

In other words, an individual of type pi, jq has no children with probability 1{3, three
children of type pi, jq with probability 1{2, three children of type pi, j`1q with probability
1{12, and three children of type pi` 1, jq with probability 1{12.

Suppose we would like to determine the distinct elements of Ext. We consider the
family A “ X (the set of singletons), in which

pi1, j1q ñ pi2, j2q if and only if i1 ď i2 and j1 ď j2,

and whose associated graph GA is illustrated in Figure 6.3 (the edges implied by transitiv-
ity are omitted). Note that the family A is regular; indeed, pC1q and pC3q are immediate,
pC4q and pC5q can be verified easily (for instance by inspecting the graph GA), and pC2q
follows from the fact that the mean number of type-pi, jq offspring of a type-pi, jq parent
is 3{2 ą 1.

In this example, the primitive subsets are the subsets of X in which no element is
strictly greater (componentwise) than any other. More formally,

PA “ tA Ă X : Epi1, j1q, pi2, j2q P A with i1 ď i2 and j1 ď j2u.
The set of blue nodes in Figure 6.3 is an example of a primitive subset. Note that every
element of PA is a finite subset, and therefore PA is countable. The set of representatives
of pure ascending chains is

CA “ tpi, jq : 1 ď i ď k, j ě 1ukPN Y tpi, jq : i ě 1, 1 ď j ď kukPN Y X Y H. (6.3)

To understand how this expression for CA is obtained, observe that there are essentially
three kinds of ascending chains: those that take infinitely many steps upwards while only
taking finitely many steps to the right (representatives of these chains are given in the first
term of (6.3)), those that take only finitely many steps upwards while taking infinitely
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many steps to the right (representatives of these chains are given in the second term of
(6.3); the set of green nodes in Figure 6.3 corresponds to k “ 2), and those that take both
infinitely many steps upwards and infinitely many steps to the right (these chains have
just a single representative X ; one such path is illustrated in red in Figure 6.3).

By Proposition 3 the set of distinct extinction probability vectors is

Ext “ ExtpAq “
!
q
´Ť

pi,jqPIYJpi, jq
¯
: pI, Jq P IA

)
,

where

JA “ tpI, Jq P pPA ˆ CAq : I X J “ H, pJzI`q` “ Ju
“ tpI, Jq P pPA ˆ CAq : I X J “ Hu,

and the final equality follows from the fact that for every I P PA, I
` is a finite set. One

element pI, Jq of JA is formed by letting I and J be the set of blue and green nodes
respectively in Figure 6.3. Because PA and CA are both countably infinite, by Theorem 4,
Ext contains a countably infinite number of distinct elements. We have thus constructed
an example with ascending chains in which |PA| “ |ExtpAq|.

Example 3: A BRW on a modified binary tree. Consider the modification of an
oriented binary tree which is illustrated in Figure 6.4 and is formally constructed as
follows. Let Z :“ Ť`8

i“0
t´1,`1ui denote the set of vertices, where t´1,`1u0 “ tHu

represents the root. Note that every vertex is a finite sequence of ´1 and `1. A planar
representation of this set is given by the map γ : Z ÞÑ R

2 where γptHuq “ p0, 0q and
γptα1, α2, . . . , αnuq “ `řn

i“1
αi3

´i, n
˘
, for n ě 1. Henceforth, when we speak of “left”

and “right” we refer to the first coordinate in this planar representation. Given a vertex
tHu or tα1, . . . , αnu with n ě 1, we define the (oriented) edges as follows

ptβiumi“1
, tαiuni“1

q
õ#

αi “ βi @i ď m. if m` 1 “ n ě 1

βi “ αi @i ď n ´ 1, βn “ ´αn “ 1, βi “ ´1 @i ą n if m ě n ě 1.

Roughly speaking, the first line defines the usual upward edges in the binary tree (where
each parent has exactly two children). The second line draws lateral edges to each point
from the sibling on its right (if any) and from each descendent of this siblings in such a
way that the resulting graph is isomorphic to a planar graph (see Figure 6.4). We observe
that there are no lateral edges pointing to the right, and that from every vertex tβiumi“1

such that βi “ 1 for some i, there is always a lateral edge pointing to the left (to the
sibling if βn “ 1, or to the sibling of some ancestor if βn “ ´1). Denote this collection of
edges by EZ ; it is easy to see that there are no cycles.

We can define an MGWBP and a regular family A with GA “ pZ,EZq in a similar
manner as Example 2; however we do not provide an explicit construction here. Note
that the graph pZ,EZq satisfies the assumptions of Lemma 1, hence such an MGWBP and
regular family A must exist. For simplicity, below we will assume that, as in Example 2,
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Figure 6.4. The modified binary tree.

the typeset in our MGWBP is X “ Z and the regular family is A “ X (the set of
singletons).

In this example the set of primitive subsets is PA “ X , i.e., the set of singletons. This
is because, by construction, for any x, y P A, either x ñ y or y ñ x. To identify CA note
that each pure ascending chain corresponds to a ray in the tree, which can be represented
by its end point tαiu8

i“1
. The representative of the pure ascending chain is the set of

vertices that lie to the right of its corresponding ray. More formally, for each ray tαiu8
i“1

,
we let

hptαiu8
i“1

q :“ tHu Y
8ď

n“1

#
tβiuni“1

:
nÿ

i“1

3´iβi ě
nÿ

i“1

3´iαi

+

denote the set of vertices to the right of the ray tαiu8
i“1

. The set of representatives of
pure ascending chains is then

CA “ thptαiu8
i“1

q : tαiu8
i“1

P t´1,`1u8u . (6.4)

Note that the set CA is uncountable because there are uncountably many rays. Here, we
have

JA “ tpI, Jq P pPA ˆ CAq : I X J “ H, pJzI`q` “ Ju
“ tpI,Hq : I P PAu Y tpH, Jq : J P CAu. (6.5)

To understand Equation (6.5), note that if I ” txu P PA and J P CA, then either x P J ,
in which case I X J ‰ H, or x R J , in which case if y P J then tyu ñ txu, thus J Ď I`

and therefore pJzI`q` “ H; thus if I X J “ H and pJzI`q` “ J then either I “ H or
J “ H. By Proposition 3, the set of distinct extinction probability vectors is then given
by

Ext “ ExtpAq “ tqpIq : I P PA Y CAu.
Because CA is uncountable, by Theorem 4(v), Ext contains uncountably many distinct
elements. In addition, because X , and therefore PA, is countable, we have thus con-
structed an example in which |PA| ă |ExtpAq|. Note that in this example the inequality
in Equation (5.5) is strict.
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7. Open questions

The results in this paper motivate several open questions. Here we consider a very
general setting, in which we observe a wide variety of behaviours; for instance, in Exam-
ple 1, there can be any number of distinct extinction probability vectors. We can then
ask whether we observe similarly rich behaviour in more homogeneous settings, such as
transitive or quasi-transitive processes. We believe that the answer is negative. In partic-
ular, for quasi-transitive BRWs on a graph G, like those considered in [24] (see also the
examples in [11]), we conjecture that either (i) |Ext| “ 1, in which case q “ q̃ “ 1, (ii)
|Ext| “ 2, in which case q “ q̃ ă 1 or q ă q̃ “ 1, or (iii) |Ext| is uncountable, such as in
[6, Section 3.1]. Furthermore, we conjecture that, if the process is quasi-transitive, then
(iii) can only occur when it is nonamenable (see [4, Section 2.1] for the definition). Note
that, without the quasi-transitivity assumption, the MGWBP can exhibit an uncount-
able number of extinction probability vectors even if both the underlying graph and the
process itself are amenable (see Example 1 with r ą 1). We believe that similar results
also hold for irreducible BRWs in an i.i.d. random environment such as those considered
in [12, 18].

Moreover, the exact location of the extinction probability vectors qpAq (different from
q and q̃) in the set of fixed points S is yet to be identified. In [9], the authors conjecture
that the “corners” of the set S correspond to extinction probability vectors qpAq; see
[9, Conjecture 5.1] for a precise statement. In addition, it has been shown that S can
contain (uncountably many) fixed points which are not extinction probability vectors;
see for instance [5, Example 3.6]. Under particular assumptions (i.e. in an irreducible
LHBP), it has been shown that there is a continuum of fixed points between q and q̃ and
there are no fixed points between q̃ and 1; see [8, Theorem 1]. Here we prove that there
are no fixed points between q̃ and 1 in the general irreducible setting (Corollary 1); we
believe that, like in the setting of [8], there is a continuum of fixed points between q and
q̃, however this is yet to be established rigorously. Another closely related question is the
following: is it possible to have |Ext| ă |S| ă `8?

Finally, here we focused on the distinct elements of ExtpAq, where A is a regular
family. In Example 1, we showed that Ext”ExtpAq, and therefore the study of Ext could
be reduced to that of ExtpAq without loosing any information. More generally we may
ask under which conditions there exists a regular family A such that Ext”ExtpAq, and if
one exists, can it be described?

8. Proofs

Proof of Proposition 1. The usual way to identify the maximal and minimal fixed points
of a continuous nondecreasing function in a (partially ordered) set is to generate iteratively
two sequences starting from the maximal and minimal elements of the set (if available).

More precisely, observe that if we let pGpA,n`1qpsq “ pGpA,nqp pGpAqpsqq, then pGpA,nq
x p1q “

PxpẐpAq
n ă 8q, that is, pGpA,nq

x p1q is the probability that, given pZ0 “ ex, no type y P A

individual has been born into the population before generation n. We then have “
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pGpA,nq
x p1q Œ q

p0q
x pAq as n Ñ `8. The fact that qp0qpAq is the unique componentwise

maximal element of the set pSpAq then follows from the fact that pGpAqpsq (and therefore
its iterates) are increasing in s.

Similarly, pGpA,nq
x p0q “ PxpẐpAq

n “ 0q “ q
pnq
x pX , Aq, and the limit of this nondecreasing

sequence (namely qpX , Aq) is necessarily the minimal element of pSpAq. �

Proof of Theorem 1. (i). Let us fix s such that s ď Gpsq and suppose sx ă 1 for some
x P X .

Define rGpxq : r0, 1sX Ñ r0, 1sX such that

rGpxq
y puq “

#
ux, y “ x,

Gypuq, otherwise.

Observe that rGpxqp¨q is the generating function of the original process modified so that all
type-x individuals are frozen (at each generation they produce a single copy of themselves).

By induction, for any n ě 0, we have s ď rGpx,nqpsq, which implies s ď limnÑ8
rGpx,nqpsq.

By monotonicity of Gp¨q, this leads to Gpsq ď GplimnÑ8
rGpx,nqpsqq, which implies

s ď Gp lim
nÑ8

rGpx,nqpsqq. (8.1)

Moreover, the function

φpsxq : “ Gxp lim
nÑ8

rGpx,nqp1, . . . , 1, sx, 1, 1, . . . qq (8.2)

is the (possibly defective) generating function of the asymptotic number of frozen type-x
individuals in the modified process when we start with a single type-x individual in gen-
eration 0, and we freeze all type-x individuals after generation 1. If we let this asymptotic
number of frozen individuals be Y1 and then repeat these steps, with the initial number
of type-x individuals now being Y1, to obtain Y2 and so on, then we obtain a (possibly
defective) Galton-Watson process tYkukě0. This process is referred to as the embedded
type-x process, and it is known that the probability of extinction in tYku is qxptxuq (see
for instance the proof of [26, Theorem 4.1]). In addition, because tZnu is non-singular,
tYku is non-singular, which means that for any ε ą 0 and N ă 8 there exists K such that

1 ´ qxptxuq ´ ε ď PpYk ą Nq ď 1 ´ qxptxuq ` ε, (8.3)

for all k ě K. Combining (8.1), (8.2) and (8.3), we then have sx ď φpsxq, and for all
k ě K,

sx ď φ ˝ . . . ˝ φloooomoooon
k

psxq “ E
`
sYk
x

˘

ď psxqNp1 ´ qxptxuq ` εq ` qxptxuq ` ε.

For any η ą 0 we may then choose ε ă η{2 and N large enough so that psxqN ă η{2. For
these values of ε and N we can then choose k sufficiently large so that (8.3) holds. Taking
η Ó 0 we then obtain sx ď qxptxuq.
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(ii). It is not difficult to prove (see for instance the maximum principle [4, Proposition
2.4]) that if sx ă 1 then sy ă 1 for all y Ñ x. The previous part of the theorem yields
the claim.

(iii). In the irreducible case y Ñ x for all y P X . Whence s ‰ 1 implies sx ă 1 for all
x P X . Again, the first part of the theorem yields the claim because rqx “ qxptxuq (see [9,
Corollary 4.1]). �

Proof of Corollary 1. We only prove the equality Ext “ S since the rest follows trivially
from Theorem 1. If s “ 1 then there is nothing to prove; otherwise consider the (non-
empty) set A :“ tx P X : sx ă 1u; we prove that s “ qpAq (which shows that any fixed
point is an extinction probability vector). First, by definition of A and by the maximum
principle [4, Proposition 2.4], there are no y P Ac and x P A such that y Ñ x. Therefore
qypAq “ 1 “ sy for all y P Ac. On the other hand, if x P A then qpAq ď qptxuq; moreover
by Theorem 1(i), qx ď sx ď qxptxuq, and we also have qx ď qxpAq ď qxptxuq for all x P A,
which yields the conclusion. �

Proof of Theorem 2. We start by proving the equivalence (i) ô (iii). Theorem 2.4 in [6]

implies that, for every fixed point s, qxpBq ą sx for some x P X if and only if q
p0q
y pBq ą sy

for some y P X . It is enough to take s “ qpAq.
The implication (iii) ñ (iv) is trivial, since the probability of survival in A is strictly

larger than the probability of visiting B. The implications (iv) ñ (v) and (vi) ñ (i) are
also straightforward.

We now prove that (v) ñ (vi). Suppose PxpSpAq X EpBqq ą 0 and fix x as the type
of the initial individual. Let Fn denote the history of the process up to generation n and
observe that

MnpAq :“ PxpEpAq|Fnq “ PxpEpAq|Znq “ qpAqZn

MnpBq :“ PxpEpBq|Fnq “ PxpEpBq|Znq “ qpBqZn

are martingales. By Doob’s martingale convergence theorem MnpAq Ñ PxpEpAq|F8q “
1EpAq as n Ñ 8, with the same holding for extinction in B. Thus, by assumption

PxpSpAq X EpBqq “ Px

ˆ
lim
nÑ8

qpAqZn “ 0, lim
nÑ8

qpBqZn “ 1

˙
ą 0. (8.4)

Now, suppose by contradiction that there exists c ą 0 such that

1 ´ qipBq ě cp1 ´ qipAqq (8.5)

uniformly in i P X . Then,

qpBqZn “
ź

iPX

p1 ´ p1 ´ qipBqqqZn,i

ď
ź

iPX

p1 ´ cp1 ´ qipAqqqZn,i

ď exp

"
´ c

ÿ

iPX

Zn,ip1 ´ qipAqq
*
, (8.6)
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where to obtain (8.6) we use the fact that 1 ´ y ď e´y. In addition, using the inequality
1 ´ ś

iPI αi ď ř
iPIp1 ´ αiq (where I is countable and αi P r0, 1s for all i P I) and the

subadditivity of the probability measure,

1 ´ qpAqZn ď
ÿ

iPX

p1 ´ qipAqZn,iq ď
ÿ

iPX

Zn,ip1 ´ qipAqq

so that
qpAqZn ě 1 ´

ÿ

iPX

Zn,ip1 ´ qipAqq. (8.7)

Combining (8.6) and (8.7) we obtain

Px

ˆ
lim
nÑ8

qpAqZn “ 0, lim
nÑ8

qpBqZn “ 1

˙

ď Px

ˆ
lim inf
nÑ8

ÿ

iPX

Zn,ip1 ´ qipAqq ě 1, lim
nÑ8

ÿ

iPX

Zn,ip1 ´ qipAqq “ 0

˙

“ 0,

which contradicts (8.4). Thus, the assertion in (8.5) cannot hold.

The equivalence (i) ô (ii) follows from the equality SpAq X EpBq “ SpAzBq X EpBq
and the fact that (v) ô (i) (apply (v) with AzB instead of A).

Finally, we prove (iv) ô (vii). Assume A “ X . Since ŜpBq is non-empty, by
Proposition 1 it is not a singleton if and only if qpX , Bq ă qp0qpBq. Note that

q
p0q
x pBq ´ qxpX , Bq “ PxpN pBq X SpX qq whence qpX , Bq ă qp0qpBq if and only if there
exists x P X such that PxpN pBq X SpX qq ą 0, that is, if and only if (iv) holds. �

Proof of Corollary 2. If supxPX qx “ 1 there is nothing to prove. Otherwise, suppose
supxPX qx ă 1; then by Theorem 2 (vi) (set A “ X and B “ A), we have

inf
xPX

p1 ´ qxpAqq ď inf
xPX

1 ´ qxpAq
1 ´ qx

“ 0,

which yields the claim. �

Proof of Theorem 3. The equivalence piiq ô piiiq follows from Corollary 4.

Suppose that (C4) holds. Let us prove that piq ñ piiq. Since for all i P I we have
Ai ñ Aj for some j P J , then Ai ñ Ť

jPJ Aj for all i P I which, by (C4), impliesŤ
iPI Ai ñ Ť

jPJ Aj . By exchanging the role of I and J we prove the claim. This implies

that the map rIs„ ÞÑ q
`Ť

iPI Ai

˘
is well defined and, if (C1) holds, it is a surjective map

onto ExtpAq.
Now assume (C2) and (C5). We prove that piiq ñ piq. Suppose that either I or J are

empty; then (i) holds if and only if they are both empty. The same holds for (iii) and
(ii) because q

`Ť
iPI Ai

˘ “ 1 if and only if I “ H. We can assume henceforth I, J ‰ H.
Suppose, by contradiction, that there exists i P I such that Ai œ Aj for all j P J (if
there exists j P J such that Aj œ Ai for all i P I we proceed analogously): in this case
J Ď Ji and, by (C5), Ai œ Ť

jPJ Aj. This implies
Ť

iPI Ai œ Ť
jPJ Aj and yields the
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claim. Moreover, it implies that q
`Ť

iPI Ai

˘ ÞÑ rIs„ is a well defined surjective map from

a subset of ExtpAq onto 2KA{„. �

Proof of Lemma 1. Fix a family of probability distributions triuiPZ , where ri “ trijujPZ

such that rii “ 1{2 for all i P Z and, when i ‰ j, rij ą 0 if and only if pi, jq P EZ .
Consider a probability generating function φpsq such that φ1p1q ą 2.

We define a MGWBP on Z by the following reproduction rules: a particle living at
i produces a random number of offspring according to the distribution with probability
generating function φ; each newborn particle is placed at random independently according
to the distribution ri. The offspring generating function of this MGWBP is Gipsq :“
φpřj rijsjq. Define the family A as the collection of singletons Ai :“ tiu for i P Z.

Clearly local survival in i implies survival in j if and only if there is a path from i to
j in pZ,EZq. Let us prove regularity. Condition pC1q is trivial and, since there are no
closed paths in pZ,EZq, then Condition pC3q follows.

The probability of local extinction starting from i is the smallest nonnegative fixed
point of the generating function ψpsq :“ Gipsq|si“s,sj“1,j‰i; indeed, every child placed
outside i cannot contribute to the local survival (because there are no closed paths of
length strictly larger than 1). This means that each particle in the progeny has the same
(positive) probability 1 ´ β of generating a population which survives locally and this
implies pC2q.

Let us pick I Ď Z. If the process survives in
Ť

iPI Ai then there are infinitely many
descendants, and by a Borel-Cantelli argument, almost surely, at least one of them (actu-
ally an infinite number of them) will generate a progeny which survives locally. Thus, for
every fixed I, survival in

Ť
iPI Ai implies survival in Ai for some i P I. This proves that

Condition (C4) holds.

To prove pC5q it is enough to observe that Ai œ Aj if and only if there is no path
from i to j in pZ,EZq; thus, if the process starts from i, then the probability of visitingŤ

jPJi
Aj “ Ji is 0, while the probability of survival in Ai is strictly positive. �

Proof of Lemma 3. Recall that, by definition, rIds„ “ rIM s„, that is, Id „ IM .

(i). If Ic “ H then I “ Id and rIs„ “ rIds„ “ rIM s„. Conversely, if I „ IM then for all
i P I there exists j P IM such that Ai ñ Aj , thus i P Id. This implies that IC “ H.

(ii). The claim follows from the chain of equalities rIds„ “ rIM s„ “ rJM s„ “ rJds„.

(iii). If IM “ JM then Id „ Jd by (ii). Conversely, since rIM s„ “ rIds„ “ rJds„ “
rJM s„, IM and JM are primitive subsets, and (C3) holds, we have rIM s„ “ rJM s„, which
implies IM “ JM because these sets are primitive.

(iv). Let us prove ùñ. Let I „ J and i P IM . If j P J such that Ai ñ Aj , there
exists i1 P I such that Aj ñ Ai1 , thus Ai ñ Ai1 whence i “ i1 “ j (from the definition
of IM and from (C3)). Since by the equivalence there exists such a j P J , we have that
i is an element of J which does not imply any other element of J , that is, i P JM . Thus
IM Ď JM ; by exchanging the role of I and J , we have IM “ JM . For all i P Ic, there exists
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j P J such that Ai ñ Aj and, by the definition of Ic, there is no l P IM such that Aj ñ Al.
Since IM “ JM then j P Jc. By exchanging the role of I and J we have Ic „ Jc.

Let us now prove ðù. Let i P I. If i P IM “ JM then i P J . If i P Id then, since
Id „ Jd, Ai ñ Aj for some j P Jd Ď J , whence Ai ñ Aj for some j P J . By exchanging
the role of I and J , we have that for all j P J there exists i P I such that Aj ñ Ai. This
proves that I „ J .

(v). Note that, from (iv), if I „ J then Ic “ H if and only if Jd “ H. Whence, if J
is primitive and I „ J we have H “ Jc “ Ic. The converse follows from (i) by taking
I :“ JM .

(vi). We prove, by induction, that there is a sequence of pairwise distinct elements
tinunPN such that, for all n P N, in P Ic and Ain ñ Ain`1

. Since Ic ‰ H there exists
i0 P Ic. Suppose that we have n ` 1 distinct elements i0, i1, . . . , in P Ic satisfying the
above relation. Since in R IM there exists in`1 ‰ in in I such that Ain ñ Ain`1

. By (C3),
in`1 ‰ ij for all j ă n. If j P I such that Ain`1

ñ Aj then Ain ñ Aj whence j ‰ IM since
in P Ic; this implies that in`1 P Ic.

(vii). It follows easily from (iii) and (iv), from the decomposition I “ Id Y Ic and from
the basic properties discussed above, pJdqM “ pJMqM “ JM , pJdqd “ Jd, pJMqc “ pJdqc “
pJcqM “ pJcqd “ H which hold for all J Ď KA.
Suppose that J „ I and consider the decomposition J “ Jd Y Jc. Observe that, from (iv)
and the basic properties discussed above, pJdqM “ JM “ IM , pJdqc “ pJcqM “ pJcqd “ H.
By taking H :“ Jd andW :“ Jc we prove that J belong to the set in the right-hand-side.
Conversely, let J “ H YW belong to the set in the right-hand-side, and let us prove that
J „ I. If i P Id then Ai ñ Aj for some j P IM “ HM Ď J then Ai ñ Aj where j P J . If
i P Ic then, by hypotheses there exists j P Wc Ď J such that Ai ñ Aj . If j P Jd �

Proof of Proposition 2. Assume (C3). We make use of Lemma 3 to show that the map
gAprIs„q “ pIM , pIcq`q is a bijection from 2KA{„ onto IA. The map is well defined and

injective by Lemma 3(iv); indeed, note that Ic „ Ĩc if and only if pIcq` “ pĨcq`. By the
definition of Ic it is clear that for all i P IM and j P Ic we have Ai ø Aj , whence the
image of the map is a subset of IA (take J “ pIcq` and J̄ “ Ic in Equation (5.2)).

We are left to prove that the map is surjective. Note that IA can be equivalently
defined as

IA :“ tpI, Jq P pPA ˆ CAq : DJ̄ „ J, @i P I, @j P J̄ , Ai ø Aju. (8.8)

Let pI, Jq P IA and let J̄ „ J such that @i P I, @j P J̄ , Ai ø Aj . If we define Ī :“ I Y J̄

we have that ĪM “ Īd “ I and Īc “ ĪzĪd “ J̄ ; clearly pJ̄q` “ J since J̄ „ J . Then
gAprĪs„q “ pI, pJ̄q`q “ pI, Jq, whence the map is surjective and (i) is proved.

When CA “ tHu then IA “ PA ˆ tHu. The claim (ii) follows by the equality fA “
g´1

A
˝ h, where h is the natural bijection from PA onto PA ˆ tHu.

�

The proofs of Theorem 4 and Corollary 5 require the following lemma.
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Lemma 4. Let A “ tA1, A2, . . . , AκA
u with κA ď `8.

(i) κA ă 8 if and only if PA is finite.
(ii) If κA “ 8, then the following statements are equivalent:

(1) PA is uncountable;
(2) there exists an infinite, primitive I;
(3) there exists a family A1 Ď A such that A1

i ø A1
j for all A1

i, A
1
j P A1;

Proof of Lemma 4. (i). Clearly if κA ă `8 is finite then PA is finite as well. Conversely,
since every singleton tiu, where i P KA, is a primitive set, the reverse implication holds.

(ii). If I Ď KA is primitive and infinite, then it must be countably infinite; in
this case, every subset of I is primitive, and the collection of all subsets of I is un-
countable, thus we have (2) ñ (1). To prove (1) ñ (2), it is enough to note that
tI Ď KA : I primitive and finiteu Ď Ť8

i“0
Ki

A which is a countably infinite set (provided
κA ‰ 0). The implication (2) ñ (3) is straightforward if we take A1 :“ tAi : i P Iu. To
prove (3) ñ (2), just take I :“ ti P KA : Ai P A1u. �

Proof of Theorem 4. (i). Clearly if A is finite then ΣpAq is finite and ExtpAq is finite
as well (there is no need for (C3) to hold here). Conversely, if ExtpAq is finite, then by
Theorem 3 (which holds without any assumptions on singletons), we have that 2KA{„ is
finite. By Lemma 2, PA is finite as well. By Lemma 4(i) κA is finite.

(ii). We observed that, if (C2), (C3) and (C5) hold, then by Lemma 2 and Theorem 3,
there is an injective map from PA into the set ExtpAq, and this yields Equation (5.5).
By regularity, according to Theorem 3, |ExtpAq| “ |2KA{„|. If, in addition there are no
ascending chains, by Proposition 2, we have equality in Equation (5.5).

(iii). Suppose ExtpAq is countably infinite which, as shown above, implies κA “ 8. By
Lemma 4(ii) and Equation (5.5), an infinite primitive I Ď KA does not exist. Consider
the graph GA on KA; let I0 “ H and for j ě 1, define Ij recursively so that Ij is the set of

vertices with out-degree zero in the induced graph GArKAzpŤj´1

i“0
Iiqs. By construction,

EArIjs “ H for all j, thus there cannot exist j such that |Ij | “ 8, since Ij is primitive.
In that case, either there exists j0 ě 1 such that |Ij | “ 0 for all j ě j0, or 0 ă |Ij | ă 8
for all j ě 1. In the former case, because κA “ 8 and the graph contains no cycles in
GA, there must exist an infinite path Ai1 ñ Ai2 ñ Ai3 ñ . . . . In the latter case, since
for all l P In`1 there exists r P In such that Al ñ Ar, by transitivity we have that for
all l P Ť

jąi Ij there exists r P Ii such that Al ñ Ar. Since 0 ă |In| ă `8 for all n

and the sets tInun are pairwise disjoint, we have that
ˇ̌ Ť

jąn Ij
ˇ̌ “ `8 for all n. Besides,

we have that for all n, there exists i P In such that di :“ |tr P Ť
jąn Ij : Ar ñ Aiu| is

infinite. Clearly, given any in P In such that din “ `8, there exists in`1 P In`1 such that
din`1

“ `8 and Ain`1
ñ Ain . It is possible to construct iteratively a sequence tinun such

that in P In, din “ `8, and Ain`1
ñ Ain. In both cases the family A1 “ tA1

1
, A1

2
, . . .u,

where A1
n :“ Ain, satisfies (C2), (C3) and (C5). Moreover it is regular if A is regular.

(iv) and (v). According to Proposition 2 and Theorem 3, regularity implies that ExtpAq,
2A{„, and IA have the same number of (distinct) elements. By Equation (5.2) and the
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remarks thereafter,
maxp|PA|, |CA|q ď |IA| ď |PA ˆ CA|.

By recalling that |PA| ě 1 and |CA| ě 1, it is easy to show that maxp|PA|, |CA|q and
|PA ˆ CA| are simultaneously finite, simultaneously countably infinite, or simultaneously
uncountable. Whence, the above double inequality yields the following table,

|PA| ă 8 PA countably 8 PA uncountable

|CA| ă 8 |IA| ă 8 IA countably 8 IA uncountable

CA countably 8 IA countably 8 IA countably 8 IA uncountable

CA uncountable IA uncountable IA uncountable IA uncountable,

and this proves the claims.

�

Proof of Corollary 5. Let A “ tA1, A2, A3, . . .u. By assumption, for all i ě 1, Ai œ X zAi,
so Ai œ Aj for j ‰ i. This implies that A is regular and I “ N is a primitive set.
Therefore, by Lemma 4(ii) and Theorem 4(i), ExtpAq is uncountable. �

Proof of Proposition 4. Assume r ď 1 (cases (i) and (ii)). We consider the family A “
tL0,L1,L2, . . .u and start by showing that for any i ě 1, Li´1 ð Li, that is, survival in
Li implies survival in Li´1, regardless the initial type. This implies qpLi´1q ď qpLiq.

Observe that, with probability one, an initial pi, jq-type individual has an infinite line
of descent made of all pi, kq-types for k ě j. Let ξk denote the geometric number of
pi´ 1, kq-type offspring born to the pi, kq-type individual in this line of descent. We have

ÿ

kěj

P rξk ě 1s “
ÿ

kěj

1

1 ` rk´1
“ 8;

because this sum is infinite for all j ě 0, by the Borel-Cantelli Lemma, if the process ever
reaches Li, then with probability 1, there are infinitely many individuals in Li who have
at least one child in Li´1; thus, survival in Li implies survival in Li´1.

We note that global survival implies survival in
Ť

0ďiďℓ Li for some ℓ ě 1; in particular,
global survival implies survival in L1, and therefore in L0. This leads to q “ qpL0q “
qpL1q.

Next, we show that the study of Ext can be reduced to the study of ExtpAq: in other
words, for any subset A Ď X , if ιpAq “ 8 then qpAq “ q̃, while if ιpAq ă 8 then
qpAq “ qpLιpAqq.

We first assume that ιpAq “ 8. If |A| ă 8, then clearly qpAq “ q̃ since the process is
irreducible, so we take |A| “ 8. In this case survival in A implies survival in P0. To see
why, suppose there is a positive chance of survival in A. If, by contradiction, the process
became extinct in P0 there would exist a finite maximum level K ever reached by the
process. Since ιpAq “ 8, we would have |A X pŤK

i“0
Liq| ă 8, thus survival in A and

extinction in P0 would imply that the process survives locally. However, by irreducibility,
local survival implies survival in P0 which yields a contradiction. Hence qpAq ě qpP0q.
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To show q̃ ” qpp0, 0qq “ qpP0q first observe that, by Theorem 1(iii), q̃ ě qpP0q. On the
other hand, extinction in p0, 0q implies that a finite number of particles will ever reach
p0, 0q, and since each of them reaches a finite level in P0 almost surely, there is almost
sure extinction in P0. When ιpAq “ 8 we therefore have q̃ ě qpAq ě qpP0q “ q̃.

We now assume 1 ď ιpAq ă 8. First, observe that survival in Li implies survival in A
whenever |Li X A| “ 8; for instance when i “ ιpAq. Next, we show that survival in A

implies survival in LιpAq; by definition of LιpAq, A only contains a finite number of types
in the levels below LιpAq, namely the types in A1 :“ AX YiăιpAqLi. Therefore, survival in
A implies survival in at least one of A1 and AzA1. By the argument above, survival in
A1 implies local survival, which implies survival in LιpAq. On the other hand, survival in
AzA1 also implies survival in LιpAq because survival in Lℓ implies survival in Lℓ´1 for all
ℓ ě 1 when r ď 1. So qpAq “ qpLιpAqq.

Finally, if ιpAq “ 0, then extinction in A implies extinction in L1, and therefore ex-
tinction in L0; indeed, by the above argument, survival in L1 implies that infinitely many
individuals in L1 will have at least one child in AXL0. On the other hand, here A1 “ H,
and survival in A implies survival in L0 for the same reason as above. So qpAq “ qpL0q.

Thus, for r ď 1, we have at most a countable number of distinct extinction probability
vectors.

Assume r “ 1 (case (ii)). We show that when r “ 1, the family AztL0u is regular,
and due to the linear structure of GA, the edgeless subgraphs are precisely the countably
infinite singletons (individual levels). It is enough to prove that for any i ě 1, Li œ Li`1,
that is, there exists x P X such that qxpLiq ă qxpLi`1q. This implies qpLiq ă qpLi`1q. It
suffices to show that, starting from x, there is a positive chance of survival in Li without
ever reaching Li`1. We consider a pi, k ` 1q-type individual (k ě 0) and note that the
expected number of its descendants that eventually reach t p0, k`jq when all particles are
frozen as soon as they reach L0, is

`
i`j´1

j´1

˘
. Each frozen particle at p0, k`jq independently

has probability pk`j of having a descendant that reaches p0, 0q; we refreeze the particles
reaching p0, 0q. Thus, the expected number of frozen p0, 0q-type descendants of the initial
pi, k ` 1q-type individual is given by

pk
8ÿ

j“1

ˆ
i` j ´ 1

j ´ 1

˙
pj ă 8

when p ă 1. Since the sum is finite, we can select k such that the initial type x “
pi, k ` 1q has an expected number of frozen p0, 0q-type descendants strictly less than 1.
By Markov’s inequality there is a positive chance that the original particle has no p0, 0q-
type descendants, and hence has no descendants in Li`1. The family AztL0u satisfies the
conditions of Theorem 4(v).

Assume r ă 1 (case (i)). For any i ě 1, we show that if ri ą p, then qpLiq ă qpLi`1q,
while if ri ď p then qpLiq “ q̃; this implies that Li ô Lj if and only if ri ď p and rj ď p.
Hence the family A does not satisfy (C3), but the subfamily A1 :“ tL1, . . . ,Li˚u does and
it is regular.
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Assume first that ri ą p. We need to show that there exists x P X such that qxpLiq ă
qxpLi`1q. Following similar arguments as in case (ii), it suffices to show that the expected
number of frozen p0, 0q-type descendants of an initial pi, 1q-type individual is finite. This
expected number is bounded above by

8ÿ

j“1

ˆ
i` j ´ 1

j ´ 1

˙
pr´j`1qi pj ,

which is finite when ri ą p.

Finally, assume ri ď p. Because qpLiq ď q̃, it remains to show that q̃ ď qpLiq, or
equivalently, that survival in Li implies local survival. Without loss of generality, we
consider an initial pi, 1q-type individual and we show that, with probability 1, it has
an infinite number of p0, 0q-type descendants. Indeed, with probability 1, the initial
individual has an infinite line of descendance made of type tpi, jqujě1 individuals. The
probability that any pi, jq-type individual in this line of descendants has at least one
(frozen) p0, 0q-type descendant is bounded from below by the probability of having at
least one descendant along the direct path from pi, jq to p0, jq in Pj and then along the

direct path from p0, jq to p0, 0q in L0. This probability is 1 ´ G
piq
j p1 ´ pjq, where Gpiq

j psq
is the composition of i geometric probability generating functions with mean r´j`1 and
satisfies

1

1 ´ G
piq
j psq

“ prj´1qi
1 ´ s

` `
1 ` rj´1 ` prj´1q2 . . .` prj´1qi´1

˘
.

Because

ÿ

jě1

1 ´ G
piq
j p1 ´ pjq “

ÿ

jě1

˜
r´1

ˆ
ri

p

˙j

`
ˆ
1 ´ priqj´1

1 ´ rj´1

˙¸´1

“ 8,

since the general term of the series diverges when ri ď p, by the Borel-Cantelli lemma, with
probability 1, the pi, 1q-type individual has infinitely many (frozen) p0, 0q-type descen-
dants. By extension the same is true when we start with any pi, jq-type individual. This
shows that survival in Li implies local survival. In this case ΣpAq “ ΣptLi : 1 ď i ď i˚u
and Theorem 4(i) applies.

Assume r ą 1 (case (iii)). We show that for each i, j ě 1,

Ppi,jqpSpLiq X EpX zLiqq ą 0. (8.9)

Corollary 5 then implies that there are uncountably many distinct extinction probability
vectors.

Recall that, with probability one, an initial pi, jq-type individual has an infinite line
of descent made of types pi, kq for k ą j, and that ξk denotes the geometric number of
pi´ 1, kq-type offspring born to the pi, kq-type individual in this line of descent. By direct
computation,

Ppξk “ 0 @k ě jq “
`8ź

k“j

´
1 ´ r´k`1

1 ` r´k`1

¯
ą 0
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since
ř`8

k“j r
´k`1 ă `8. Thus, for all j ě 1, there is positive probability that the

descendants of pi, jq never reach Li´1, and therefore (8.9) holds.

�

Proof of Proposition 5. A similar argument as in the proof of Proposition 4 (r ą 1) can
be used to show that L1

i ø L1
j for all i ‰ j.

Then, for any I Ď N with |I| “ 8 we have qpŤiPI L
1
iq “ qpX q, and for any |I| ă 8

we have qpŤiPI L
1
iq “ qpŤiPI Liq; since the number of finite subsets of N0 is countably

infinite, this proves that ExtpA1q is countably infinite. �

Appendix A: Numerical computation of qpAq
We describe an iterative method to compute the extinction probability vector qpAq for

any subset A Ď X in an irreducible MGWBP. Since X is countably infinite, we first relabel
the types in A as 1, 2, 3, 4, . . ., and the types in X zA as 11, 21, 31, 41, . . .. For k, ℓ1 ě 1, we
then define qpk,ℓ1qpAq as the global extinction probability vector of the finite-type modified
branching process where the types in A larger than k are immortal and the types in X zA
larger than ℓ1 are sterile. More precisely, the offspring generating function Ḡpk,ℓ1qpsq of
the modified process is such that

Ḡ
pk,ℓ1q
i psq “ Gipsq for all i P A, i ă k,

Ḡ
pk,ℓ1q
i1 psq “ Gi1psq for all i1 P X zA, i1 ă ℓ1,

Ḡ
pk,ℓ1q
i psq “ 0 for all i P A, i ě k,

Ḡ
pk,ℓ1q
i1 psq “ 1 for all i1 P X zA, i1 ě ℓ1,

and qpk,ℓ1qpAq is the minimal fixed-point of the (finite) system s “ Ḡpk,ℓ1qpsq, obtained by
functional iteration.

Proposition 6. If the MGWBP is irreducible then

lim
kÑ8

lim
ℓ1Ñ8

qpk,ℓ1qpAq “ qpAq.

The proof follows the same arguments as that of Theorem 4.3 in [9]. Note that the
convergence rate of the sequence tqpk,ℓ1qpAquk,ℓ1ě1 depends on the way the types are rela-
belled. In addition, it is often more efficient to let k “ ℓ1 and let them increase to infinity
together; however, we must be careful since that does not always guarantee convergence,
as highlighted in [9]. The computational method can be optimised depending on the
example under consideration.
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