
Politecnico di Milano

Piazza Leonardo da Vinci, 32

20133 Milano

www.polimi.it

Year: 2023

cPNN: Continuous Progressive Neural Networks for Evolving Streaming Time

Series

Federico Giannini, Giacomo Ziffer, Emanuele Della Valle

DOI: https://doi.org/10.1007/978-3-031-33383-5_26

Posted on ResearchGate

URL: https://www.researchgate.net/publication/371144486_cPNN_Continuous_Progressive_Neural_Networks_

for_Evolving_Streaming_Time_Series

Originally published at:

Giannini, F., Ziffer, G., Della Valle, E. (2023). cPNN: Continuous Progressive Neural Networks for Evolving

Streaming Time Series. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data

Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13938.

DOI: https://doi.org/10.1007/978-3-031-33383-5_26

Publisher: Springer, Cham

cPNN: Continuous Progressive Neural Networks
for Evolving Streaming Time Series

Federico Giannini1[0000−0002−4210−6271], Giacomo Ziffer1[0000−0002−2768−3580],
and Emanuele Della Valle1[0000−0002−5176−5885]

DEIB, Politecnico di Milano, Milano, Italy
{federico.giannini,giacomo.ziffer,emanuele.dellavalle}@polimi.it

Abstract. Dealing with an unbounded data stream involves overcoming
the assumption that data is identically distributed and independent. A
data stream can, in fact, exhibit temporal dependencies (i.e., be a time se-
ries), and data can change distribution over time (concept drift). The two
problems are deeply discussed, and existing solutions address them sepa-
rately: a joint solution is absent. In addition, learning multiple concepts
implies remembering the past (a.k.a. avoiding catastrophic forgetting
in Neural Networks’ terminology). This work proposes Continuous Pro-
gressive Neural Networks (cPNN), a solution that tames concept drifts,
handles temporal dependencies, and bypasses catastrophic forgetting.
cPNN is a continuous version of Progressive Neural Networks, a method-
ology for remembering old concepts and transferring past knowledge to
fit the new concepts quickly. We base our method on Recurrent Neural
Networks and exploit the Stochastic Gradient Descent applied to data
streams with temporal dependencies. Results of an ablation study show
a quick adaptation of cPNN to new concepts and robustness to drifts.

Keywords: Data streams · Catastrophic forgetting · Concept drift

1 Introduction

In a context where data comes as an unbounded data stream and is continually
evolving, we must overcome the central hypothesis of Machine Learning (ML): the
assumption according to which data is independent and identically distributed
(shortly, i.i.d). It does not hold for any data stream where data could suffer from
changes in its distribution (the so-called "concept drift") and shows temporal
dependencies. While the literature has deeply investigated the two situations
separately, few works deal with the joint problem. The need to find a combined
solution is, thus, increasingly emerging. We formalize the mentioned problem by
calling it Evolving Streaming Time Series (ESTS). "Evolving" indicates
the possibility of concept drift, while "Streaming" refers to data points arriving
continually from an unbounded data stream. We use "Time Series" to stress
the presence of temporal dependencies. Working with concept drifts and multi-
ple concepts makes it necessary to consider the well-known stability-plasticity
dilemma [14], according to which too much plasticity results in forgetting past

2 F. Giannini et al.

knowledge. This problem is known as catastrophic forgetting (CF) [10]. Too
much stability leads, instead, to difficulties in learning new knowledge.

Among the models for dealing with time series, sequential models based on
Recurrent Neural Networks (RNN) are widely used in the literature [7]. Applying
Neural Networks (NN) to the streaming scenario allows it to exploit its learning
algorithm’s (Stochastic Gradient Descent, SGD) adaptability. In contrast, SGD
can suffer when the new concept differs significantly from the previous one, and
a NN forgets the last concept when it learns a new one. To resolve these issues,
Progressive Neural Networks (PNN) [19] consist of NN architectures to jointly
remember the previously learned knowledge and use transfer learning to recycle
the knowledge gained from old concepts [16]. However, this methodology is not
meant to deal with an ESTS.

Our work, thus, aims to investigate the following research question: in the
context of an Evolving Streaming Time Series, is there a solution to jointly manage
concept drifts, temporal dependencies, and catastrophic forgetting? In this paper,
we positively answer this question by contributing Continuous PNN (cPNN),
a novel continuous version of PNNs that extends them to an ESTS scenario.
We first propose a strategy to exploit SGD in a streaming scenario to tame
temporal dependencies. Secondly, our approach utilizes PNN-based architectures
to efficiently address both concept drifts and CF, using transfer learning to enable
rapid adaptation to new concepts while maintaining the predictive ability of
previously learned ones. A crucial feature of cPNN is that the architecture can
be potentially applied to each type of RNN model. We conduct an ablation study
on a binary classification problem during the experiment phase to test cPNN
on synthetically generated data streams. We compare cPNN with two ablated
architectures: cLSTM and mcLSTM. After a concept drift, cLSTM continues
training on the new concept. It, thus, does not avoid CF and is not concept
drift aware. mcLSTM avoids CF, but it does not use transfer learning. Temporal
dependencies are tamed by using RNN models. Results show that cPNN performs
better after concept drifts than ablated architectures.

The rest of the paper is organized as follows. Firstly, Section 2 analyzes the
already present ideas in literature. Section 3 exposes our method and contributions.
Then, Section 4 discusses the settings of our experiments, while Section 5 exhibits
the results. Finally, Section 6 discusses conclusions and future works.

2 Related Works

Continual Learning (CL) thoroughly investigated methods to learn and avoid
CF continually [12]. The Task Incremental Learning scenario assumes that data
is split into batches of samples (named experiences) provided over time. Each of
them represents a task. The data distribution and objective function are normally
fixed within a task. In this paper, we refer to this scenario whenever we use CL.

In this context (shown in Fig. 1.a), PNNs [19] are NN architectures that use
transfer learning to recycle knowledge gained from previous tasks. Furthermore,
the parameters associated with the old tasks are frozen to avoid CF. PNNs, thus,

cPNN: Continuous PNNs for Evolving Streaming Time Series 3

t t m

1s T

((

2 T

C 0
C 1

1s C t 2 C n

d d 1 d 2 d 3 d 4 d ...

S r am g M LC n L

d
ri
ft

d
ri
ft

C 0
C 1

d d

Fig. 1. Comparison of CL and SML scenarios.

can learn a new task while keeping the predictive ability on the earlier tasks. The
architecture is built dynamically and starts with a single NN (named column).
Equation 1 shows that, for each new task k, a column is added whose i-th layer
receives the (i-1)-th layer’s output h

(k)
i−1 of column k and the (i-1)-th layers’

outputs h
(j)
i−1 of all the earlier columns. Wi and Ui are the weight matrices to be

learned. Ui are called lateral connections and implement transfer learning.

h
(k)
i = f

W
(k)
i h

(k)
i−1 +

∑
j<k

U
(k:j)
i h

(j)
i−1)

 (1)

PNNs, on their own, do not tame temporal dependencies. To do so, they must
use RNNs as columns, which operate on fixed-size sequences of items. RNNs
recursively express the i-th hidden layer’s output hi as a function of the i-th item’s
features Xi and the output hi−1 of the (i-1)-th hidden layer. Due to the vanishing
gradient, such an architecture cannot tame long temporal dependencies [7]. Long
short-term memory (LSTM) [8] resolves this issue by memorizing only the
helpful information and introducing the memory cell representing past cumulated
knowledge. Gated Incremental Memory (GIM) [4] develops a recurrent
version of PNNs using LSTM as columns. Column k receives lateral connections
only from column k − 1 to decrease the number of parameters. The i-th item’s
hidden layer h

(k)
i of column k is computed as expressed by Equation 2. For each

item i, its features Xi and the previous column’s i-th hidden layer output are
concatenated. Lateral connections are represented by the weights applied to the
output of the previous column’s hidden layer. The model’s output is computed
for each sequence element i by applying a further layer after hi.

h
(k)
i = LSTM([Xi, h

(k−1)
i]) (2)

The works mentioned above assume all data in each experience to be accessible
at once. The specific paradigm called Streaming Machine Learning (SML) [3],
instead, was introduced to learn continually from a data point (or mini-batch)
at a time (see Fig. 1.b). Concept drift, that is a phenomenon in which the
statistical properties of a target domain change over time in an arbitrary way [13],
is a crucial issue that SML tames. We can distinguish two types of concept

4 F. Giannini et al.

drift: virtual and real. It is easy to take them apart in the context of streaming
classification. Virtual concept drifts do not affect the decision boundary, while
real ones do. Additionally, in an abrupt drift, the new concept replaces the old
one in a short period or in an exact instant, while in gradual and incremental
drifts, the new concept gradually or incrementally replaces the old one. Finally,
the concepts could reoccur over time. Concept drift detectors can detect all the
mentioned types of concept drift [13].

Most SML methods assume that the data stream’s points are independent.
In the real world, this assumption is unrealistic since they can exhibit temporal
dependencies. Despite many works raising the issue that ignoring this situation
can cause problems in the learning and evaluation processes [18, 23, 24], taming
of temporal dependencies in an evolving data stream is still an open issue.

3 Proposed Method

This work proposes cPNN, a novel methodology for applying NNs to perform
binary classification of an ESTS’ data points. In Section 3.1, we analyze SGD
behavior on data streams containing concept drifts. Section 3.2 proposes a method
to exploit SGD in an ESTS scenario. Finally, Section 3.3 presents cPNN.

3.1 Stochasting Gradient Descent for Evolving Data Streams

The SGD’s iterative nature makes it possible to apply it on data streams by
buffering the data points in fixed-size batches [7].1 Fig. 2 illustrates this idea by
analyzing a NN composed of a single linear neuron with two weights and no bias.
Let’s assume that the NN at dC1, when a first abrupt drift occurs, has learned
the decision boundary illustrated in Fig. 2.a. Notice that the second concept only
marginally modifies the boundary between classes. Thus, SGD can quickly adapt
to the drift since the minimum of the new concept’s loss function is close to the
previous one. On the contrary, the third concept swaps the classes when it occurs
at dC2. In this case, the new minimum is distant, and the SGD algorithm requires
more iterations to reach it. Furthermore, the performance initially collapses since
the starting configuration optimizes the inverted problem. In any case, when
the model adapts to the new concept, it forgets the previous one since SGD has
reached the new minimum. The more the new decision boundary changes, the
lower the performance. Thus, a simple NN cannot deal with CF.

3.2 Stochasting Gradient Descent for Streaming Time Series

As already stressed, although the i.i.d. assumption is usually made for each
concept, data can show time dependence that requires RNN models like LSTM.
To ensure that SGD is an unbiased gradient, we cannot sample an entire i.i.d.
1 See MOA’s Perceptron application: https://www.cs.waikato.ac.nz/~abifet/MOA/
API/classmoa_1_1classifiers_1_1functions_1_1_perceptron.html

cPNN: Continuous PNNs for Evolving Streaming Time Series 5

dd d

d

d d ..

d

a
c
a
y

tim

d
ri
ft

d
ri
ft

Class0

Class1

1st
boundary

Points
near the
1stboundary

0.0 0.2
x1

0.75

1.00

x 2

w
1

w2

loss

(a)

w
1

w2

loss

(b)

0.0 0.2
x1

0.75

1.00

x 2

w
1

w2

loss

(c)

0.0 0.2
x1

0.75

1.00

x 2

..

Fig. 2. Loss functions’ minimum and accuracy trend of a single linear neuron associated
with the following classification functions: (a) −x1+x2−0.8 ≥ 0 (b) −x1+x2−0.7 ≥ 0
(c) −x1 + x2 − 0.7 < 0.

training set [15]. The data points are, in fact, not available at once, and data
has autocorrelations. We, therefore, input the data points in chronological order.
Notice that, in this way, we are not minimizing the loss function to all the data
but only to the most recently seen data points [1]. Indeed, the literature on data
streams [2] commonly assigns greater weight to recent data points because we
expect that future data points related to the current concept will bear greater
similarity to recent data. In particular, we adopt windowing from Data Stream
Management Systems to propose (see Fig. 3) to buffer data points in a batch
with size B and build the sequences using a sliding window (with size W) once
the batch is complete. In this way, we produce B-W+1 sequences for each batch.
Notably, the windowing approach permits us to keep the temporal order.

3.3 Continuous PNN (cPNN)

To better adapt to the concept drift, we propose a methodology to combine the
knowledge gained from previous concepts with that learned from the current
one. At the same time, we deal with catastrophic forgetting and, thus, provide
accurate predictions for all the concepts. Moreover, we handle data points arriving
continually from an unbounded data stream and tame temporal dependencies.

PNNs and GIM can recycle old knowledge and avoid CF but are meant to be
applied to CL experiences. We, thus, combine SML and CL techniques to build
Continuous PNN (cPNN): a continuous version of PNNs. We first define
Continuous LSTM (cLSTM), a continuous version of LSTM whose input

6 F. Giannini et al.

T i l M c n L a i S a i M h n L r i g

...

T inin s t

R
oS
i

R

S lin

1 b

2 b

1

2

9

18

5

48R n
o

S
p n

. . . .

..

...
1

2
2

5

10

...U d s

tim

W in

...

...

...

1s b 2 b

Fig. 3. Data processing in cases of Traditional Machine Learning and SML.

is built as explained in Section 3.2. cLSTM outputs a probability distribution
for each sequence item. Each data point’s probability distribution on the target
classes is computed by averaging its probability distributions associated with all
the sequences to which it belongs. We then consider each concept as a task of CL.
We use cLSTM as the base model (column) of cPNN to learn continually from an
unbounded data stream’s data points and tame temporal dependencies. Lateral
connections are implemented as suggested by GIM to reduce the parameters. The
architecture (shown in Fig. 4) can be edited by changing the column’s type from
cLSTM to any RNN model.

X

y

X

y

Fig. 4. The cPNN architecture during the second concept training.

Algorithm 1 details the cPNN’s lifecycle. The architecture initially has a single
column. We buffer the data stream in a batch with size B (Line 5) and create the
model’s input (Line 9) when the batch is complete. We, then, apply Prequential
evaluation [6] (Lines 10-12), taking first the model’s predictions and evaluating
the performance on the entire batch. Finally, we train the model on the batch for
several epochs. After a concept drift, the model receives the batch accumulated
up to that time (Line 7). Then, we add a new column to the architecture, building
lateral connections and freezing the weights of the previous column (Line 15).
Since CL assumes that the label associated with each experience is known and
experiences are not mixed, we also assume that drifts are abrupt and to know

cPNN: Continuous PNNs for Evolving Streaming Time Series 7

when they occur. We rely on the presence of a concept label ct for each data
point, which is the same for all the data points in a batch.

Algorithm 1 cPNN training
Input: Data stream S, Batch size B, Epochs E, Window Size W.
1: batch ← empty list, perf ← empty list, ct−1 ← −1, model← new cPNN()
2: for all (Xt, yt, ct) in S do
3: drift← True
4: if ct = ct−1 then
5: Append (Xt, yt) to batch
6: drift← False
7: if |batch| = B OR drift = True then
8: if |batch| ≥W then
9: X,Y ← BuildSequences(batch,W)

10: pred← model.predict(X)
11: Append Evaluate(pred, Y) to perf
12: model.fit(X,Y,E)
13: batch ← empty list
14: if drift = True then
15: model.addColumn()
16: Append (Xt, yt) to batch
17: ct−1 ← ct

4 Experimental Evaluation

This Section presents our experiments. Section 4.1 explains the generation of the
data streams used in the ablation study described in Section 4.2.

4.1 Generated Data Streams

As detailed in [21], the most commonly used SML benchmarks containing temporal
dependencies (Electricity and CoverType) are unsuitable for our purpose. The
most known synthetic data stream generators (SINE [5], SEA [22], Hyperplane [9],
and STAGGER [20]) do not, instead, introduce temporal dependencies in the
data. We, thus, propose the construction of a synthetic generator to have a simple
and controlled case study to apply the models and analyze their behaviors. We
start from SINE and produce a variant whose generated points have temporal
dependencies. We begin from a randomly generated two-dimension point in (0,1).
Each coordinate of the following points is generated by summing a random value
(random walk [17]) to the previously generated point’s value. Every random walk’s
sign is generated to prevent exceeding the range (0,1). After quantifying the
autocorrelation between data points using the Partial Autocorrelation Function
plot, we set the maximum size of data points having the same label as ten.

8 F. Giannini et al.

To identify the boundaries of the classes, we utilize the two SINE generator’s
boundary functions defined in Equation 3 and 4.

S1 : x1 − sin(x2) = 0 (3)

S2 : x1 − 0.5− 0.3 sin(3 π x2) = 0 (4)
We denote by and the classification functions that classify with

"1" the points above, respectively, the S1 and S2 curves, while with "0" the
remaining ones. and invert the labels of and respectively. We
generate one data stream for every classification function, each representing
one concept and containing 50k data points. Let us introduce the term sign
drift as the drift where a new concept reverses the labels while maintaining the
boundary function (e.g. from to) or changing it (e.g., from to).
We combine the data streams in two ways. Firstly, classification inversion
drift produces a single sign drift that keeps the boundary function unchanged
(Fig. 2.c). Secondly, boundary function drift combines all four concepts’ data
streams by alternating the boundary functions (Fig. 2.b) and producing one or
two sign drifts. By design, more than 50% of the sequences with the same label
have a maximum length of five, and labels are balanced. When we change the
boundary function without a sign drift (e.g., from to), 65% of the points
keep the same label. If we combine a sign drift with a boundary function drift
(e.g., from to), the percentage drops to 35%. Finally, all the points change
their labels after a classification inversion drift (e.g., from to).

4.2 Experimental Setting

We conduct an ablation study for our hypothesis formulation and compare cPNN
with two alternative architectures. mcLSTM (Multiple cLSTMs) remove the
lateral connections so that each new column does not consider the previous
column’s hidden layer output. Direct application of the base model cLSTM
(see Section 3.3) removes, instead, the creation of different columns, resulting in
a cPNN with only one column that ignores drifts. Hyperparameter values are
chosen as follows after executing the preliminary experiments. Epochs number:
10, window size: 10, batch size: 128, learning rate: 0.1, hidden’s layer size: 50.2
The final performance is computed by averaging the batches. Since the labels are
balanced and we do not focus on a particular class, we evaluate the accuracy.

Our hypothesis is that cPNN can adapt to new concepts in an ESTS more
quickly than the other two architectures. Additionally, we expect that models can
quickly adapt to a new concept if it is similar to the previous one. A sign drift
would be more complicated if the model does not learn to invert its past knowledge.
We evaluate the final accuracy in four cases to verify the two hypotheses for
each concept. The first two cases ([1,50] and [1,100]) analyze how models adapt
to the new concept by considering the accuracy at the end of the first 50 and
100 batches after the drift.3 A reasonably accurate model in the first part of the
2 Complete source code available at https://github.com/federicogiannini13/cpnn
3 Thresholds represent the number of batches during preliminary experiments, after

which the more robust and less robust models achieved good performance.

cPNN: Continuous PNNs for Evolving Streaming Time Series 9

Table 1. Accuracies on classification inversion drift. cPNN outperforms the ablated
versions in all cases.

concept case cPNN cLSTM mcLSTM cPNN cLSTM mcLSTM
[1,50] .96, .004 .872, .026 .903, .008 .864, .017 .742, .024 .75, .006

[1,100] .972, .002 .921, .014 .933, .004 .888, .02 .79, .024 .774, .006
(100,) .989, .001 .98, .002 .975, .001 .927, .018 .883, .029 .834, .0092nd

[1,) .984, .001 .965, .004 .964, .001 .917, .018 .859, .026 .818, .007

concept is robust to concept drifts. The third case ([100,)), which covers the
batch range from 100 onwards, assesses the accuracy of models in response to the
newly introduced concept once they have adapted to it. Finally, the fourth case
([1,)) monitors the entire concept by investigating accuracy from the first batch
onwards. Each experiment is repeated ten times, and their average accuracy
is analyzed. Tables 1, 2 and 3 of Section 5 report results using the mentioned
notations.

5 Results

This section analyzes the results of the different experiments described in Sec-
tion 4.2. Tables 1, 2 and 3 report the ten executions’ average accuracies and
standard deviations. Since the first concept’s architectures are the same, we
make comparisons from the second concept onwards. Architectures are compared
in pairs. We report in bold the statistically best-performing architecture (if it
is statistically better performing than the remaining two) and in italics the
less-performing one. We, thus, first conduct a Shapiro-Wilk test to check for
normality. If we cannot reject the null hypothesis for both distributions, we
conduct a Welch’s t-test. Otherwise, we run a Wilcoxon signed-rank test. We
perform a one-sided test in both cases. We underline the not normally distributed
samples. All the tests are conducted with a significance level of 0.05.

5.1 Classification Inversion Drift

Results in Table 1 show that after the concept drift, cLSTM performance collapse.
Since they are similar, we only report results for two data streams. For the S1
classification function, the mcLSTM’s random initialization of the parameters
works better than the cLSTM one (which is the inverse concept’s optimal one), but
from the 100th till the end of the concept, cLSTM outperforms mcLSTM. cPNN
can adapt quickly to the new concept. It results in being the best-performing
model in all the experiments. In the case of S2, the gap between cPNN and the
other models is more significant. These experiments suggest that cPNN could
learn to invert past knowledge. cLSTM requires more iterations to reach the new
optimal setting since it starts from the inverse concept one. At the end of each
concept, cLSTM’s new optimal configuration is still worse than cPNN’s one.

10 F. Giannini et al.

Table 2. Accuracies on data streams , , , and , , , . cPNN always
recovers faster from concept drifts than the ablated versions. In some cases, a single
cLSTM performs better in the long run, but in the end, it only remembers that last
concept since it does not manage CF. mcLSTM that does not use transfer learning and
resets the parameter configuration performs worse in almost all situations.

concept case cPNN cLSTM mcLSTM cPNN cLSTM mcLSTM
[1,50] .759, .012 .746, .011 .738, .006 .781, .006 .743, .015 .753, .006

[1,100] .803, .007 .791, .012 .762, .005 .808, .004 .772, .008 .775, .004
(100,) .877, .006 .897, .013 .829, .011 .876, .005 .851, .011 .823, .0092nd

[1,) .858, .005 .87, .012 .812, .009 .859, .003 .831, .009 .811, .007
[1,50] .951, .004 .893, .022 .905, .008 .947, .004 .94, .009 .908, .004

[1,100] .964, .004 .932, .013 .935, .004 .961, .003 .955, .006 .936, .003
(100,) .982, .002 .982, .001 .975, .001 .981, .002 .982, .001 .975, .0013rd

[1,) .977, .002 .969, .004 .965, .001 .976, .002 .975, .002 .965, .001
[1,50] .855, .012 .778, .016 .754, .005 .862, .008 .777, .025 .738, .005

[1,100] .88, .011 .822, .012 .776, .004 .88, .006 .831, .019 .76, .003
(100,) .907, .007 .91, .009 .826, .01 .909, .009 .915, .013 .827, .0094th

[1,) .9, .008 .888, .009 .813, .008 .902, .008 .894, .014 .81, .007

Table 3. Accuracies on data streams , , , and , , , .

concept case cPNN cLSTM mcLSTM cPNN cLSTM mcLSTM
[1,50] .931, .014 .933, .012 .915, .004 .921, .008 .892, .022 .903, .003

[1,100] .943, .01 .951, .008 .941, .003 .939, .009 .934, .012 .934, .003
(100,) .974, .003 .983, .001 .976, .001 .971, .004 .983, .001 .975, .0012nd

[1,) .966, .005 .974, .003 .967, .001 .963, .005 .97, .003 .964, .001
[1,50] .824, .013 .768, .023 .754, .005 .835, .013 .779, .016 .755, .007

[1,100] .851, .015 .802, .024 .774, .004 .863, .01 .812, .018 .776, .003
(100,) .896, .01 .892, .018 .835, .011 .903, .009 .893, .017 .831, .013rd

[1,) .885, .011 .869, .02 .819, .009 .893, .009 .872, .017 .817, .008
[1,50] .952, .006 .942, .007 .907, .008 .953, .007 .923, .017 .92, .004

[1,100] .963, .004 .957, .003 .936, .005 .962, .004 .945, .01 .944, .002
(100,) .98, .004 .983, .002 .975, .001 .979, .003 .982, .002 .976, .0014th

[1,) .975, .004 .976, .001 .965, .002 .975, .003 .973, .004 .967, .0

5.2 Boundary Function Drift

Results regarding boundary function drift (shown in Tables 2 and 3) indicate
that cPNN adapts more quickly to a new concept after a sign drift and when the
new boundary function is more complex than the previous (a drift from S1 to
S2). In this case, cPNN outperforms the other architectures in the first 50 and
100 batches. From the 100th batch, cLSTM and cPNN have similar performance.
cLSTM outperforms cPNN in the first batches only after the first drift from S2
to S1, with no sign drift. mcLSTM performs worse in almost all the experiments.

cPNN: Continuous PNNs for Evolving Streaming Time Series 11

6 Conclusion

This paper pioneers a novel continuous version of PNNs for Evolving Streaming
Time Series. We proposed CPNN to deal simultaneously with concept drifts
and temporal dependencies while avoiding catastrophic forgetting. To do so,
we presented a continuous adaptation of LSTM (namely cLSTM) that exploits
the SGD algorithm to tame temporal dependencies in a data stream. A similar
method was used by [11] on a complex architecture and real datasets. Instead,
our goal was to analyze the models’ behaviors using a simplified scenario. cPNN’s
architecture is based on PNNs to tame CF and use transfer learning to fit new
concepts quickly. To investigate cPNN behavior, we generated synthetic data
streams and conducted an ablation study. cPNN performance highlighted a
quicker adaptation to new concepts. Its average accuracy after each concept drift
is, in fact, statistically greater than the ablated ones. cPNN resulted, thus, in
being more robust to concept drifts, especially in the case of sign drift.

One of the main limitations of cPNN is that its complexity increases linearly
with the number of concepts. We, thus, imagine that this architecture could be
applied in the case of reoccurrent drifts where we would need to check whether the
new concept has been seen before. Additionally, when dealing with data streams,
the selection of hyperparameters can become challenging, and the resulting
outcomes may be highly sensitive to these choices. Moreover, we only studied
the models in a simplified scenario with abrupt concept drifts and synthetic data
streams containing only two features. In our future works, we intend to explore
more types of drift in a higher dimensional space and complex classification
functions. Finally, as in many CL experiments, we assumed to have an "oracle"
that knows the concept associated with each data point. In our future works, we
will apply concept drift detection methods. cPNN performance results suggested
that it could automatically learn to invert past knowledge when there is a sign
drift. We also think its quicker adaptation to the new concept is due to past
recycling ability. We will analyze the model’s parameters in future works to
verify it. In the long term, we intend to investigate how cPNN learns in contexts
where real data evolves via gradual or incremental concept drifts. We will most
likely need to examine other types of columns, like Gated Recurrent Units or
Transformers.

References

1. Anagnostopoulos, C., Tasoulis, D.K., Adams, N.M., Pavlidis, N.G., Hand, D.J.:
Online linear and quadratic discriminant analysis with adaptive forgetting for
streaming classification. Stat. Anal. Data Min. 5(2), 139–166 (2012)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS. pp. 1–16. ACM (2002)

3. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine learning for data
streams: with practical examples in MOA. MIT press (2018)

4. Cossu, A., Carta, A., Bacciu, D.: Continual learning with gated incremental memo-
ries for sequential data processing. In: IJCNN. pp. 1–8. IEEE (2020)

12 F. Giannini et al.

5. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection.
In: SBIA. LNCS, vol. 3171, pp. 286–295. Springer (2004)

6. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning
algorithms. In: KDD. pp. 329–338. ACM (2009)

7. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive computation
and machine learning, MIT Press (2016)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Hulten, G., Spencer, L., Domingos, P.M.: Mining time-changing data streams. In:
KDD. pp. 97–106. ACM (2001)

10. Lange, M.D., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G.G., Tuytelaars, T.: A continual learning survey: Defying forgetting in classification
tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3366–3385 (2022)

11. Lemos Neto, Á.C., Coelho, R.A., Castro, C.L.d.: An incremental learning approach
using long short-term memory neural networks. Journal of Control, Automation
and Electrical Systems pp. 1–9 (2022)

12. Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., Rodríguez, N.D.: Con-
tinual learning for robotics: Definition, framework, learning strategies, opportunities
and challenges. Inf. Fusion 58, 52–68 (2020)

13. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept
drift: A review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019)

14. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. In: Psychology of learning and motivation, vol. 24,
pp. 109–165. Elsevier (1989)

15. Meng, Q., Chen, W., Wang, Y., Ma, Z., Liu, T.: Convergence analysis of distributed
stochastic gradient descent with shuffling. Neurocomputing 337, 46–57 (2019)

16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

17. Pearson, K.: The problem of the random walk. Nature 72(1865), 294–294 (1905)
18. Read, J., Rios, R.A., Nogueira, T., de Mello, R.F.: Data streams are time series:

Challenging assumptions. In: BRACIS (2). Lecture Notes in Computer Science, vol.
12320, pp. 529–543. Springer (2020)

19. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. CoRR
abs/1606.04671 (2016)

20. Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Mach. Learn.
1(3), 317–354 (1986)

21. de Souza, V.M.A., dos Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A.: Challenges
in benchmarking stream learning algorithms with real-world data. Data Min. Knowl.
Discov. 34(6), 1805–1858 (2020)

22. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale
classification. In: KDD. pp. 377–382. ACM (2001)

23. Ziffer, G., Bernardo, A., Della Valle, E., Cerqueira, V., Bifet, A.: Towards time-
evolving analytics: Online learning for time-dependent evolving data streams. Data
Science (Preprint), 1–16

24. Zliobaite, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods
and decision theory for classification of streaming data with temporal dependence.
Mach. Learn. 98(3), 455–482 (2015)

