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Abstract—In recent years, manufacturing processes have un-
dergone many technological innovations. Such technological
leverages are accelerated even more with the advent of Industry
4.0, resulting in embedding advanced techniques such as Artificial
Intelligence (AI) and Machine Learning (ML) in almost every
industrial system. AI and ML play a key role in the field of
Fault Diagnosis and Prognosis (FDP), due to their capacity to
predict failures in the system or to locate faults, reducing both
the time needed for maintenance and its costs. The latter becomes
more crucial in the field of Computer Numerical Control (CNC)
machines as one of the most robust pillars of the production
chain where achieving a reliable FDP becomes a challenging
task. However, the variety of tool types and operations makes
CNC machines the perfect training field for ML, ensuring a
large amount of different data to learn. In this paper, a data-
driven model, more specifically a Convolutional Neural Network
(CNN), is developed to assert if the quality of the process remains
acceptable or not, and so if the machine has to be maintained
based on a vibration signal captured by a triaxial accelerometer
installed on 4-axis horizontal Brownfield CNC milling machines.
In addition, data are collected over a period of two years, we
developed a second CNN model to classify processes based on
the month and year, highlighting the presence of information
regarding the aging of the machine during the whole period
of evaluation. As the result shows, both time and frequency
domain-based features reach an accuracy of about 100% for the
first classification problem. Considering different machines and
various working processes in addition to different time windows
from February 2019 to August 2021, time domain-based features
correctly predict more than 85% of all processes containing
information about the aging of the machine.

Index Terms—Machine Learning, Industry 4.0, Predictive
maintenance, Smart Manufacturing, CNC machine, Short Time
Fourier Transform, Industrial Dataset.

I. INTRODUCTION

The advent of Industry 4.0 and 5.0 has heralded a trans-
formative era in manufacturing, marked by the integration
of cutting-edge technologies that have refined the produc-
tion process. In this epochal shift, a primary role is played
by sustainability and reliability, driving the need to address
operational challenges. In this context, Fault Diagnosis and
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Prognosis (FDP) has emerged as a critical tool in the arsenal of
industrial operations, facilitating proactive maintenance strate-
gies to ensure smooth and efficient production workflows. The
main objective of FDP is twofold: to identify anomalies within
sensory data and to forecast potential failures base on pre-
dictive analytics, preempting potential disruption before they
escalate into costly downtime or malfunctions. By leveraging
advanced analytics, FDP enables stakeholders to anticipate
and address issues before they compromise efficiency or pose
safety risks. This proactive approach not only minimizes op-
erational faults but also optimizes resource utilization, leading
to significant cost savings in maintenance and repair activi-
ties. Artificial Intelligence (AI) and Machine Learning (ML)
form the cornerstone of FDP, providing the computational
power and analytical sophistication necessary to process vast
amounts of sensor data in real time. Deep Learning (DL)
techniques, in particular, excel at extracting intricate patterns
and correlations from raw sensor data, enabling FDP systems
to identify anomalies with a high degree of accuracy. By
continuously learning from past data and adapting to changing
conditions, Al and ML algorithms enhance the efficacy of
FDP systems enabling them to evolve and improve over time.
Within the domain of FDP, Computer Numerical Control
(CNC) machining represents a fertile ground for innovation
and optimization. CNC machines, equipped with precision
controls and diverse tooling capabilities, generate rich streams
of data that can be harnessed to drive predictive maintenance
strategies. By integrating AI, ML, and FDP techniques, CNC
machining facilities can enhance operational efficiency, mini-
mize downtime, and extend the lifespan of critical equipment.
In this work, we propose a data-driven method based on a
Convolutional Neural Network (CNN) in order to address
two different but connected problems: the classification of
operations processed by a CNC machine based on their quality,
and the classification of operations based on the time batch
in which they are taken in order to highlight the presence
of the aging of the machine that lowers the quality of the
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processes. The rest of this paper is organized as follows:
Section II provides a description of the problem tackled in
this paper, Section III explains the approach applied and the
features, in Section IV the model training and the results
obtained are shown and finally, in Section V we explain the
final considerations on our work and provide suggestions for
future works.

II. PROBLEM DESCRIPTION

During their operational life, CNC machines, much like any
other heavy-duty industrial equipment, undergo wear and tear
over time. This gradual degradation can lead to a decline in
the quality of the production output, and in the worst cases to
a machine failure. To address this challenge, it is crucial to
monitor the quality of the processes in real-time using data
gathered from sensors embedded within the machines that
capture meaningful information, such as acceleration data. By
adopting a proactive maintenance approach, potential issues
that could cause significant disruptions can be preemptively
addressed. The analysis of the information obtained through
the sensors poses a unique challenge, as it involves deal-
ing with data that evolves over time, making it a problem
linked with time series, especially, a time series classification
problem. To tackle this task, in the last years researchers
have turned their attention on Machine Learning (ML) and
Deep Learning (DL) techniques. Such methods have been
extensively explored in recent scientific literature [!], and
among them, Convolutional Neural Networks (CNNs) stood
out as one of the main tool for processing sequential data
[2]. Focusing on CNC machine processes classification, many
different methodologies have been proposed in the last decade.
These techniques range from traditional ML algorithms such
as Random Forest and Light Gradient Boosting Machine,
both based on decision trees, to more sophisticated DL ap-
proaches such as Artificial Neural Networks (ANNs) and
CNNs [3]-[5]. A comprehensive review of these techniques
has been conducted in [6], providing valuable insights into
the current landscape of solutions within this domain. The
notable advancements in recent years underscore the ongoing
endeavors to enhance the maintenance and performance of
CNC machines through intelligent, data-driven methodolo-
gies. By harnessing the power of ML and DL techniques,
researchers and industry practitioners are paving the way for
more efficient and reliable CNC machining processes. Real-
time monitoring and predictive maintenance strategies enabled
by these approaches not only optimize production quality but
also minimize costly downtime and repair expenses. As we
continue to delve deeper into the realm of intelligent data
analysis, the future holds immense promise for the further
advancement of CNC machining technology.

III. CONTRIBUTIONS

To classify vibrational data coming from CNC machine
operations based on their goodness or the time batch in which
they are acquired, we developed two Convolutional Neural
Networks (CNNs) in this paper. CNNs are highly effective in

time series classification due to their ability to identify local
patterns, regardless of their temporal position. This makes
them very resilient to shifts in data. CNNs learn hierarchical
representations, where lower layers identify simple patterns
while higher layers learn more complex features. Sharing
parameters allows them to efficiently learn shared temporal
patterns across data segments, which facilitates generalization.
Moreover, CNNs can handle high-dimensional data, such as
multivariate time series, without extensive feature engineering,
making them a powerful choice for such tasks. Both proposed
models have a similar structure:

« Input layer: the model receives as input a window of tun-
able size [window_size, n_features], where window_size
is the length of the window considered and n_features is
the number of features used.

« Convolutional layers: the target of these layers is to
reduce the dimensionality of the data, encoding it, but
at the same time ensuring that the information won’t be
lost.

o Dense and Output layers: data are then passed through
a series of Dense layers in order to achieve the dimension
of the desired output which is [num_classes].

The final shape of the output can vary depending on the aim
of the model. In the first case, num_classes is equal to 2,
i.e. good or bad, instead, in the second case the number of
classes is equal to the number of time batches, which is 6.
In Figure 1, we can see a representation of the model used
for the quality classification task. The loss function applied
during the training of the model is Categorical Cross-Entropy,
also called Softmax Loss, obtained from the formulas:

Si

f(s)i:%

c
CE = — Z t;log(f(s):)

where s is the score vector produced by the NN, f(s); is
the Softmax calculated at time 7, and C'E is the Cross Entropy
obtained. Categorical Cross-Entropy is used for multi-class
classification to train a CNN to output a probability over the
C classes for each input.

The model inputs are derived from time-domain signals and
frequency spectra of vibrations, which are measured along the
X, y, and z axes by sensors affixed to the machine.

Both proposed models are deployed to address a supervised
classification task. The primary objective of the first model
is to effectively categorize the quality of machine processes
as either ”good” or “bad,” leveraging nominal labels specified
within the dataset.

Instead, the second model is designed with a distinct aim:
to accurately forecast the time batch during which operations
were executed. This predictive capability aids in discerning
the machine’s “aging” process, wherein data collection occurs
across discrete time intervals, resulting in distinct feature sets.
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Fig. 2: Setup of the experiment conducted in [7].

IV. RESULTS

A. Dataset

To address these real-world conditions a new CNC research
dataset from a real production environment collected over a
different period including different machines and operations
has been published in [7]. The vibration signal is collected
from different 4-axis horizontal CNC machining centers during
production using a triaxial accelerometer mounted on the rear
bearing, as can be seen in Figure 2.

The data are collected in a production plant and belong
to 3 different brownfield milling machines (M01, M02, M03)
on a regular basis in the time interval from October 2018 to
August 2021. For each process, the time frame is tagged as
“"Month_Year” and represents the 6-months interval before the
label, for example, “Feb_2019” refers to the period between
October 2018 and February 2019. Furthermore, since the
machines performs a sequence of different operations using
various tools on aluminium parts, the dataset is composed of
data from 15 different operations. The number of good and
bad operations can be seen in Figure 3, only the 4,28% of the
dataset is made of bad operations.

For each process, we have features referred to:

o Time: month and year when the data have been measured.
« Machine and Process: name of the machine and process
to which the data refers.
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Fig. 3: Number of good and bad operations in the dataset

o Acceleration: data about the acceleration captured on all
axes X, y, and z.
o Label: "good” or ’bad”.

Examples of a good and a bad process can be found respec-
tively in Figures 4a and 4b. The data in these figures have
already been normalized in order to be in the interval [0, 1].

In addition to time-domain, spectrum analysis provides a
clear picture of the vibration signature. This is important
because the aging of the machine could be represented in the
captured data as noise at specific frequencies. While, such
spectral components will not be presented when the machine
is in good condition.

By obtaining both time and frequency domain data, we
can test our models with different approaches, using them
individually, or at the same time.

B. Model testing

In order to develop our model we divide the original dataset
using 80% of it for the training phase and the remaining 20%
for the final testing phase, guaranteeing homogeneity between
the training and test set. At first, from each process, we extract
a window of length 1000 from the middle of the original time
series in order to obtain new series all of the same length to be
used as input to the model. Data are finally normalized to be in
the interval [0, 1] to obtain better results. For both classification
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of 91% and 86% on the single datasets. The model using only
frequency domain data obtained an accuracy of only 56%
on the three datasets. Finally, in Figures 5 and 6 we can
see the confusion matrixes for the best approaches in both
classification problems.

Normalized Acceleration

oss| |
0.50° W

W Wﬂ« ‘J‘% ‘Mw M WM\

1000

\l LWJ\

1000

200 6
Time step

(2)

Process: M0O1_OP01_1

y

0.65 =i ‘
vs i H“\‘ “\““\H‘Uw‘\ “‘ N
Lkt

J

e W o

Normalized Acceleration

[ 200 400 600 800
Time step

(b)

Fig. 4: Examples of process number O captured on Machine
1. The one in Figure (a) is labeled as ”good” and the one in
Figure (b) as ”bad”

problems, we propose three approaches that differ in the input
features given to the model:

o Time domain: input features are only the time series
obtained on axes X, y, and z.

o Frequency domain: input feature is the spectrum ob-
tained from data on axes y and z. Mainly to increase the
sensitivity by removing axial forces during machining [8].

o Time and Frequency domains: input features are the
time data from axes x and the spectrum from axes y and
z.

In Table I, we can see the results obtained by all three
approaches on the first problem, the one referred to the quality
of the process. The models reached an accuracy of 100%
when time data are in the input features, but also when
using only frequency domain data the accuracy reaches 98%,
showing that there is a clear difference between “good” and
”bad” processes. These results are notable also considering
the unbalance of the dataset where there are only 70 “bad”
processes among 1702 total processes.

[ Machine T_D
Al 1

FD T+D |
0.98 |

TABLE I: Process quality classification accuracy.

For what concerns the second problem, the time batch
classification, we can see the results in Table II. In this
case, results are clearly different when using the time or
the frequency domain data. Models using only time domain
information or using it combined with the spectrum data reach
an average accuracy of 83% and 76% respectively, with peaks

[ Machine T D FD T+FD ||
MO1 091 0.69 0.82
MO02 0.89 0.61 0.86
MO3 0.81 0.64 0.76
All 0.83 0.56 0.76

TABLE II: Time batch classification accuracy.
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Fig. 5: Confusion matrix for the classification of good and bad
operations.
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Fig. 6: Confusion matrix for the time period classification.
Classes from 0 to 5 represent the six time intervals.

Higher prediction error over time as presented in 0, in
principle, constructs a blind health index for evaluating the
degradation process while applying a suitable maintenance
decision plan. This may result in taking further steps to analyze
how the critical component degrades over time. Therefore,
the time-frequency analysis or vibration signature, in this
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case, can provide valuable insights towards prescribing mit-
igation solutions for optimum results. To address this let us
consider the modulus of two orthogonal directions (y and
z) as mentioned earlier. For the sack of simplicity, a step
drill, with a speed of 250 Hz and, a feed rate of 100 mm/s
(OPO1) is considered a test operation. The time signal is
segmented where each window’s length is equal to 2.048 s
considering 4096 samples and the Discrete Fourier Transform
(DFT) of each piece is analyzed. Finally, the spectrograms
for labeled processes as “good” and “bad” are shown in
7a and 7b respectively. As shown in this figure, although
the quality of the piece/process is labeled as good, growing
peaks and harmonics are evident. It is also worth mentioning
about growing side lobes around the fundamental frequency
as shown in 7b. Although a comprehensive study is required
to have a clear view of all machines and performed operations
while addressing temporal dependency, such details or patterns
can be used to develop a sustainable prescriptive maintenance
plan.

V. CONCLUSIONS

Quality control for the produced pieces in both additive and
subtractive processes, while a silent anomaly is developing, is
a challenging task. It became more complex in case of dealing
with real-world conditions and not relying only on laboratory
limited-time experiments. The proposed method is applied
to the benchmark dataset providing valuable insights for
assessing operational quality through a detailed examination
of both frequency and time domain data. As shown in figure
4, the contrast between satisfactory and deficient data is often
significant, highlighting the effectiveness of our methodology.
Furthermore, different and deeper tests can be developed on
the first model shown in this work, such as splitting the dataset
differently between the training and test set, focusing on the
information obtained by the frequency data, in order to better
assert the quality of the proposed approach.

It is crucial to note that our study places great importance
on the exploration of our second model, which is centered
on time batch classification. As results show, by utilizing
time domain information, we can accurately classify processes
within their respective time frames, achieving an impressive
accuracy rate of over 80%. These outcomes suggest potential
correlations between data distribution and machine aging or
maintenance activities. Our study lays the foundation for future
investigations that aim to monitor the health of machines
during their operational lifespan by analyzing sensor data.
Possible avenues for further exploration could include using
autoencoders for semi-supervised learning to reconstruct time
series data and detect anomalies, or modifying the models
presented in this study to enable regression analysis. This
would provide insights not only into the classification of
outputs but also into their quality.
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