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Abstract—We propose a quantum machine learning algorithm
for data classification, inspired by the seminal computer vision
approach of eigenfaces for face recognition. The algorithm
enhances nearest neighbor/centroid classifiers with concepts from
principal component analysis, enabling the automatic detection
of outliers and finding use in anomaly detection domains beyond
face recognition. Assuming classical input data, we formalize how
to implement the algorithm using a quantum random access
memory and state-of-the-art quantum linear algebra, discussing
the complexity of performing the classification algorithm on a
fault-tolerant quantum device. The asymptotic time complexity
analysis shows that the quantum classification algorithm can
be more efficient than its classical counterpart. We showcase
an application of this algorithm for face recognition and image
classification datasets with anomalies, obtaining promising results
for the running time parameters. This work contributes to the
growing field of quantum machine learning applications, and
the algorithm’s simplicity makes it easily adoptable by future
quantum machine learning practitioners.

Index Terms—quantum computing, eigenfaces, linear feature
mapping, principal component analysis, nearest centroid classi-
fication, nearest neighbor classification, PCA, machine learning,
face recognition, anomaly detection, outlier detection

I. INTRODUCTION

Quantum machine learning (QML) has recently emerged
as a promising field, combining the principles of machine
learning with the power of quantum computing. Machine
learning algorithms learn from examples, and as such, they
require a large number of examples to make accurate predic-
tions. Training machine learning algorithms on larger datasets
can help reduce the impact of noise and outliers, and pre-
vent overfitting, potentially leading to improved accuracy
and robustness. However, increasing the number of training
points and features often impacts the classification methods’
running time, making the algorithms inefficient on large-scale
datasets. Quantum learning algorithms can promise asymptotic
time improvements in these parameters over their classical
counterparts, enabling faster training and/or classification on
datasets with a high number of data points and features. Some
famous examples include quantum algorithms for support
vector machines [22], nearest neighbor classification [30], and
k-means [17].

In this paper, inspired by the seminal work of Turk and
Pentland [26, 27], we study a quantum classification algorithm

for face recognition with eigenfaces. Trained on a set of faces,
the eigenfaces algorithm can classify a new face as either a
known face, belonging to a training subject, as a potential
face of an unknown subject, or as an outlier image that is not
a face. The main idea behind the algorithm is to represent
each new face as a linear combination of some basis vectors
(known as eigenfaces) and then compare the coefficients of
their eigenface representations with the coefficients of the
training subjects. Usually, the basis vectors are the training
set’s principal components, and the comparison method is
a nearest neighbor/centroid classifier tuned with threshold
parameters to detect the outliers. While modern deep learning
algorithms have superseded this classification algorithm in the
face recognition task [29], this result served as a milestone
in the classical machine learning literature and might find
practical applications in the early fault-tolerant stage of the
quantum computing era because of its simplicity. Furthermore,
some ideas from this algorithm, like observing the amount of
norm retained after the projection on the principal components,
can be used to make other classifiers more resilient to outliers
and/or to perform anomaly detection [28].

More generally, the eigenfaces approach is a linear feature
mapping followed by a nearest neighbor/centroid classifier, en-
hanced with some outlier detection strategies. While quantum
algorithms for nearest neighbor/centroid have been studied in
the past [30, 20, 23, 14], our paper positions slightly differ-
ently. Most importantly, it is focused on the eigenfaces applica-
tion, covers the specific task of outlier detection, and specifies
the implementation of an end-to-end classification system with
state-of-the-art routines, from classical data loading to linear
feature mapping and classification. We describe the algo-
rithm supposing the availability of a quantum random access
memory, a classical computer, and a fault-tolerant quantum
computer, describing the steps required for the classification
and the asymptotic time complexity of the prediction stage.
We strive to make the analysis as general as possible, without
making any assumptions about the norms of the data points or
the matrices involved in the computation. We corroborate our
study with some numerical experiments that show some use
cases of these algorithms and how to estimate the running time
parameters that dominate the time complexity, which seem
already advantageous on small datasets.
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Regarding the previously cited related work, the most im-
portant comparisons are with Lloyd et al. [20] and Wiebe et al.
[30]. On the one hand, the first one presents a nearest centroid
algorithm based on inner product distance, assuming a quan-
tum random access memory and mentioning the possibility
of applying feature mappings. On the other hand, the second
one uses Euclidean distance-based classifiers, which is more
similar to our setting, but in a different input model (sparse
access), which leads to a dependency on the features’ sparsity.
Their classifier is based on Euclidean distance estimation,
followed by a search for the minimum [9], an approach
that found applications in many other algorithms [2, 7, 17],
including this work. In particular, this work combines the input
model of the first paper (enhanced with up-to-date techniques)
with the processing routines of the second one, adding the
linear feature mapping and discussing the outlier detection
techniques from the eigenfaces approach.

The outline of the manuscript is the following. Section III
introduces the classical algorithm for face recognition with
eigenfaces and explains the generalization to algorithms in-
volving linear feature mappings and nearest neighbor/centroid
classification. Section IV presents quantum input and output
primitives and the state-of-the-art linear algebra results that
set the ground for our classification procedure. In Section V,
we show how to combine these routines to derive the quan-
tum algorithms for the task. Section VI presents numerical
experiments for face recognition and image classification with
outliers. Finally, Section VII briefly discusses our results.

II. NOTATION

The notation [n], with n ∈ N, denotes the set {1, . . . , n}.
We use capital letters to denote matrices and lowercase letters
to denote scalars. Vectors are denoted with an arrow, as in
x⃗ ∈ Rn. Its entries are xi for i ∈ [n]. The ℓ∞ norm
of a vector is ∥x⃗∥∞ = maxi∈[n] |xi|, while the ℓp norm
is ∥x⃗∥p = (

∑n
i=1 |xi|p)1/p, for p ∈ N. When p = 0,

both ∥x⃗∥p and ∥x⃗∥pp denote the number of non-zero entries
of x⃗. If not specified otherwise, ∥x⃗∥ is the ℓ2 norm. We
denote the Euclidean distance between two vectors x⃗ and y⃗ as
d(x⃗, y⃗) = ∥x⃗− y⃗∥2 and their inner product with (x⃗, y⃗) = x⃗T y⃗.

Let A ∈ Rn×m be a matrix. We denote its rows as a⃗i,
for i ∈ [n], and columns as a⃗·,j , for j ∈ [m]. Its (i, j)
entry is Ai,j . Its Frobenius norm is defined as ∥A∥F =√∑n

i=1

∑m
j=1 A

2
i,j , while its spectral norm (or operator norm)

is ∥A∥ = supx∈Rm
∥Ax⃗∥
∥x⃗∥ .

We use the big-O notation for computational complexities.
In this work, the notation Õ(·) hides polylogarithmic factors
in the input size parameters, precision parameters and other
parameters appearing inside the brackets.

III. CLASSICAL ALGORITHM

Here, we describe the eigenfaces representation and the
classification algorithm [26, 27].

= w1 + … + wk

u⃗ v⃗1 v⃗k

+ ε⃗

Fig. 1: A face can be expressed as a linear combination of
eigenfaces plus an error vector (Eq. 1).

A. The Eigenfaces representation

Images can be thought of as matrices of w × h pixels
or equivalently as vectors of m = wh entries. While the
image’s resolution might create high dimensional data points
(a 128×128 image would generate a vector of size 16384), it
is unlikely that images of faces are uniformly distributed over
this ample space. The key idea of the eigenfaces classification
algorithm is that faces can be expressed as linear combinations
of other faces [25]. Via principal component analysis, one can
extract the basic faces (eigenfaces) that enable spanning the
space where the face images live. Images can then be rep-
resented using the linear combination coefficients that enable
the best reconstruction. Let us formalize this better.

Let X ∈ Rn×m be the matrix containing the faces. Each
row x⃗i ∈ Rm of X is one face, expressed using m pixels. For
simplicity, images are gray-scale, with pixel values in the usual
range of 0− 255. The first step of the representation consists
of computing the “average face” of the dataset x = 1

n

∑n
i=1 x⃗i

subtracting it from all the faces to center the data points. This
way, we compute a new matrix U ∈ Rn×m, where each face
is u⃗i = x⃗i − x.

The eigenfaces are defined as the eigenvectors of the
covariance matrix of UT , corresponding to the k-greatest
eigenvalues. The number k of eigenfaces to retain can be
either known from heuristics or set by deciding how much
variance the eigenvectors should explain. In practice, one
can compute the eigendecomposition of the covariance matrix
UTU = V ΛV T or equivalently perform the singular value
decomposition of U and compute the right singular vectors
corresponding to the top-k singular values. These vectors
v1, . . . , vk are such that vi ∈ Rm, so they are of the same
dimension as the original images. The principal eigenvectors
exhibit facial features when represented as images, hence the
name eigenfaces. With a slight abuse of notation, we denote
the matrix containing the top-k eigenvectors with V .

Once the eigenfaces are computed, each image can be
expressed in terms of {v1, · · · , vk}. Each image (potentially
not present in the original dataset) can then be written as
x⃗ = x+ u⃗, where

u⃗ =

k∑
i=1

wkv⃗k + ϵ⃗ = V T w⃗ + ϵ⃗, (1)

and ϵ⃗ is an error term entirely supported in the null space of
V . Figure 1 provides a visual representation of Eq. 1. Images
are expressed as the “average face” plus a weighted sum of
the eigenfaces and an error that that the eigenfaces cannot
capture. In this model, the features are the linear combination
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Algorithm 1 Eigenfaces-based classification

Input: V ∈ Rk×m matrix of eigenfaces, x ∈ Rm

mean vector of the dataset, x⃗ ∈ Rm sample to classify,
{c⃗1, · · · , c⃗p} set of stored weights vectors with c⃗j ∈ Rk,
y⃗ ∈ [P ]p label vector, thresholds δ1, δ2 ∈ R>0.
Output: an integer indicating the classification outcome.

1: Compute the weights vector of x:
w⃗ = V (x⃗− x)

2: Select the minimum distance between w and the stored
weights:

d = minj∈[p] ∥w⃗ − c⃗j∥22
3: Save the index of the closest weights vector:

j∗ = argminj∈[p] ∥w⃗ − c⃗j∥22
4: Output: if d ≤ δ1: same class of c⃗j∗ , output yj∗ ;

if δ1 < d < δ2: similar element, output −1.
if d ≥ δ2: not a similar element, output −2.

coefficients {wi}ki=1. We can compute the feature vector by
reversing Eq. 1:

V T w⃗ = u⃗− ϵ⃗ (2)

V V T w⃗ = V (u⃗− ϵ⃗) (3)
w⃗ = V u⃗ = V (x⃗− x) (4)

since we have V V T = I ∈ Rk×k, V ϵ⃗ = 0⃗, and u⃗ = x⃗− x.

B. Classification and outlier detection

The eigenfaces classification algorithm takes an image x⃗ ∈
Rm and outputs either a natural number denoting the subject
the face belongs to, −1 if the image is an unknown face, or −2
if the image is not a face. The training step requires a training
dataset X ∈ Rn×m. Each training image x⃗i is associated with
a corresponding subject id yi ∈ N. For simplicity assume that
the ids cover a contiguous sequence, from 0 to P < n.

The main idea is to compute the eigenfaces representation of
the image, as discussed in the previous section, and compare
it to the ones of the training set using a nearest neighbor or
centroid approach. In the nearest neighbor approach, each data
point of the training set is mapped in the new feature space
as c⃗i = V (x⃗i − x) (Eq. 4), for i ∈ [n]. In the nearest centroid
approach, instead, one computes the “average face” of each
subject as x̂i =

1
Ni

∑
j:yj=i x⃗j and computes the comparison

data points as c⃗i = V (x̂i − x), for i ∈ [P ]. In any case, from
the training set, one computes a set of vectors {c⃗1, · · · , c⃗p},
with p = n or p = P , and their corresponding labels y⃗ ∈ [P ]p.

Once the comparison vectors are stored, one can proceed
with the classification algorithm. The new image x⃗ gets
mapped in the new feature space as w⃗ = V (x⃗− x). Then, we
compute the Euclidean distance between w⃗ and the vectors
c⃗j , for all j ∈ [p], to select the minimum distance d =
minj∈[p]∥w⃗−c⃗j∥22 and the index j∗ = argminj∈[p] ∥w⃗−c⃗j∥22.
If the distance d is lower than a threshold δ1 ∈ R>0, the
image is classified as the face of the j∗ subject. Instead, if
the distance is greater than δ1, but less than δ2 ∈ R>0, the

sample is considered an unknown face. Finally, if the distance
exceeds δ2, the image is not considered a face.

The classification procedure is summarized in Algorithm 1.
The textbook implementation of this routine leads to a running
time of O(mk + pk), where mk is given by matrix multipli-
cation and pk by the search.

1) Norm-based outlier detection: It is possible to introduce
an extra check before step 2 to enhance the outlier recognition
accuracy with a simple observation. While faces are likely to
be supported on the eigenfaces space, different images are
not. One can compute how much norm is preserved in the
eigenfaces space ∥V (x⃗−x)∥

∥(x⃗−x)∥ and compare it with a threshold γ:
if the percentage is smaller than γ the algorithm outputs −2
without proceeding further.

2) Hyperparameters tuning: The parameters k, δ1, δ2, γ can
be learned via numerical optimization on a validation set
containing subjects not present in the training set (to tune
δ1) and images that do not represent faces (to tune δ2).
The eigenfaces and the mean vector x are computed using
exclusively the training set.

3) Generalization remark: Alg. 1 can be seen as a linear
feature mapping followed by nearest neighbor/centroid classi-
fication. A feature map is a function Φ : Rm 7→ Rk, applied to
the features of the data point. The Eigenfaces feature mapping
corresponds to Φ(x⃗) = V x⃗. When discussing our quantum
algorithm, we will discuss the complexity of performing the
classification after a general linear mapping Φ(x⃗) = Ax⃗ and
then focus the analysis on the PCA case, where A = V .

IV. QUANTUM PRELIMINARIES

We describe the data access and processing primitives
from previous literature that enable designing our quantum
algorithm, presenting how to combine them. While we do not
report the proof/implementation of every technique, we try to
provide the reader with an understanding of the technique and
a reference to the relevant work(s).

A. Data access

1) Quantum Random Access Memory: In order to effi-
ciently process classical data, we assume the availability of a
quantum random access memory. A quantum random access
memory (QRAM) is a device that, analogously to a classical
random access memory (RAM), enables efficient retrieval and
storage of bitstrings. We can think of a QRAM as a device
to store classical bitstrings and retrieve them on quantum
registers. Both classical and quantum memories are composed
of cells that store bitstrings and the queries are performed
by specifying the address of the cell of interest. The main
difference is that a QRAM can be queried in superposition.
In particular, suppose that the QRAM has N = 2n cells, each
capable of storing a bitstring of length p. Then, the QRAM
can be thought as a unitary acting on n+ p qubits as

UQRAM : |i⟩ |0⟩ 7→ |i⟩ |xi⟩ , (5)

for i ∈ [N ] and xi equal to the bitstring stored in the ith cell.
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An important requirement for quantum random access mem-
ories is time efficiency. While this device generally requires
Õ(Np) logical qubits and gates, some architecture propos-
als suggest that this unitary can be highly parallelized and
implemented in depth O(polylog(N)) [12]. For sure, the
requirement for many gates and logical qubits makes building
these devices a hard challenge today, and we do not know
whether they will be ever realised in practice. However, recent
research suggests that such architectures are highly resistant
to generic errors and require only a small amount of error
correction, which should not affect their performances [13].
These results preserve hope for the practicality and time
efficiency of such devices.

In the next sections, as in many quantum machine learning
papers, we will assume the availability of such devices, taking
into account the cost of storing data, to perform data access
in time Õ(1). We want to remark that even if QRAMs turn
out impossible to realize, it is still possible to implement
our algorithms using alternative data preparation circuits. In
that case, the efficiency of the algorithms discussed in this
work would be multiplied by the (potentially higher) time
complexity of implementing the unitaries needed to provide
the desired quantum access to matrices and vectors.

2) Preparing quantum access: Given the premises above,
we can proceed by presenting the tools that enable preparing
efficient quantum access to matrices and vectors.

Definition IV.1 (Efficient Quantum Access to a Matrix).
We say to have efficient quantum access to a matrix A ∈
Rn×m if we can perform the following mappings in time
O(polylog(nm)):

• U : |i⟩ |0⟩ → |i⟩ |⃗ai⟩ = |i⟩ 1
∥a⃗i∥

∑m
j Ai,j |j⟩ ,

for i ∈ [n];
• V : |0⟩ → 1

∥A∥F

∑n
i ∥a⃗i∥ |i⟩ .

Preparing quantum access to a vector is a special case of
preparing quantum access to a matrix. Indeed, one only needs
the unitary U : |0⟩ → 1

∥x⃗∥
∑

i∈[n] xi |i⟩.
Kerenidis and Prakash [15] proved that there exists a data

structure that, if stored in a QRAM, enables efficient quantum
access as per Def IV.1.

Theorem IV.2 (Implementing quantum operators using an
efficient data structure [15, Theorem 10]). Let A ∈ Rn×m.
There exists a data structure to store the matrix A with the
following properties:

1) The size of the data structure is O(nnz(A) log2(nm)).
2) The time to store a new entry (i, j, Ai,j) is O(log(nm))1.
3) Provided coherent quantum access to this structure (as

discussed in Sec. IV-A1) there exists quantum algorithms
that implement U and V as per Def. IV.1 in time
O(polylog(nm)).

1The original proof, which can be found in the appendix of the referenced
paper, considers time O(log2(nm)) because it considers that the entries are
encoded in log(nm) bits. Similarly to Chakraborty et al. [6, Theorem 4], we
do not consider this overhead, as one might want to tune the number of bits
to the required precision. Note that we generally omit logarithmic overheads
due to the precision of binary encodings and hardware limitations.

Given a vector x⃗ ∈ Rn, stored in this data structure, we can
create access to |x⃗⟩ = 1

∥x⃗∥
∑n

i=1 xi |i⟩ in O(polylog(n)) time.

Quantum algorithms built using this definition of data
access (Def. IV.1) usually incur in running time overheads
that depend on the matrix normalization factor ∥A∥F . In a
subsequent work, Kerenidis and Prakash [16] showed that it
is possible to preprocess A, during the storage step, to change
the dependency on ∥A∥F to µp(A), defined as follows.

Definition IV.3 (Parameter µp(A)). Let A ∈ Rn×m. Then,

µp(A) =
√

s2p(A)s2(1−p)(AT ), (6)

where sp(A) = maxi∈[n] ∥a⃗i∥
p
p.

This alternative parameter reduces the running time of quan-
tum algorithms requiring access to matrices with particular
row/column norms properties. In practice, without any promise
on the input matrix, in the storage step, one can search
for the best µp(A) over a finite set of p ∈ P ⊂ [0, 1],
with |P| ∈ O(1) and compare it with ∥A∥F to choose the
smallest. This procedure still takes time and space Õ(nm),
while enabling for overhead

µ(A) = min(∥A∥F , µp(A)). (7)

While many quantum linear algebra operations can be im-
plemented using this data access and phase estimation [15, 16],
the most efficient and up-to-date techniques rely on block-
encoding the matrix in a unitary operator. Informally, this
means embedding the matrix A, scaled by factor α and
encoded with precision ϵ, into the top-left corner of a unitary
UA which possibly acts on extra qubits:

UA =

(
A/α ·
· ·

)
. (8)

Without loss of generality, we can assume that A is an oper-
ator acting on s qubits, eventually padded with zeros. More
formally, the definition of block-encoding is the following.

Definition IV.4 (Block-encoding [6]). Suppose that A is an
s-qubit operator, α, ϵ ∈ R+ and q ∈ N . We say that the
(s+ q)-qubit unitary UA is an (α, q, ϵ) block-encoding of A,
if ∥∥∥A− α(⟨0|⊗q ⊗ I)UA(|0⟩⊗q ⊗ I)

∥∥∥ ≤ ϵ,

where ∥ · ∥ is the operator norm.

When a matrix A is stored in a quantum accessible data
strucure, it is possible to implement a block-encoding of its

symmetric embedding A =

(
0 A
AT 0

)
in time Õ(1).

Theorem IV.5 (Implementing block-encodings from quantum
data structures [6, Theorem 4]). Let A ∈ Rn×m.

1) Fix p ∈ [0, 1]. If A(p), and (A(1−p))T are stored
in quantum accessible data structures, then there ex-
ist unitaries UR and UL that can be implemented
in time O(polylog(nm/ϵ)) such that U†

RUL is a
(µp(A), ⌈log(n+m+ 1)⌉, ϵ)-block-encoding of A.
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2) On the other hand, if A is stored in quantum accessible
data structure, then there exist unitaries UR and UL

that can be implemented in time O(polylog(nm/ϵ))
such that U†

RUL is a (∥A∥F , ⌈log(n+m+1)⌉, ϵ)-block-
encoding of A.

In Appendix A, we show that, for our purposes, having a
block-encoding of A is equivalent to having a block-encoding
of A. To sum up, we can store A in a quantum accessible data
structure in time and space O(nm log2(nm)) to have efficient
quantum access (as per Def. IV.1) or to implement a block-
encoding (as per Def. IV.4) in time Õ(1), with α = µ(A), as
per Eq. 7. The structures are different if µ(A) ̸= ∥A∥F .

B. Data processing

Once defined the data access methods, we can focus on
the three main processing techniques: matrix-vector product,
distance estimation, and finding the minimum.

Using the block-encoding framework it is possible to per-
form matrix-vector multiplication efficiently. More precisely,
here the task is to create a quantum state |z⃗⟩ = Ax⃗

∥Ax⃗∥ , given
a matrix A and a vector x⃗. At the same time, it is possible
to efficiently estimate the the ratio between the norm of the
resulting vector and the original one ∥Ax⃗∥

∥x⃗∥ , which will be
handy later for our classification algorithm. The algorithm
applies the block-encoding to the desired quantum state and
performs amplitude amplification or estimation [4, 32]. While
the results of Theorem IV.6 and Corollary IV.7 are inspired by
commonly used techniques, we taylor them for our specific
needs. We state the result in the main text and invite the
interested reader to consult the proofs in Appendix A.

Theorem IV.6 (Matrix-vector multiplication). Let UA be a
(α, q, ϵ0)-block-encoding of a matrix A ∈ Rn×n, imple-
mentable in time TA. Let there be quantum access to a vector
x⃗ ∈ Rn in time Tx. Let ϵ > 0. There exist quantum algorithms
that output:

1) A classical estimate t of t = ∥Ax⃗∥
∥x⃗∥ such that

∣∣t− t
∣∣ ≤ ϵ

with high probability in time O
(
(TA + TU )

α
ϵ

)
, provided

ϵ0 ≤ ϵ
c , for some constant c.

2) A classical estimate t of ∥Ax⃗∥ such that
|∥Ax⃗∥ − t| ≤ η∥Ax⃗∥ with high probability in
expected time Õ

(
(TA + TX)αϵ

∥x⃗∥
∥Ax⃗∥

)
, provided ϵ0 ≤ ϵ

c ,
for some known constant c.

3) A quantum state |z⃗⟩ such that
∥∥∥|z⃗⟩ − Ax⃗

∥Ax⃗∥

∥∥∥ ≤ ϵ in time

Õ
(
(TA + TX)αγ

)
, provided that we know some γ ≤

∥Ax⃗∥
∥x⃗∥ and that ϵ0 ≤ ϵγ

2 .

4) A quantum state |z⃗⟩ such that
∥∥∥|z⃗⟩ − Ax⃗

∥Ax⃗∥

∥∥∥ ≤ ϵ in

expected time Õ
(
(TA + TX)α ∥x⃗∥

∥Ax⃗∥

)
if ∥Ax⃗∥

∥x⃗∥ ̸= 0

and otherwise runs forever. The correctness requires
ϵ0 ≤ ϵ∥Ax⃗∥

2∥x⃗∥ .

It is possible to extend this result to when A and x⃗ are
stored in quantum accessible data structures, assuming they
are stored with enough bit precision.

|0⟩ : H • H

|j⟩ :
Ub|0⟩ :

Ua|i⟩ :

Fig. 2: Quantum circuit for estimating ⟨⃗ai |⃗bi⟩. Assume
Ua |i⟩ |0⟩ = |i⟩ |⃗ai⟩ and Ub |j⟩ |0⟩ = |j⟩ |⃗bj⟩. The probability
of measuring the auxiliary qubit in the state |1⟩ at the end of

the circuit is P =
1−⟨a⃗i |⃗bj⟩

2 .

Corollary IV.7 (Matrix-vector multiplication with quantum
data structures). Let A ∈ Rn×m and x⃗ ∈ Rm stored in a
quantum data structure. There exist quantum algorithms that
output:

1) A classical estimate t of t = ∥Ax⃗∥
∥x⃗∥ such that

∣∣t− t
∣∣ ≤ ϵ

with high probability in time Õ
(

µ(A)
ϵ

)
.

2) A classical estimate t of ∥Ax⃗∥ such that
|∥Ax⃗∥ − t| ≤ η∥Ax⃗∥ with high probability in expected
time Õ

(
µ(A)
ϵ

∥x⃗∥
∥Ax⃗∥

)
.

3) A quantum state |z⃗⟩ such that
∥∥∥|z⃗⟩ − Ax⃗

∥Ax⃗∥

∥∥∥ ≤ ϵ in time

Õ
(

µ(A)
γ

)
, provided that we know some γ ≤ ∥Ax⃗∥

∥x⃗∥ .

4) A quantum state |z⃗⟩ such that
∥∥∥|z⃗⟩ − Ax⃗

∥Ax⃗∥

∥∥∥ ≤ ϵ in ex-

pected time Õ
(
µ(A) ∥x⃗∥

∥Ax⃗∥

)
if ∥Ax⃗∥

∥x⃗∥ ̸= 0 and otherwise
runs forever.

The second ingredient of our algorithm is a routine for
estimating inner products and Euclidean distances.

Theorem IV.8. [Distance and Inner Products Estimation
[17]] Assume for a matrix A ∈ Rn×d and a matrix B ∈ Rk×d

that the following unitaries |i⟩ |0⟩ 7→ |i⟩ |⃗ai⟩, and |j⟩ |0⟩ 7→
|j⟩ |⃗bj⟩ can be controlled and executed in times T1 and T2

respectively, and the norms of the vectors are known. For any
∆ > 0 and ϵ > 0, there exists a quantum algorithm that
computes:

• |i⟩ |j⟩ |0⟩ 7→ |i⟩ |j⟩
∣∣∣d2(⃗ai, b⃗j)〉 where |d2(⃗ai, b⃗j) −

d2(⃗ai, b⃗j)| ⩽ ϵ w.p. ≥ 1−∆

• |i⟩ |j⟩ |0⟩ 7→ |i⟩ |j⟩
∣∣∣(⃗ai, b⃗j)〉 where |(⃗ai, b⃗j)− (⃗ai, b⃗j)| ⩽

ϵ w.p. ≥ 1−∆

in time Õ
(

∥a⃗i∥∥⃗bj∥
ϵ (T1 + T2) log(1/∆)

)
.

The building block of the algorithm discussed in this result
is shown in Fig. 2. One can obtain an additive ϵ estimate
of ⟨⃗ai |⃗bj⟩ =

(a⃗i ,⃗bj)

∥a⃗i∥∥⃗bj∥
in time O((T1 + T2)

1
ϵ ) by executing

amplitude estimation on that circuit, on the auxiliary qubit
being in the state |1⟩. If we know the norm of the vectors,
we can run the estimation with precision ϵ

∥a⃗i∥∥⃗bj∥
to estimate

(⃗ai, b⃗j) to additive precision ϵ. Knowing the inner product, we
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can compute the squared Euclidean distance as

∥a⃗i − b⃗j∥2 = ∥a⃗i∥2 + ∥⃗bj∥2 − 2(⃗ai, b⃗j). (9)

Finally, the last ingredient is an algorithm to find the
minimum value of a vector and its index. Durr and Hoyer
[9] propose a routine that uses several iterations of ampli-
tude amplification, each with different oracles, and achieve a
quadratic speedup on its classical counterpart if the search is
unstructured.

Theorem IV.9 (Finding the minimum [9]). Let there be quan-
tum access to a vector u⃗ ∈ [0, 1]N via the operation |j⟩ |0⟩ →
|j⟩ |uj⟩ in time T . Then, we can find the minimum value
umin = minj∈[N ] |uj | and its index jmin = argminj∈[N ] uj

w.p. greater than 1−∆ in time O
(
T
√
N log

(
1
∆

))
.

Variations of this routine allow retrieving the K min-
ima values and indexes with probability ≥ 1 − ∆ in time
O(T

√
KN log(1/∆)) [10, 21]. These algorithms can be used

to extend our study to K-Nearest-Neighbor classifiers.
Before proceeding with the quantum algorithm, there is

an important caveat that we want to point out. The routine
for finding the minimum requires access to the vector’s state
preparation oracle and its inverse. However, we often build this
oracle by combining quantum routines that are not “exact”.
As a result, we often have access to an approximate state
preparation oracle, and therefore a more careful correctness
and complexity analysis is needed. In our case, the approxi-
mation will be given by the matrix-vector routine’s error and
the distance estimation’s probability of failure. Some examples
of similar scenarios can be found in Wiebe et al. [30], Chen
and de Wolf [7]. Similarly to the above-mentioned analysis,
we can ignore these approximation terms at the cost of some
polylogarithmic running time overhead.

V. QUANTUM ALGORITHM

With the tools laid out, we are ready to discuss the quantum
algorithms. We focus on the classification steps and consider
that the training has been performed on a classical computer;
i.e., the quantum computer is only used in the prediction stage,
whose time efficiency is usually more relevant in industrial ap-
plications. However, the interested reader can consult Bellante
et al. [3, Theorems 10, 12] for a method to extract the top-k
principal components and the total retained amount of variance
from a matrix stored in a quantum accessible data structure.

A. Data loading and preprocessing

To run the classification algorithm, we need classical access
to the threshold parameters δ1, δ2, γ, and quantum access to
the linear feature mapping matrix A ∈ Rk×m, the neigh-
bors/centroid matrix C ∈ Rp×k, and the mean-centered sample
u⃗ ∈ Rm. More precisely, we will need: 1. efficient quantum
access to the rows of C via UC |j⟩ |0⟩ = |j⟩ |⃗cj⟩, for j ∈ [p]
(Def. IV.1, only U ); 2. a block-encoding UA of A; 3. efficient
quantum access to u⃗ via a unitary Uu |0⟩ = |u⃗⟩. Each of
these unitaries needs to be controllable. It might be that
we get quantum access to this data in a natural way, as a

Algorithm 2 Quantum Eigenfaces-based classification

Input: Quantum access, as per Sec. V-A, to the linear
mapping A ∈ Rk×m (eigenfaces), to the set {c⃗1, · · · , c⃗p}
of stored weights vectors, with c⃗j ∈ Rk, and to the mean-
shifted target sample u⃗ ∈ Rm. Classical access to the label
vector y⃗ ∈ [P ]p and to the thresholds δ1, δ2 ∈ R>0.
Output: an integer indicating the classification outcome.

1: Map u⃗ in the new feature space using using matrix-vector
multiplication:

|Φ(u⃗)⟩ = Au⃗
∥Au⃗∥

2: Perform Euclidean distance estimation in superposition
with |Φ(u⃗)⟩ and the centroids unitary, to produce an
approximation of:

|φ⟩ =
∑

j∈[p] |j⟩
∣∣d2(Φ(u⃗), c⃗j)〉

3: Execute finding the minimum on |φ⟩ to obtain the mini-
mum distance estimate d and the index j∗ of the corre-
sponding weight vector

4: Output: if d ≤ δ1: same class of c⃗j∗ , output yj∗ ;
if δ1 < d < δ2: similar element, output −1.
if d ≥ δ2: not a similar element, output −2.

result of some quantum processes or algorithms. In that case,
we assume that the costs of implementing these controlled
unitaries are TC , TA, Tu, respectively.

However, when the data comes from classical problems,
we create quantum access with the following procedures. To
build efficient quantum access to the rows of C, {c⃗j}pj=1 for
c⃗j ∈ Rk, we can use the data structure in Theorem IV.2.
Initializing it costs a preprocessing time Õ(nk). Similarly,
we can efficiently implement a block-encoding of A with
α = µ(A) using the data structure of Lemma IV.5, in
time Õ(km). Alternatively, it might be possible to compile
a circuit for the block-encoding of A using some classical
processing [5]. For some specific matrices A it might be
possible to achieve α = ∥A∥ and polylog circuit depth/size,
even without a QRAM. Finally, we can compute the mean
vector x from the training set X ∈ Rn×m in time O(nm) and
store it in a classical device. None of these costs affects the
time analysis of classification, as the data structures do not
need to change during the algorithm and are not a function
of the target sample. On the other hand, when we receive the
target sample x⃗ ∈ Rm, we need to subtract the mean and
store the resulting vector u⃗ = x⃗ − x in a quantum accessible
data structure, as per Theorem IV.2. This operation can be
considered part of the classification steps and has a time
complexity Õ(m). While it should not be forgotten, we will
omit it in the running times, as it is comparable to the cost of
acquiring the classical data in a classical memory.

B. Classification and outlier detection

Let us start by assuming quantum access, as defined in the
previous section, to the rows of C, the feature mapping A, and
the sample u⃗ = x⃗ − x, in times TC , TA, Tu, respectively. We
consider the cost of a generic linear mapping Φ(u⃗) = Au⃗ and
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then discuss the specific case for A = V , as in the eigenfaces
setting. The high level procedure is summarized in Alg. 2.

The first step consists in performing the linear feature map-
ping Au⃗. To this aim, we can use Theorem IV.6/Corollary IV.7.
The procedure succeeds in expected time (point 4):

Õ

(
α

∥u⃗∥
∥Φ(u⃗)∥

(TA + Tu)

)
. (10)

This step prepares an approximation of the state |Φ(u⃗)⟩ =
Au⃗

∥Au⃗∥ = 1
∥w⃗∥

∑k
i=1 wi |i⟩. Using a controlled version of this

algorithm, and the unitary UC |j⟩ |0⟩ = |j⟩ |⃗cj⟩, we can use
the Euclidean distance estimation routine of Theorem IV.8.
The combination of the two routines runs in expected2 time

Õ

(
maxj∈[p](∥c⃗j∥)∥Φ(u⃗)∥

ϵ

(
TC + α

∥u⃗∥
∥Φ(u⃗)∥

(TA + Tu)

))
,

(11)

where we use maxj∈[p](∥c⃗j∥) to bound the error of all the es-
timated distances d2(c⃗j ,Φ(u⃗)) in superposition. This step pre-
pares an approximation of |φ⃗⟩ = 1√

n

∑n
j=1 |j⟩

∣∣d2(Φ(u⃗), c⃗j)〉.
The approximation is given both by the distance estima-
tion routine and the matrix-vector product, and it is both
in the amplitudes and in the bits that encode the distance
in the second register. The block encoding error ϵ0 on
A, induces an error on the distances of |d2(Φ(u⃗), c⃗i)) −
d̃2(Φ(u⃗), c⃗i)| ≤ 2ϵ0∥u⃗∥maxi∈[n](∥c⃗i∥) (see Eq. 9). Run-
ning the distance estimation routine on these approximated
distances, with parameters ϵ1 and ∆, produces a state
|φ⃗⟩ = 1√

n

∑n
j=1 |j⟩ |d̂2(Φ(u⃗), c⃗j)⟩, where each |d̂2(Φ(u⃗), c⃗j)⟩

is a superposition of some computational basis states
|d2(Φ(u⃗), c⃗j)⟩ that are ϵ1 far from |d̃2(Φ(u⃗), c⃗j)⟩ and show
up with probability 1 − ∆, and other states that are more
than ϵ1 apart, according to the theorem statement. Reducing
the parameter ∆ in the distance estimation mitigates the
error on the amplitudes. On the other hand, the overall error
on the distances is |d2(Φ(u⃗), c⃗i)) − d

2
(Φ(u⃗), c⃗i))| ≤ ϵ1 +

2ϵ0∥u⃗∥maxi∈[n](∥c⃗i∥). Dividing the error equally among the
two terms, we obtain ϵ1 ≤ ϵ/2, which justifies Eq. 11, and
ϵ0 ≤ ϵ

4maxi∈[p](∥c⃗i∥)∥u⃗∥
, which translates in a requirement on

the block-encoding error and scales polylogarithmically if the
matrix is stored in a data structure.

Once we have approximate access to the quantum state
|φ⃗⟩, we can execute the procedure for minimum finding
(see below Theorem IV.9 for references on minimum finding
with approximate amplitudes). In particular, we can extract
minj∈[n](d

2
(Φ(u⃗), c⃗j)) and the corresponding index j∗, in

expected2 time

Õ

(
√
p
maxj∈[n](∥c⃗j∥)∥Φ(u⃗)∥

ϵ

(
TC + α

∥u⃗∥
∥Φ(u⃗)∥

(TA + Tu)

))
(12)

2Even though the Euclidean distance estimation and minimum finding
routines run in worst case bounded time, the procedure of Eq. 10 makes
the overall time expected. We address the issue in Sec. V-B3.

0  ɣ

ξ

1t̅

ξ

Fig. 3: Visualization of the norm-based outlier detection error.

After extracting the minimum and its index, one can conclude
the algorithm as in the classical case, comparing the distance
to the thresholds δ1, δ2 and outputting either j∗, −1, or −2.

When A, C, and u⃗ are stored in quantum accessible data
structures, the access costs become Õ(1) and the expected
running time becomes

Õ

(
√
pµ(A)

maxi∈[p](∥c⃗i∥)∥u⃗∥
ϵ

)
. (13)

In the eigenfaces classification algorithm, and in many
others, the linear mapping of choice is the PCA dimensionality
reduction. In this case, the matrix A = V ∈ Rk×m, with
k ≤ m, is a projector and has singular values equal to 1 or
0. Using this fact, we can bound µ(A) ≤ ∥A∥F =

√
k. The

expected running time can be bounded as

Õ

(√
pk

maxi∈[p](∥c⃗i∥)∥u⃗∥
ϵ

)
, (14)

providing a quasi-quadratic speed-up over the textbook clas-
sical algorithm O(mk + pk).

This advantage would be even more marked if we could
avoid using a QRAM and design an efficient block encoding
of V with α = ∥V ∥ = 1, eliminating the term

√
k. While this

might happen for some structured matrices V , in the general
case there might be a tradeoff between the optimal α, the
number of auxiliary qubits and the circuit depth.

1) Norm-based outlier detection: As discussed in
Sec.III-B1, we can enhance the outlier detection with a
norm-based classification, exploiting the fact that outliers will
be scarcely supported on the principal component space. For
this, we are given a threshold γ ∈ [0, 1]. For each sample, we
estimate the ratio of preserved norm ∥Φ(u⃗)∥

∥u⃗∥ and compare it
to γ: if it is lower, we label the sample as an outlier (output
−2 and do not proceed further with the classification).

Using Theorem IV.6 or Corollary IV.7 (with data structures),
we can estimate the ratio ∥Φ(u⃗)∥

∥u⃗∥ to additive accuracy ξ in
respective times

Õ

(
α

ξ
(TA + Tu)

)
or Õ

(
µ(A)

ξ

)
, (15)

where we can use again µ(A) ≤
√
k for PCA. The classi-

cal textbook algorithm for this step would have complexity
O(mk), dominated by matrix-vector multiplication. In prac-
tice, as we see experimentally, one can think of γ as a quantity
substantially greater than 0.2 and set a constant error ξ = 0.01,
achieving considerable speed-ups on high-dimensional data.
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2) Uncertainty areas: There is a major difference between
the classical algorithms and their quantum versions: the latter
introduces some error on the distance and the norm estimation.
These errors ϵ and ξ can affect the classifier performances
and must be chosen by evaluating a trade-off between the
running time and the metrics of interest (e.g., accuracy,
recall). Moreover, they create some uncertainties during the
classification, defining some grey area around the thresholds
δ1, δ2, γ. Fig. 3 offers a visual representation of the problem
for the norm-based outlier detection: if the norm ratio estimate
t falls in [γ − ξ, γ+ ξ] (the red area) we cannot reliably label
the data point, as the true t (somewhere in the blue area)
can be either greater or smaller than γ. The problem occurs
similarly for the comparison with δ1 and δ2. We propose two
ways to handle this uncertainty: 1. one can continue repeating
the algorithm by halving the error until the uncertainty is
resolved. The algorithm will terminate with expected time
that scales with the inverse of the gap between the threshold
and the true estimate (e.g., Õ(1/|t− γ|) in Fig. 3). 2. live
with the uncertainty. Decide between always rejecting, always
accepting, or any random combination of the two, and choose
errors that work empirically.

3) Expected to worst time and failure probability: Both the
quantum classification algorithm of Sec. V-B and the halving
routine described above run in expected time. While their
expected time is particularly efficient, the algorithms could
run forever in some particularly unlucky cases, which is not
desirable when deployed for automated detection in industrial
applications. In particular, the issue appears in the halving
problem because we do not know lower bounds for |γ − t|, and
in Eq. 10 because we do not know lower bounds for the ratio
∥Φ(u⃗)∥
∥u⃗∥ . If we knew lower bounds, we could run the expected

time version of the algorithm and stop them when the time
exceeds the lower bounds, knowing whether they failed or not
(hence moving the uncertainty from the time to the success
of the routine). In the first case, we can define an arbitrary
lower bound ξ′, and give up identifying norm ratios more than
ξ close to γ, setting an effective timeout at Õ(1/ξ′). In the
second case, when the norm-based outlier detection anticipates
the classification, we can use that γ ≤ ∥Φ(u⃗)∥

∥u⃗∥ and set the

timeout to Õ
(√

pµ(A)
maxi∈[p](∥c⃗i∥)∥Φ(u⃗)∥

γϵ

)
. The algorithms

will then shift the uncertainty from the running time to the
probability of success. While an accurate analysis of the failure
probability is not in the scope of this manuscript, we remind
the reader that if the algorithm succeeds probability > 1/2,
one can run the algorithm O(log(1/δ)) times and output
the prediction by majority vote, increasing the probability of
success to an arbitrary 1− δ, by Chernoff bound.

VI. NUMERICAL EXPERIMENTS

We conducted numerical experiments3 on two datasets for
face recognition and one for image classification. First, we
assessed the utility of the norm-based outlier detection step in
the classical scenario. Secondly, we studied the performance of

3Code available at https://github.com/WilliamBonvini/quantum-eigenfaces

TABLE I: Dataset Split Information

Dataset m Outliers k #Training #Validation #Test
ORL 10304 No 70 288 36 36

10304 Yes 70 288 54 54
YALE 32256 No 80 322 69 70

32256 Yes 80 322 149 134
MNIST 784 No 60 49000 10500 10500

784 Yes 60 49000 14000 14000

the quantum algorithm at increasing values of error ϵ. Lastly,
we compared the quantum running times for each value of ϵ (as
defined in Eq. 13) with the classical counterpart O(mk+pk).

A. Datasets

1) Face Recognition: We experimented with two well-
known datasets for face recognition: the Olivetti Research Lab
Dataset (ORL) [24] and the Yale Face Extended B Cropped
Dataset [11, 19] (Yale). ORL includes 400 gray-scale images
of 40 unique individuals, each with 10 images. All images
are sized at 112× 92 pixels. Yale comprises 2414 frontal-face
images with size 192 × 168 over 38 subjects and about 64
images per subject. The images in both datasets were captured
under different lighting conditions and facial expressions. Due
to numerous images within Yale characterized by challenging
lighting conditions, we constrained the analysis to images in
which subjects are more discernible.

2) Image Classification: We relied on the popular
MNIST [18] dataset, which consists of 70, 000 gray-scale
images of handwritten digits from 0 to 9. We introduced
outliers by sampling data from Fashion MNIST [31]: a dataset
of 70, 000 gray-scale images of clothing items. Both datasets
have a resolution of 28×28 pixels. Clothing items were labeled
with an outlier label (e.g., −2).

B. Methodology

We split each dataset into a training, a validation, and a
test set (see Table I for details). The validation set was used
to tune the hyper-parameters k and δ: k is the number of
principal components that determine the dimensionality of the
weight vectors. We chose it to preserve at least 85% of the
training set’s variance. Depending on the experiment, δ is
synonymous with δ1 or δ2 (as defined in Sec. III-B). We chose
not to rely on both the distance thresholds simultaneously for
our experiments. The face recognition experiments detect the
correct subject given an image in a dataset that contains only
faces (no images from other distributions). In this case, δ’s
goal was to discern known subjects from unknown subjects;
therefore, δ = δ1. In this scenario, with a slight abuse
of terminology, we use the term outliers to refer to face
images from unknown subjects. On the other hand, the image
classification task consists of correctly identifying digits from
MNIST and detecting outliers, defined as images of clothing
items. In this case, δ aimed to discern digits from actual
outliers; therefore, δ = δ2. In selecting δ, we tried to find
a compromise between classification and outlier detection
metrics. An example is shown in Fig. 4. The norm threshold
γ was set to maxx⃗∈X

∥V (x⃗−x)∥
∥(x⃗−x)∥ , where X is the training set.
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Fig. 4: Selection of δ for the image classification task.

We examine four situations for each dataset. The first one
entails searching for the nearest neighbor in an outlier-free
configuration. The remaining three consider a setting with
outliers: without γ thresholding, with γ thresholding, and a
simulation of the quantum algorithm that, besides relying on γ,
accounts for the presence of errors in the distance and norm ra-
tio estimation. In particular, we artificially introduced uniform
error within [−ϵ, ϵ] in the distance estimation for various ϵ,
and uniform error ξ ∈ [−0.01, 0.01] in the norm-based outlier
detection. When the perturbed quantities became negative, we
truncated them to 0. We repeated our experiments 100 times
for each value of ϵ and computed the average performance.
While the choice of a uniform error is pessimistic (compared to
the amplitude estimation noise distribution), we still obtained
promising results.

1) Metrics: Performances were assessed with the following
metrics. Accuracy: the number of correct predictions over all
the predictions. Main Accuracy: the number of samples from
the classes in the training set correctly predicted over their
total. False Acceptance Rate (FAR): the number of outliers
classified as inliers over the total test samples. False Rejection
Rate (FRR): the number of inliers misclassified as outliers
over the total number of test samples. Precision, Recall, and
F1-Score are framed with respect to outliers. Precision: the
number of outliers correctly detected over the total number of
samples predicted as outliers. Recall: the number of outliers
correctly detected over the totality of outliers. F1 Score:
defined as 2 · Precision ·Recall/(Precision+Recall).

Intuitively, Main accuracy helps us assess the accuracy of
the original classification task while Recall the number of
outliers correctly detected. Accuracy combines the two.
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Fig. 5: Performance on varying values of ϵ for the image
classification task with outliers and norm-based detection.

C. Performance and quantum running time

Table II presents the results of the classical (first three lines
per dataset) and quantum (in green) performance and running

TABLE II: Numerical Experiments Results
Dataset δ Outliers γ ϵ Run. time Acc. Main Acc. Recall
ORL ∞ No - 0 7.41 · 105 - 0.944 -

74.38 Yes - 0 7.41 · 105 0.870 0.833 0.944
74.38 Yes 0.75 0 7.41 · 105 0.870 0.833 0.944
74.38 Yes 0.75 15 3.12 · 103 0.849 0.829 0.888

YALE ∞ No - 0 2.61 · 106 - 0.986 -
232.0 Yes - 0 2.61 · 106 0.888 0.900 0.875
232.0 Yes 0.94 0 2.61 · 106 0.940 0.900 0.984
232.0 Yes 0.94 100 2.84 · 103 0.910 0.866 0.959

MNIST ∞ No - 0 2.99 · 106 - 0.975 -
23.52 Yes - 0 2.99 · 106 0.906 0.940 0.803
22.34 Yes 0.75 0 2.99 · 106 0.927 0.940 0.885
22.34 Yes 0.75 15 6.66 · 103 0.913 0.949 0.804

times. We see how introducing δ (2nd line) causes some
performance decrease but enables detecting many outliers.
On Yale and MNIST, introducing the threshold γ (3rd line)
enables the detection of more outliers. In all three datasets,
the value for γ, which can be used to bound the worse
case quantum time, is reasonably close to one. The quantum
algorithm’s performance shows that the distance estimation
error ϵ negatively influences the classification results. On the
other hand, we notice a substantial running time improvement
over the classical counterparts, for all datasets. In particular,
we measure a ≃ 102 improvement for ORL and a ≃ 103

improvement for Yale and MNIST. We report a more detailed
study of the performance on the Image Classification task at
increasing ϵ values in Fig. 5. We plot average and standard
deviation performance and running times. Introducing the error
ϵ leads to outliers finding min distances closer to the threshold
δ, causing a decrease in Recall and an increase in Precision. At
high values of ϵ, the Recall stabilizes to the quantity detected
by the ξ-corrupted norm-based recognition.

VII. CONCLUSION

In this paper, we studied a quantum version of the eigen-
faces classification algorithm for face recognition, a mile-
stone result for classical machine learning. We describe the
classification procedure in an end-to-end way, assuming a
quantum memory, and by means of two algorithms: a linear
feature mapping + nearest neighbor/centroid classifier and a
norm-based outlier detector. The two main algorithms are
of independent interest and go beyond the eigenfaces face
recognition task. The norm-based outlier detection routine
can be used as a support to any algorithm employing PCA
and dealing with outliers. Similarly, the quantum algorithm of
Sec. V-B can be used for any linear feature mapping followed
by a nearest neighbor/centroid classifier. When working with
classical data, we obtain asymptotic complexities Õ(µ(A)/ξ)

and Õ
(√

pµ(A)
maxi∈[p](∥c⃗i∥)∥u⃗∥

ϵ

)
, as opposed to the classi-

cal counterparts O(mk) and O(mk + pk). Our experiments
show that the algorithms effectively recognize the outliers
while maintaining good classification accuracy. Moreover, the
running time parameters are reasonable and might enable
for some advantage even on small datasets. However, while
the experimental results are encouraging, we obtain them
while disregarding polylogarithmic terms and current hardware
limitations. As the theoretical advantage of the presented
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algorithms is roughly quadratic, these algorithms are unlikely
to be advantageous in an early fault-tolerant era, where error
correction will introduce a considerable overhead [1]. We
stress, though, that the simplicity of the procedures and the
relevance of their classical counterparts make them suitable
for implementations by future quantum machine learning prac-
titioners, and we cannot exclude they might provide relevant
practical advantages in a well-developed fault-tolerant era. We
leave for future work further experiments with more realistic
error models and large-scale datasets, as well as the study of
more efficient block-encodings for projectors V .
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APPENDIX

A. Matrix-vector multiplication

In this section, we prove Theorem IV.6 and Corollary IV.7.
The first proof works in the general block-encoding frame-
work, while the second assumes the matrix is stored in a
quantum accessible data structure (Lemma IV.5).

1) Theorem IV.6:

Proof. Assume a (α, q, ϵ0)-block-encoding UA of A imple-
mented in TA and a unitary Ux that prepares |x⃗⟩ in time TU .

From the definition of block-encoding, we have∥∥∥A− α(⟨0|⊗q ⊗ I)UA(|0⟩⊗q ⊗ I)
∥∥∥ ≤ ϵ0, (16)

Let us define A′ = (⟨0|⊗q ⊗ I)UA(|0⟩⊗q ⊗ I) as the matrix on
the top-left corner of UA, such that

∥∥A
α −A′

∥∥ ≤ ϵ0
α . Then,

UA(I
⊗q ⊗ Ux) |0⟩ = UA |0 · · · 0⟩ |x⃗⟩ (17)

=

(
A′ ·
· ·

)(
x⃗
0

)
(18)

= |0⟩q A′ |x⃗⟩+
∣∣0⊥〉 , (19)

where
∣∣0⊥〉 is un-normalized. The probability of measuring

the first q qubits in the state |0⟩q is P (|0⟩q) = ∥A′ |x⃗⟩∥2.
1) Using amplitude estimation, we can obtain an estimate

h such that |h− ∥A′ |x⃗⟩∥| ≤ ϵ1 with high probability in time
O((TA + TX)1/ϵ1). From the reverse triangular inequality∣∣∣∣∥A′ |x⃗⟩∥ −

∥∥∥∥Aα |x⃗⟩
∥∥∥∥∣∣∣∣ ≤ ∥∥∥∥A′ |x⃗⟩ − A

α
|x⃗⟩

∥∥∥∥ ≤ ϵ0
α
, (20)

which implies
∣∣h−

∥∥A
α |x⃗⟩

∥∥∣∣ ≤ ϵ1 + ϵ0
α . We set the output

to t = αh, obtaining
∣∣∣t− ∥Ax⃗∥

∥x⃗∥

∣∣∣ ≤ αϵ1 + ϵ0. Since ϵ0 ≤ ϵ
c ,

for some constant c, we can choose ϵ1 = ϵ
qα , for a suitable

constant q, to obtain
∣∣∣t− ∥Ax⃗∥

∥x⃗∥

∣∣∣ ≤ ϵ with high probability in
time O

(
(TA + TX)αϵ

)
.

2) Using the algorithm above as an oracle, we can build
an algorithm that outputs an ϵ-multiplicative approximation of

∥Ax⃗∥
∥x⃗∥ in expected time Õ

(
(TA + TX)αϵ

∥x⃗∥
∥Ax⃗∥

)
. The routine

and its proof are explained in Chowdhury et al. [8, Appendix
D]. Note that while the algorithm is extremely likely to
terminate in the expected time, the worst case of this algorithm
is not bounded, and in unlucky cases, the routine runs forever.

3) Let γ ≤ ∥Ax⃗∥
∥x⃗∥ be a lower bound. The algorithm consists

in running amplitude amplification instead of estimation. The
proof is the same as in Chakraborty et al. [6, Lemma 4, arxiv
version]. However, using a fixed point version of amplitude
amplification [32], we can bound the worst case time complex-
ity of the algorithm, rather than the expected. The algorithm
runs in time Õ

(
(TA + TX)αγ

)
and requires ϵ0 ≤ ϵγ

2 .
4) The proof is similar, but without a lower bound γ. Using

the QSearch version of amplitude amplification [4, Theorem
3], we succeed in expected time Õ

(
(TA + TX)α ∥x⃗∥

∥Ax⃗∥

)
if

∥Ax⃗∥
∥x⃗∥ ̸= 0 and otherwise execute forever.

2) Corollary IV.7:

Proof. The result follows by creating a block encoding of A
from a quantum data structure and applying Theorem IV.6. It
is convenient to think of A as a square matrix with size some
power of 2, padded with zeroes if necessary. Similarly, x can
be thought as a vector with size the same power of 2, padded
with zeroes if necessary. Using Lemma IV.5 we can provide
a block encoding of A, rather than A. However, this is not a
problem for our applications.

From the definition of block-encoding, we have∥∥∥A− α(⟨0|⊗q ⊗ I)UA(|0⟩⊗q ⊗ I)
∥∥∥ ≤ ϵ0, (21)

Let us define A
′
= (⟨0|⊗q ⊗ I)UA(|0⟩⊗q ⊗ I) as the matrix

on the top-left corner of UA, such that
∥∥∥A− αA

′
∥∥∥ ≤ ϵ0. We

have A =

[
0 A
AT 0

]
and A

′
=

[
P Q
R S

]
for some matrices

P,Q,R, S of same size as A. We can show that having a
block-encoding of A is somehow equivalent to having a block
encoding of A, in terms of α and ϵ0. Let us define two
projectors Π1,Π2 such that Π1AΠ2 = A and Π1A

′
Π2 = Q.

We have

∥A− αQ∥ =
∥∥∥Π1AΠ2 −Π1αA

′
Π2

∥∥∥ (22)

=
∥∥∥Π1(A− αA

′
)Π2

∥∥∥ ≤ ϵ0. (23)

The next step is to apply the block encoding to the state,
analogously to Eq. 19. The proofs proceed as in Theorem IV.6.

UA(I
⊗a ⊗X ⊗ Ux) |0⟩ = UA |0 · · · 01⟩ |x⃗⟩ (24)

=

P Q ·
R S ·
· · ·

0
x⃗
0

 =

Qx⃗
Sx⃗
·


(25)

= |0⟩a Q |x⃗⟩+
∣∣0⊥〉 . (26)

The last remark is that assuming quantum access implies
α = µ(A), which motivates the formulation in the main text.
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