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ABSTRACT
It has been long known that quantum computing has the poten-
tial to revolutionize the way we find solutions of problems that
are difficult to solve on classical computers. It was only recently
that small but functional quantum computers have become avail-
able on the cloud, allowing to test their potential. In this paper
we propose to leverage their capabilities to address an important
task for recommender systems providers, the optimal selection of
recommendation carousels. In many video-on-demand and music
streaming services the user is provided with a homepage contain-
ing several recommendation lists, i.e., carousels, each built with a
certain criteria (e.g., artist, mood, Action movies etc.). Choosing
which set of carousels to display is a difficult problem because it
needs to account for how the different recommendation lists in-
teract, e.g., avoiding duplicate recommendations, and how they
help the user explore the catalogue. We focus in particular on the
adiabatic computing paradigm and use the D-Wave quantum an-
nealer, which is able to solve NP-hard optimization problems, can
be programmed by classical operations research tools and is freely
available on the cloud. We propose a formulation of the carousel
selection problem for black box recommenders, that can be solved
effectively on a quantum annealer and has the advantage of being
simple. We discuss its effectiveness, limitations and possible future
directions of development.

CCS CONCEPTS
• Information systems → Collaborative filtering;
Recommender systems; • General and reference → Evalua-
tion.
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1 INTRODUCTION
The idea to exploit quantum phenomena to perform computational
tasks was formulated decades ago and widely studied theoretically.
Broadly speaking, there are two main paradigms to build quantum
computers (QC): the gate model in which a quantum state is evolved
using a sequence of operations performed with quantum gates, and
the adiabatic model which leverages the way quantum systems nat-
urally tend to evolve towards a state of minimal energy. In recent
years QCs have started to become available on the cloud to the
research community. The D-Wave Advantage QC belongs to the
adiabatic model and is able to solve NP-hard optimization problems
via quantum annealing. The speedup offered by quantum annealing
is still an open question, but a significant constant speedup was
shown in practice for some cases [10]. Currently, quantum anneal-
ers are the only QCs powerful enough to solve realistic problems,
e.g., feature selection for recommender systems [21], this is the
reason we will use them in our experiments.

One of the advantages of quantum annealers is that they solve
combinatorial optimization tasks that can be formulated with tradi-
tional operations research tools, making them simpler to use than
other technologies. The selection of which recommendation lists
to display in a carousel user interface, choosing from a pool of
black box recommendation models, is among the problems that
can be represented in that formulation. It is common for movie-on-
demand and music streaming services to provide the users with a
page containing several recommendation lists, each generated with
a different strategy, e.g., TV Series, Latest Releases. These lists are
usually referred to as widgets, shelves or as carousels. Selecting the
optimal recommendation lists to display is a complex problem of
industrial interest [3, 11, 27]. In this scenario the overall recommen-
dation quality of the page does not depend only on each individual
recommendation list but has to take into account how the lists
complement each other [12, 13]. Clearly, it is not beneficial to show
the user very similar recommendation lists, even though each of
them individually may have high accuracy. Furthermore, since the
purpose of a recommender system is to help the user exploration
of the catalogue, focusing on accuracy alone is not sufficient and
it is known that a set of diverse recommendations can improve
user satisfaction [6, 28]. Few papers have been published proposing
strategies to optimize the layout of a page with multiple carousels,
mostly referring to industrial scenarios: Netflix [27], Spotify [16],
Deezer [3] and Amazon Video [11].

In this paper we propose a formulation to select the optimal set
of recommendation lists to display in a carousel interface, without
assumptions on the models generating them, which can be solved
effectively on the D-Wave quantum annealer, showing a potential
application of this new technology. The formulation simplicity
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allows its extension and improvement along several directions. We
release our source code on Github.

The rest of the paper is organized as follows. In Section 2 we
describe the quantum annealing technology, in Section 3 we present
the carousel setting, in Section 4we propose our optimizationmodel
and in Section 5 we show the results. Finally, in Section 6 we draw
the conclusions and discuss future works.

2 QUANTUM ANNEALING
Quantum annealing is a meta-heuristic that can be used to minimize
a given objective function by leveraging quantum fluctuations and
tunneling [2]. Compared with Simulated Annealing [1] it is not lim-
ited to thermal fluctuations and is better able to escape local optima.
While it is possible to simulate quantum annealing on a classical
computer, a more interesting option is to use a real physical device
which naturally displays the needed quantum behavior and acts as
a special-purpose solver. This is the idea behind the development
of quantum annealers. In order to solve a problem one has to craft
the corresponding energy landscape, known as the Hamiltonian
[10] (i.e., its objective function), which will then be minimized by
the quantum effects. An important aspect of this technology is that
the Hamiltonian is equivalent to the quadratic unconstrained binary
optimization (QUBO) formulation of optimization problems, which
is as follows:

min y = xTQx

x binary
(1)

where x ∈ {0, 1}n is a vector of n binary variables and Q is an
|n | × |n | matrix that contains the parameters of the model. It is
possible to easily describe in QUBO formulation many NP-complete
and NP-hard optimization problems [15, 19].

Within the Quantum Processing Unit (QPU) of a quantum an-
nealer qubits are connected to each other according to a certain
graph topology. In this paper we will use the D-Wave Advantage
quantum annealer, which has more than 5000 qubits in a graph
topology called Pegasus where each qubit is connected to at most 15
others [5]. The Pegasus topology is rather complex but it is based
on a simpler one called Chimera, in which qubits are grouped in
bipartite graphs of 8 qubits called unit cells, each of them connected
to the adjacent ones, as shown in Figure 1. In order to solve a prob-
lem represented in QUBO format it is necessary to embed it into
the QPU graph. This minor embedding process requires two steps:

Embedding. The Q matrix can be interpreted as the adjacency
matrix of the undirected problem graph G. Thus, given G and the
quantum annealer topology P , the embedding step finds another
graphGemb , which is a subgraph ofG such thatG can be obtained
from Gemb by contracting edges. A visual example is shown in
Figure 2, where, in order to fit the triangular problem graph in
the desired square topology, the embedding algorithm duplicates a
node using two qubits to represent the same logical variable.

Parameter setting. This step adds additional constraints to the
loss function to take into account the nodes and edges created
during the embedding phase. For example, it will add equality
constraints between qubits representing the same logical variable.

Although the D-WaveAdvantage QPU hasmore than 5000 qubits,
the maximum instance size of the problems that can solved on the

Figure 1: A portion of the Chimera graph which displays
3 unit cells. Each node is a qubit and each edge a connec-
tion. Each qubit has 6 connections, 4 within the same cell
and 2 to different cells, here highlighted in red.
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Figure 2: An example of how a problem graph can be em-
bedded in a QPU topology. In this case, the triangular
problem graph cannot fit directly into the square topol-
ogy, therefore the problem variable A becomes a logical
variable represented by two different qubits A1 and A2,
here highlighted.

QPU depends on the problem topology and its density. If the prob-
lem is very dense several physical qubits will be needed to connect
the desired logical variables, reducing the problem size that can
be embedded. In such cases, traditional operations research tools
can be used to partition the QUBO problem in smaller instances
that can fit on the QPU with a hybrid quantum-classical strategy.
Given a problem represented in QUBO format and its embedding,
it is possible to sample optimal solutions in tens of milliseconds.

3 CAROUSEL LAYOUT
The scenario where a carousel user interface is employed has cer-
tain distinguishing characteristics that must be taken into account
[12]. First of all, the user interface is two-dimensional and will have
a certain number carousels, see Figure 3. The carousels will be gen-
erated by different algorithms or by different providers. In general,
there will be no global post-processing step to alter the provided
recommendations based on the entire carousel layout. This means
that a certain item may appear in more than one carousel.1

It is possible to evaluate the recommendation accuracy, e.g., us-
ing Precision, Recall, of a set of carousels by simply concatenating
all recommendation lists and then applying a traditional single-
list evaluation protocol. It is however important that each correct
recommendation be counted only once when the item appears in
multiple carousels [12]. An immediate consequence is that selecting
the optimal set of carousels is not a trivial task and it becomes more
complex as the number of carousels increases. The improvement
in recommendation quality obtained by adding a certain recom-
mendation list to a set of carousels will be given not by how many

1For instance, in the example shown in Figure 3, the TV series Space Force is present
both in the TV Comedies and New Releases carousels.
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correct recommendations it contains, but rather by the new correct
recommendations that were not already contained in the other lists.

4 QUBO CAROUSEL SELECTION
In this section we describe the proposed QUBO carousel selection
(QCS) strategy. The goal is to select the set of carousels which will
optimize the accuracy of the overall recommendations while en-
suring adequate diversity. The problem variables are defined as
xm ∈ {0, 1},m ∈ M , whereM is the set of all available recommen-
dation models, of cardinality |M |. The model will be selected if the
corresponding xm has value 1. We also define function rec(i), i ∈ I
which represents the number of times item i has been recommended.
This information can be gathered easily because computing each
model individual recommendation quality already requires to gen-
erate the recommended item lists.

We have now to define the coefficients of the QUBO problem.
Given two models x and y, the diagonal components of matrix Q ,
qxx and qyy , which we call bias, refer to the impact of selecting
those models individually (e.g., their individual recommendation
quality) while the off-diagonal component qxy represents the in-
teraction between the two (i.e., how the recommendation lists com-
plement each other). Intuitively, we want to select accurate models
but we want to discourage the selection of models that provide
recommendations that are too similar, to avoid showing the users
the same items multiple times, with adverse effects on user satisfac-
tion. In order to model this phenomena we propose the following
accuracy and diversity heuristics:

Accuracy. This heuristic is based on the recommendation quality
of each individual model measured with a metric of choice, in our
experiments we use Precision computed on a validation set. The
bias of each model is computed by scaling linearly its accuracy in
the range qxx ∈ [0, 1] where 1 is the recommendation quality of
the best performing model. The interaction between two models
is computed as the product of their biases qxy = qxx · qyy . This
interaction will combine with the following Diversity heuristic.

Diversity. In order to account for how similar the recommenda-
tions generated by two models are, we rely on the total number of
times each item has been recommended. We explore two types of
diversity heuristics. The first type considers the correlation between
the rec(i) values associated to the two models, we use different cor-
relations: Pearson, Spearman and Kendall τ . In those cases, highly
correlated recommendation distributions should be discouraged,
hence the corresponding qxy will be the positive correlation value.
The bias will be set to 1. A second approach considers the disper-
sion of the provided recommendations and uses a known metric
to measure the diversity of recommendations, the Gini Index [29].
Since our aim is to encourage the selection of models which have
different recommendation distributions, we compute the Gini index
of the difference between the rec(i) values of both models. Highly
different recommendation distributions will result in both positive
and negative numbers, hence a higher Gini Index. In this case the
qxy value will be the negative of the index and the bias will be 1.

Selection. The QUBO formulation, see Equation 1, does not allow
hard constraints and requires them to be represented as penalties
in the loss function. In order to achieve the selection of a certain

number of models c , we introduce a penalty that will be zero only
when exactly c models are selected:

k =

( ∑
m∈M

xm − c

)2
The final formulation of QCS is built according to the loss func-

tion in Equation 1 including accuracy A, diversity D and selection
penalty k, weighted with coefficients α and s:

min y = xT (αA + (1 − α)D)x + sk x binary

5 EVALUATION
In order to evaluate the proposed carousel selection approach we
report the results for two known movie recommendation datasets,
a domain that tends to use the carousel user interface: Netflix and
MovieLens 10M. Netflix [4] is a well known dataset from the Netflix
Prize.2 In order to reduce the computational time we randomly
sampled 20% of the users, the resulting dataset contains 95k users,
17k items and 20M ratings.MovieLens 10M [17] is a popular dataset
which contains 69k users, 10k items and 10M ratings, as well as
item feature data such as tags and genre. Both datasets are split
by randomly selecting 80% of interactions for the training set and
10% for both validation and test set. We follow the evaluation pro-
cedure described in [12] such that a correct recommendation is
only counted once and in the first carousels it appears in. To allow
the replicability of our results we release the source code for our
experiments online3 both datasets are publicly available and the
D-Wave quantum Annealer is freely available on the cloud.

5.1 Selection Baselines
As previously observed, there are only few works that deal with the
problem of model selection for a carousel interface. Usually, those
works make assumptions on the recommendation models, leverage
specific types of data such as session and context or require an
online setting. In other cases, the selection of carousels is part of
the recommendation model itself, which means it is not applica-
ble in the scenario where the recommendation models are black
boxes. In this work therefore we target a scenario where there are
fewer degrees of freedom. In order to compare the proposed model
selection approach, we report the following selection baselines:

Exhaustive. This baseline evaluates all possible model selections
and chooses the one with the best Precision on the validation data.
An exhaustive search is very computationally expensive as it cor-
responds to selecting the combinations without repetitions of c
carousels within a pool ofM models, which areM!/c!(M − c)!.

Individual Greedy. The models are selected according to their
Precision on the validation data, taken with decreasing Precision
values. This approach cannot account for duplicate recommenda-
tions and may select a set of models producing similar lists, but has
a low computational cost as it requires to evaluate the M models
only once.

2The data is publicly available here: https://www.kaggle.com/netflix-inc/netflix-prize-
data
3 https://github.com/qcpolimi/RecSys21_CarouselSelectionQuantumComputing
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Figure 3: The homepage of Netflix, a popular video-on-demand streaming service, with multiple carousels.

Incremental Greedy. This baseline does not select the models
based on a fixed accuracy value, but rather iteratively evaluates
all candidate models accounting for those that have already been
selected. Due to this, if a model has individually high accuracy but
provides recommendations similar to those of the models already
selected, it will provide few new correct recommendations and
exhibit lower recommendation quality. This baseline is better suited
to account for the characteristics of a carousel interface, but it is
much more computationally expensive requiring to run

∑c
i=1M −

i + 1 model evaluations.

5.2 Available Recommendation Algorithms
The selection strategy proposed in this paper is designed to identify
the optimal subset of recommendation models. In order to represent
a realistic scenario where a multitude of options are available, we
include several simple but well-known competitive algorithms [14].

Non-Personalized: TopPopular, GlobalEffects and Random.
Item-Based: ItemKNN and UserKNN [25], which compute the

item or user similarity based on user interactions, with cosine
similarity and shrinkage, and machine learning models SLIM
[22], SLIM BPR and EASER [26].

Graph-based: P3α [8] and RP3β [23], simple methods that sim-
ulate a random walk on a bipartite user-item graph.

Matrix Factorization: We included several known models,
PureSVD [9], FunkSVD [14], Non-negative matrix factoriza-
tion [7], MF BPR [24] and IALS [18].

Content-based and Hybrid: ItemKNN CBF, that builds the
item similarities using the item features, and ItemKNN CF
CBF in which the item ratings are concatenated with the
item features [20]. Both use cosine with shrinkage.

We optimized all recommendation models following the best
practices and hyperparameter ranges reported in [14], using a
Bayesian search with 50 cases. Overall, the Movielens 10M dataset
has 21 available recommender models: 15 collaborative, 3 content-
based using genre, tags and both, and 3 hybrid content-collaborative
KNNs. Netflix instead has 15, due to the absence of content features.

5.3 Results
The results are shown in Table 1. We can see that the number of
possible carousel selections grows quickly and evaluating them all
easily requires several weeks.4 Comparing the greedy strategies we
can see that the Incremental Greedy has a very high recommenda-
tion quality, very close to that of the Exhaustive search. The much
lower recommendation quality of the Individual Greedy indicates
how important it is to account for how the recommendations gener-
ated by the selected models complement or repeat each other. The
Incremental Greedy strategy however has to perform a round of
evaluations for each carousel to select, making it rather computa-
tionally expensive. To select all 9 carousels for the Movielens 10M
dataset, the Incremental Greedy needs to evaluate 153 selections,
each requiring 3 minutes. Even though the correct recommenda-
tions for each user and model can be precomputed, it is not a viable
strategy in scenarios where we want to rapidly respond to user
actions, for example by personalizing the layout in real time, as
done in [27]. Furthermore, a greedy approach has limited flexibility
in modeling more complex scenarios.

QCS is always competitive with the Individual Greedy strategy
on Netflix, while on Movielens it is when combining both accuracy
and diversity computed with the Gini Index. The optimal value
for the α hyperparameter, optimized on the validation data, var-
ied according to the number of carousels from 0.01 to 0.9. Using
correlations on the number of recommendations per item, either
the total number of recommendations or only the correct ones, did
not prove effective. QCS is overall not able to outperform the Incre-
mental Greedy strategy, although it comes within 1-3%, especially
on Netflix and for small number of carousels on Movielens. One
difference between the two strategies which may play a role is that
the Incremental Greedy accounts for all user’s recommendation
lists while QCS relies only on the global item distribution. This
suggests that future works should explore other scalable heuristic
strategies to better model user wise effects. QCS is also significantly
more scalable requiring fractions of a second on both Simulated
Annealing and the D-Wave QC, compared to an hour for the In-
cremental Greedy, making it a viable strategy to rapidly respond

4We ran the experiments on an 8 core i7 3.5Ghz CPU, with 16GB RAM.
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Table 1: Precision at 10 results for selection strategy and number of carousels. QCS uses the D-Wave Advantage quantum an-
nealer. QCS results outperforming the Individual Greedy are highlighted in bold. Exhaustive search results on Movielens10M
are missing for pages of 7 carousels or more as they required more than four weeks of computation.

Netflix Prize

4 5 6 7 8 9

Total Selections (thousands) 1.3 3.0 5.0 6.0 6.0 5.0

Selection Method

Exhaustive 0.0907 0.0763 0.0681 0.0611 0.0552 0.0504
Incremental Greedy 0.0878 0.0768 0.0681 0.0611 0.0552 0.0504
Individual Greedy 0.0718 0.0630 0.0551 0.0499 0.0466 0.0440
QCS Accuracy 0.0803 0.0641 0.0580 0.0549 0.0519 0.0485
QCS Gini Index 0.0852 0.0765 0.0676 0.0604 0.0534 0.0504
QCS Gini Index + Accuracy 0.0845 0.0728 0.0667 0.0575 0.0506 0.0483

Movielens 10M

4 5 6 7 8 9

Total Selections (thousands) 5.9 20.3 54.2 116.2 203.4 293.9

Selection Method

Exhaustive 0.0829 0.0709 0.0619 - - -
Incremental Greedy 0.0820 0.0698 0.0615 0.0547 0.0491 0.0445
Individual Greedy 0.0774 0.0632 0.0543 0.0483 0.0422 0.0405
QCS Accuracy 0.0697 0.0649 0.0555 0.0468 0.0436 0.0399
QCS Gini Index 0.0814 0.0631 0.0546 0.0508 0.0444 0.0428
QCS Gini Index + Accuracy 0.0821 0.0680 0.0581 0.0522 0.0455 0.0422

to user actions. Overall, this constitutes a promising result for a
possible application of this emerging technology. As more variables
are added to the model, e.g., personalized carousel layouts for dif-
ferent clusters of users, and the available QC hardware improves,
the advantage of quantum annealing over other classical solvers
will likely become more apparent.

6 CONCLUSIONS
In this paper we have proposed a strategy to select the optimal
set of carousels to be displayed on a user interface of a movie-on-
demand or music streaming service. The proposed formulation can
be solved effectively on today’s quantum annealers providing an
example of possible application for this new technology. Overall,
the experiments conducted show that quantum computers are be-
coming viable for applied research and can be used to solve small
but realistic problems. Significant future works are the optimization
of the relative ordering of the selected carousels, which requires
the definition of a suitable heuristic, as well as including a form of
personalization of the carousel layout.
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