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We investigate the energy spectral phase transitions arising in one-dimensional superlattices un-
der an imaginary gauge field and possessing M sites in each unit cell in the large M limit. It is
shown that in models displaying nearly flat bands a smooth phase transition, from quasi entirely
real to complex energies, can be observed as the imaginary gauge field is increased, and that the
phase transition becomes sharper and sharper (exact) as M is increased. In this limiting case, for
superlattices with random or incommensurate disorder the spectral phase transition corresponds
to a localization-delocalization transition of the eigenfunctions within each unit cell, dubbed non-
Hermitian delocalization transition and originally predicted by Hatano and Nelson. However, it is
shown here that in superlattices without disorder a spectral phase transition can be observed as
well, which does not correspond to a non-Hermitian delocalization phase transition. The predicted
phenomena could be observed in non-Hermitian photonic quantum walks, where synthetic super-
lattices with controllable M and imaginary gauge fields can be realized with existing experimental
apparatus.

I. INTRODUCTION

The interplay between non-Hermiticity, disorder and
topology is a rapidly evolving and timely area of research
encompassing different fields of physics, from condensed
matter physics and cold atoms to classical systems,
such as photonic, acoustic, electric and mechanical
systems [1–64]. The great interest in such a kind of
research is motivated, on the one hand, by the richer
phenomenology and topology that systems described
by effective non-Hermitian (NH) Hamiltonians display
as compared to conservative (Hermitian) systems (see
e.g. [65–77] and references therein); on the other hand,
the recent experimental advances in engineering dissi-
pation in synthetic matter, notably using photonic and
cold-atom lattices, offer a great flexibility in controlling
and observing a plethora of non-Hermitian phenomena
[78–90].
A paradigmatic NH model displaying remarkable
physical properties is provided by the Hatano-Nelson
model [1, 2], which was originally introduced to describe
Anderson localization in a one-dimensional tight-binding
lattice with uncorrelated on-site potential disorder and
with asymmetric hopping amplitudes, arising from a
superimposed imaginary (rather than real) magnetic
flux. Hatano and Nelson showed that, under periodic
boundary conditions, the imaginary gauge field can
prevent Anderson localization, with the appearance of
a mobility interval at the center of the band. Interest-
ingly, such a non-Hermitian delocalization transition is
associated to a spectral phase transition: while local-
ized eigenstates of the Hamiltonian correspond to real
eigenenergies, delocalized eigenstates emerging near the
center of the band correspond to complex eigenenergies.
The non-Hermitian delocalization transition has been
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subsequently reconsidered by several authors [3–9], and
found potential relevance for chiral robust transport in
photonic systems [12, 91] and in the design of coupled
laser systems [92–96]. In a landmark work [65], Gong and
collaborators reconsidered the Hatano-Nelson model.
They unravelled that in the clean (disorder-free) case the
model displays a nontrivial point-gap topology, inherent
to the energy spectrum in complex plane, whereas in
the disordered system the non-Hermitian delocalization
transition induced by the imaginary gauge field has
a topological origin. NH delocalization transitions
associated to spectral and topological phase transitions
have been predicted in many other NH models as well,
such as in NH extensions of the Aubry-André model
[10, 13–15, 20–22, 26, 27, 34, 39, 43–45, 62] displaying
aperiodic order rather than uncorrelated disorder, cul-
minating with their recent experimental demonstrations
in synthetic photonic lattices [85, 86].

In this work we investigate the spectral and localiza-
tion/delocalization phase transitions induced by an imag-
inary gauge field in NH superlattices, where the unit
cell of the superlattice contains a large number M of
sites. In a superlattice, strictly speaking all eigenstates
are extended under periodic boundary conditions (PBC),
and a spectral phase transition, from an entirely real en-
ergy spectrum to complex energies, does not strictly ex-
ist. However, the motivation to investigate the spectral
and localization features in superlattices subjected to an
imaginary gauge field is twofold. On the one hand, a su-
perlattice with large M can serve as an approximation of
a lattice with aperiodic order [97, 98], and thus could pro-
vide a framework to unravel how the spectral and NH de-
localization phase transitions arise in disordered lattices.
This entails us to introduce the concept of imperfect (or
smooth) phase transitions, as it is observed in statisti-
cal physics in systems with a finite number of degrees
of freedom (or particles), where first order phase transi-
tions arise when going from finite-size closed systems to
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the thermodynamic limit [99]: while we can never gener-
ate a sharp transition with a finite number M of sites per
unit cell, as we increase M the spectral and localization
features of the system become sharper and sharper, and
a truly discontinuous transition is observed in the infi-
nite M limit (infinite degrees of freedom). On the other
hand, the superlattice system allows us to disclose that
in the absence of disorder a spectral phase transition can
still be observed in the large M limit, which however does
not correspond to a non-Hermitian delocalization phase
transition. In other words, the coincidence of spectral
and localization/delocalization phase transitions previ-
ously predicted and observed in NH models strictly re-
quires some kind of disorder in the system. The predicted
phenomena are illustrated by considering specific super-
lattice models and could be observed in non-Hermitian
photonic quantum walks, where synthetic superlattices
with controllable M and imaginary gauge fields can be
realized with existing experimental apparatus.

II. SPECTRAL AND LOCALIZATION
PROPERTIES OF NON-HERMITIAN

SUPERLATTICES WITH AN IMAGINARY
GAUGE FIELD

A. Model

The starting point of our analysis is provided by the
Hatano-Nelson model [1, 2, 65], describing the hopping
dynamics on a one-dimensional tight-binding lattice with
a superimposed imaginary magnetic flux. In physical
space, the dynamics is described by the Schrödinger
equation

i
dψn

dt
= J exp(h)ψn+1 + J exp(−h)ψn−1 + Vnψn (1)

for the wave function amplitude ψn at the n-th site in the
lattice, where J is the hopping amplitude, h is the imagi-
nary gauge field, and Vn is the real on-site potential. For
h 6= 0, the Hamiltonian of the system is NH as the imag-
inary gauge field introduces an asymmetry between left
JL = J exp(h) and right JR = J exp(−h) hopping am-
plitudes. In the clean limit Vn = 0, the system displays
the NH skin effect [68–77], i.e. the strong dependence
of the energy spectrum and corresponding eigenstates on
the boundary conditions. In the following we will always
assume an arbitrarily large system size and PBC, which
are necessary to observe the phenomenon of NH delocal-
ization transition in disordered systems [1, 2, 65].
Let us first briefly recall the phenomenon of NH delocal-
ization [1, 2]. Let us assume that Vn describes a disor-
dered potential, with Vn either a random uncorrelated
potential (like in the Anderson model) or an incommen-
surate potential (like in the Aubry-André model). For
h = 0 and for a sufficiently strong disorder, all eigen-
states of the Hamiltonian with real energy E are ex-

ponentially localized with a localization length 1/γ(E)
(inverse of the Lyapunov exponent). Let us indicate by
γm > 0 the minimum value of the Lyapunov exponent
γ(E) among all eigenstates of the Hamiltonian at h = 0,
i.e. γm = minEγ(E). As h is increased above zero, for
h < γm the energy spectrum remains entirely real, it is
not modified by the imaginary gauge field, and all eigen-
states remain localized: the main effect of the gauge field
is to introduce an asymmetry in the localization between
left and right tails of the wave functions. On the other
hand, for h > γm the energy spectrum changes and some
(or even all) energies become complex. Interestingly, the
eigenstates corresponding to complex energies become
delocalized: this is basically the phenomenon of NH delo-
calization predicted by Hatano and Nelson. For example,
for the incommensurate potential Vn = 2V cos(2παn),
with α irrational Diophantine and V > J , the NH delo-
calization transition is observed at h = γm = log(V/J),
with all wave functions undergoing a simultaneous delo-
calization transition for h > γm (see for instance [19]).
Here, we consider instead the case of a superlattice com-
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FIG. 1. (color online) (a) Schematic of the energy spectrum
of a superlattice in the Hermitian limit h = 0 (JL = JR = J)
under PBC. The spectrum comprises M minibands (M = 8
in the specific example of the figure), with dispersion relations
E = El(k, h) (l = 1, 2, ..,M) defined by the eigenvalues of the
Bloch Hamiltonian H(k) [Eq.(4)]. The Bloch wave number k
varies in the range (−π/M, π/M). (b) The superlattice with
PBC can be mapped onto a ring lattice, comprising M sites,
with a superimposed magnetic flux Φ = Mk.

prising a large number M of sites in each unit cell. This
corresponds to assume

Vn+M = Vn (2)

for the on-site real potential. Clearly, the case of a disor-
dered lattice can be obtained from the superlattice model
in the limiting case M →∞ [97].
In a superlattice, the eigenfunctions with energy E
are delocalized Bloch states of the form ψn(t) =
φn exp(−iEt) with φn satisfying the periodicity condi-
tion

φn+M = φn exp(ikM) (3)

where −π/M ≤ k < π/M is the Bloch wave number
(quasi-momentum). The Bloch Hamiltonian H(k) of the
superlattice is given by the M ×M matrix
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H(k) =


V1 JL 0 ... 0 0 JR exp(−ikM)
JR V2 JL ... 0 0 0
0 JR V3 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... JR VM−1 JL

JL exp(ikM) 0 0 ... 0 JR VM

 (4)

and the corresponding energy spectrum is described by
M minibands with dispersion curves E = El(k, h) (l =
1, 2, 3, ...,M), which are obtained from the eigenvalues of
H(k); see Fig.1(a). We note that the energy spectrum of
the Bloch Hamiltonian can be mapped onto the energy
spectrum of a ring lattice with M sites, hopping am-
plitudes JL,R and on-site potential Vn (n = 1, 2, ...,M),
crossed by a magnetic flux Φ = Mk, as schematically
shown in Fig.1(b).
The localization properties of the Bloch wave function
of energy E within each unit cell of the superlattice, i.e.
in the corresponding ring lattice of Fig.1(b), can be cap-
tured by the inverse participation ratio (IPR)

IPR(E) =

∑M
n=1 |φn|4(∑M
n=1 |φn|2

)2 , (5)

with IPR ∼ 1 for a tightly localized wave function, and
IPR ∼ 1/M � 1 for a delocalized wave function. For
the whole set of Bloch wave functions, the localization
properties of the superlattice within each unit cell can be
summarized by three IPR values: the largest IPR value
among all wave functions, indicated by IPRmax and cor-
responding to the IPR of the most localized wave func-
tion; the smallest IPR value among all wave functions,
indicated by IPRmin and corresponding to the IPR of the
most extended wave function; and the mean value of the
IPR among all wave functions, indicated by IPR.
It can be readily shown that, since the eigenvalues of the
matrixH do not change after a similarity transformation,
the energy bands in the non-Hermitian case h 6= 0 can
be obtained from the ones in the Hermitian case h = 0
by a complexification of k, namely one has

El(k, h) = El(k − ih, 0). (6)

B. Spectral phase transitions

Since El(k, 0) is given by a sum over n of terms os-
cillating like ∼ cos(kMn), it is clear that for any non-
vanishing value of h the energy spectrum cannot remain
strictly real after the substitution k → k − ih, accord-
ing to Eq.(6). Therefore, strictly speaking in a superlat-
tice with finite M there is not any spectral phase tran-
sition, from real to complex energies, as h is increased
above zero. However, akin to what happens in statis-
tical physics where sharp phase transitions only emerge

when going from finite-size closed systems with a finite
number of particles to the thermodynamic limit [99], a
main question is whether a sharp spectral phase tran-
sition, from an entire ”quasi” real energy spectrum to
complex one, can nevertheless emerge in a superlattice
in the large M limit. This possibility is clearly expected
when the on-site potential sequence Vn approximate a
disordered lattice with a sufficient strong degree of dis-
order [97]. It is clear that for an arbitrary choice of the
sequence Vn this is not the case, i.e. the imaginary part
of the eigenenergies smoothly deviates from zero as h is
increased, and no sharp transition emerges in the large
M limit. This is shown, as an example, in Fig.2, which
depicts the numerically-computed behavior versus h of
the largest part of |ImEl(k, h)|, over both k and l, for
the on-site potential sequence defined by the sequence

Vn =

{
A n = 1
0 n = 2, 3, ...,M

(7)
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FIG. 2. (color online) Numerically-computed behavior of the
largest value of the modulus of the imaginary part of energy,
i.e. maxk,l|Im(El(k, h))|, versus h for the superlattice defined
by the sequence (7) with A = 2.5 and for a few increasing
values of M (M = 10, 40 and 80). The hopping rate is J = 1.
Note that the imaginary part of energy smoothly increases
with h and no sharp phase transitions are observed as M is
increased.

Clearly, as M increases, no sharp phase transition
emerges for this sequence. However, let us suppose that
at h = 0 the sequence Vn is chosen such that the M
minibands of the superlattice become flatter and flat-
ter as M is increased. This scenario usually happens

when each of the M Bloch wave functions φ
(l)
n in the

l − th miniband displays exponentially-decaying tails in
each unit cell with a characteristic decay rate γm, as
schematically depicted in Fig.3. In this case, the disper-
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FIG. 3. (color online) Examples of superlattices displaying
flat bands in the infinite M limit. (a) Superlattice with on-
site periodic potential Vn defined by the sequence Eq.(9). In
the large M limit, the superlattice realizes the Aubry-André
incommensurate potential. For V > J and h = 0, all wave
functions are tightly localized within each unit cells (bottom
panel) with a localization length 1/γm which is independent
of M and given by 1/ log(V/J). (b) Superlattice with on-
site potential defined by the sequence Eq.(11). The potential
realizes a sequence of potential barriers, each of width M/2.
For h = 0, the wave functions in each unit cell are tightly
localized (evanescent waves with exponential decay) in one
half of the unit cell, and extended (oscillating) in the other
half of the unit cell (bottom panel). While in (a) the IPR of
the wave function in each unit cell [Eq.(5)] remains finite as
M →∞, in (b) the IPR vanishes as M →∞.

sion curves El(k, 0) of the nearly-flat bands can be cal-
culated by a perturbative analysis and read El(k, 0) '
El(0, 0) + ∆l[1 − cos(kM)], where the bandwidth 2∆l

is given in terms of the product of the small-amplitude
exponentially-decaying wave function at the edge sites of
the unit cell; technical details are given in Appendix A.
Specifically, for large M the bandwidth ∆l vanishes with
M as

∆l ∼ exp(−σlM),

where σl = ρlγm and ρl, with 0 < ρl ≤ 1, is the fraction

of the unit cell where the wave function φ
(l)
n is evanescent

(see Appendix A for technical details). For example, for
the potential of Fig.3(a) one has ρl = 1, whereas for the
potential of Fig.3(b) one has ρl = 1/2.
When we apply a non-vanishing imaginary gauge field
h > 0 in such a nearly-flat band system, the dispersion
curve of the l−th band is simply obtained by the replace-
ment k → k − ih; in the large M limit one then obtains
the following scaling law

El(k, h)− El(0, 0) ∼ 1
2 exp[ikM + (h− σl)M ] (8)

i.e. El(k, h) is approximately described by a circle in
complex energy plane, centered at the real energy El(0, 0)
and of radius that scales with M as ∼ (1/2) exp[(h −

σl)M ]. Therefore, the largest imaginary part of the en-
ergy of the l− th miniband displays a sharp change, from
nearly zero to large values, as h is increased above the
critical value σl: in fact, in the large M limit one has
exp[(h − σl)M ] � 1 for h < σl and exp[(h − σl)M ] � 1
for h > σl. To sum up, we expect an imperfect spectral
phase transition, which becomes sharper and sharper (i.e.
exact) in the infinite M limit, when h reaches a critical
value, defined by the smallest value of σl among the var-
ious minibands.

We have checked the emergence of sharp phase tran-
sitions by considering in details two specific models,
schematically depicted in Fig.3.
The first model [Fig.3(a)] realizes a commensurate ap-
proximation of the NH Aubry-André model and is de-
scribed by the sequence

Vn = 2V cos(2παMn) (9)

where αM = R/M is a rational that approximates a
Diophantine irrational number α. For example, assum-
ing α = (

√
5 − 1)/2 = 0.618033... (the inverse of the

golden ratio), the sequence of rationals αM = R/M =
ps−1/ps converges to α in the s → ∞ limit, where
ps = 0, 1, 2, 3, , 5, 8, 13, 21, 34, 55, 89, 144, .. are the Fi-
bonacci numbers. Therefore, after letting M = ps and
R = ps−1, for large s the superlattice with the potential
given by Eq.(9) provides an approximation of incommen-
surate disorder. For V > J , as we increase h we expect
an imperfect spectral phase transition, from nearly real
energy spectrum to complex one. The critical value of
h at which the phase transition occurs can be calculated
analytically [13]; in terms of the nearly-flat band analy-
sis discussed above, we can assume ρl = 1 and identify
the parameter σl, which defines the bandwidth scaling
∆l ∼ exp(−σlM) of each miniband, as the Lyapunov
exponent (inverse of the localization length) γm of the
wave functions. For the Aubry-André model one has
γm = log(V/J), and therefore the critical value h of the
spectral phase transition reads

h = γm = log(V/J). (10)

This behavior is illustrated in Fig.4(a), which shows the
numerically-computed shape of the largest value of the
modulus of the imaginary part of energy E versus h for
a few increasing values of M . Note that, as expected,
the phase transition becomes sharper as M is increased,
i.e. as the rational αM gets closer to the irrational α.
The full energy spectrum in complex energy plane, for
a few increasing values of h and for M = 144, is shown
in Fig.4(c). When h is increased above zero but it stays
below the critical value hc, the energy spectrum remains
almost real and it is not affected by the imaginary gauge
field: the energy spectrum is basically frozen. When h
is increased above the critical value hc, the energies are
forced to move into the complex plane and distribute
along closed loops. As h is further increased, the closed
loops merge forming larger loops. This spectral deforma-
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tion scenario is typical of non-Hermitian lattices with dis-
order and imaginary gauge fields, and has been discussed
in several previous works (see e.g. [9, 14, 15, 18, 61, 63]).
A special feature of the sinusoidal incommensurate po-
tential is that all energies simultaneously become com-
plex, which is related to the well-known property that the
Lyapunov exponent of eigenstates in the Aubry-Andre
model does not depend on energy.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

gauge field h

gauge field h

gauge field h

Im
(E

)

IP
R

M=13

M=34

M=144

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

IPR

IPR
IPR

min

max

h=0.45

h=0.42

h=0.38

h=0

(c)

Re( E)

Im
( 
E

)
Im

( 
E

)
Im

( 
E

)
Im

( 
E

)

FIG. 4. (color online) (a) Numerically-computed behavior
of the largest value of the modulus of the imaginary part of
energy, i.e. maxk,l|Im(El(k, h))|, versus h for the superlat-
tice defined by the sequence (9) with V = 1.5 and for a few
increasing values of M (M = 13, 34 and 144, corresponding
to αM = 8/13, 21/34 and 89/144, respectively). The hop-
ping rate is J = 1. Note that the imaginary part of en-
ergy undergoes a sharp phase transition at the critical value
h = log(V/J) ' 0.406 in the large M limit. (b) Numerically-
computed behavior of the three IPR parameters (IPRmax,
IPRmin and IPR) for the superlattice with M = 144. Note a
clear phase transition from all localized states for h <∼ 0.4
to all extended states for h >∼ 0.4. (c) Detailed behavior of
the energy spectrum in complex plane for M = 144 and for
a few increasing values of h. Note the appearance of closed
loops in complex plane, emanating from the minibands of the
superlattice on the real energy axis, as h is increased above
the critical value hc ' 0.406. The loops enlarge and merge as
h is increased further above hc.
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FIG. 5. (color online) Same as Fig.4, but for the ordered su-
perlattice defined by the potential sequence Eq.(11). Param-
eter values are J = 1 and V = 2.5. A clear phase transition
in the energy spectrum [panel (a)] is observed in the large M
limit at the critical value h ' (1/2)acosh(V/J − 1) ' 0.48 of
the imaginary gauge field. However, no special features are
observed in the localization properties of the wave functions
near the critical value of h [panel (b)]. The spectral curves in
(c) are numerically computed assuming M = 80. The defor-
mation features of the energy spectrum, as the phase transi-
tion point h = hc is crossed, are similar to the ones shown in
Fig.4(c).

The second model [Fig.3(b)] is an ordered superlattice
consisting of a sequence of rectangular potential barriers
on the lattice and described by the sequence

Vn =

{
V n = 1, 2, ...,M/2
−V n = M/2 + 1,M/2 + 2, ...,M

(11)

where we assumed an even value of M and V > 2J . Note
that such a superlattice can be also viewed as a sequence
of interfaced crystals (heterojunction), each of size M/2
(in lattice period units) and with non-overlapped tight-
binding bands 2J cos k ± V , i.e shifted one another by
2V . For h = 0, V � 2J and in the infinite M limit,
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such a superlattice displays two branches of M/2 flat
bands with energies E±l = ±V + 2J cos[2πl/(M + 2)]
(l = 1, 2, ...,M/2). The two branches of flat bands, with
either the plus or minus sign, correspond to Bloch wave
functions which are extended (oscillating) in one half of
the unit cell, and exponentially-damped (evanescent) in
the other half of the unit cell, as schematically shown in
the bottom panel of Fig.3(b). As h is increased, a sharp
phase transition is observed in the energy spectrum in
the large M limit, as shown in Fig.5(a). The full energy
spectrum in complex energy plane, for a few increasing
values of h and for M = 80, is shown in Fig.5(c). Like for
the previous model, when h is increased above zero, but
it stays below the critical value hc, the energy spectrum
remains almost real and it is not affected by the imagi-
nary gauge field. When h is increased above the critical
value hc, some energies are forced to move into the com-
plex plane and distribute along closed loops, while others
remain almost on the real axis. As h is further increased,
a larger number of energies becomes complex forming
closed loops, and adjacent loops enlarge and merge form-
ing wider loops. Similar to the Aubry-André model dis-
cussed above, the critical value of h, above which the
imaginary part of the energy spectrum sharply starts to
increase, can be computed by letting h = σl, where σl is
the exponent entering in the bandwidth 2∆l of the mini-
band. Since the wave function in Fig.3(b) is evanescent
solely in a half of the unit cell, we can assume ρl = 1/2
and thus σl = γm/2, where γm is the decay rate of the
evanescent (exponential) tails of the wave function. The
value of γm can be readily calculated from a simple eigen-
value analysis of a rectangular potential barrier (a junc-
tion) on a tight-binding lattice, yielding

h =
γm
2

=
1

2
acosh

(
V

J
− 1

)
. (12)

C. Spectral phase transition and localization

The natural question is whether the spectral phase
transition discussed in the previous subsection, arising
from the band flattening in the large M limit, is also asso-
ciated with a change in the localization properties of the
wave functions, as one would expect for a disordered lat-
tice. The answer to this question is that, while for a dis-
ordered or incommensurate sequence Vn the emergence
of complex energies corresponds to the usual NH delo-
calization transition like in the original Hatano-Nelson
model, in the most general case the localization proper-
ties of the wave functions do not undergo any significant
change when crossing the spectral phase transition point.
In other words, the coincidence of spectral and NH de-
localization transitions requires some kind of disorder in
the system. To illustrate such a main result, let us con-
sider the two models of Figs.3(a) and (b), which display
both a spectral phase transition in the large M limit
when the gauge field h is increased above a critical value.

In the incommensurate potential of Fig.3(a), the spectral
phase transition is associated to the usual NH delocaliza-
tion transition: the wave functions associated to complex
energies become extended. This is shown in Fig.4(b),
which depicts the numerically-computed behavior of the
three IPR parameters (the minimum, maximum and av-
erage values of IPR of the wave functions within one unit
cell) versus h. As one can clearly see, in proximity of the
spectral phase transition, i.e. around the critical value
h given by Eq.(10), the IPR parameters undergo a rapid
change from finite values (in the localized phase) to small
values (in the extended phase). However, when consider-
ing the superlattice model of Fig.3(b), corresponding to
an ordered superlattice with alternating potential bar-
riers, as h is varied across the critical value, given by
Eq.(12), the IPR parameters do not show any special
change, as shown in Fig.5(b), i.e. there is not any NH lo-
calization/delocalization transition here associated to the
spectral phase transition. To qualitatively understand
the behavior of the IPR versus h shown in Fig.5(b), let
us first consider the Hermitian limit: for h = 0, the eigen-
functions φn in the two miniband branches are extended
waves in one half of the unit cell, whereas they are evanes-
cent waves with exponential decay tails in the other half
space of the unit cell, as illustrated in the bottom panel
of Fig.3(b). Hence, for h = 0 the IPR of the wave func-
tions take small values, scaling with M like ∼ 1/M . As
we slightly increase the imaginary gauge field h, the en-
ergy spectrum does not sensitively change and the wave
functions at h 6= 0, φ′n, are basically obtained from those
at h = 0 by the transformation φ′n = φn exp(−hn). Ow-
ing to such a transformation, the oscillating (extended)
nature of φn in half of the unit cell acquires an expo-
nential envelope and tends to be squeezed toward the
potential barrier region, which is reminiscent of the NH
skin effect in systems with open boundary conditions [68].
Therefore, as h is increased above zero the IPR increases,
as a result of the partial localization effect introduced
by the imaginary gauge field. When h crosses the criti-
cal value corresponding to the spectral phase transition
point (h ' 0.48 in the example of Fig.5), the IPR undergo
smooth changes, and after reaching a maximum they de-
crease. Note that IPRmin, corresponding to the IPR of
the most delocalized wave function, reaches a small value,
∼ 1/M , only at h ' 0.7, i.e. well above the spectral phase
transition point. At much larger values of h, not shown
in Fig.5(b), also IPRmax finally decays to a small value,
of the order ∼ 1/M , indicating that all eigenstates be-
come delocalized. Therefore, in the ordered superlattice
of Fig.3(b) the spectral phase transition, from a real to
a complex energy spectrum, does not coincide with a de-
localization of the wave functions.
The seemingly counterintuitive result that a spectral
phase transition can occur without a corresponding
change of the localization properties of the wave func-
tions, as originally predicted by Hatano and Nelson, can
be explained by the main circumstance that, as shown
by Eq.(8), a spectral phase transition only requires that
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at h = 0 the system displays flat bands in the large M
limit, with bandwidths exponentially vanishing with the
system size M . However, band flattening does not neces-
sarily require localization of the wave functions. Indeed,
the main distinctive feature between a disordered super-
lattice [as the one shown in Fig.3(a) and approximating
an incommensurate disorder in the large M limit] and
an ordered superlattice [as the one shown in Fig.3(b)],
both displaying band flattening in the large M limit and
an associated spectral phase transition, is that in a dis-
ordered system the wave functions φn at h = 0 and in
the large M limit are exponentially localized and scale-
independent (i.e. the form of the wave function becomes
independent of M in the large M limit), while in the
ordered lattice they are scale-dependent and can remain
extended over a portion of the unit cell.

III. PHASE TRANSITIONS IN
NON-HERMITIAN PHOTONIC QUANTUM

WALK SUPERLATTICES

The phase transitions presented in the previous section
in non-Hermitian superlattices can be experimentally re-
alized in discrete-time photonic quantum walks, which
have provided in the past recent years a fascinating lab-
oratory tool for the observation of non-Hermitian phe-
nomena in controllable synthetic matter (see for exam-
ple [78, 81–83, 85, 86, 100–102] and references therein).
Specifically, let us consider discrete-time quantum walks
of optical pulses in coupled fiber loops that realize a syn-
thetic mesh lattice [81, 85, 100–102]. The system consists
of two fiber loops of slightly different lengths L ± ∆L
(short and long paths) that are connected by a fiber cou-
pler with a coupling angle β, with 0 < β < π/2. Balanced
optical gain and loss are applied in the short and long
fiber loops, respectively. A phase modulator is inserted
in one of the two loops, which controls the pulse phase
difference as they recombine in the coupler. The traveling
time of light in the two loops are T±∆T , where T = L/c,
c is the group velocity of light in the fiber at the probing
wavelength, and ∆T = ∆L/c� T is the time mismatch
arising from fiber length unbalance. After each round
trip, the field amplitudes u(t) and v(t) of the light waves
in the short and long loops at a given reference plane
couple each other via the fiber coupler according to time-
delayed equations (see for instance [103]). Considering
light dynamics at discretized times t = tmn = n∆T +mT ,
where n = 0,±1,±2, ... is the site number of the synthetic
lattice at various time slots and m is the round-trip num-
ber, assumed to match the traveling time T along the

mean path length L, the optical field amplitudes u
(m)
n ,

v
(m)
n at the discretized times tmn in the two loops satisfy

the discrete-time coupled equations

u(m+1)
n =

[
cosβu

(m)
n+1 + i sinβv

(m)
n+1

]
exp(h+ iϕn) (13a)

v(m+1)
n =

[
cosβv

(m)
n−1 + i sinβu

(m)
n−1

]
exp(−h+ iϕn)(13b)

where h is the gain/loss parameter and ϕn is an n-
dependent phase term controlled by the phase modu-
lator (see for instance [81]). The phase term ϕn plays
a similar role than the potential Vn in the continuous-
time dynamics of NH superlattices presented in the pre-
vious section. This can be formally shown by considering
the continuous-time limit of the discrete-time quantum
walk [104]. In the most general case, let us note that,
for spatial translational invariance ϕn = ϕ constant and
under PBC, the discrete-time quantum walk defined by
Eqs.(13a) and (13b) sustains two quasi energy bands with
dispersion relations given by

E±(k, h) = ±acos (cosβ cos(k − ih))− ϕ (14)

where k is the Bloch wave number. Note that the quasi
energies are defined mod. 2π. Equation (14) clearly
shows that a non-vanishing phase ϕ just introduces a
constant shift of quasi energies. Note also that the two
quasi energy bands have a width |π − 2β|, and for ϕ = 0
they are centered at around ±π/2. An inhomogeneous
distribution of the phases ϕn can be thus viewed as an
inhomogeneous potential, that locally shifts the position
of the two quasi energies. In particular, in the quantum
walk setting a superlattice with M sites in each unit cell
is realized by assuming for the potential

ϕn+M = ϕn. (15)

In a system under PBC, the eigenfunctions of the super-
lattice are extended Bloch waves of the form

u(m)
n = Un exp[−iE(k, h)m], v(m)

n = Vn exp[−iE(k, h)m]
(16)

where E(k, h) is the quasi energy, k is the Bloch wave
number which varies in the interval (−π/M, π/M), and
the amplitudes Un, Vn satisfy the boundary conditions

Un+M = Un exp(ikM) , Vn+M = Vn exp(ikM). (17)

The dispersion relations E(k, h) of the quasi energy mini-
bands are obtained from a determinantal equation involv-
ing the 2M amplitudes U1, V1, U2, V2, ..., UM , VM (see Ap-
pendix B). Like in the continuous-time problem of Sec.II,
one has E(k, h) = E(k − ih, 0), i.e. the energy disper-
sion curve in the NH case is obtained from the dispersion
curve of the Hermitian quantum walk after the substitu-
tion k → k−ih. Note that, owing to the binary nature of
the lattice, we have 2M quasi energy minibands, which
reduce to the two bands given by Eq.(14) when M = 1.
Like in the continuous-time model discussed in Sec.II.A,
the localization properties of the Bloch wave function
with quasi energy E in each unit cell of the superlattice
are determined by the IPR parameter, given by

IPR(E) =

∑M
n=1

(
|Un|4 + |Vn|4

)(∑M
n=1 (|Un|2 + |Vn|2)

)2 . (18)

The two models introduced in Sec.II.B and shown in
Figs.3(a) and (b), corresponding to an incommensurate
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potential and an ordered potential with rectangular bar-
riers, can be readily implemented in the discrete-time
photonic quantum walk by an appropriate tuning of the
phases ϕn.
The first model (incommensurate potential) is realized
by letting

ϕn = 2παMn (19)

where αM = R/M is a rational approximant of an irra-
tional α. This model in the Hermitian limit h = 0 was
introduced in Refs.[105–107] and dubbed electric quan-
tum walk, in analogy with the problem of Bloch oscilla-
tions on a lattice under a dc field. The dispersion curves
E = El(k) of the quasi energy minibands for this model
can be calculated in an exact analytical form [106], and
the explicit form depends on whether the number of sites
per unit cell M is odd or even. Assuming for example
and odd value of M , one has [106]

El(k) =
2πl

M
+ (cosβ)M cos(kM) (20)

(l = 1, 2, ...,M). In the non-Hermitian case, the disper-
sion curves are simply obtained from Eq.(20) by the re-
placement k → k− ih. Therefore, in the large M limit, a
spectral phase transition, from real to complex quasi en-
ergies, is observed when h is increased above the critical
value

h = − log | cosβ|. (21)

Like for the continuous-time model, the spectral phase
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gauge field hgauge field h
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FIG. 6. (color online) (a) Numerically-computed behavior
of the largest value of the modulus of the imaginary part
of the quasi energy, i.e. maxk,l|Im(El(k))|, versus h for
the quantum walk on a superlattice defined by the sequence
(19) for β = π/3 and for a few increasing values of M
(M = 8, 13 and 55, corresponding to αM = 5/8, 8/13 and
34/55, respectively). Note that the imaginary part of the
quasi energy undergoes a sharp phase transition at the criti-
cal value h = − log | cosβ| ' 0.6931 in the large M limit. (b)
Numerically-computed behavior of the mean IPR parameter,
IPR, for the superlattice with M = 55. Note a clear phase
transition from localized to extended states as h is increased
above the critical value.

transition corresponds to a NH delocalization transition,

from eigenstates exponentially localized to delocalized
states as h is increased above the critical value (21) [85].
This behavior is clearly illustrated in Fig.6, where a se-
quence of integers M is assumed so that αM = R/M
is a rational approximant sequence of the inverse of the
golden ratio α = (

√
5 − 1)/2. Panel (a) in Fig.6 shows

the numerically-computed behavior of the largest value
of the modulus of the imaginary part of quasi energy E
versus h for a few increasing values of M . Note that the
phase transition becomes sharper as M is increased, i.e.
as the rational αM gets closer to the irrational α. The
spectral phase transition corresponds to a localization-
delocalization transition of the wave functions in each
unit cell, as clearly demonstrated in Fig.6(b) by a rather
abrupt change of the mean IPR parameter as h crosses
the critical value given by Eq.(21).

The second model, corresponding to an ordered super-
lattice and consisting of a sequence of rectangular poten-
tial barriers, is described by the phases

ϕn =

{
V n = 1, 2, ...,M/2
−V n = M/2 + 1,M/2 + 2, ...,M

(22)

where we assumed an even value of M . To ensure that
the Bloch wave functions of the superlattice display ex-
ponential decaying tails in half of the unit cell, we re-
quire that the quasi energy bands, as given by Eq.(14)
with ϕ = ±V , do not overlap. Such a condition is met
whenever π/2− β < V < β, which necessarily requires a
coupling angle β > π/4. Like in the second model pre-
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(b)

Im
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)

M=10

M=18

M=80

IP
R

gauge field hgauge field h

(a)

0.45 0.65 0.85

FIG. 7. (color online) Same as Fig.6, but for the superlattice
defined by the potential sequence Eq.(22). Parameter values
are β = π/3 and V = π/4. A clear phase transition in the
energy spectrum [panel (a)] is observed in the large M limit
at the critical value h ' 0.58 of the imaginary gauge field,
in agreement with Eq.(23). However, no special features are
observed in the localization properties of the wave functions
near the critical value of h, as indicated by the behavior of
the mean value of the IPR versus h [panel (b)]. The inset in
(b) shows an enlargement of the mean value of the IPR curve
near its maximum, which is reached at h ' 0.65, i.e. well
above the critical value h ' 0.58.

sented in Sec.II.B, in the large M limit a spectral phase
transition arises as h is increased above the critical value
h = γm/2, where γm is the decay rate of the evanescent
(exponential) tails of the wave function. The value of γm
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can be readily calculated from a simple eigenvalue analy-
sis of a rectangular potential barrier using the dispersion
relation Eq.(14), yielding

h =
γm
2

=
1

2
acosh

(
cos(π − β − 2V )

cosβ

)
. (23)

However, the spectral phase transition does not corre-
spond to a change of the localization properties of the
wave functions. This behavior is illustrated in Fig.7.

In a photonic quantum walk experiment, the distinct
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FIG. 8. (color online) Dynamical signatures of the phase tran-
sition in the photonic quantum walk model, defined by the
potential sequence given by Eq.(19) (incommensurate poten-
tial model). Parameter values are as in Fig.6, with a number
of sites M = 55 and imaginary gauge field h = 0.4, below
the critical value hc = 0.6931. The system is initially excited
at the site n = n0 = 14. (a) Numerically-computed behav-
ior of the evolution of the normalized intensity distribution

(|u(m)
n |2 + |v(m)

n |2)/P (m) on a pseudo color map in the (n,m)

plane. (b) Behavior of the total optical power P (m). (c)
Behavior of the square root of the normalized second-order

moment σ(m) =

√
M

(m)
2 .
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FIG. 9. (color online) Same as Fig.8, but for h = 0.75, above

the critical value hc = 0.6931. The total optical power P (m)

in (b) is plotted on a log scale.

spectral and localization signatures in the two types of
phase transitions can be investigated by monitoring some
dynamical variables of the system, which are much more

accessible than spectral quantities. Let us assume that
at initial step m = 0 we excite the superlattice in a single

site (i.e. with a single optical pulse), so that u
(0)
n = δn,n0

and v
(0)
n = 0, where n0 is the initial excitation site. The

discrete time evolution of the system can be monitored
by considering the following two dynamical variables: the
total optical power P (m) at time step m in the superlat-
tice, defined by

P (m) =
∑
n

(
|u(m)

n |2 + |v(m)
n |2

)
(24)

and the normalized second-order moment

M
(m)
2 =

∑
n(n− n0)2

(
|u(m)

n |2 + |v(m)
n |2

)
P (m)

. (25)

Such two dynamical variables can be readily measured
in a photonic experiment, and they can provide useful
information about spectral and localization properties of
the superlattice [81, 82, 85]. Since the dynamics is non-
Hermitian, the total optical power P (m) is not conserved,
for both h < hc and h > hc. However, when the quasi-
energy spectrum is entirely real, i.e. for h < hc, the
growth of P (m) with m is not secular and P (m) remains
limited as m grows. Conversely, when h > hc the growth
of P (m) with m is unbounded. The localization prop-
erties of the superlattice are captured by the dynamical

evolution of the second-order moment M
(m)
2 . When all

eigenfunctions are exponentially localized, M
(m)
2 remains

bounded as m increases, at a value of the order of the
typical localization length of the eigenstates. Conversely,
when the eigenfunctions are delocalized, the growth of

M
(m)
2 is not bounded. Given the finite number of sites M

in the superlattice arranged in a ring geometry [Fig.1(b)],
in our numerical simulations the presence of delocalized

wave functions yields for M
(m)
2 a large (yet finite) value,

of the order of M , in the delocalized phase. The differ-
ent types of phase transitions, displayed by the two mod-
els defined by the potential sequences given by Eqs.(19)
and (22), are clearly illustrated in Figs.8-11. The fig-
ures show typical dynamical evolution of the photonic
quantum walk on a superlattice under periodic boundary
conditions for initial single-site excitation. Panels (b) in
the figures show the behavior of the total optical power
P (m), clearly indicating that both models show a spectral
phase transition as h is increased above hc, signaled by

the unbounded growth of the total optical power P
(m)
n .

Panels (c) in Figs.8-11 show the corresponding behavior
of the second-order moment. Note that only the first
model, defined by the potential sequence Eq.(19), shows
a localization phase transition, signaled by a marked dif-
ferent growth of second-order moment as h is increased
above the critical value hc [compare Figs.8(c) and 9(c)].
More specifically, for h < hc (Fig.8) the excitation re-
mains tightly localized close to the originally excited site,
whereas for h > hc (Fig.9) the excitation can spread
over the entire lattice, with a characteristic unidirectional
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drift associated to the non-reciprocal hopping induced
by the imaginary gauge field. Conversely, in the sec-
ond model, defined by the potential sequence given by
Eq.(22), the second-order moment can reach large values
(of the order of ∼M) for an imaginary gauge field h both
below and above the critical value hc. More specifically,
for h < hc (Fig.10) the excitation can drift far away than
its original position and can spread in one half of the
lattice, i.e. between the two barriers, with the character-
istic unidirectional drift associated to the non-reciprocal
hopping. The only difference at h > hc (Fig.11) is that,
owing to the very strong imaginary gauge field, the exci-
tation can superpass the potential barrier and the exci-
tation can drift over the entire lattice.
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FIG. 10. (color online) Dynamical signatures of the phase
transition in the photonic quantum walk model, defined by
the potential sequence given by Eq.(22) (potential barrier
model). Parameter values are as in Fig.7, with a number
of sites M = 80 and imaginary gauge field h = 0.45, below
the critical value hc = 0.58. The system is initially excited
at the site n = n0 = 60. (a) Numerically-computed behav-
ior of the evolution of the normalized intensity distribution

(|u(m)
n |2 + |v(m)

n |2)/P (m) on a pseudo color map in the (n,m)

plane. (b) Behavior of the total optical power P (m) on a
log scale. (c) Behavior of the square root of the normalized

second-order moment σ(m) =

√
M

(m)
2 .
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FIG. 11. (color online) Same as Fig.10, but for h = 0.7.

IV. CONCLUSION

In this work we unravelled spectral phase transitions in
one-dimensional non-Hermitian superlattices subjected
to an imaginary gauge field and possessing M sites in
each unit cell, in the large M limnit. It has been demon-
strated that in models displaying nearly flat bands a
smooth phase transition, from quasi entirely real to com-
plex energies, can be observed as the imaginary gauge
field is increased above a critical value, and that the
phase transition becomes exact in the infinite M limit.
In superlattices with random or incommensurate dis-
order, the spectral phase transition is accompanied by
a localization-delocalization transition of the eigenfunc-
tions within each unit cell, a phenomenon which can be
regarded, for a finite M , a precursor of the non-Hermitian
delocalization transition originally predicted by Hatano
and Nelson. However, the main result of the present work
is that there exist superlattices where, in the large M
limit, the spectral phase transition does not correspond
to a simultaneous localization/delocalization transition
of the wave functions. The main reason thereof is that
the spectral phase transition is observed in any super-
lattice model displaying miniband flattening in the large
M limit, with a bandwidth of each miniband exponen-
tially vanishing with the unit cell size M . Wave function
localization induced by disorder, like in the Anderson or
Aubry-André models, obviously corresponds to miniband
flattening, when we approximate the disordered crystal
with a superlattice with a large number of sites M in the
unit cell [97]. In this case, the NH delocalization transi-
tion originally predicted by Hatano and Nelson is found:
as the imaginary gauge field is increased, the emergence
of a complex eigenenergy is associated to a delocaliza-
tion of the corresponding wave function. However, band
flattening does not necessarily require localization of the
wave functions, as we showed in an illustrative example
of an ordered superlattice corresponding to a sequence of
potential barriers on a lattice. The predicted phenom-
ena have been extended by considering non-Hermitian
discrete-time photonic quantum walks, where synthetic
superlattices with controllable potentials and imaginary
gauge fields can be realized with existing experimental
apparatus. Our results shed major insights into phase
transitions in non-Hermitian lattices, indicating that the
coincidence of spectral and metal-insulator phase tran-
sitions observed so far in non-Hermitian disordered sys-
tems is not a universal rule.
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Appendix A: Energy dispersion curves of the
superlattice minibands: the near-flat band limit

Let us consider the tight-binding superlattice in the
Hermitian limit, i.e. for h = 0, and let us indicate

by El(k, 0) the dispersion curves of the M minibands
(l = 1, 2, ...,M). In this Appendix we wish to provide an
approximate form of the dispersion curves in the large
M limit when the superlattice displays near flat bands.
To this aim, let us remind that the dispersion curves are
obtained as the eigenvalues of the Bloch Hamiltonian

H(k) =


V1 J 0 ... 0 0 J exp(−ikM)
J V2 J ... 0 0 0
0 J V3 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... J VM−1 J

J exp(ikM) 0 0 ... 0 J VM

 . (A1)

Let us indicate by φn the l-th eigenfunction of H(k) at
k = 0, with eigenenergy E(0) = El(k = 0, 0), and let
us assume that φn is tightly confined near the center of
the unit cell, with rapidly exponentially-decaying tails
near the edges of the unit cell with a characteristic decay
rate γm, as schematically shown in the bottom panels
of Fig.3 of the main text. Note that, since for k = 0
the matrix H(k) is Hermitian with real elements, with-
out loss of generality we can take φn to be real as well.
Let us assume the normalization condition

∑
n φ

2
n = 1.

With such a normalization condition, the values φ1 and

φM of the wave function at the edge sites of the unit
cell are, in modulus, much smaller than the peak value
of |φn| near the center of the unit cell, and they expo-
nentially vanish with the size M of the unit cell. As a
consequence, φn provides an approximate form the the
eigenfunction of H(k) also for k 6= 0, since the eigenvalue
equation becomes weakly sensitive to the precise values
of the matrix elements H1,M and HM,1. To calculate the
form of the eigenfunctions and corresponding correction
to the energy for k 6= 0, we can thus employ a perturba-
tive analysis. Let us write the matrix H(k) in the form
H(k) = H0 +H1(k), where

H0 =


V1 J 0 ... 0 0 0
J V2 J ... 0 0 0
0 J V3 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... J VM−1 J
0 0 0 ... 0 J VM

 . (A2)

and

H1(k) =


0 0 0 ... 0 0 J exp(−ikM)
0 0 0 ... 0 0 0
0 0 0 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 0 0 0

J exp(ikM) 0 0 ... 0 0 0

 . (A3)

i.e. H0 is a tridiagonal matrix with real elements inde-
pendent of k, whereas H1(k) keeps the dependence on
k with only two non-vanishing elements (H1)1,M and
(H1)M,1. We can then solve the eigenvalue equation
(H0 +H1(k))φn(k) = E(k)φn(k) perturbatively, consid-
ering the action of the matrix H1(k) as a small per-
turbation, which is justified by the fact that the ele-

ments φ1(k) and φM (k) are vanishing in the large M

limit. After letting φn(k) = φ
(0)
n + φ

(1)
n (k) + ... and

E(k) = E(0) + E(1)(k) + ..., at leading order we have

H0φ
.(0)
n = E(0)φ(0)n
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which can be solved with the normalization condition

〈φ(0)n |φ(0)n 〉 =
∑

n

(
φ
(0)
n

)2
= 1. We assume that

the zeroth-order form of the wave function φ
(0)
n , for

a given miniband, corresponds to a tightly confined
function, near the center of the unit cell, with rapidly
exponentially-decaying tails near the edges of the unit
cell with a characteristic decay rate γm. At first order
one obtains(

H0 − E(0)
)
φ(1)n = −H1(k)φ(0)n + E(1)(k)φ(0)n

which can be solved for φ
(1)
n provided that the solvability

condition

E(1)(k) = 〈φ(0)n |H1(k)|φ(0)n 〉 = 2J cos(kM)φ
(0)
1 φ

(0)
M (A4)

is satisfied. Therefore, al leading order the dispersion
curve of the given miniband can be written as

E(k, 0) ' E(0) + E(1)(k)

= E(0, 0) + ∆[1− cos(kM)] (A5)

where we have set E(0, 0) = E(0) + 2Jφ
(0)
1 φ

(0)
M and

∆ = −2Jφ
(0)
1 φ

(0)
M . (A6)

Finally, let us discuss the scaling of the miniband width
2∆ on the size M of the unit cell, which entails to esti-

mate the product φ
(0)
1 φ

(0)
M , under the normalization con-

dition
∑

n

(
φ
(0)
n

)2
= 1. To this aim, let us indicate by

ρ, with 0 < ρ ≤ 1, the fraction of the unit cell where the

wave function φ
(0)
n displays exponential (evanescent) de-

cay, with decay rate γm independent of M , and by (1−ρ)
the fraction of the unit cell where the wave function is
extended (oscillating). For example, for the incommen-
surate Aubry-André model of Fig.3(a) we have ρ = 1,
whereas for the ordered superlattice with potential bar-
riers of Fig.3(b) we have ρ = 1/2. The dominant scaling

of the product φ
(0)
1 φ

(0)
M with M then reads

φ
(0)
1 φ

(0)
M ∼ exp(−σM)

with σ = ργm.

Appendix B: Quasi-energy minibands of the
photonic quantum walk superlattice

Let us assume PBC and let us look for a solution to
Eqs.(13a) and (13b) in the form of extended Bloch waves

with quasi-energy E = E(k, h), i.e. of the form

u(m)
n = Un exp[−iE(k, h)m], v(m)

n = Vn exp[−iE(k, h)m]
(B1)

where the amplitudes Un, Vn satisfy the boundary con-
ditions

Un+M = Un exp(ikM) , Vn+M = Vn exp(ikM) (B2)
and where k is the Bloch wave number, which varies in
the interval (−π/M, π/M). Substitution of Eq.(B1) into
Eqs.(13a) and (13b) and taking onto account the bound-
ary conditions (B2), one readily obtains that the follow-
ing eigenvalue equation should be satisfied

exp[−iE(k, h)]

(
U
V

)
=

(
A B
C D

)(
U
V

)
(B3)

for the amplitudes U ≡ (U1, .U2, ..., UM )T and V ≡
(U1, .U2, ..., UM )T . In Eq.(B3), the four M ×M matrices
A, B, C, and D are defined by

A = exp(h) cosβΦΘ , B = i exp(h) sinβΦΘ

C = i exp(−h) sinβΦΘ† , D = exp(−h) cosβΦΘ†

where Φ is the M×M diagonal matrix with the potential
terms exp(iϕn) on the main diagonal, i.e.

Φn,m = exp(iϕn)δn,m (B4)

and

Θn,m = δn,m−1 + exp(ikM)δn,Mδm,1. (B5)

(n,m = 1, 2, ...,M). The quasi energy dispersion curves
E = El(k, h) of the 2M minibands of the superlattice are
finally obtained by solving the determinantal equation

∣∣∣∣exp[−iE(k, h)]−
(
A B
C D

)∣∣∣∣ = 0. (B6)

It can be readily shown that El(k, h) = El(k − ih, 0),
i.e. the dispersion curves of the NH quantum walk are
obtained from the ones of the Hermitian case after com-
plexification of the Bloch wave number via the substitu-
tion k → k − ih.
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