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Abstract

At the 50th anniversary of Apollo 11, the Moon is back to the scene of scientific and commercial space
exploration interests. During the next decade, the establishment of a Gateway in cislunar non-Keplerian
orbits will open the space frontiers to sustainable manned and robotic missions on and around the Moon.
Such infrastructure will require several logistic operations for its assembly and maintenance, which lean on
rendezvous and docking capabilities. Even if few missions have flown on non-Keplerian orbits, Rendezvous
and Docking (RV&D) operations have not been performed but in Low Earth Orbit (LEO). Investigations
about 6 Degrees Of Freedom (DOF) relative dynamics in non-Keplerian environment are now mandatory to
highlight criticalities in the design of the cislunar gateway and to translate RV&D protocols, consolidated in
LEO for the International Space Station (ISS), to the new non-Keplerian environment. In this direction, the
paper analyses the 6DOF natural orbit-attitude dynamics within the Circular Restricted Three-Body Prob-
lem (CR3BP) framework. A novel perspective of the dynamical structures, constituting 6DOF manifolds,
allows to better characterise the natural relative dynamics in proximity of non-Keplerian orbits. The im-
portance of orbit-attitude manifolds exploitation is underlined for designing reliable and efficient rendezvous
trajectories, enhanced by natural cislunar dynamics.

Then, an ephemeris cislunar dynamical model is exploited to address guidance laws for proximity oper-
ations. The control capability is included in the dynamics of a chaser vehicle, which is employed to solve
the 6DOF guidance problem in proximity of a target spacecraft. The results obtained with the controlled
dynamics are compared to those available thanks to natural motion, discussing the energetic and time costs
to complete the manoeuvres. A control parametrization to solve the optimal energy rendezvous problem is
proposed.

Finally, a feasible operational rendezvous scenario is discussed about the identified favourable locations
along the non-Keplerian orbit to perform complex proximity operations. Significant relations between RV&D
time and non-Keplerian orbit’s period are discussed as well.

Keywords: Orbit-attitude Relative Dynamics, Orbit-attitude Manifolds, Optimal Energy Control,
Cislunar Space, Near Rectilinear Halo Orbit (NRHO).

1. Introduction

Space agencies belonging to the International
Space Exploration Coordination Group (ISECG),

∗Corresponding author

partners in collaboration at the International Space
Station (ISS), have endorsed plans to establish a5

new permanent space asset orbiting in Moon vicin-
ity. A cislunar gateway, also known as Lunar Or-
bital Platform-Gateway (LOPG) or Deep Space
Gateway (DSG), represents a fundamental step in
the sustainable, reusable, long-term architecture to10

support the next generation of human and robotic
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space exploration and commercial mission on and
around the Moon. It is offering a relatively ac-
cessible testbed to develop technologies and oper-
ations in preparation for deep space exploration15

which will ultimately brings human to Mars [1, 2].
Such space infrastructure shall ensure significant
flexibility in order to support different robotics and
manned missions. A fundamental functionality of
the Gateway will be the possibility of frequent20

docking/undocking events of different space vehi-
cle classes, such as the Orion spacecraft or the lunar
service module. Moreover, many logistic operations
will be required for the establishment and main-
tenance of this permanent modular infrastructure,25

leveraging on autonomous Rendezvous and Dock-
ing (RV&D) proximity operations of multiple sta-
tion modules.

Recent studies have selected Earth-Moon Near
Rectilinear Halo Orbit (NRHO) as the most attrac-30

tive staging orbit candidate for the lunar gateway
[3]. Thus, this orbital family will be the focus of
this investigation.

Rendezvous operations between two spacecraft in
Low Earth Orbit (LEO) have been extensively stud-35

ied and tested in the past years, especially thanks
to the ISS programme. Back to the years of Apollo
programme, relative motion and rendezvous ma-
noeuvres in Low Lunar Orbit (LLO) have been ac-
complished. However, no proximity manoeuvring40

has been actually performed so far in a multi-
body gravitational environment, such as the cislu-
nar space.

Despite non-Keplerian multi-body dynamics is
well known and it has been exploited in several45

trajectory design and optimisation studies for low-
energy transfer and station-keeping applications
(e.g. in the Earth-Moon system [4, 5]), the inte-
gration of the relative dynamics of such multi-body
gravitational environment in the design of Guid-50

ance, Navigation and Control (GNC) systems is
recent and sometimes overlooked. Several stud-
ies about relative dynamics and proximity mo-
tion in the Circular Restricted Three-Body Prob-
lem (CR3BP) was applied to formation flying by55

Marchand, Héritier and Howell [6, 7]. Within the
same dynamical model, simple rendezvous strate-
gies based on targeting methods were proposed by
Lizy-Destrez and Murakami [8, 9]. More recently,
different researches have started to analyse and60

propose rendezvous strategies focusing on cislunar
multi-body environment, as in the work of Mam-
marella [10] and Blazquez [11]. However, literature

is often missing a careful dynamical modelling of
cislunar environment, or a complete 6 Degrees Of65

Freedom (DOF) orbit-attitude analysis.
The earliest studies concerning the attitude sta-

bility of a satellite within the CR3BP were con-
ducted by Kane et al. [12] and Robinson [13],
assuming a satellite artificially maintained at the70

location of the libration points. More recently,
Brucker et al. [14] explored the attitude dynamics
and stability of a spacecraft fixed at the equilib-
rium point location in the Sun-Earth system by ex-
ploiting Poincaré maps; Wong et al. [15] extended75

the analysis of attitude motion for a single rigid
body orbiting on linearised Lyapunov and Halo or-
bits in the Sun-Earth system. The general coupling
between orbital and attitude dynamics in CR3BP
was introduced by Guzzetti [16] and Colagrossi [17],80

who provided families of orbit-attitude periodic so-
lutions. The formalization of orbit-attitude relative
dynamics in multi-body gravitational cislunar envi-
ronment was just recently proposed by Colagrossi
and Lavagna [18].85

This paper aims to present an overall characteri-
sation of the coupled 6DOF natural and controlled
relative dynamics of two rigid bodies orbiting in a
multi-body gravitational regimes such as the cislu-
nar space, with particular focus on Near Rectilinear90

Halo Orbits. The eigen-structures of the manifolds,
known in the classical CR3BP, have been extended
to their coupled orbit-attitude representation, high-
lighting and discussing the dynamical features of
orbital and attitude modes. Those coupled struc-95

tures, previously introduced by the authors [19],
have been investigated under a new relative per-
spective to deeply describe the orbit-attitude nat-
ural dynamics characterising the relative transla-
tional and rotational motion in proximity of refer-100

ence periodic solutions in the 6DOF space. The
useful insight outcomes from the natural analysis
have been used as a base in the characterisation
analyses of the continuous controlled relative cislu-
nar dynamics, which aims to define simple guidance105

and control functions for both orbital and rotational
components.

The novel results about relative dynamics char-
acterization with orbit-attitude natural manifolds
are applied to evaluate 6DOF controlled proxim-110

ity manoeuvres, which minimise the control effort
leveraging the peculiarities of the multi-body grav-
itational dynamics in lunar vicinity. In these re-
gards, the paper proposes new guidance and control
laws based on simple polynomial functions and ap-115

2
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plies them to solve the minimal energy rendezvous
problem. The results obtained imposing various ini-
tial and final condition have been summarised, and
their general behaviours are presented. The avail-
able results on controlled relative trajectories are120

critically discussed with respect to the natural man-
ifolds characterisation introduced by the research
work presented in this paper.

Finally, a feasible rendezvous scenario to the cis-
lunar Gateway is proposed synthesising the out-125

comes of both natural and controlled characterisa-
tion analyses.

2. Dynamical Models and Assumptions

The paper discusses natural and controlled 6DOF
relative motions of two rigid bodies in cislunar130

space, under the combined gravitational action of
the Earth and the Moon. The dynamical modelling
to describe both orbital and attitude relative states
is fundamental to analyse proximity operations, as
well as accurate formation flying, in this peculiar135

gravitational environment.
The paper considers both natural and controlled

6DOF relative dynamics. The former is analysed
within a CR3BP model, while the latter makes use
of a more refined Ephemeris 3-body model. This140

is motivated by the fact that results and conclu-
sions about natural dynamics characterisation, un-
der CR3BP assumptions, can be easily extended to
a more refined dynamical model, which supports
the investigation on controlled dynamics, since it145

is more closely related to practical applications re-
quiring high accuracy models.

2.1. Relative Orbit-Attitude CR3BP Model

The analysis of the natural relative 6DOF mo-
tion is carried out within the simplified framework150

of the CR3BP. It represents the simplest orbital
model able to catch the main features of the at-
tractive non-Keplerian multi-body cislunar environ-
ment. The Euler’s rotation equations are included
into the classical CR3BP dynamics, so that the155

orbit-attitude motion can be propagated simulta-
neously [17].
The CR3BP describes the motion of a spacecraft
m, under the gravitational attraction of m1 and
m2. The spacecraft is assumed as a rigid body,160

with negligible mass with respect to the primaries
(m � m1,m2). Within CR3BP simplification, the
primaries move on circular orbits about their com-
mon barycentre with constant angular velocity Ωs.

The study of the relative dynamics involves two in-165

dependent spacecraft, which are labelled as target,
with mass mT , and chaser, with mass mC .

y
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Figure 1: Orbit-attitude absolute and relative model.

A rotating synodic {r̂}-frame is conveniently de-
fined to analyse the absolute and relative CR3BP
motion of the spacecraft. As can be seen in figure 1,
this non-inertial frame is centred at the barycentre
of the Earth-Moon system, O, and it is aligned with
the reference inertial {̂i}-frame at the time t = 0.
Its x̂-axis is directed from m1 to m2 and its ẑ-axis
is in the direction of the angular velocity of the
primaries, ωs = Ωsẑ, while the ŷ-axis completes
the triad. The equation of motion can be conve-
niently normalised via the definition of characteris-
tic quantities, so that the distance between the two
primaries r12, the synodic angular velocity Ωs and
the total mass of the system m1 + m2 are unitary
in non-dimensional units (symbol [ndim]). By do-
ing so, the system becomes uniquely described by
the mass parameter μ.

μ =
m2

m1 +m2
(1)

The absolute orbital states xorb = {r;v} =
[x; y; z; vx; vy; vz] describe the position and the
velocity of the centre of mass of the two spacecraft,170

xorbT and xorbC , which are expressed in the
{r̂}-frame. The attitude quaternions qT and qC
parametrise the orientation of the body-fixed
frames with respect to the {̂i}-frame. The body-

fixed frames of the spacecraft, {b̂T } = {t̂1, t̂2, t̂3}175

3
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and {b̂C} = {ĉ1, ĉ2, ĉ3}, are located at the centre
of mass of the corresponding spacecraft and they
are aligned with their principal inertia directions.
The angular rates, ωT and ωC , relative to the
{̂i}-frame and expressed in the respective body-180

fixed frames, complete the attitude states of the
spacecraft.

In previous works of the authors [19, 20], the
perturbation effect of the attitude motion on the
orbital dynamics resulted negligible for present or
near-future spacecraft operating in cislunar space.
The order of magnitude of the net perturbation
force, which is exerted on a spacecraft due to its
finite extended dimension, with respect to its point-
mass simplification is proportional to the following
relation.

‖fperti‖ ∼ l�SC

ri

)2

, (2)

In this formulation the length of the spacecraft is
labelled as l�SC and it is intrinsically linked to the185

ratio between the spacecraft inertial moments and
mass; the distance from the i-th primary body is ri.
For example, considering a spacecraft with charac-
teristic length equal to 100 meters, the perturbation
magnitude will range from O(10−9) (at perilune of190

an NRHO) to O(10−12) (at apolune of an NRHO).
This perturbation is many order of magnitude lower
with respect to other perturbation sources in the
Earth-Moon system, such as the gravitational pres-
ence of the Sun [21]. Thus, the orbital dynamics has195

been modelled via the classical CR3BP equations.
Conversely, the rotational dynamics is coupled to
the orbital one, being driven by the gravity gradi-
ent torques of the two primaries on the spacecraft
[17, 16].200

By defining r1 and r2 as the distance of the
generic spacecraft (e.g. valid for both target and
chaser) from the first and second primary, respec-
tively, the classical CR3BP dynamical equations

can be defined as follows.

fCR3BP =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = vx

ẏ = vy

ẋ = vx

v̇x = x+ 2vy −
(1− μ)(x+ μ)

r13

−μ(x− 1 + μ)

r23

v̇y = y − 2vx − (1− μ)y

r13
− μy

r23

v̇z = − (1− μ)z

r13
− μz

r23

(3)

The Euler equations of rotational dynamics are de-
fined as follows.

fω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̇1 =
I3 − I2

I1

3(1− μ)

r15
g2g3

+
3μ

r25
h2h3 − ω2ω3

)

ω̇2 =
I1 − I3

I2

3(1− μ)

r15
g1g3

+
3μ

r25
h1h3 − ω1ω3

)

ω̇3 =
I2 − I1

I3

3(1− μ)

r15
g1g2

+
3μ

r25
h1h2 − ω1ω2

)

(4)

The inertia matrix of the generic spacecraft is
I = diag[I1, I2, I3], being the body-fixed {b̂}-frame
aligned to its principal inertia axes. It should be no-
ticed that the orbital dynamics enters in the terms
gi and hi, which represents the direction cosines of205

the radial vector going from the i-th primary to the
spacecraft, expressed in the body-fixed {b̂}-frame.

The quaternion kinematic equations are added to
complete the orbit-attitude dynamics.

f q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q̇1 = 1

2 (ω3q2 − ω2q3 + ω1q4)

q̇2 = 1
2 (−ω3q1 + ω1q3 + ω2q4)

q̇3 = 1
2 (ω2q1 − ω1q2 + ω3q4)

q̇4 = 1
2 (−ω1q1 − ω2q2 − ω3q3)

(5)

The integration of these equations returns the evo-

lution of the attitude quaternion îqb̂ = [q1; q2; q3; q4]

and angular velocity îωb̂ = [ω1;ω2;ω3]. Note that,

4
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during numerical integration, the quaternion con-
straint has to be always satisfied:

q1
2 + q2

2 + q3
2 + q4

2 = 1. (6)

The resulting set of differential equations consti-
tuting the system can be resumed as follows.⎧⎪⎨

⎪⎩
ẋorb = fCR3BP(xorb)
îq̇b̂ = f q(

îqb̂, îωb̂)
îω̇b̂ = fω(xorb,

îqb̂, îωb̂).

(7)

Once the absolute 6DOF states of both target
and chaser spacecraft are available from the nu-
merical propagation of the dynamics in eq. (7),
the relative orbit-attitude states between the chaser
and the target spacecraft can be directly obtained
thanks to the relative kinematic relations [18]. Rel-
ative position, x ≡ δr, is defined as follows.

δr(t) = rC(t)− rT (t) (8)

The relative attitude quaternion δq can be ob-
tained by applying the rule of successive rotation
for quaternions:

δq(t) = b̂T qb̂C (t) = qT
−1(t)� qC(t) (9)

In this notation � is the quaternion left product op-
erator. The rotation matrix [δC] = [Cb̂T /b̂C

], which

transform a vector from the target body-fixed {b̂T }-
frame to the chaser body-fixed {b̂C}-frame, directly
follows from δq. Finally, the relative angular veloc-

ity δωb̂C between the two spacecraft can be defined
as it is seen in the chaser body-fixed {b̂C}-frame.

δωb̂C (t) = ωC(t)− [δC]ωT (t). (10)

As a result, the relative rotational dynamics re-
ferring to {b̂T } non-inertial reference frame, ex-

pressed in the chaser body-fixed {b̂C}-frame, can
be formulated in the vectorial form by the follow-
ing equation:

δω̇b̂C = I
−1
C

{
−
[
δωb̂C×

]
IC δωb̂C

−
[
δωb̂C×

]
IC [δC]ωT + IC

[
δωb̂C×

]
[δC]ωT

−
[
[δC]ωT ×

]
IC δωb̂C +NC − [δC]

[
(
[δC]T IC [δC]− IT

)
I
−1
T

(
NT − [ωT×] IT ωT

)

+ [ωT×]
(
[δC]T IC [δC]− IT

)
ωT

]
− [δC]NT

}

(11)

This compact formulation is obtained by the defi-
nition of the skew-symmetric cross-product matrix
operator [u×]. The torquesNC andNT are the to-210

tal torques acting on chaser and target spacecraft,
expressed in their corresponding reference body-
fixed frame [22, 23]. In CR3BP, these torques are
composed by the gravity gradients due to the two
primaries.215

2.2. Relative Orbit-Attitude Ephemeris Model

Although CR3BP represents a valuable and pow-
erful tool in preliminary analysis, higher-fidelity
models are fundamental to support later stages
of space mission design, especially for RV&D and220

proximity operations GNC applications.
In this paper, an ephemeris dynamical model has

been employed to analyse the controlled dynamics
during proximity operations of target and chaser
spacecraft operating along non-Keplerian cislunar225

orbits, such as NRHO. The gravitational presence
of the Sun, as well as the actual orbits of the Earth
and the Moon are the most relevant perturbation
in cislunar environment, which have been neglected
in the previous CR3BP simplification. The employ-230

ment of numerical ephemeris data gathered via the
SPICE Toolkit offered by NASA/JPL allows to in-
clude the actual motion of the Earth, the Moon and
the Sun in the ephemeris dynamical model. Also
the Solar Radiation Pressure (SRP) has been in-235

cluded in the orbit-attitude ephemeris dynamics,
whose effect is modelled considering the spacecraft
as a composition of multiple flat surfaces. The total
SRP perturbation force and torque are obtained by
summing up each contribution of the illuminated240

surfaces of the spacecraft.
In this case, the orbit-attitude dynamical frame-

work is an ephemeris four-body problem. Dif-
ferently from the CR3BP formulation, the orbit-
attitude ephemeris model is conveniently expressed
in the inertial reference {̂i}-frame. For example, the
absolute orbital dynamics of the target spacecraft
in ephemeris model is described in vectorial form as
follows.

r̈îT =− μ1

rT1
3
rîT1 − μ2

rT2
3
rîT2 +

− μS

(
rîT S

rT S
3
+

rîS2

rS2
3

)
+ aî

SRP .

(12)

The gravitational planetary parameters of Earth,
Moon and Sun are respectively written as μ1, μ2

5



and μS ; the vector rîT is the position of the target

spacecraft in the inertial {̂i}-frame; aî
SRP is the245

SRP acceleration term.
The relative orbital states can be obtained by

differentiating the absolute states, as in eq. (8), or
by directly integrating the relative orbital dynam-
ics. In this case, being referred with respect to the
inertial {̂i}-frame, it is directly obtained from the
differences between the translational accelerations
acting on the chaser, r̈îC , and the target spacecraft,

r̈îT , .

ẍî = δr̈î = r̈îC − r̈îT (13)

The absolute and relative rotational dynamics in
the ephemeris model have the same form of equa-
tions (4) and (11), but now they are rewritten con-
sidering the actual position of the primaries, and250

including also the perturbation terms of Sun grav-
ity, as fourth body, and of SRP. In particular, the
torques NC and NT are now constituted by the
gravity gradient torques due to the Moon, Earth
and Sun, and by the SRP torque acting on each255

spacecraft.
Further details about the development of the

orbit-attitude ephemeris four-body problem dy-
namics can be found in previous works of the au-
thors [17, 18, 20].260

3. Orbit-Attitude Natural Relative Dynam-
ics

The invariant manifolds represent a primary tool
to investigate the natural dynamics characterising
the Libration Point Orbit (LPO)s and, in partic-265

ular, the relative motion in their immediate prox-
imity. This chapter analyses the manifolds associ-
ated to NRHOs, in their orbit-attitude extension,
employing the simplified CR3BP dynamical model
described in section 2.1. These informations gives270

helpful insights for the design of natural and/or low-
energy proximity operations in the cislunar environ-
ment considering the 6DOF motion of the space-
craft.

3.1. Orbit-Attitude Relative Modes275

Periodic rotational behaviours respect the syn-
odic {r̂}-frame, associated to a well-known periodic
LPO existing in the CR3BP, can be discovered from
the study of the orbit-attitude dynamics (7). Pecu-
liar natural dynamical structures exist around these280

equilibrium periodic solutions, which may be clas-
sified in stable, unstable, periodic and center in-
variant manifolds [24]. In the classical CR3BP, the
manifolds have been widely explored in their ab-
solute point of view, such as consistent low-energy285

transfer possibilities to and among many LPOs [25].
Starting from the variational equation obtained

via Taylor expansion of the dynamics (7), the fun-
damental matricial differential equation of the State
Transition Matrix (STM) is obtained.

Φ̇(t, t0) = A(t)Φ(t, t0) with Φ(t0, t0) = I12×12

(14)
In the initial boundary condition, the STM is equal
to the 12-by-12 identity matrix, I12×12. The STM
Φ(t, t0) constitutes the linear mapping of the vari-
ation of the orbit-attitude state at time t due to290

an initial variation of the reference state at time t0.
Further details about the dynamical model, such
as the definition of each term composing the Jaco-
bian A(t), or numerical methods to find periodic
solutions, can be found in [16]. According to the295

Floquet’s theory, the stability information and the
local direction of the invariant manifolds constitut-
ing the eigenstructure surrounding the neighbour-
hood of a reference periodic solution are embedded
into the STM after a full LPO period T , which300

matrix is also known as monodromy matrix. It
should be highlighted that the monodromy matrix
M = Φ̃(T, 0) has to fully reflect the point of view of
a rotating observer sitting in the synodic {r̂}-frame
for both the orbital and attitude states. From the305

eigenanalysis of the monodromy matrix, 6 orbital
modes and 6 attitude modes can be distinguished.
The eigenvalues λj of the monodromy matrix are
related to the departure rate of the mode, while
the eigenvectors ej describe the relative “local” di-310

rection of the corresponding invariant manifolds in
the 12-dimensional space of the orbit-attitude dy-
namics.

The numerical method employed in this paper
explores the 12-dimensional surfaces of the orbit-
attitude invariant manifolds via discretisation. The
periodic orbit-attitude LPO is discretised in N
points. The n-th point along the LPO is identi-
fied by the corresponding time tn = T (n − 1)/N .
The Floquet modes ej are propagated to the n-th
point through the STM seen from a fixed observer
respect the synodic {r̂}-frame.

vj = Φ̃(tn, 0) ej (15)

Each propagated mode vj represents the ap-

6



proximated “local” direction of the corresponding
“global” invariant manifold (i.e. periodic, sta-
ble, unstable or center) expressed in the synodic
point of view for both orbital and attitude mo-
tion. A small perturbation along the direction of
the eigenmode vj moves the spacecraft onto the 12-
dimensional surface of the “global” orbit-attitude
invariant manifold from the nominal periodic orbit
solution. The desired equivalent magnitude of per-
turbation can be non-dimensionalised considering
the corresponding characteristic dimension of the
CR3BP system. For example, an equivalent pertur-
bation magnitude in the position component can be
non-dimensionalised by the characteristic length of
the Earth-Moon system. It is important to remark
that a good numerical approximation of the mani-
fold will be obtained by employing lower values of
the perturbation magnitude ε. To correctly find the
initial point to propagate the orbit-attitude mani-
folds, the perturbation has to be added coherently
to the full orbit-attitude states X(tn) of the LPO.⎧⎪⎨

⎪⎩
xorbm(tn) = xorb(tn) + ε δvj1:6
îq1:3m

b̂(tn) = îq1:3
b̂(tn) + ε δvj7:9

îωm
b̂(tn) =î ωb̂(tn) + ε δvj10:12,

(16)

where îq1:3
b̂ = [q1; q2; q3] are the vector components

of the quaternion vector.315

Note that the attitude states are expressed with

respect the inertial {î}-frame in the dynamics equa-
tions (7), and particular attention must be paid to
the quaternion perturbation direction. First, the

attitude quaternion îqb̂ is transformed to the body320

quaternion with respect to the synodic {r̂}-frame,
r̂qb̂. In this way, the attitude quaternion is ex-
pressed according to Floquet modes periodic for-
mulation. Then, the manifold perturbation can be

added to r̂qb̂, hence q4 is derived from the quater-325

nion constraint relation in eq. (6). Finally, the
quaternion is converted back to the inertial {̂i}-
frame to obtain a perturbed state that can be
directly propagated through the developed orbit-
attitude dynamics.330

This section presents a case study on a cislu-
nar L1 Northern NRHO with vertical amplitude
Az � 78.1 × 103 km (� 0.2031 [ndim]) and orbital
period T � 8.15 days (� 1.8760 [ndim]). A librat-
ing periodic behaviour about the synodic {r̂}-frame335

for the rotational motion of the cislunar Gateway
has been chosen (e.g. no complete rotation in an
orbital period), as relevant particular case of pe-

riodic attitude natural solution within the 6DOF
dynamics.340

3.2. Approaching/Departing Natural Trajectories
The stable and unstable manifolds constitute re-

liable and robust natural reference corridors for a
chaser spacecraft (such as cargo or crewed vehicles,
station modules, lunar service vehicle, etc.), which345

can be respectively exploited in approaching oper-
ations to a target (e.g. the cislunar Gateway) or
departing procedures (e.g. from the Gateway after
undocking).

Figure 2 shows the relative trajectories belong-350

ing to the stable orbital manifold seen in the syn-
odic {r̂}-frame point of view. The 6DOF natural
dynamics has been propagated over 2-orbital peri-
ods (about 16 days), considering as insertion points
of the chaser spacecraft (drawn with circled dots)355

different initial locations along the reference LPO,
which are equispaced in phase angle. The black line
depicts the path followed by the stable mode start-
ing from a manifold insertion at the apolune of the
NRHO. Typically, the stable manifold trajectories360

are obtained via reverse-time propagation. How-
ever, they are propagated forward to explore the
actual relative motion of the approaching modes.

Figure 2: Relative orbital dynamics over 2-orbital periods of
stable orbital mode trajectories. Earth-Moon L1 northern
NRHO with Az � 78.1×103 km (� 0.2031 [ndim]). Initial
chaser offset of 5 km.

The chaser is assumed to begin its approach from
5 km distance. After the first full period it has re-365

duced the distance to about 1 km, and after the
second period it reaches a distance close to 300 m.
In proximity of the reference solution, all the orbital
modes maintains the same structure even if the ini-
tial offset distance at the insertion point is differ-370

ent. For example, starting from 50 km for the same
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reference NRHO, after the first period the distance
becomes about 11 km and after the second period it
is in the order of 3 km. It should be highlighted that
the distance between target and chaser has a steep375

variation at each perilune passage, whose magni-
tude is related to the stability of the LPO. This
exponential step-like evolution is quite character-
istic of all NRHOs, having a dynamically sensible
perilune region and a quieter apolune region. An380

example of this sensitivity can be appreciated in fig-
ure 2, looking at the relative trajectory obtained by
the insertion point just after the perilune passage
(i.e. the trajectory not grouped with other similar
relative trajectories). In fact, the “local” direction385

of the manifold is more difficult to accurately ap-
proximate near the perilune region

The unstable trajectories describe a similar dy-
namical structure of the stable one, but they are
travelling in the opposite direction and it eventu-390

ally diverges departing from the target. Figure 3
reports the relative trajectories belonging to the un-
stable orbital manifold of the reference NRHO seen
in the synodic {r̂}-frame point of view. The chaser
departs from 200 m initial offset distance along the395

unstable mode and the natural drift is propagated
over 2-orbital periods.

Figure 3: Relative orbital dynamics over 2-orbital periods of
unstable orbital mode trajectories. Earth-Moon L1 northern
NRHO with Az � 78.1×103 km (� 0.2031 [ndim]). Initial
chaser offset of 200 m.

The typical surface structure of the stable and
unstable manifolds belonging to NRHOs is con-
stituted by two opposite conical-spiralling regions400

which are connected to each other by wide arches.
Exiting from one of the slow apolune conical-
spiralling region, the relative orbital dynamics of
the trajectories quickly evolves on the wide curve

reaching its maximum velocity in correspondence405

of the perilune. Then, the relative dynamics on the
wide curve progressively slows down while target
and chaser approach the apolune. It eventually en-
ters a new slowly spiralling motion on the opposite
cone of the manifold. Then, a new cycle begins.410

3.3. Bounded Natural Trajectories

The center orbital invariant manifolds contain
the remaining characteristics dynamics of the non-
Keplerian multi-body orbits and they describe
bounded relative motions in proximity of the refer-415

ence periodic orbit-attitude LPO. For any periodic
orbit-attitude solution in the CR3BP, a couple of
unitary eigenvalues exists for both orbital and ro-
tational behaviour. The corresponding eigenmodes
are labelled as periodic modes because their motion420

is associated to the periodicity behaviours of the
reference LPO. Finally, if a couple of eigenvalues of
the monodromy matrix M lays on the unitary circle
in the complex plane, a couple of “center” eigen-
modes will span the surface in the 12-dimensional425

orbit-attitude space. This eigenstructure identifies
quasi-periodic behaviour in proximity of the peri-
odic reference solution.

The relative trajectories with a drop-like shape
shown in figure 4 correspond to the relative mo-430

tions of a chaser lying on the periodic orbital mode,
labelled as P1, for five different insertion location
along the reference NRHO with an initial offset of
200 m. This relative motion represents a temporal
shift along the same periodic orbit-attitude LPO435

between the chaser and target spacecraft. For this
reason, the relative motion is closer to the target in
the apolune region, while the distance reaches its
maximum at perilune passage where the dynamics
is faster and the same temporal displacement cor-440

responds to a greater distance.
The nature of this mode offers a useful relative

periodic orbit that can be leveraged as safe check-
points during the approaching phases of RV&D op-
erations. For example, a chaser spacecraft could lay445

on it, waiting for the authorisation to proceed its
proximity operations.

The last class of orbital modes is represented by
the center orbital modes, which dynamics develops
in complex hovering relative motions of the chaser450

spacecraft around the target. The particular case
shown in figure 5 corresponds to the propagation
over 6-orbital period after a manifold insertion hap-
pening at apolune of a center orbital mode. This
motion is associated to the first orbital mode of the455
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Figure 4: Relative orbital dynamics over 2-orbital periods of
periodic orbital mode trajectories. Earth-Moon L1 northern
NRHO with Az � 78.1×103 km (� 0.2031 [ndim]). Initial
chaser offset of 200 m.

the couple of center eigenmodes and it has been la-
belled as C1. The chaser maintains a safe distance
from the target spacecraft, ranging from 100 m to
1.8 km after an insertion along the center mode at
200 m.460

Figure 5: Relative orbital dynamics over 6-orbital periods of
center orbital mode trajectories. Earth-Moon L1 northern
NRHO with Az � 78.1×103 km (� 0.2031 [ndim]). Initial
chaser offset of 200 m.

The wide arcs composing the center mode be-
haviour are characteristic of NRHOs, direct conse-
quence of the close passage to the Moon. An os-
cillating behaviour having a longer period respect
the orbit characterises these particular orbital dy-465

namical structures, which resembles the oscillating
behaviour observed in literature for NRHO [26].

The black line corresponds to the mode obtained
by the insertion at apolune at time t = 0, while the
green line represents an apolune insertion happen-470

ing along the same eigenmode after one orbital pe-
riod. Both the insertion has been computed to be at
initial distance equivalent to 200 m. The small dis-
placement between the two line is due to the quasi-
periodic dynamical evolution of the center mode,475

which continuously modifies the equivalent magni-
tude of the projection along the instantaneous “lo-
cal” direction of the mode.

3.4. Natural Attitude Motions on Orbital Modes

Discussing about the shape of the orbit-attitude480

modes in the 12-dimensional space, it should be
highlighted how the 6 orbital modes include a sig-
nificant component in both the orbital and atti-
tude subspaces due to the cross-coupling deter-
mined by the gravity gradient torque. On the con-485

trary, the remaining 6 attitude modes are consti-
tuted by the solely attitude component. The ex-
istence of these purely attitude modes is directly
linked to the adopted simplification of the dynam-
ical model, where attitude variations do not affect490

the spacecraft trajectory.

Figure 6 shows the relative attitude motion of the
chaser moving along two different natural orbital
modes: the stable and periodic orbital modes shown
before, respectively in figure 2 and figure 4). The495

relative attitude is analysed in comparison with the
relative distance evolution.

As can be observed in figure 6, the natural atti-
tude of the chaser moving along the orbital modes
remains synchronised (e.g. null relative attitude500

states) to the one of the target spacecraft on the
reference solution. This synchronisation is kept
when the chaser remain below a certain relative dis-
tance, which is in the order of hundreds of kilome-
tres (∼10−4[ndim]) considering the case of NRHO.505

This behaviour has been observed for all the orbital
modes of LPOs in the Earth-Moon system, but the
actual limiting distance to keep the synchronization
changes depending on the nature of the orbit.

The synchronised relative attitude motion on510

natural orbit-attitude trajectories is a relevant re-
sult, which can be beneficially exploited while
analysing and designing controlled relative 6DOF
motion in non-Keplerian multi-body orbits. In fact,
along a natural relative trajectory, the attitude of515

the chaser remains aligned with the one of the tar-
get.
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(a) Stable orbital mode

(b) Periodic orbital mode

Figure 6: Relative attitude dynamics of orbital modes over 2-
orbital periods, in relation with the relative distance. Earth-
Moon L1 northern NRHO with Az�78.1×103 km (� 0.2031
[ndim]).

4. Orbit-Attitude Controlled Relative Dy-
namics

Orbit-attitude controlled relative dynamics in520

cislunar space is relevant to any space application
that requires complex RV&D or proximity opera-
tions. In fact, despite the influence of natural mo-
tion is significant in multi-body gravitational en-
vironment, the presence of unmodelled perturba-525

tions, uncertainties or GNC errors make necessary
the presence of active control systems. Neverthe-
less, the characterisation of natural relative dynam-
ics, discussed in section 3, can be conveniently ex-
ploited within the guidance functions for trajectory530

design. In fact, approaching, departing or hover-
ing trajectories are naturally possible thanks to sta-
ble, unstable, periodic and center manifolds, respec-
tively. The dynamical informations obtained in the

CR3BP analysis can be coherently extended in the535

ephemeris models as initial guess.
As already said, the controlled dynamics has

been investigated leveraging the ephemeris four-
body problem described in section 2.2. This is moti-
vated by the accuracy typically required in practical540

GNC applications.
According to the analysis about the natural rel-

ative motion of the chaser, the dynamically quiet
apolune region of NRHOs has been identified as
the most favourable environment to perform com-545

plex controlled proximity operations, such as the
approaching phases to finalise the docking to the lu-
nar Gateway [27]. Therefore, the apolune has been
assumed as a representative initial point for the rel-
ative control discussion presented in this section.550

Although any space mission is a complex sys-
tem engineering problem, dealing with several re-
quirements and constraints from any subsystem,
the guidance and control problem is here defined
within the optimal energy context, to asses the fea-555

sibility of control proximity operations in cislunar
space with minimum control energy. This choice al-
lows to better highlight the exploitation of natural
relative manifolds highlighted in section 3.

4.1. Direct Transcription of Relative Guidance560

In the assumed scenario, the target spacecraft
(e.g. the lunar Gateway) is a passive vehicle
maintaining its nominal non-Keplerian cislunar or-
bit, while the chaser spacecraft is an active vehi-
cle with complete orbit-attitude control capabil-
ity. The analysis does not consider the actuation
problem; therefore, the output control function is
the nominal vector of linear accelerations aC ex-
pressed in the inertial {̂i}-frame and the nominal
vector of angular acceleration αC expressed in the
chaser body-fixed {b̂C}-frame. The control action
u(t) = [aC ;αC ] is included in the relative dynam-
ical model, equation (13) and the ephemeris ver-
sion of equation (11), as additional external force
and torque terms acting on the chaser spacecraft
or, equivalently, as translational and rotational ac-
celeration additional terms.{

¨̃xî = ẍî + aC

δ ˙̃ω b̂C = δω̇ b̂C +αC

(17)

The proximity guidance Optimal Control Prob-
lem (OCP) is reduced to a Non-Linear Program-
ming (NLP) problem by parametrizing the control
variable and by transcribing the dynamical system
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(17) and its boundaries into a finite set of equality565

constraints. In this analysis, the 6DOF controlled
trajectory has been not discretised in multiple arcs
connected by patch points. Therefore, the control
parametrisation will have to offer a greater flexibil-
ity than a simple linear function, while maintaining570

a reduced complexity to limit the dimension of the
NLP. Moreover, the optimisation has been decided
to be performed over different fixed Time Of Flight
(TOF), tf . As a consequence, only the parameters
which characterise the control actions of the chaser575

constitute the vector of unknown variables p, solu-
tion of the NLP.

The final relative orbit-attitude state X(tf ) at
the end of the controlled rendezvous simulation has
to satisfy a set of desired boundary conditions. Null
relative position and velocities, as well as attitude
states correspond to the simplest docking condition
which can be analysed.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x(tf ) = [0; 0; 0]

ẋ(tf ) = [0; 0; 0]

q(tf ) = [0; 0; 0;±1]

ω(tf ) = [0; 0; 0]

(18)

In practical rendezvous scenarios, the position vec-
tor of the docking hatch will be likely displaced from
the center of mass of the target spacecraft. It fol-
lows the docking boundary condition at time t = tf
will be related to the 6DOF configuration of the
space gateway driven by its absolute orbit-attitude
dynamics. In general, the final desired 6DOF states
of the chaser spacecraft will be a function of the
6DOF states of the target states and tf . The defini-
tion of an error state vector [δx; δv; δq; δω] between
the relative orbit-attitude state of the chaser and a
desired final relative condition [xd;vd; qd;ωd] al-
lows to generalise the boundary conditions (18) to
any controlled relative 6DOF motion problem.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
δx = x(tf )− xd

δv = ẋ(tf )− vd

δq = qd
−1 � q(tf )

δω = ω(tf )− ωd

(19)

The actual configuration of the chaser and tar-
get spacecraft can be directly included in the final
boundary condition. This would be obtained by580

means of coordinate transformations, e.g. to de-
rive the relative 6DOF states between the active
docking mechanism of the chaser and the passive
docking ring of the target Gateway.

Different parametrisation possibilities are viable
for the controlled dynamics. Favourable results
have been obtained by the authors employing poly-
nomial and Fourier series [18]. The latter is used
for rotational dynamics control to guarantee numer-
ical convergence to the optimal solution. A sim-
pler version of control parametrisation is proposed
in this paper, where a second degree polynomial
parametrisation is shown to be robust enough for
the translational control aC . Also with this novel
parametrisation, the rotational dynamics requires
more parameters to achieve numerical convergence:
a third degrees polynomial function has been used
to parametrise αC .

aC(p, t) = a0 + a1

(
t

tref

)
+ a2

(
t

tref

)2

(20)

αC(p, t) = α0 +α1

(
t

tref

)
+α2

(
t

tref

)2

+

+α3

(
t

tref

)3
(21)

The parameters ai and αi are 3× 1 vectors which
constitute the control variable p = {ai;αi}. Their
physical dimensions are determined by the physi-
cal quantity they are parametrizing. The reference
time tref is required to non-dimensionalise the time
during the manoeuvre t. The final form of the con-
trol action u(p, t) is obtained by including the con-
trol functions (20) and (21).

u(p, t) =

{
aC(p, t)
αC(p, t)

}
(22)

In this case, the dimension of the problem is 21,585

where 9 parameters are used for translational con-
trol and 12 parameters define the rotational one.
Note that the control action profile, as well as the
evolution of the controlled orbit-attitude dynamics,
is defined for the full manoeuvre once the parame-590

ters ai and αi of p are fixed.
The objective of the guidance algorithm is to

find a control profile u(p, t) to perform the con-
tinuously controlled proximity manoeuvre through
a constrained optimisation of a performance index
J . In general, any performance function can be
formulated by a terminal penalty term ϕ and a La-
grangian term L.

J = ϕ(xf , tf ) +

∫ tf

t0

L (x(t),u(t), t) dt (23)
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The terminal penalty term will be not considered in
this investigation, because the NLP has been formu-
lated to consider the final boundary condition as a
constraint in the optimisation. Therefore, the per-
formance index in equation (23) is defined accord-
ing to the Lagrangian formulation for the optimal
energy proximity guidance (i.e. minimum quadratic
control) as a function of the control variable p.

J(p) =
1

2

∫ tf

t0

uT (p, t)u(p, t) dt (24)

The NLP is solved through a constrained min-
imisation algorithm which exploits the Sequential
Quadratic Programming (SQP) method.

4.2. General Continuous Guidance Results595

The study aims to provide a general character-
isation of controlled relative dynamics in cislunar
space. Hence, random initial relative orbit-attitude
states, as well as representative departure locations
along the stable or unstable modes, or along other600

locations conveniently identified by the natural dy-
namics characterisation (e.g. periodic manifold),
have been explored for the chaser spacecraft. Dif-
ferent final offset position with final attitude syn-
chronisation have been investigated, obtaining sim-605

ilar results.
For example, figure 7 shows the guidance func-

tions obtained for a representative far-range ren-
dezvous problem (i.e. initial relative distance in
the order of 102 km).610

The example rendezvous TOF is quite shorter
with respect to the characteristic period of the nat-
ural dynamics of the NRHO (and more in general
of non-Keplerian cislunar orbits), where target and
chaser spacecraft are orbiting. For example, the ter-615

minal RV&D sequence should be completed within
few hours or at maximum two days (i.e. in line with
the operational requirements established during the
ISS experience). Instead, the orbital period of the
NRHO lasts about 7-8 days. Therefore, the devi-620

ations from the natural dynamics have not enough
time to affect significantly the optimal energy guid-
ance control.

The optimal energy guidance progressively
evolves from the departure acceleration to the final625

deceleration, exploiting at the most the inertial nat-
ural motion in the middle of the manoeuvre. The
guidance control force is almost linear, although it
has been parametrised through a second order poly-
nomial function, as expected from the quadratic630

formulation of the optimal energy problem.

(a) Control force. Chaser mass mC ∼ 103 kg

(b) Control torque. Chaser inertia IC ∼ 104 kgm2

Figure 7: Direct transcription control of the 6DOF ren-
dezvous guidance NLP. Rendezvous TOF tf = 6 hours.
Spacecraft inertia properties: mC ∼ 103 kg; IC ∼ 104 kgm2.
Case with random initial relative states for far-range RV&D.

This result is independent from the initial offset
position direction and from the attitude dynamics.
The translational guidance cost only depends on
the initial distance of the chaser from the target635

desired destination, the initial relative velocity of
the chaser, and from the TOF requested to perform
the manoeuvre.

The control torques tend to use the higher or-
der terms of the control parametrisation. Even if640

it should be highlighted that the optimal energy
guidance tends to use slow relative angular veloc-
ity profiles to synchronise the initial attitude offset
for longer rendezvous TOF, by exploiting the nat-
ural attitude dynamics existing in cislunar space.645

When the initial relative angular velocity is smaller
enough with respect to the natural synchronised
rate, the control torque behaviour will be almost
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linear. Vice versa, if the initial relative angular ve-
locity of the chaser is comparable, such as in figure650

7, or higher to the optimal natural synchronisation
rate, the control torque function will present rele-
vant higher-order terms.

An important outcome concerns the small mag-
nitude of the control action requested by the 6DOF655

guidance of a quite large chaser spacecraft (∼ 103

kg). It suggests the equipment of a 6DOF con-
trol system independent from the main engines, re-
quiring a sensible throttling capability. This could
be made through a dedicated cluster of manoeu-660

vring thrusters or angular momentum control de-
vices, such as reaction wheels.

(a) Translational control effort

(b) Rotational control effort

Figure 8: Rendezvous control effort in relation to the ma-
noeuvre TOF, tf . Spacecraft inertia properties: mC ∼ 103

kg; IC ∼ 104 kgm2. Initial relative states as in figure 7.

The same manoeuvre scenarios shown in figure
7 has been solved for different reasonable TOF to
compare the control effort requirements. Figure 8665

reports the control effort to perform a far-range ren-
dezvous starting at a distance of 70 km, with an
injection velocity error of few cm/second and exe-
cuting a large-slew manoeuvre. The point solution
with TOF equal to 6 hours corresponds to the case670

shown in figure 7.
In general, the optimal energy translational guid-

ance results in lower control costs for longer ren-
dezvous TOF. In fact, the guidance and control
functions are able to spread their control actions675

more effectively, having a longer time to complete
the manoeuvre within the natural dynamics regime.
This is not true for the rotational dynamics con-
trol, which struggles on convergence when the ren-

dezvous TOF are too long. This is related to a more680

complex evolution of the control torque to avoid de-
parture from the natural synchronised motion. For
these limiting cases, the optimal energy rotational
guidance is more prone to reach the final relative
attitude configuration through overshooting or ad-685

ditional rotations, which result in non-linear control
functions and higher control costs (see figure 8(b)).

This conclusion can be further analysed look-
ing at figure 9, where the evolution of the relative
quaternion of the chaser with respect to the tar-690

get and the control torque are reported. The initial
condition for this solution are the same of the pre-
viously presented case in figure 7, but now the time
to complete the manoeuvre has been increased to 7
hours. A more complex attitude control torque is695

evident, with larger attitude oscillations along the
rendezvous trajectory.

5. Rendezvous and Docking Strategy

Given the natural and controlled relative dynam-
ics characterisation results discussed in the previous700

section, an example rendezvous and docking strat-
egy implementation is here discussed.

For what concern the implementation of the pro-
posed methods, the absolute and relative ephemeris
orbit-attitude dynamics, in chapter 2, can be705

numerically propagated with on-board comput-
ers exploiting pre-saved look-up tables of the
ephemerides. In this way, the computational load is
suitable for on-board applications [28]. The chaser
and/or the target spacecraft will have available rel-710

ative and absolute navigation measurements. For
example, the chaser is expected to be equipped with
relative navigation sensors (e.g. LIght Detection
And Ranging (LIDAR), vision-based technologies)
for 6DOF state determination [29, 30]. The tar-715

get spacecraft is expected to be passive, but coop-
erative, during the rendezvous operations, and it
shall have an additional relative state determina-
tion system for safety reasons [31]. Moreover, both
spacecraft shall have an absolute navigation system720

based on a ground-tracking measurements, such as
the Deep Space Network (DSN) [32].

The chaser vehicle is assumed to reach the prox-
imity operation distance from the target space in-
frastructure during a phasing phase prior the ren-725

dezvous. The chaser has to arrive approximately
at 100 km distance from the target well before the
NRHO apolune [27]. In this way, the navigation
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(a) Controlled relative quaternion evolution. Chaser
inertia IC ∼ 104 kgm2

(b) Control torque. Chaser inertia IC ∼ 104 kgm2

Figure 9: Direct transcription control of the 6DOF ren-
dezvous guidance NLP. Rendezvous TOF tf = 7 hours.
Spacecraft inertia properties: mC ∼ 103 kg; IC ∼ 104 kgm2.
Initial relative states as in figure 7.

system has enough time to perform accurate orbital
determination and data processing [33].730

A communication/telemetry link between the
chaser spacecraft and the target Gateway can be es-
tablished. Communication capabilities between the
two vehicles may be required for operational and
safety reasons, as well as for navigation functional-735

ities. The proximity communication infrastructure
is assumed to be analogous to the one already im-
plemented for ISS proximity operations, e.g. via S-
band antenna [34]. The end of the phasing phase is
assumed to happen when the hand-over from abso-740

lute to relative navigation is successfully achieved.
At this point, the chaser vehicle begins the far-

range rendezvous phase with its insertion onto the
stable orbital manifold of the NRHO. This insertion
point has been calculated before, during the orbital745

determination procedure. This choice allows to ex-
ploit a natural approaching trajectory to reduce the
active control effort. The proposed guidance laws
enable a control strategy over the natural mani-
folds to manage this rendezvous phase. In fact, the750

chaser vehicle will perform small Maintenance Cor-
rection Maneuvers (MCM) in order to follow the
natural dynamics of the approaching path described
by the stable orbital mode. After a full orbital pe-
riod (about 8 days) on this mode, the chaser vehicle755

acquires a relative distance in the order of 10 km
from the target space infrastructure.

The short-range phase constitutes the final part
of the RV&D procedure. During this phase, the
chaser vehicle is guided through several predeter-760

mined checkpoints by the GNC system. The opti-
mal energy rendezvous guidance algorithm can be
employed to compute the continuous relative 6DOF
function for the orbit-attitude guidance. Then, a
closed-loop control system will drive the on-board765

actuation devices of the chaser (e.g. thrusters
and reaction wheels) to maintain nominal condi-
tion during the approach. A simple operational
scenario is proposed to include two checkpoints, as
already discussed by the authors in [27]. Exiting770

from the stable orbital manifold, the chaser will
move towards the first Waiting Point (WP1), which
is place on the unstable orbital manifold at 1 km
distance from the target space infrastructure. The
second checkpoint (WP2) has been placed 200 me-775

ters away the target, again on the unstable orbital
manifold. In this way, the chaser spacecraft will
naturally drift away from the target avoiding the
possibility of a collision. This will ensure passive
safety if any anomaly occurs, e.g. engine failure.780

Periodic and center manifold directions can be ex-
ploited in case hovering is sought in the rendezvous
operations.

During the closing approach stage, the chaser
moves from WP1 to WP2 while it will perform an785

attitude rotation manoeuvre which has to estab-
lish the alignment of the docking mechanisms in
preparation of the final translation along the R-bar
towards the docking ring of the gateway. This ma-
noeuvre can follow an optimal energy control path.790

During the Final Translation Stage, the attitude
of the chaser has to be maintained synchronized
with the one of the target to not break the correct
pointing between the docking mechanism and the
target’s docking port. This can be easily achieved795

by exploiting the coupled attitude dynamics over
the natural orbital manifolds, as in section 3.4.
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6. Conclusions

This paper focuses its analysis on the problem
of a space vehicle performing proximity operations,800

characterising natural relative motions existing in
the cislunar gravitational environment and assess-
ing the guidance and control capabilities of the
spacecraft with simple polynomial functions. The
outcomes of the investigation have been applied to805

a strategy to carry out the final Rendezvous and
Docking (RV&D) operations to a cislunar target,
possibly operating on a Near Rectilinear Halo Or-
bit (NRHO) around the Moon. The RV&D strat-
egy proposed in this study is based on the design810

of checkpoints the chaser spacecraft has to pass
through during the final approaching phase, ex-
ploiting at maximum the natural characteristics of
the multi-body gravitational environment.

During this analysis the quiet and wide apolune815

region of NRHO has been identified as favourable
location to perform these complex controlled prox-
imity manoeuvres. Useful approaching/departing
natural corridors to and from the target space sta-
tion, as well as bounded natural hovering trajecto-820

ries around the target has been highlighted thanks
to the Floquet’s modes. Moreover, the synchro-
nised attitude motion on natural orbit-attitude tra-
jectories has been discussed, with focus on possible
favourable extensions to controlled dynamics appli-825

cations. It should be underlined that all these nat-
ural motions are featured by a constrained path,
which is defined by the natural manifolds, and by
a characteristic time equal to the orbital period of
the NRHO (i.e. about 8 days). The analysis of830

the orbit-attitude manifold under the relative dy-
namics perspective allowed a direct application to
proximity operations design.

In practical scenarios, the natural dynamics only
may result too constraining to design entire sets of835

proximity operations. The long time associated to
natural motion may suggest to beneficially exploit
the controlled dynamics. An optimal energy rela-
tive guidance, based on simple polynomial functions
has been presented, discussing 6DOF controlled dy-840

namics of the chaser along proximity trajectories.
The controlled motion can be applied to move from
a checkpoint to the next one, following trajectories
which are characterised by a middle section with
almost natural drift dynamics, and synchronising845

the relative attitude to keep the correct pointing
configuration.

It should be noticed that the configuration of the

lunar Gateway is still to be defined. Future de-
velopments of that project could lead to new more850

complex operational constraints, such as path lim-
itations for RV&D or proximity operations. How-
ever, the flexibility of the proposed methodology,
based on natural relative dynamics and optimal en-
ergy relative guidance, allows to overcome this kind855

of limitations in the future developments of the pro-
posed methods.
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