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Abstract
We study the delamination induced by the growth of a thin adhesive sheet from a cylindrical, rigid substrate. Neglecting
the deformations along the axis of the cylinder, we treat the sheet as a one-dimensional flexible and compressible
ring, which adheres to the substrate by capillary adhesion. Using the calculus of variations, we obtain the equilibrium
equations and in particular arrive at a transversality condition involving in a non-trivial way the curvature of the substrate,
the extensibility of the ring and capillary adhesion. By numerically solving the equilibrium equations, we show that
delamination by growth occurs through a discontinuous transition from the fully adherent solution to the partially
delaminated one. The shape of the delaminated part can take the form either of a ruck, with a small slope, or a fold, with
a large slope. Furthermore, in the weak adhesion regime, complete delamination may occur. We construct the phase
diagram between the different solutions in the parameter space. In the quasi-incompressible limit, numerical results are
also supported by asymptotic calculations both in the strong and weak adhesion regimes.
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1. Introduction
In everyday experience, the peeling of adhesive films from both hard and soft, curved substrates is a fairly
recurring event. Although, for example, the formation of a wrinkle on a bottle label has trivial consequences,
the delamination of thin films becomes a more significant issue for coating technologies such as stretchable
electronics [1–3]. Thus, understanding the mechanics of adhesive sheets becomes crucial for applications, but
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also provides an interesting mathematical paradigm in which mechanics of slender bodies, adhesion properties
and substrate geometry meet [4].

Delaminated blisters originate in compressed films [5, 6]. This compression may be due to external com-
pressive forces applied to the edge of the sheet, or to the growth of the sheet when it is confined, or to thermal
dilation.

Delamination blister formation is a classic problem, in pioneering works the analysis was limited to blisters
with a small slope in the realm of small deformations theory. However, in many new applications, this limitation
is inappropriate and many subsequent studies modeled thin films as nonlinear Euler’s Elasticae [7–9], allowing
large deflections to be handled. Moreover, the occurrence of delamination blister has been studied extensively
over the last two decades in a variety of situations with both inextensible and extensible rods adhered to flat
adhesive substrates [10–15], considered either rigid or soft.

Delamination also occurs when flexible rings are confined within a small container, whether rigid or flexible,
both in the presence or absence of adhesion [10, 16–19]. In these cases, the curvature of the confining wall
affects the equilibrium shape by promoting the regions of adhesion, acting as an effective adhesion.

In an inextensible sheet, the transition to a delaminated shape from a flat or concave substrate requires an
infinite compressive force [20]. In contrast, if a small compression of the sheet is allowed, the compressive force
remains finite and delamination occurs via a discontinuous transition to a blister of finite amplitude [12, 13, 17].

In this work, we study the delamination of a compressible thin film that adheres to the outer surface of a
cylinder by capillary action. The aim of the paper is to extent results obtained for a compressible adhesive sheet
on a flat substrate to a circular substrate [13, 18], in the same time it generalizes the problem of a compressible
film in contact with a curved surface [17] in presence of capillary adhesion. Extensibility and adhesion play a
role in defining the two key characteristic lengths of the model, namely, �b that relates bendability to extensibil-
ity, and the elastocapillary length �ec that relates bendability to adhesion. We show how the physical features of
the transition depend on the values of �b, �ec and the radius of the cylinder r and derive the phase diagrams for
different values of the ratios �b/r and �ec/r.

By comparing the stored energies of the adhered state, the small-slope ruck (Figure 1(c)), and the fold config-
uration (Figure 1(d)), we determine the possible behaviors of growing thin sheet. In the nearly-incompressible
case, when the adhesion is sufficiently strong, i.e., �b � �ec � r, we find that the film delaminates into a
small-slope ruck, which then grows and finally turns into a large-slope fold, when �b = 10−5/2r, while the film
delaminates directly into a large slope fold, when �b = 10−3/2r. Finally, when the adhesion is weak (�ec � r),
we only observe a transition to a ruck which then develops to a completely delaminated solution (Figure 1(b))
as the film grows.

The article is organized as follows. In section 2, we posit the energy functional of the model from which we
derive the equilibrium equations and the boundary conditions in section 3. The variational approach provides a
novel transversality condition at the detachment point, which combines the intrinsic lengths in a non-trivial way.
In section 4, we discuss the main results of our theory, and compare the numerical results with the asymptotic
approximations, as derived in Appendix 1. Finally, in section 5, we draw the conclusions.

2. Energy functional
We consider an infinite cylinder of radius r, covered with a tape of natural length L, naturally straight. We
assume the tape to be compressible, i.e., its length may change when the tape is deformed. Furthermore, the
length of the rod can change as the rod grows, which corresponds to varying L.

The geometry of the curve is described by the position vector r(S) = [x(S), y(S)], where S is the referential
arc-length. The unit tangent and unit normal to the curve are given by τ (S) = [cos θ(S), sin θ(S)] and ν(S) =
[− sin θ(S), cos θ(S)], where θ(S) is the counter-clockwise angle between the x-axis and the tangent. Since we
consider extensible rods, it is convenient to introduce also the local stretch λ(S) := ‖r′(S)‖. Furthermore, we
denote with eα the unit tangent to the circular substrate forming an angle α with the x-axis (see Figure 2).

We derive the equilibrium equations, and the boundary conditions for the partial delaminated solution, by
imposing stationarity of the energy functional which comprises two parts: the energy of the detached region Wf
and the energy of the adhered region Wa, where

Wf =
∫ S̄

0
wf dS, Wa =

∫ L
2

S̄
wadS (1)
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Figure 1. Schematic representation of the film profiles: (a) fully adhered configuration, (b) fully delaminated, (c) ruck, and (d) fold.

with

wf = k
(
θ ′)2 + b(λ − 1)2 + 2n · (r′ − λτ ), (2a)

wa = k
λ2

r2
+ b(λ − 1)2 + 2n · (r′ − λeα) − 2λ�γ . (2b)

Both wf and wa account for a bending term, proportional to the bending rigidity k, and a strain energy,
proportional to the compression modulus b. The quantity

�b :=
√

k

b

defines a characteristic length. Since b = EA and k = EI , being E is the elastic modulus of the material, A is the
area of the film cross-section, and I is the second moment of area of the sheet cross-section, the intrinsic length
�b turns out to be of the order of the strip thickness.

The last term in equation (2a) enforces the constraints

x′ = λ cos θ , y′ = λ sin θ , (3)

which translate the assumption that the rod is extensible but unshearable. The vector n is a Lagrange multiplier
representing the rod’s internal force [21].

The last term in the energy density (2b) is an adhesion-promoting term, proportional to the adhesion area
through the constant �γ , the sheet-substrate adhesion energy density. Thus, a further intrinsic characteristic
length can be defined

�ec :=
√

k

�γ
, (4)

which is called the elastocapillary length.
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Figure 2. Schematic representation of the elastic film in contact with the outer surface of a cylinder of radius r. We assume mirror
symmetry with respect to the y-axis. The free part of the curve is parameterised by values of the referential arc length S ∈ [0, S̄),
where S̄ corresponds to the detachment point.

3. Equilibrium equations
Let us consider h, η, and u be the variations of θ , λ, and r, respectively. Within the free region, the variation h,
η, and u are arbitrary, so that we obtain

δWf =
∫ S̄

0

[(
∂wf

∂θ
−
(

∂wf

∂θ ′

)′)
h + ∂wf

∂λ
η

−
(

∂wf

∂r′

)′
· u

]
dS +

(∂wf

∂θ ′

)
S̄−

h̄− +
(∂wf

∂r′

)
S̄−

· ū− + w̄−
f δS̄, (5)

where bar above the variables denotes that these variables are calculated in S = S̄. A superscript “minus”
(respectively, “plus”) means that the corresponding function is evaluated as S approaches S̄ from the left
(respectively, right).

It is worth noticing that S = S̄ is not fixed and, hence, any variations at the detachment point should include
a further contribute due to change of the curve length, so that

δr̄− = ū− + λ̄−τ−δS̄, (6a)

δθ̄− = h̄− + (θ̄ ′)−δS̄. (6b)

The virtual displacement in the adhered region is purely tangential to the ring, i.e., u = uαeα , where eα is
the unit tangent to the substrate, so that

δWa =
∫ L

2

S̄

[
∂wa

∂λ
η −

(
∂wa

∂r′

)′
· eαuα

]
dS −

(
∂wa

∂r′ · eα

)
S̄+

ū+
α − w̄+

a δS̄. (7)

Since the detachment point lies on a given curve (in our case a circumference), its virtual displacement can
be due to either a longitudinal deformation of the rod (which occurs when the rod is stretched but material points
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in contact with the substrate do not change and S̄ remains fixed) or to a change in the contact point (which can
occur even if the rod is unstretched). Summing these two contributions, we get

δr̄+ = (ū+ · eα + λ̄+δS̄)eα . (8)

Note that, since the angle π − θ̄ subtends half of the adhered arc, the length of the adhered curve can be
expressed as

r(π − θ̄) =
∫ L

2

S̄
λdS, (9)

whence

rδθ̄+ = −
∫ L

2

S̄
δλdS + λ̄+δS̄. (10)

Using equations (6b) and (10), with the requirement that δθ̄− = δθ̄+, we get

h̄− =
(

λ̄+

r
− (θ̄ ′)−

)
δS̄ −

∫ L
2

S̄
δλdS. (11)

The requirement that the first term of δWf vanishes for any arbitrary choice of h(S), η(S), and u(S), leads to
equilibrium equations of the delaminated curve:

kθ ′′ + λny cos θ − λnx sin θ = 0, (12a)

nx cos θ + ny sin θ − b(λ − 1) = 0, (12b)

n′ = 0, (12c)

which have to be supplemented with the shape equation (3). We are considering the following Dirichlet
conditions in S = 0,

x(0) = 0, θ(0) = 0, (13)

so that also the corresponding variation fields, ux and h, vanish in S = 0. By contrast, we do not assume
vanishing variation for the vertical component uy, so that we obtain the free boundary condition

ny(0) = 0. (14)

This, together with equation (12c), yields ny(S) ≡ 0, and we can omit ny from equation (12).
A similar argument for the adhered region yields

nα − b(λ − 1) + �γ + k

r

(
λ

r
− (θ̄−)′

)
= 0, (15a)

n′ · eα = 0. (15b)

Assuming a constant λ in the adhered region, we deduce from equation (15a) that also nα is constant. Hence,
equation (15b) implies that the normal (or radial) component of n vanishes.

In order to study the remaining boundary terms, we assume the continuity conditions δθ̄+ = δθ̄− and
δr̄−

α = δr̄+
α , where δr̄±

α := δr̄± · ēα. Thus, the request that the coefficient of δr̄α vanishes yields the continuity
condition of the internal force tangential component

n̄− · ēα = n̄+ · ēα , (16)

while the request that the δS̄ coefficient vanishes leads to

wf (S−) − wa(S+) + ∂wf

∂θ ′

∣∣∣∣
S̄

(
λ̄+

r
− (θ̄ ′)−

)
+ n̄+

α λ̄+ − n̄−
α λ̄− = 0. (17)
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Combining equations (12b), (15a), and (16), we derive λ̄− and we replace the result into equation (17) so
getting the transversality condition at the detachment point

(
λ̄+ − r(θ̄ ′)−

)2 − 2r2λ̄+

�2
ec

+ �2
b

�4
ecr

2
[�2

ec(λ̄
+ − r(θ̄ ′)−) − r2]2 = 0. (18)

We note that in the context of the mechanics of elastic rods, this condition has been a subject of interest
for many years. A comprehensive treatment of this transversality condition for elastic rods can be found in the
works of O’Reilly [22, 23], where it is derived as a balance of “material momentum” and it is considered as
an independent balance law in addition to the balance of forces and moments. As such, our equation (18) can
be viewed as an implicit manifestation of a balance of “material momentum”. However, we prefer here a more
direct approach and derive it from a classical variational principle. Unlike the cases classically studied, our
condition (18) takes into account adhesion, extensibility, and curvature of the container, the combined effect of
which, to the best of our knowledge, has never been explicitly considered before.

Furthermore, at S = S̄, the following boundary conditions hold

x(S̄) = r sin θ̄ , y(S̄) = r(1 − cos θ̄). (19)

Note that, since in the adhered region λ(S) = λ̄+, equation (9) yields

θ̄ = π − λ̄+

r

(
L

2
− S̄

)
. (20)

3.1. Known limiting cases

In the limit of vanishing capillary adhesion (�ec/r → ∞), the transversality condition (18) yields (see the
literature [17])

λ̄+ − r(θ̄ ′)− = 0 (21)

By contrast, in the inextensible case (�b = 0, λ̄+ = 1), equation (18) reads (see also the literature [10, 16,
24]) (

1 − r(θ̄ ′)−
)2 − 2r2

�2
ec

= 0. (22)

Finally, the flat limit (S̄/r → 0 and �ec/r → 0) provides (see the literature [11, 12])

[(θ̄ ′)−]2 − 2
λ̄+

�2
ec

+ �2
b

�4
ec

= 0. (23)

3.2. Summary of the equations

For the reader’s convenience, we report here the main equations, the unknown fields, and the boundary
conditions of our problem.

For the free part S ∈ [0, S̄), in the absence of vertical loads on the free curve, ny(S) = 0, so that the balance
equations read

kθ ′′ − λnx sin θ = 0, (24a)

n′
x = 0, (24b)

x′ = λ cos θ , (24c)

y′ = λ sin θ , (24d)

where the stretch λ(S) is calculated as

λ = 1 + nx

b
cos θ . (25)
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The only unknown in the adhered region is the constant stretch ratio λ̄+, which can be calculated from the
continuity of the tangential component nα . Combining equations (15a), (16), and (25), we obtain

λ̄+ = br2

k + br2

(
λ(S̄−) + �γ

b
+ k

r
θ ′(S̄−)

)
. (26)

Finally, we also have the identity (9)

θ̄ = π − λ̄+

r

(
L

2
− S̄

)
. (27)

Overall, we have four S−dependent unknowns x(S), y(S), θ(S), and θ ′(S), and two constant unknowns S̄, nx.
From these, we can reconstruct the stretch ratio λ(S) in the free part (from equation (25)), the stretch ratio ¯̄λ+
in the adhered region (from equation (26)), and the detachment angle θ̄ (from equation (27)).

The boundary conditions are

x(0) = 0, θ(0) = 0, θ(S̄) = θ̄ (28a)

x(S̄) = r sin θ̄ , y(S̄) = r(1 − cos θ̄). (28b)

Finally, the transversality condition (18) yields the additional equation at the boundary, necessary to close
the problem.

4. Results
We study the problem for different values of the parameter L, which mimics a growth process, and for various
values of the characteristic lengths r, �b, and �ec, which depend on the geometric and constitutive features of the
system.

We will consider three different sets of possible solutions, namely (see Figure 1):

(a) The completely adhered solution. This equilibrium configuration is a circumference of radius r, fully
in contact with the substrate. The tape is uniformly strained/compressed, with

λadh = 2π
r

L
. (29)

(b) The fully delaminated solution is represented by a circumference, with no contact point with the
substrate. This solution is admitted only if R ≥ r, where R = L/(2π ).

(c), (d)Partially delaminated configurations, where the detached region is a symmetric blister of referential
length 2S̄. The shape of this blister depends on R/r, on the constitutive parameters of the tape and on
the capillary adhesion �γ . We distinguish between two partially delaminated solutions: a ruck (see
Figure 1(c)), i.e., a small-slope delamination where opposite sides of the rod do not touch each other,
and a fold (see Figure 1(d)), in which the rod undergoes large-slope deformation with self-contact.

We have studied the problem by numerically solving equations (24) with the corresponding boundary con-
ditions (28a) and (18), using the MATLAB function bvp4c, for several values of the parameters. A first feature
of the solutions is that, given �b, the detachment angle θ̄ as a function of the excess-length ε,

ε := L − 2πr

2πr
, (30)

has two characteristic trends that depend on the value of �ec. For weak capillary-strength, i.e., large values of
�ec/r, θ̄ is a monotonic increasing function of ε, so that the growth leads to an increasing detachment of the tape
until it induces a complete delamination when θ̄ = π . By contrast, when �ec/r is small, in a regime of strong
adhesion, θ̄ is non-monotonic and shows a maximum value (see Figure 3). Figure 3 also shows that there is a
limiting value for the excess-length ε below which only the adhered solution is possible. Above this threshold,
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Figure 3. Detachment angle θ̄ versus the excess-length ε, with �ec = 0.1r, �b = 10−5/2r. Red dashed line shows the asymptotic
approximation as given in equation (59).

Figure 4. Maximum detachment angle as a function of �ec, with �b = 10−5/2r. Red dashed line shows the asymptotic approximation
as given in equation (62).

the buckled solution comprises two branches (see also Figures 6 and 7) and correspondingly for one value of ε
we can observe two buckled solutions having different sizes and different detachment angles θ̄ . After an initial
increase in delamination for small ε, the adhered region starts to grow again and the solution evolves from ruck
to fold. Figures 4 and 5 show how the maximum detachment angle, θ̄max, and the corresponding ε(θ̄max), depend
on �ec.

We have explored the cases �b = 10−3/2r, and �b = 10−5/2r, that correspond to very thin films. For these
values, the typical observed solutions have a delaminated part with a much longer length than �b, which implies
that their compression energy is completely relaxed, i.e., λ̄+ ≈ 1. Hence, we can approximate the solution with
that of a Euler’s elastica and take advantage of the its closed-form solutions and their asymptotic approximations
(see Appendix 1 for details).

Figures 6 and 7 show the comparison between the energies associated with each solution branch as a function
of ε, for �b = 10−3/2r and two values of the elastocapillary length, namely, �ec = 0.1r and �ec = r. The stored
energy for the adhered configuration is easily obtained by substituting equation (29) in equation (1),

Wadh

k/r
= −2πr2

�2
ec

+ π

1 + ε

(
1 + r2ε2

�2
b

)
, (31)

and is shown as a red solid line. The energy associated with the partially delaminated solutions is instead
calculated with a numerical simulation, drawn in blue in Figures 6 and 7. It is interesting to notice that the
delaminated solution comprises two branches. The upper branch, with higher energy, corresponds to smaller
rucks, whereas larger rucks correspond to the lower branch. For sufficiently small values of ε, only the adhered
solution is found. Finally, the dashed black line in Figure 7 shows the energy of the folded solutions.
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Figure 5. Maximum excess-length at detachment as a function of �ec , with �b = 10−5/2r. Red dashed line shows the asymptotic
approximation as given in equation (61).

Figure 6. Energy profiles with �b = 10−3/2r, and �ec = r. Black dotted line shows the energy of the inextensible case (Euler’s
elastica).

Figure 7. Energy profiles with �b = 10−3/2r, and �ec = 0.1r. Black dashed line shows the energy in the folded configuration, the
transition is determined by the intersection of the red line (adhered solution) with the blue/black line (corresponding respectively to
the ruck/fold solutions). For this value of the parameters we observe a direct transition from the adhered solution to the fold.
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Figure 8. Phase diagram with �b = 10−5/2r. Dashed lines report the asymptotic results as given in equation (64) (dashed red line)
and equation (68) (dashed blue line).

In Figure 6, we also report the energy of the delaminated solution in the inextensible case (Euler’s elastica),
calculated as in equation (48). As expected, when the compression reaches a critical value, the tape buckles so
to relax its internal stress and compression. Thus, the buckled solution is, to a good approximation, determined
by minimizing the bending energy, while the compression energy can be neglected. It is then natural to assume
that the solution with λ = 1, which correctly provides the buckled shape of the beam and its energy, is also
correct in the presence of a moderate adhesion potential.

From the numerical analysis with the two chosen values of �b, we identify different regions of the parameter
space (�ec/r, ε), shown in Figures 8 and 9, and characterized by the global minimum of the energy. The bound-
aries of these regions are calculated as intersections between the energy branches of the various solutions, and
identify the critical values of ε as a function of �ec. For example, in Figures 6 and 7, we show the intersection
between the adhered and the delaminated energy branches, corresponding to a transition from the adhered solu-
tion to a ruck (in Figure 6) or to a fold (in Figure 7). Therefore, for sufficiently small values of �ec, we observe
that patterns of large-slope, fold-like structures may emerge directly from a uniformly compressed state, rather
than grow gradually from small-slope rucks. This is in agreement with the results of Davidovitch and Démery
[13], where the authors study the delamination from a flat rigid substrate under axial compression.

As can be seen from the phase diagrams in Figures 8 and 9, and from equations (64) and (68), the asymptotic
approximations of εcr have different critical exponents in the cases of strong or weak adhesion, �ec � r or
�ec � r respectively.

Furthermore, Figures 8 and 9 report also the transition lines from ruck to fold, that, for a fixed �ec/r,
correspond to the smallest ε at which a self-contact of the film occurs.

Finally, the continuous line in the upper right part of the Figures 8 and 9 represents the critical threshold for
the transition from buckling to complete delamination. This identifies the value of ε at which θ̄ reaches π . In
the inextensible case, this threshold is given in equation (42) of Napoli and Goriely [25]:

ε(del)
cr =

√
2

�ec/r − √
2

. (32)

In the two compressible cases treated, the numerical results are not significantly different from equation (32).

5. Conclusions
We have studied the delamination induced by the growth of a compressible thin elastic sheet adhering to the
outside of a cylindrical surface, due to capillary adhesion. The quasi-incompressibility assumption is consistent
with very thin sheets, where �b is of the order of the sheet thickness.

We find that, due to the simultaneous presence of substrate curvature, capillary adhesion, and compressibil-
ity, the transversality condition, i.e. the additional boundary condition which serves to close the problem with
unknown detachment length, is new and not obvious. This boundary condition, obtained through the classical
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Figure 9. Phase diagram with �b = 10−3/2r. Dashed lines report the asymptotic results as given in equation (64) (dashed red line)
and equation (68) (dashed blue line).

methods of calculus of variations, reduces to expressions already known in the literature in special cases. This
formula can be easily generalized to the case where the film covers the interior of the cylindrical surface instead
of the exterior.

Our analysis is based on the numerical resolution of a nonlinear boundary value problem. The nonlinearity
of the problem results in multiple solutions whose energies are subsequently compared with each other. We
assume that the branch of minimum energy is the one that is actually observed in a possible experiment.

We can summarize the results as follows. If initially the sheet length is equal to the circumference of
the cylinder, the sheet adheres perfectly. During growth, there is a first stage in which the sheet, while com-
pressing, still adheres completely to the substrate, thanks to capillary adhesion. Above a certain compression
threshold, the sheet undergoes a snap-buckling, partially detaching and forming a ruck, thus releasing its com-
pression energy. The delaminated part is effectively stretch-free. This allows us to use Euler’s elastica model to
approximated the solutions.

Euler’s elastica offers the enormous benefit of being integrable and admitting closed-form solutions in
terms of elliptic functions. Given the complexity of these functions, the obtained solutions are not immedi-
ately interpretable. However, it is possible to develop asymptotic expansions of these solutions in terms of the
excess-length ε. In the general case, the coefficients of this asymptotic expansions are obtained from solving
transcendental equations which implicitly involve the characteristic lengths �b, �ec, and r. However, in both the
strong adhesion limit �ec � r and the weak adhesion limit �ec � r, it is possible to explicitly find these coef-
ficients. This allows us to find useful asymptotic laws that relates the geometrical and material features of the
problem. The success of these asymptotic results could be very useful in interpreting experimental results or in
helping to design targeted experiments. For example, we are able to capture the critical thresholds for the onset
of ruck solutions (see equations (64) and (68)), in perfect agreement with numerical simulations.
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Appendix 1

The inextensible case

When inextensibility of the tape is assumed, i.e., λ ≡ 1 everywhere, the equations to solve reduce to

k

S̄2
θσσ − nx sin θ = 0, (33a)

xσ = S̄ cos θ , (33b)

where the subscript σ indicates differentiation with respect to the rescaled variable σ := S/S̄ ∈ [0, 1].
The boundary conditions can be written as

θ(0) = 0, θ(1) = θ̄ , (34a)

x(0) = 0, x(1) = S̄ sin θ̄ , (34b)
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while the transversality condition reduces to

θσ (1) = S̄

(
1

r
−

√
2

�ec

)
. (35)

Note that equation (33a) looks like nonlinear pendulum equation and, hence, its solution can be given in
closed form in terms of integrals and elliptic functions. We refer the reader to the book [26] for notation.

Equation (33a) admits the first integral

1

2

k

S̄2
θ2
σ + nx cos θ = C := 1

2

k

S̄2
κ2

0 + nx,

where κ0 := θ̇(0), whence

θ2
σ = κ2

0

[
1 − 4S̄2|nx|

kκ2
0

sin2 θ

2

]
. (36)

We define

m := 4S̄2|nx|
kκ2

0

, (37)

and look for solution where κ0 > 0, so that from equation (36) we get

θσ = κ0

√
1 − m sin2 θ

2
.

Thus, we can separate the variables and then integrate, obtaining

F

(
θ

2
; m

)
= κ0

2
σ ,

with F(·) denoting the elliptic integral of first kind, whence

θ(σ ) = 2 am
(κ0

2
σ , m

)
, (38)

where am(·) denotes the Jacobi amplitude. Consequently, the boundary condition (34a)2 yields

θ̄ = 2 am
(κ0

2
, m
)

, (39)

whereas the transversality condition (35) reduces to

S̄

r

(
1 −

√
2r

�ec

)
= κ0dn

(κ0

2
, m
)

. (40)

Using equation (38), (33b) reduces to

xσ = S̄
[
1 − 2 sn2

(κ0

2
σ , m

)]
, (41)

that can be integrated yielding

x(σ ) = S̄

[(
1 − 2

m

)
σ + 4

mκ0
E
(κ0

2
σ , m

)]
, (42)

where

E(u, m) :=
∫ u

0
dn2(t, m) d t (43)
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is the incomplete elliptic integral of second kind. Consequently, the boundary condition (34b)2 becomes

sin θ̄ = S̄

r

[(
1 − 2

m

)
+ 4

mκ0
E
(κ0

2
, m
)]

. (44)

Notice that the inextensibility condition provides the relationship between S̄ and θ̄ :

S̄

r
= π

(
L

2πr
− 1

)
+ θ̄ . (45)

Equations (39), (40), (44), and (45), provide a system of four transcendental algebraic equation for the four
dimensionless unknowns θ̄ , S̄/r, κ0, and m.

Finally, the total free energy is (see equation (1))

W

k/r
= r

k

[
k

∫ S̄

0
θ ′2 d s +

∫ L/2

S̄

(
k

r2
− 2

k

�2
ec

)
d s

]

= 2κ0r

S̄
E
(κ0

2
, m
)

+
(

1 − 2
r2

�2
ec

) (
π − θ̄

)
.

(46)

It should be noted that the solutions presented so far apply when 0 ≤ m ≤ 1. Conversely, when m > 1 the
solutions still apply provided the following substitutions are made (see Abramowitz and Stegun [26]):

sn (u, m) = 1√
m

sn

(√
m u,

1

m

)
, (47a)

cn (u, m) = dn

(√
m u,

1

m

)
, (47b)

dn (u, m) = cn

(√
m u,

1

m

)
, (47c)

E (u, m) = √
m E

(√
m u,

1

m

)
− (m − 1)u (47d)

and the energy expression becomes

W

k/r
= 2κ0r

S̄

[√
m E

(
1

2

√
mκ0,

1

m

)
− (m − 1)

κ0

2

]
+
(

1 − 2
r2

�2
ec

) (
π − θ̄

)
. (48)

Asymptotic results. Geometrically, we expect the quantities θ̄ , κ0 and S̄/r to be infinitesimal when ε, defined in
equation (30), approaches zero. Furthermore, θ̄ and S̄/r have the same asymptotic behavior, as can be seen from
equation (45). Finally, from the analysis of equation (40) (or its correspondent using equation (47)), it can be
seen that κ0 has the same asymptotic behavior as S̄/r. This, in turn, implies that m has the same asymptotic of
nx (see equation (37)) which, on physical ground, one expects to be unbounded when ε → 0.

In summary, whenever m > 1, we have to use the correspondence (47) to rewrite the boundary conditions
(39), (40), (44), and (45), respectively, as

sin (θ̄/2) = 1√
m

sn

(√
m

κ0

2
,

1

m

)
, (49a)

S̄

r
ρ = κ0cn

(√
m

κ0

2
,

1

m

)
, (49b)

sin θ̄ = S̄

r

[
4√
mκ0

E

(√
m

κ0

2
,

1

m

)
− 1

]
, (49c)

S̄

r
= θ̄ + πε. (49d)
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where we introduced the abbreviation ρ := 1 − √
2 r/�ec.

Equation (49a) suggests that θ̄ ∼ εq and m ∼ ε−2q for some q > 0. Using the small modulus expansion of
the elliptic integral

E (u, λ) = u + λ

2
(cos(u) sin(u) − u) + O(λ2), (50)

and comparing sin θ̄/(S̄/r) with the term in the square parenthesis in equation (49c), we find that q = 1/3.
The analysis can be made more precise assuming

m =
∑
j≥−2

μjε
j/3, κ0 =

∑
j≥1

τjε
j/3, θ̄ =

∑
j≥1

αjε
j/3, (51)

and using equation (49d) for S̄/r.
Substituting these expansions into equation (49), with the help of small-modulus expansion of the elliptic

functions (see 16.23 of Abramowitz and Stegun [26]) we obtain, for each power ε j/3, a system of transcendental
equations for the related coefficients μj, τj, and αj.

The first non-zero conditions are obtained for j = 1 and read

α1ρ = τ1 cos

(
1

2

√
μ−2 τ1

)
, α1 = 2

1√
μ−2

sin

(
1

2

√
μ−2 τ1

)
. (52)

By introducing ξ := √
μ−2 τ1/2, these relations reduce to

tan ξ = ξ

ρ
, (53)

which, for a given ρ, has infinitely many solutions.
Let us denote the chosen solution by ξ∗, we can write

α1 = 2√
μ−2

sin ξ∗, τ1 = 2√
μ−2

ξ∗. (54)

The procedure is conceptually simple, but the algebra needed for j ≥ 2 becomes soon so much cumbersome
and involved that we prefer to report only the results. For j = 2 for example we obtain that

α2 = − μ−1

(μ−2)3/2
sin ξ∗, τ2 = − μ−1

(μ−2)3/2
ξ∗. (55)

For j = 3 we found that

μ−2 =
[

2 sin ξ∗
π

(
1 − 2ξ 2

∗ + 3ρ

3ξ 2∗
sin2 ξ∗

)]2/3

, (56)

which also allows us to obtain a closed expression for α1 and τ1. Furthermore, we found that α3 and τ3 are linear
functions of μ0.

Finally, for j = 4, we found that μ−1 = 0 and therefore also α2 = τ2 = 0, while α4 and τ4 are proportional
to μ1.

Strong adhesion regime.
When the adhesion energy is dominant, we �ec � r, so that ρ → −∞. As a solution to the equation (53) we

get, up to O(ρ−2),
ξ (∞)
∗ = π (1 + ρ−1 + ρ−2), (57)

where the superscript (∞) stands for strong adhesion regime. Consequently, we get

μ
(∞)
−2 =

(
2

ρ

) 2
3
(

1 − 7π2

9
ρ−2 + O(ρ−3)

)
. (58)
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We obtain the following asymptotic expression for θ̄ :

θ̄ (∞) ≈ α
(∞)
1 ε

1
3 + α

(∞)
3 ε + α

(∞)
5 ε

5
3 (59)

with

α
(∞)
1 := 2

2
3 π (ρ− 2

3 + ρ− 5
3 ), α

(∞)
3 := −7

8
π (1 + ρ−1), α

(∞)
5 := 2

1
3

64
πρ

2
3 . (60)

The function θ̄ (∞) reaches its maximum at

ε(∞)
max ≈ −0.4871ρ−1 + 0.0178ρ−2, (61)

at which
θ̄ (∞)

max ≈ −2.6035ρ−1 − 2.5848ρ−2. (62)

Similarly, we obtain the expansion of the total energy

W

k/r
≈ − π

ρ2
(1 − 2ρ−1) + 3 · 2− 1

3 πε1/3 − 5π

8
ρ2ε. (63)

When the energy of the fully adhered solution exceeds the energy of the partially delaminated branch,
delamination occurs. Thus, the intersection between the energies (63) and (31) provides an estimate of the crit-
ical threshold at which this transition occurs, within the strong adhesion regime. We thus obtain the asymptotic
threshold:

ε(∞)
cr ≈

(
54�6

b

�4
ecr

2

) 1
5

− 3

4

(
�6

b

�4
ecr

2

) 1
3

. (64)

Weak adhesion regime.
Let consider the interesting limit of weak adhesion, that is, �ec � r meaning that one can write ρ = 1 − η,

with

η :=
√

2r

�ec
→ 0. (65)

Within this regime of parameters, the appropriate solutions are those with m < 1. A simple analysis of equation
(53) shows that the first positive solution can be written as

ξ∗ =
√

3η

(
1 − η

10
+ 9 η2

1400
+ O(η3)

)
. (66)

For this case, we only report the asymptotic expression of the energy

W

k/r
≈ π (1 − η2) + 3

5
(15π )

1
3 η

5
3 − πε. (67)

By comparison between equations (67) and (31), we obtain the asymptotic expression of the threshold, in
the weak adhesion limit, at which the ruck arises:

ε(0)
cr ≈ 1.7154

(
�b

r

) 6
5 r

�ec
. (68)


