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Abstract It is challenging for decision‐makers (DMs) to deal with uncertainties in multi‐level agricultural
water resource systems, where DMs independently make decisions but have different levels of power. In this
paper, we model the multi‐level agricultural water resources system under deep uncertainties as a Stackelberg
game, use multi‐level programming to solve equilibrium water allocation problems, and introduce robustness
metrics into multi‐level programming to balance solution feasibility and model optimality within uncertain
environments. The approach is applied to a shallow groundwater area with three decision levels, pursuing, from
the top level to the bottom one, high food production, fair water allocation, and increased economic benefit. The
model generated a series of optimal equilibrium solutions with different robustness degrees. DMs can choose
“rational” solutions according to their acceptable costs, oriented robustness degree, expected objective values,
and advance risk assessment of uncertainties. Among these solutions, we capture a critical point with high
objective values and strong robustness, where DMs can accomplish both objective optimality and solution
robustness with a low cost. The proposed approach in this study provides a posterior decision support to
consider solution robustness while designing policies in multi‐level agricultural water resource systems under
deep uncertainties.

1. Introduction
Many water resources management systems worldwide are characterized by complex governance schemes
involving multiple institutional decision‐makers (DMs) with different levels of power interacting nationally and
internationally (Du et al., 2019; Lennox et al., 2011; Tantoh & Simatele, 2018). Typically, such systems are
modeled using prescriptive water management models based on the optimization of control approaches and game
theoretic descriptive models (Du et al., 2019; X. Li et al., 2023; D. Liu et al., 2020; Soliman, 2022). In agricultural
water management systems, national administrative department, regional management department, and local
farmers full participate in water resources distribution and use, have top‐down goal expectations and water use
restrictions, and interactively affect each DMs' goal achievement (F. Zhang et al., 2020; X. Zhang et al., 2022).
This relation is conceptualized as a Stackelberg game, which captures participants' motivations, dynamic actions,
and goal utilities in multi‐level agricultural water resource management systems (Kicsiny et al., 2014; X. Zhang
et al., 2022). A few researchers used the Stackelberg game theory to solve multi‐level water allocation problems,
however, still face a challenge to deal with inherent uncertainties.

The Stackelberg game is a dynamic game with full information (Anandalingam&Apprey, 1991). One DM acts as
the leader and moves first, followed in sequence by the others—the “followers”—until a solution is reached that
satisfies all DMs, called an equilibrium solution (S. Li et al., 2022; Paskseresht et al., 2020; Shih et al., 1996; Z.
Tang, 2019). To solve this decentralized planning problem, one can use multi‐level optimization and multi‐level
programming (MLP) techniques to transform the game process into mathematical algorithms, extending the
Stackelberg game theory to widespread practical applications (Anandalingam & Apprey, 1991; Chen, He,
et al., 2017; Chen, Lu, et al., 2017; Gupta & Gupta, 2022; Huang et al., 2022; Jia & Culver, 2006; Pramanik &
Roy, 2007). In agricultural studies, the Stackelberg game has been already used mediumly. Kicsiny et al. (2014)
modeled the relationship between the authority and producer sectors as a Stackelberg game and achieved water
use rationalization in a drought emergency. Z. Xu et al. (2019) established the Stackelberg game‐Nash‐Cournot
model between a local reservoir authority and sub‐area managers and identified satisfactory water transaction
patterns in agricultural water markets. Cabo et al. (2014) employed the Stackelberg game theory to describe the
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dynamic interaction between the water donor region and the water recipient region in interconnected river basins.
They obtained the optimal water transfer amount and price in the equilibrium between water supply and demand.

The Stackelberg game theory and corresponding algorithms effectively depict characteristics and generate
satisfactory solutions through computational programming. However, the gaming process may become complex
when uncertainties affect systems, which is often the case. In a Stackelberg game with uncertainties, participants
at different decision levels may hold varying risk attitudes and exhibit diverse behaviors when proposing
schemes. The DMs may seek schemes with optimal performance within uncertain ranges or schemes with the
minimum probability of undesirable outcomes. Traditionally, researchers maximize expected objective values (S.
Guo et al., 2022; Y. Li et al., 2022; B. Liu et al., 2022; J. Xu et al., 2013; F. Zhang et al., 2020) or optimize
objective values using a scenario‐based approach, where uncertainty is well‐characterized probabilistically or
assigned likelihoods based on the expertise of DMs (A. Ciullo et al., 2023; Ning & You, 2019; L. Yu et al., 2020;
F. Zhang et al., 2020). For example, F. Zhang et al. (2020) described random surface runoff as a P‐III distribution,
set three exceeding probabilities as low (75%), middle (50%), and high (25%) flow levels, and maximized ex-
pected objective values in multi‐level water resource systems. The complexity of Stackelberg game theory in-
creases when dealing with deep uncertainties whose distributions are uncertain. Deep uncertainties are usually
expressed as interval values and fuzzy sets (Li et al., 2020; J. Tang et al., 2022; F. Zhang et al., 2020). Ma
et al. (2020) described water availabilities as interval values under prespecified probability scenarios. They
formulated satisfactory water allocation patterns in a bi‐level decision‐making structure of the agricultural water‐
energy nexus. L. Yu et al. (2020) considered crop‐related parameters as interval values, regarded allowable
maximum fertilizer and pesticide usage as fuzzy sets, and achieved optimal agricultural water resource man-
agement schemes under scenarios based on given credibility levels and the upper and lower bounds in agricultural
water‐energy‐food nexus with three decision levels. Such approaches reach solutions easily, but require DMs to
accurately propose decision preferences for risks prior to knowing consequences of solutions (Herman
et al., 2015). Strict bounds are difficult to define for deep uncertainties, meaning solutions with narrow ranges for
deep uncertainties are riskier, as they may ignore extreme and vulnerable points. Extensive studies have
demonstrated a willingness to focus on solution deviations from projections, seek cost insurance that does not
exceed expected damages, and search for a solution in favor of reducing the variance in potential outcomes, which
is a robust solution (Ahmadvand & Sowlati, 2022; Perelman et al., 2002; Rouhani & Amin, 2022).

A solution insensitive to system errors or randomness is termed robust (Mulvey et al., 1995; Salazar et al., 2022;
B. Xu et al., 2022). Robustness can be measured by multiple metrics (McPhail et al., 2018). Q. Sun et al. (2022)
optimized the objective values according to the worst scenario and guaranteed the proposed solutions would
remain feasible in all other scenarios. Mulvey et al. (1995) listed several quantification types of positive and
negative variations relative to nominal values in measuring robustness. According to Ahmed and Sahini-
dis (1998), a decision is robust if the actual cost of realized scenarios remains “close” to the optimal expected cost
for all possible scenarios. Some researchers quantify robustness via regret and satisficing measures (Giuliani &
Castelletti, 2016; Herman et al., 2015): regret is defined as the difference between the solution's performance and
the best solution; satisficing quantifies the difference between solution performance and a threshold of perfor-
mance required. D. Yu et al. (2022) and X. Guo et al. (2022) adopted the difference between the actual objective
values and the optimal objective value as an indicator of robustness to measure the DMs' regret degree. Instead of
assigning preference weights beforehand, the robust framework provides a posteriori decision support. It involves
more flexible evaluation forms to robustness, combines the expertise, knowledge, and preference of DMs in
treating specific uncertainties, and considers the ability of DMs to withstand failure to meet a given performance
threshold. Furthermore, robust solutions allow a tradeoff between maximizing model performance and giving
certain variations space in an uncertain environment.

To our best knowledge, no studies have discussed robustness in the Stackelberg game or introduced robustness
measures into the computational algorithm in multi‐level water allocation problems. In this paper, we use a robust
framework to characterize uncertainties in the context of multi‐level agricultural water allocation. We introduce a
robustness measure into the multi‐level programming, letting DMs considering possible solution variations and
costs while pursuing optimal objectives. We apply the approach in a shallow groundwater area, the Hetao Irri-
gation District (HID), China, with three contributions: (a) we examine the impacts of selecting robustness co-
efficients on the satisfactory degree of each objective; (b) we provide DMs a series of alternatives for choosing
preferred robustness degrees; (c) we explore the utility of robustness measures in the Stackelberg game. We
further discuss strategies for DMs to realize high objective values when facing uncertain water availabilities.
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Finally, this work offers a posterior decision support that measures robustness and costs of changing alternatives
in multi‐level agricultural water resources management systems.

2. Study Area
The HID, located in the western region of China's Inner Mongolia Autonomous Region (Figure 1), is a semi‐arid
region with a temperate continental monsoon climate (W. Sun, 2014), with average precipitation of less than
250 mm per year and average evaporation of 2,011–2,300 mm/year (Xue et al., 2018). To ensure water demand in
this region, since 2000, the government has diverted an average of 2.324–4.036 billion m3 of water annually from
the Yellow River (between April and September) to satisfy local drinking, industrial, and agricultural water
demand. The HID is an important region for grain harvesting in China, with over 80% of the district's agricultural
area devoted to growing wheat, maize, and sunflower. The local canal system and land use distributions, as well as
soil characteristics and administrative division, separate the HID into 12 water supply response units (WSRU),
namely (from west to east): Yigan, Wulahe, Yangjiahe, Huangji, Yongji, Fengji, Zaohuo, Shahe, Yihe, Tongji,
Changji, and Tabu (Luo et al., 2021). In HID, agricultural water accounts for 80%–90% of the diverted water
volume, but the exact amount is highly uncertain, as it is influenced by hydroclimatic conditions and national
policies. In the last 40 years, the irrigation has caused groundwater depth to increase to 1.5–3 m. Though variable
in quantity, groundwater is the second main water source for growing crops. The frequent salt‐water exchange
between soil and groundwater improves the salt content in shallow soil layers and increases the risk of soil
salinization and crop yield reduction (X. Zhang et al., 2021). To mitigate this risk, a comprehensive water use
strategy is needed to balance the regulation of soil salt, efficient and environmentally conscious water use, and
goal achievement at each decision level (X. Zhang et al., 2022).

Figure 1. The Hetao Irrigation District.
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In HID, the regional water governance is organized in three tiers of responsibility: national government managers,
local government managers, and local farmers (X. Zhang et al., 2022).The first‐level DMs, national government
managers, allocate water resources among multiple users along the Yellow River. They supervise the impact of
groundwater depth decline on the environment and lead the water diversion project to maintain food security and
the well‐being of local residents. They have the most decision‐making power in determining water diversion and
groundwater amount for local use. Their goal is to maximize total food production in this area. The second‐level
DMs, local government managers, are responsible for allocating water to each WSRU after receiving the total
allowable water diversion and groundwater amount from the first‐level DMs. The local government managers
strive to ensure a fair distribution of water resources. The third‐level DMs, local farmers, address local water use
problems and independently determine the amount of water diversion and groundwater irrigation each crop re-
ceives in each growth period. Their goal is to maximize the economic benefits of the planted crops.

3. Methodology
3.1. Optimization Model

As mentioned above, the HID follows a water resources system with three decision‐making levels. The first‐level
DMs pursue maximizing total food production, which can be expressed mathematically as the following objective
function:

p∗
1 = argmax

p1∈Z1

f1 (p1) = argmax
p1∈Z1

[∑

12

i=1
∑
2

j=1
(Aij ⋅ Yaij) ] (1)

where p1 is the total water diversion and total groundwater allocated to HID, the decision variable of the first‐level
DMs; Z1 is the solution set of p1; the subset p∗

1 of Z1 is denoted that maximizes the objective of the first‐level DMs,
f1(p1); i ∈ [1, 12] identifies a given water supply response unit (WSRU; namely: Yigan, Wulahe, Yangjiahe,
Huangji, Yongji, Fengji, Zaohuo, Shahe, Yihe, Tongji, Changji, and Tabu); and, j = 1 and j = 2 represent,
respectively, wheat and maize, the two food crops produced in the region; Aij is the planting area of crop j in
WSRU i; Yaij is the actual yield of crop j in WSRU i.

In the second‐level, we measure water allocation fairness via the Gini coefficient (Gini, 1913), which ranges
between 0 and 1: the smaller the magnitude of the coefficient, the higher the allocation fairness. The goal of
second‐level DMs, therefore, is to minimize the Gini coefficient:

p∗
2 = argmin

p2∈Z2

f2 (p2) = argmin
p2∈Z2

{∑

12

k=1
(
1
12

⋅RWQk) + 2∑
12

k=1
[
1
12

⋅ (1 − ARWQk)] − 1} (2)

where p2 is the water diversion and groundwater allocated to each WSRU, the decision variables of the second‐
level DMs; Z2 is the solution set of p2; the subset p∗

2 of Z2 is denoted that minimizes the objective of the second‐
level DMs, f2(p2); RWQ is the ratio of water allocation (the sum of water diversion and groundwater allocated in
one WSRU) to the water demand, reflecting the water distribution ratio in each WSRU; to calculate the Gini
coefficient in HID, the RWQi is ordered from smallest to largest, labeled by k, becoming RWQk; ARWQk is the
cumulative value of RWQk.

In the third‐level, DMs' goal is to maximize the economic benefits of the planted crops. Their objective function
can be expressed mathematically as the following:

p∗
3 = argmax

p3∈Z3

f3 (p3) = argmax
p3∈Z3

[∑

12

i=1
∑
3

j=1
(prcropj ⋅Aij ⋅ Yaij) − CW − CEC] (3)

where p3 is the water diversion and groundwater allocated to each crop in each crop growth period, the decision
variables of the third‐level DMs; Z3 is the solution set of p3; the subset p∗

3 of Z3 is denoted that maximizes the
objective of the third‐level DMs, f3(p3); prcropj is the price of crop j in yuan/kg; CW is the cost of using water
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diversion; and CEC is the cost of using groundwater, including energy fees for extracting and purifying high‐salt‐
content groundwater. A more detailed description of each term is given in Supporting Information S1.

This study uses the Jensen crop production function, mapping evapotranspiration into crop yield (X. Zhang
et al., 2022). The physical‐based crop water consumption model follows the law of mass conservation, taking as
input the movement of water or salt between precipitation, water diversion, crop, soil, groundwater, and drainage.
This study restricts the soil water to be between wilting point and saturated soil water content, the total water use
to be less than the available water supply, and the food production to be more than the necessary amount to ensure
the food security. A detailed description of above physical‐based crop water consumption and constraints is given
in Supporting Information S1. In constraints, the available water diversion and groundwater resource are both
uncertainties expressed as fuzzy numbers.

3.2. Stackelberg Game

The water allocation system in HID can be modeled as a Stackelberg game, a dynamic game with full information.
Upper‐level DMs impose restrictions on the decision‐making of lower‐level DMs—the actions of whom, in turn,
could affect the goals of upper‐level DMs. This study assumes that each DM is rational people who optimize their
goals and are not affected by external factors. The decision‐making process and structure has the following
features (Shih et al., 1996):

1. Each DM's demand can be expressed by its objective function, constraints, and feasible decision space.
2. The DMs in each level independently make decisions and optimize their own goal.
3. The decisions are made sequentially, from the top to the bottom DM.
4. All DMs partake in an interactive decision process. Upper‐level DMs are the first to set their decision goals or

decision variables. They then ask the lower‐level DMs for their optimal decision goal or decision variables that
can be optimized independently. Once the lower‐level DMs submit their decision goals and variables, the
upper‐level DMs can further modify their goals and decision variables. This process is repeated until all DMs
are satisfied with a solution, called the equilibrium solution.

The decision‐making process described above can be modeled mathematically using the multi‐level programming
method (MLP) (Shih et al., 1996). In the MLP, upper‐level DMs allow some leeway in their proposed goals and
decision variables, providing a larger decision space for the lower‐level DMs to realize their goals. However,
allowing some leeway doesn't violate the non‐cooperated nature of multi‐level programming, which is the dif-
ference between cooperative multi‐objective optimization (X. Zhang et al., 2022). The detailed description and
mathematical functions for this decision process are given in Text S3 in Supporting Information S1. In this study,
the leeway is expressed by fuzzy satisfaction membership functions (Figure 2), where the satisfaction degree (SD)
(λ) is a measure of the distance between actual and ideal values (λ ∈ [0, 1], λ = 1 being the ideal value). We
express satisfaction memberships of three‐level objectives as trapezoids. For decision variables, we consider the
satisfaction membership of total groundwater use—one of the decision variables of first‐level DMs—as a tri-
angle. We do not set strict preferences for total water diversion, the water allocation in any WSRU, or the

Figure 2. Examples of satisfaction membership functions. Here, we assume x represents the decision variable and f represents the objective. The left illustration is the
triangle satisfaction membership of a decision variable of an upper‐level decision maker (xU

1 ). The right illustration is a trapezoid satisfaction membership of an upper‐
level DM's goal value (f U

1 ). In both illustrations, δ is the leeway; μ( xU
1 ) is the satisfaction degree (SD) of xU

1 ; and λ is the SD.
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irrigation for any crops, whose satisfaction degrees are all set to 1. Since the DMs reject unsatisfactory solutions
during the interaction process, all the solutions within the given leeway are satisfactory to DMs (Shih et al., 1996;
X. Zhang et al., 2022).

In a Stackelberg game with uncertainties (Figure 3), DMsmust consider solution feasibility and costs of infeasible
solutions. DMs at different levels may be more or less optimistic or conservative regarding their risk evaluations
to uncertainties. Under uncertainties, it becomes more complex for DMs to establish an appropriate leeway, and
considerable time may be spent searching for the most “reasonable” values of uncertain parameters that satisfy
each DM. Uncertainties in a Stackelberg game significantly increase the time it takes to achieve the equilibrium
solution.

3.3. Uncertainties Measurement

In this study, we consider two uncertainties of water diversion and groundwater availability. However, the
collected data cannot form a distribution curve. We express these uncertainties as fuzzy numbers (show in Table
S2 in Supporting Information S1).

A fuzzy number is a mathematical concept that extends the notion of a traditional number to handle situations with
uncertainty or ambiguity (B. Liu, 2000; Soncini‐Sessa et al., 2007). A fuzzy number refers not to a single value
but to a set of possible values. The membership function represents the degree to which a value belongs to this set,
and it assumes values ranging from 0 (completely not a member) to 1 (completely a member). According to the
theory of Zadeh (1978) and Jiménez et al. (2007), if Ã is a fuzzy number, its membership function μÃ: Ω → [0,1] is
expressed as in Equation 4. The α‐cut value of a fuzzy number Ã is defined as Ãα = {x ∈Ω|μÃ(x)≥ α} . Since the
fuzzy degree of Ã, μÃ, is upper semi‐continuous, α‐cut values are closed and bounded intervals. It can be
expressed by Ãα = [f − 1A (α),g− 1A (α) ] . If fA(x) and gA(x) are both linear functions, Ã is a trapezoidal fuzzy number,
Ã = (A1, A2, A3, A4) . If A2 = A3, Ã is a triangular fuzzy number (Figure 4).

Figure 3. The decision‐making process of a Stackelberg game with uncertainties.
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α = μÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∀ x ∈ (− ∞,A1],

fA(x) increasing on [A1,A2]

1 ∀ x ∈ [A2,A3]

gA(x) decreasing on [A3,A4]

0 ∀ x ∈ [A4, +∞),

(4)

The possibility and necessity measures can be used to evaluate constraints with fuzzy numbers (Inuiguchi &
Ramik, 2000; B. Liu & Liu, 2002). The possibility measure evaluates to what extent it is possible that a non‐
deterministic variable is restricted by the fuzzy number Ã. The necessity measure evaluates how certain it is
that the non‐deterministic variable is restricted by the fuzzy number Ã. Let g be a crisp (non‐fuzzy) number that is
not greater than the fuzzy number Ã. The possibility and necessity degrees of g not being greater than Ã can be
expressed via Equations 5 and 6 (and as shown in Figure 5). If the possibility or necessity levels are given in
advance, constraints with fuzzy numbers become constraints with deterministic parameters.

Pos(g ≤ Ã) =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, g ≤ A2

A3 − g
A3 − A2

, A3 ≤ g ≤ A2

0, g ≥ A3

(5)

Nes(g ≤ Ã) =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, g ≤ A1

A2 − g
A2 − A1

, A1 ≤ g ≤ A2

0, g ≥ A2

(6)

Figure 4. Examples of trapezoidal and triangular fuzzy numbers.

Figure 5. Possibility and necessity degrees of g ≤ Ã.
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3.4. Robust Possibilistic Optimization

A solution to an optimization problem is said to be robust if it achieves both feasibility robustness and optimality
robustness. As defined by Mulvey et al. (1995), “Feasibility robustness requires that the solution remains
“almost” feasible for all possible uncertain values. The optimality robustness means that the objective value
remains close to the optimal value for any realization of uncertain parameters”. In this study, the uncertain water
diversion and groundwater resources are resource‐based uncertainties. The optimization model with fuzzy
numbers on the right‐hand side of constraints is expressed as Equation 7.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

maximize
xϵX

f (x)

subject to Ax ≤ b̃

x ≥ 0

(7)

where x is the decision variable; X is the solution set of x; f(x) is the objective function; A is the coefficient in the
constraint; b̃ is the fuzzy number in the right‐hand side of the constraint.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maximize
xϵX

f (x) − β[(1 − α) b2 + αb1 − b1]

subject to Ax ≤ (1 − α) b2 + αb1
x ≥ 0

0.5≤ α ≤ 1

(8)

In this study, we use the necessity measure (Equation 6) to transform uncertain constraints into deterministic ones.
We assume that DMs at all three levels reach an agreement on the attitude to uncertainties at the end of the
interaction process. Thus, the term Ax ≤ b̃ in Equation 7 becomes Ax ≤ (1 − α)b2+ αb1 in Equation 8. The α (>0.5
in this study) is the confidence level of the fuzzy parameter. We measure the robustness by the difference between
the value of b used in this study, [(1 − α)b2 + αb1], and the worst‐case value, b1, which is expressed as [(1 − α)
b2 + αb1 − b1]. The β is the weight (importance) of the robustness term against the objective value and is the
robustness coefficient (RC) in this study, representing the DMs' requirement for solution robustness. DMs can
select the β according to their experience, financial situation, and risk‐bearing capacity. DMs can see tradeoffs
between robustness and costs by exploring the sensitivities of the model to the β. The term β ⋅ [(1 − α)
b2 + αb1 − b1] controls the feasibility robustness. This approach considers α as an independent variable, which is
optimized along with other decision variables. Optimizing α avoids the subjective judgment of DMs on the best
confidence level of constraints with non‐deterministic parameters. Using the necessity measure to measure
robustness could provide reliable values in robust optimization (Fu & Kapelan, 2011; Pishvaee et al., 2012).

Referring to the mathematical expression of the Stackelberg game (Text S3 in Supporting Information S1) and the
robust theory above, in this study, the objective function considering robustness can be expressed as Equation 9:

max = 100 λ − β ⋅ ∑
T

t=1
[(1 − α) Wssαt2 + αWssαt1 − Wssαt1] − β ⋅ ∑

I

i=1
[(1 − α) Qssαi2 + αQssαi1 − Qssαt1] (9)

where λ is scaled by a factor of 100 to keep its dimensions consistent with the robustness measurements of fuzzy
water availabilities. The second and third terms of Equation 9 evaluate the difference between the water diversion/
groundwater values used in this study and the worst‐case water diversion/groundwater values. In this study, the
trapezoid fuzzy available water diversion at growth period t is expressed as (Wssαt1, Wssαt2, Wssαt3, Wssαt4), in m

3,
while the trapezoid fuzzy available groundwater at the growth period t in WSRU i is expressed as (Qssαt1, Qssαt2,
Qssαt3, Qssαt4), in m3. The RC, β, is given by DMs in advance. In this study, we will input β = 0, 0.01, 0.05, 0.1,
0.2, 0.5, 1, 2, and 3 into the model to calculate the model sensitivities to RCs.
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3.5. Solving Steps

Based on the above, we solve the robust optimization of the Stackelberg game
through the following steps:

1. Build the objective function and constraints of each decision level in the
agricultural water management systems. Establish the physical‐based
model.

2. Build satisfaction membership functions of objectives and decision vari-
ables in each decision level. Set the objective function of maximizing SD
in the Stackelberg game.

3. Analyze the data size required in the physical‐based model and optimi-
zation problem. Express the uncertain data as fuzzy numbers.

4. Use the necessity measure to transform fuzzy parameters in constraints to
deterministic parameters associated with confidence level, α.

5. Modify the objective function of maximizing SD as the one considering
robustness.

6. Input the preferred the RC, β, which could be 0, 0.01, 0.05, 0.1, 0.2, 0.5, 1,
2, and 3 in this study, to the objective function of the step 5. Optimize the
optimization model using a genetic algorithm.

7. If input only one preferred β, the optimal equilibrium water allocation
solution and corresponding parameters will be obtained.

8. If input many values of the β, the sensitivity of optimal equilibrium solutions and corresponding parameters to
the β will be obtained. These results are the reference for DMs assessing effectiveness and costs when
considering robustness.

4. Results
4.1. Optimal Equilibrium Solutions

The model generates equilibrium solutions and displays the relationship between SD and RC (β) after in-
teractions. This relationship shows how the equilibrium SDs change with the β (Figure 6) and is valuable for
decision‐makers (DM) to observe fluctuations in objective values and help to choose the β. As shown in Figure 6,
the three‐level objectives show varying difficulties in achieving high satisfaction degrees. The SD (λ) of water
allocation fairness (yellow line) is the one that can easily reach high values. The λ of total economic benefits
(green line) is more sensitive to the β and fluctuates when the RC increases. The λ of total food production and
groundwater usage (blue and purple lines, overlapping) are at the bottom of the figure. This may be either because
the first‐level DMs proposed a narrow leeway, or because achieving high food production has a lower marginal
benefit in this model. Since the given leeway of total food production is within the large range, we believe that
during the gaming process, the high food production has a lower marginal benefit than the other two objectives
through using the MLP. The first‐level DMs can raise the minimum accepted food production to improve the total
food production. In Figure 6, the λ of total food production and groundwater use almost coincide, appearing as one
line. It indicates a positive impact of groundwater on crop yield and more groundwater is needed to improve food
production particularly under limited water availability (high robustness requirement).

4.2. Robustness

In Figure 7, the solution robustness (blue line) improves first rapidly and then slowly, with a critical point at
RC = 0.2. At this point, the solution is 62.63% more robust than that at RC = 0, at a low cost (0.60) of solution
variation (or infeasibility) (Figure 7). The total usage of water diversion decreases by 13.96%, and the ground-
water usage declines by 6.23% (Figure 9). The point RC = 0.2 is also a critical value of changing the trend of the
confidence level (α) of fuzzy parameters and maximum satisfaction degrees (λ) (Figure 8). These results offer
DMs alternatives with solution robustness, possible costs, confidence levels of fuzzy parameters, and objective
values. DMs know how these aspects change and then can choose the preferred solution after a self‐evaluation.
This decision process is the difference between robust optimization and other optimization methods, where DMs
should first choose a confidence level of uncertain parameters, then get reactive alternatives under different

Figure 6. Satisfaction degree (λ) changes with increasing robustness
coefficient (β). Y1 is the λ of total food production (objective of first‐level
decision‐makers (DMs)); Y2 is the λ of Gini coefficient (objective of
second‐level DMs); Y3 is the λ of economic benefit (objective of third‐level
DMs); GW is the λ of groundwater usage (one decision variable of first‐
level DMs).

Water Resources Research 10.1029/2023WR035373

ZHANG ET AL. 9 of 16

 19447973, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035373 by A

ndrea C
astelletti - PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
 , W

iley O
nline L

ibrary on [03/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



confidence levels, but don't know costs induced by changing infeasible
schemes. In this study, the results of sensitivity analysis provide a decision
base for making “rational” decisions.

In this study, DMs have to face risks caused by uncertain available water. This
study uses the confidence level α to represent DMs' risk tolerance (Equa-
tions 6, 8, and 9). The α measures how certain it is that the fuzzy available
water restricts water use constraints. The higher the α, the more conservative
the attitude that DMs hold. If DMs select a low value of α, DMs have a higher
risk tolerance and face a wide range of solution fluctuation, which means the
solution has low robustness. The confidence level (green line in Figure 8) and
the robustness (blue line in Figure 7) change similarly, increasing rapidly and
then steadily. These two values change consistently and have similar mean-
ings when used.

However, we consider the confidence level α (risk tolerance) and RC β
(robustness) to have some differences. We distinguish these two parameters
as follows:

In most research, DMs determine the α, DMs' attitudes toward risk, before-
hand to transform uncertain parameters to deterministic parameters when

solving optimization problems with uncertainties. In this study, we introduce the robustness measure into the
model and regard α as a decision variable optimized in line with other variables. The β is given in advance and
balances the objective optimality and model robustness (Equations 8 and 9). In this way, the model could achieve
a compromised but satisfactory solution under the given decision space. The α here plays a functional role that
determines the water amount and assists the model in finding the equilibrium solution.

The RC, β, has a broader meaning than α. The large β means lower tolerance to solution infeasibility, preferring
conservative solutions and uncertain parameters approaching the worst‐case value. The β represents DMs' atti-
tudes toward uncertainties, risks, and constraint infeasibilities. The β already contains the original meaning of α.
Many researchers consider the β as the cost of robustness and obtain a satisfactory solution by minimizing the
total cost. Thus, DMs can use the β to measure the effects of uncertainties on objective values.

4.3. Water Allocation Fairness

As shown in Figure 10, in the Stackelberg game, the equilibrium solutions vary nonlinearly with the RC β. The SD
of the Gini coefficient climbs first, declines slightly, and finally plateaus, indicating the Gini coefficient reaches
its best value in the middle‐value range of the β, and poor water allocation fairness happens in both the small‐

value and large‐value ranges of the RC. In the small‐value and large‐value
ranges of the β, the model improves the total food production or economic
benefits because of their higher marginal effectiveness at the expense of water
allocation equity. For example, in the large‐value range of the β, the total
water availability is close to the worst‐case scenario. The irrigation water is
allocated more to WSRUs with high water use efficiencies. In this case, this
water allocation pattern improves the SD of food production but decreases the
SD of the water allocation fairness.

In the range β ϵ [0, 1.0], the water allocation proportion is sensitive to the
variation of β. The allocation proportion of the total water availability, water
diversion, and groundwater varies greatly as the β improves. The groundwater
allocation fluctuates most drastically because the groundwater resource
amount is smaller than the water diversion, and people can use it more
flexibly. In the range β ϵ [1.0, 2.0], the water allocation proportions show
progressively less marked differences among the 12 WSRUs. In the range
β ϵ [2.0, 3.0], the water allocation proportion in each WSRU remains stable.

The water allocation proportions of total water availability all reach over 60%.
The water diversion from the Yellow River satisfies 40%–65% of the total

Figure 7. The robustness and costs changes with the robustness coefficient
(RC) (β). The RC β can be regarded as the cost per unit of variation. This
study takes the product of RC β and variation as the total costs decision‐
makers pay for the solution robustness.

Figure 8. The maximum satisfaction degree (λ) and confidence level (α) of
constraints change with the robustness coefficient (β). The maximum λ here
refers to the objective functions of the Stackelberg game (the first term of
Equation 9).
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crop water demand, and the groundwater resource supplies 15%–30% of
water for growing crops.

4.4. Farmers' Strategies

As results shown in Figure 11, local farmers should meet crop water demand
in the order of wheat > maize > sunflower. The water allocation proportion
increases with increasing β in the wheat field, decreases by nearly 50% in the
maize field from β = 0 to β = 3, and remains within [40%, 60%] in the
sunflower field. In Figure 12, the wheat yield in the 12 WSRUs is all close to
the maximum value, while the maize yield in some WSRUs is slightly lower
than 100%. As an economic crop, the maize yield in the eastern WSRUs (over
80% of the maximum) is higher than in the western WSRUs (50%–80% of the
maximum).

We now take the YangjiaheWSRU as an example to discuss the local farmers'
strategies for efficient water use (Figure 13). In April and May, farmers can
allocate almost all the water diversion to wheat and maize fields (Figure 13,
panels a and b). A large amount of irrigation considerably improves the
groundwater depth and soil water content in the fields. In the wheat field,
the groundwater depth rises to 1.73 m (β = 0), 2.05 m (β = 0.2), and 2.13 m
(β= 3) (Figure 13, panel d), and the relative soil water content reaches 97.76%
(β = 0), 95.03% (β = 0.2), and 100% (β = 3) in May (Figure 13, panel g). In

the maize field, the groundwater depth rises to 1.86, 1.98, and 2.12 m, respectively (Figure 13, panel e), and the
relative soil water content reaches 100% for all values of β (Figure 13, panel h). The expanded groundwater
resource can replenish the soil water lost through groundwater evaporation in the next growth stages. In the wheat
and maize fields, crop water consumption and evapotranspiration remain high in June and July, when is a critical
water demand period for sunflowers, and more water is allocated to the sunflower field (Figure 13, panels j and k).
The sunflower fields have a varied irrigation pattern, with lower robustness than the other two food crops as the β
changes. In the Yangjiahe WSRU, groundwater allocation follows the order maize > wheat > sunflower
(Figure 13, panels a–c).

As time passes, the salt accumulates in the shallow soil layers, and its electric conductivity increases, making it
necessary to eliminate the salt from the shallow root zone at the end of the growth period.

Figure 10. The water allocation proportion (water allocation/water demand) and the satisfaction degree (SD) of the Gini coefficient in the 12WSRUs. Y2 is the SD of the
Gini coefficient. (a) The proportion of total water allocation to water demand; (b) the proportion of water diversion allocation to water demand; (c) the proportion of
groundwater allocation to water demand. In this study, the small‐value, middle‐value, and large‐value ranges are roughly [0, 0.4], [0.4, 1.2], and [1.2, 3.0].

Figure 9. The changing trend of water allocation with robustness
coefficient (β).
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5. Discussion
5.1. The Location of Uncertain Parameters

We further illustrate the terms “feasibility robustness” and “optimality robustness” mentioned in the article by
Mulvey et al. (1995) as the terms relate to the location of uncertain parameters in the model: “The optimality
robustness means that the objective value remains close to the optimal value for any realization of uncertain
parameters. […] The feasibility robustness requires that the solution remains “almost” feasible for all possible
uncertain values”.

If uncertain parameters are in objective functions, uncertainties cannot influence the decision space of inde-
pendent variables (Ahmadvand & Sowlati, 2022); in other words, the solutions remain feasible under uncertain
environments, and DMs do not need to measure the infeasibilities of solutions caused by uncertain data. However,
uncertain parameters influence objective values. The comprised value of uncertain parameters may be not the
optimal value in the real world where uncertain parameters are known. DMs should measure the optimality
robustness, which is a sensitive evaluation of desired goals under uncertain conditions.

If uncertain parameters are on the left‐ or right‐hand side of constraints, uncertainties can change the decision
space of independent variables and further influence objective values. The change of the decision space leads to a
problem of whether the proposed solutions remain feasible once uncertain parameters are known. In this situation,
DMs can measure the impact of the RC on solution variability and choose acceptable/preferred levels of solution
infeasibility to avoid unbearable costs (Figures 7 and 8). This is the so‐called “feasibility robustness.” Uncertain
parameters in constraints can change objective values. DMs can measure the variability of objective values with
uncertainties, so‐called “optimality robustness.” In real applications, whether to use feasibility robustness or
optimality robustness depends on the given situation and DMs' attitudes. DMs might even select only one
constraint with the most concern as the robustness measurement.

Figure 11. The water allocation proportion of each crop for (a) wheat; (b) maize; (c) sunflower.

Figure 12. The ratio of actual crop yield (Ya) to the maximum crop yield (Ym) for (a) wheat; (b) maize; (c) sunflower.
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Figure 13. The crop growth process under three scenarios (robustness coefficients β = 1.0, β = 0.2, and β = 3.0). Water allocation in (a) wheat field; (b) maize field;
(c) sunflower field. Groundwater depth and groundwater evaporation in (d) wheat field; (e) maize field; (f) sunflower field. Relative soil water content and electric
conductivity in (g) wheat field; (h) maize field; (i) sunflower field. Evapotranspiration of (j) wheat; (k) maize; (l) sunflower. Yield and economic benefits of each
crop (m).
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5.2. Uncertainties in a Stackelberg Game

In a Stackelberg game, uncertain data may exist at each decision level. Each DM has to face the uncertain data in
their sub‐model when optimizing their objective functions. During the interactive process, DMs potentially pass
the uncertainties to other decision levels through multiple feedbacks of “pass” or “reject.” Finally, every un-
certainty in the model is sustained by all DMs. However, it is the top‐level DM, the first one proposing their goals
and leeway, who must consider all possible uncertainties in this full‐information game. Otherwise, it becomes
difficult for lower‐level DMs to realize the goal proposed by upper‐level DMs within a narrow decision space.
Conversely, lower‐level DMs receive the expected goals, decision space, and leeway from the upper‐level DMs,
which contain implicit uncertainties from the upper‐level sub‐model. Therefore, the lower‐level DMs make
decisions based on the uncertainties given by the upper‐level DMs. Even if the upper‐level DMs may miss some
uncertainties from the lower level, the upper‐level DMs can infer this information from the lower‐level DMs'
solutions and make modifications accordingly.

6. Conclusions
This paper contributes a robust framework in the multi‐level agricultural water management system. We modeled
the multi‐level agricultural water management system in a shallow groundwater area as a Stackelberg game and
used the multi‐level programming to solve the multi‐level water allocation problem. We expressed the uncertain
data in the system as fuzzy numbers and convert fuzzy numbers to deterministic values by the necessity measure.
The introduction of the robust framework into the multi‐level programming generated a series of alternatives with
multiple robustness coefficients. These solutions formulate a decision‐making base containing the robustness of
equilibrium solution, the optimal confidence level of fuzzy numbers, the maximum SD, and the cost of main-
taining certain robustness level. As the results reported, the objectives in different levels show different diffi-
culties in achieving high satisfaction degrees, with the first‐level goal of food security being the most difficult one.
We suggest the first‐level DMs better ensure the food security through an appropriate increase in the minimum
food production restrict placed on the lower DMs. The bottom DMs (local farmers) can prioritize ensuring water
demand in critical crop growth periods to realize efficient water use and high crop production. In the optimal
equilibrium solutions, the food crops (wheat and maize) have more robust water allocation schemes than the
economic crop (sunflowers) as uncertain data changes. From the results, the robustness measure performs well in
reducing variations of equilibrium solutions in the multi‐level system. DMs can achieve a balance of the solution
feasibility and objective optimality under the given RC.

Data Availability Statement
The data on the available water resources and land utilization in the HID were collected from the yearbooks of
Bayannur (Bayannur Bureau of Statistics, 2012). The parameters for the crop growth model are available in the
research papers on field experiments conducted in the Hetao Irrigation District (Hou et al., 2016; Jiang
et al., 2019; Xue et al., 2017; Yue, 2004; X. Zhang et al., 2021). Meteorological data were collected from local
meteorological stations and the website of the China Meteorological Data Service Center (http://data.cma.cn/).
The related detailed methods and calculation can be found in Supporting Information S1. Other data can be found
in Data Set S1.
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