
Complex Analysis and Operator Theory (2024) 18:8
https://doi.org/10.1007/s11785-023-01460-7

Complex Analysis
and Operator Theory

Density of Complex and Quaternionic Polyanalytic
Polynomials in Polyanalytic Fock Spaces

Sorin G. Gal1,2 · Irene Sabadini3

Received: 29 July 2023 / Accepted: 25 August 2023 / Published online: 6 December 2023
© The Author(s) 2023

Abstract
In this paper we consider the polyanalytic Fock spaces both in the complex and in the
quaternionic case. In this latter case, the polyanalytic functions are considered in the
slice regular case, and we shall treat Fock spaces of the first and of the second kind.
In all these spaces we prove quantitative results in the approximation by polyanalytic
polynomials. The quantitative approximation results are given in terms of higher order
L p-moduli of smoothness.

Keywords Polyanalytic complex Fock space · Polyanalytic complex functions ·
Polyanalytic complex polynomials · Polyanalytic quaternionic Fock space of the first
kind · Polyanalytic quaternionic Fock space of second kind · Slice quaternionic
polyanalytic functions · Slice quaternionic polyanalytic polynomials · Convolution
with trigonometric kernels · Quantitative estimates · Lp-moduli of smoothness · Slice
regular functions · Best approximation

Mathematics Subject Classification Primary 30E10 · 30G35; Secondary 41A25

This paper is dedicated to John Ryan on the occasion of his retirement.

Communicated by Daniele Struppa.

This article is part of Topical Collection in Honor of Prof. John Ryan’s Retirement.

B Irene Sabadini
irene.sabadini@polimi.it

Sorin G. Gal
galso@uoradea.ro

1 Department of Mathematics and Computer Science, University of Oradea, Str. Universitatii Nr.
1, 410087 Oradea, Romania

2 Academy of Romanian Scientists, 050094 Bucharest, Romania

3 Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-023-01460-7&domain=pdf


8 Page 2 of 21 S. G. Gal, I. Sabadini

1 Introduction

Among the various interesting generalizations of the classical theory of holomorphic
functions of a complex variable, there is the theory of polyanalytic functions, which
are defined as nullsolutions of higher order powers of the Cauchy–Riemann operator.
These functions play an important role since both the complex variable z and its
conjugate z̄ are involved in their description, and this leads to the consideration of
polynomials in the two variables z, z̄.

A complete introduction to polyanalytic functions and their basic properties can
be found in [10–12]. This class of functions was studied by various authors from
different perspectives, see e.g. [2–6, 14, 27] and the references therein. In quantum
mechanics polyanalytic functions are also relevant, in fact they are used for the study
of the Landau levels associated to Schrödinger operators, see [4]. These functionswere
used also in [2] to study sampling and interpolation problems on polyanalytic Fock
spaces using time frequency analysis techniques such as short-time Fourier transform
or Gabor transforms, see, e.g. [17]. For sampling and interpolation in function spaces,
see, e.g. [1] where also image and signal processing are considered.

The literature onpolyanalytic functions is rather rich, startingwith the early paper by
Kolossov [43–45] and Pompeiu [55], then Teodorescu’s doctoral dissertation, see [56],
until the book by Muskhelishvili [50] in the sixties. Other interesting contributions in
this field can be found in Pascali’s works in the sixties, see [51–54]. A milestone in
the theory is the book [10] which also contains further references.

Given s ∈ N, a complex-valued function f of a complex variable is called s-analytic
or polyanalytic of order s in an open set G ⊂ C, if ∂

s
( f ) = 0 in G, where ∂ = ∂/∂z

is the Cauchy–Riemann operator and ∂
s
denotes its s-power.

A polyanalytic function f of order s can be written in the form

f (z) = f0(z) + z f1(z) + · · · + zs−1 fs−1(z), z ∈ G, (1)

where f0, . . . , fs−1 are holomorphic in G. If, in particular, all the functions
f0, . . . , fs−1 are polynomials, then f is called an s-analytic polynomial.
We define the degree deg( f ) of an s-analytic polynomial f with respect to the

variable z as max{deg( f j ); j = 0, . . . , s − 1}. We note that, from now on, we shall
omit to specify that the degree is considered with respect to z.

The representation (1) shows that the building blocks of polyanalytic functions are
holomorphic functions. Note however that the class of polyanalytic functions shows
deep differences with respect to the class of holomorphic functions. See [10] for the
basic information on these functions.

There are many directions of research in this field. The focus of this paper is
about approximation in the polyanalytic Fock spaces. Questions about approxi-
mation have already been considered in the literature. Among them, and with no
claim of completeness, we mention: the problem of the uniform approximation by
s-analytic polynomials, see, e.g., Fedorovskiy [26–29], Carmona-Fedorovskiy [14,
15], Carmona-Paramonov-Fedorovskiy [16], Baranov-Carmona-Fedorovskiy [12],
Mazalov [47, 48], Mazalov-Paramonov-Fedorovskiy [49], Verdera [58].
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Concerning approximation by s-analytic polynomials of functions which are s-
analytic functions in G and continuous in G, the above mentioned results are of
qualitative type. Quantitative results in approximation of polyanalytic functions by
s-analytic polynomials were obtained in the recent paper Gal-Sabadini [39].

Polyanalytic functions have been considered also in the quaternionic and Clifford
algebra case by considering powers of suitable generalized Cauchy–Riemann opera-
tors, see [13]. In the case one considers the framework of slice regular functions, the
polyanalitic case has been recently introduced, see Alpay-Diki-Sabadini [7–9]. The
counterpart of the class of holomorphic functions considered in this context is the
class of slice regular functions. Several approximation results have been proved in
this class of functions in the past decade by Gal-Sabadini, see [33–37], and also the
paper by Diki-Gal-Sabadini [24]. In particular, polynomial approximation results in
this framework have been obtained in Bergman, Bloch, Besov and also in Fock spaces.

We note that results concerning approximation by polynomials in the classical
complex and also quaternionic Bergman spaces can be found in Duren-Schuster [25],
Hedenmalm-Korenblum-Zhu [42], Gal [31], and in Gal-Sabadini [35].

More recently we started considering the quaternionic polyanalytic case in the slice
regular case, see [38, 39].

In this paper we shall introduce the polyanalytic Fock spaces first in the complex,
then in the quaternionic case. In the latter case, we generalize the notion of slice
polyanalytic Fock space, already considered in [7]. We also note that in [38] we have
only considered the polyanalytic Bergman space of the second kind, whereas in this
paper we study the Fock spaces of the first and of the second kind. The difference
between the two cases consists in the definition which is done via a 4-dimensional
integral in the first kind case, while it is done via a 2-dimensional integral in the
second kind space. In both cases, our results are also quantitative, in terms of various
L p-moduli of smoothness and in terms of the best approximation quantity.

To obtain our results, we use the classical method of convolution with various
even trigonometric kernels, successfully used by us in the past, see, e.g., Gal [30–32],
Gal-Sabadini [35–38], Diki-Gal-Sabadini [24]. The methods work also in this higher
dimensional case and in fact most of the computations can be carried out without
significant changes. In the paper we repeat some of these computations since it is
somewhat necessary to check that they are valid in this case. Where we do so we refer
to the sources.

We note that one could consider also the case of the so-called true Fock spaces (for
their definition see [57]) however this is outside the scopes of this work.

The plan of the paper is as follows. In Sect. 2 we introduce the complex polyan-
alytic Fock spaces and we obtain quantitative approximation results by polyanalytic
polynomials. Section3 contains the notions of quaternionic polyanalytic Fock spaces
of first and second kind. Section4 contains qualitative and quantitative approximation
results in these Fock spaces of first kind and, similarly, Sect. 5 contains the analogous
results in Fock spaces of the second kind.
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2 Polyanalytic Complex Fock Spaces and Approximation by
Polyanalytic Polynomials

Fock spaces in the complex setting are well known and widely studied, especially for
their importance in quantummechanics.We recall below the definition and some basic
facts and we refer the reader to, e.g., [59], for more information.

Definition 2.1 (see, e.g., [59, p. 36]) Let 0 < p < ∞ and α > 0. The Fock space
F p

α (C) is defined as the space of all entire functions in C with the property that
α p

2π

∫
C

∣∣∣ f (z)e−α|z|2|/2
∣∣∣p d A(z) < +∞, where d A(z) = dxdy = rdrdθ , z = x +

iy = reiθ , is the area measure in the complex plane.

Remark 2.2 Let us define

‖ f ‖p,α =
(

α p

2π

∫
C

∣∣∣ f (z)e−α|z|2/2
∣∣∣p d A(z)

)1/p

.

It is well-known (see, e.g., [59, p. 36]) that F p
α (C) endowed with ‖ f ‖p,α is a

Banach space for 1 ≤ p < ∞, and a complete metric space for ‖ · ‖p
p,α with

0 < p < 1. Moreover, when p = +∞, the space F∞
α (C) endowed with ‖ f ‖∞,α =

ess sup{| f (z)|e−α|z|2|/2; z ∈ C} turns out to be a Banach space.

We now introduce the polyanalytic complex Fock spaces as follows (see, e.g., Abreu-
Gröchenig [2]):

Definition 2.3 Let 0 < p < +∞. The s-analytic Fock space denoted by F p
α,s(C)

consists of all polyanalytic functions of order s in C, such that

‖ f ‖p,α :=
(

α p

2π

∫
C

∣∣∣ f (z)e−α|z|2|/2
∣∣∣p d A(z)

)1/p

< +∞.

Remark 2.4 In the case p = 2 and α = 2, the space F p
α,s(C) was introduced and

studied in, e.g., Abreu-Feichtinger [4, p. 6], Balk [10, p. 170], Vasilevski [57].

As we mention in the introduction, there are results in the literature concerning the
approximation by polynomials in Fock spaces, but all of them are of qualitative type
and no quantitative estimates were obtained. For example, for any 0 < p < ∞, and
f ∈ F p

α , there exists a polynomial sequence (Pn)n∈N such that limn→∞ ‖ f −Pn‖p,α =
0 (see, e.g., Proposition 2.9, p. 38 in [59]). The proof of the result is not constructive
and consists in two steps: at step 1, one approximates f (z) by its dilations f (r z) with
r → 1− and at step 2 one approximates each fr by its attached Taylor polynomials.
If 1 < p < ∞, then one can construct Pn as the Taylor polynomials attached to f
(see, e.g., Exercise 5, p. 89 in [59]) but if 0 < p ≤ 1, then there exists f ∈ F p

α which
cannot be approximated by its associated Taylor polynomials (see, e.g., Exercise 6, p.
89 in [59]). However, if f ∈ F∞

α is such that limz→∞ f (z)eα|z|2/2 = 0, then f can
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be approximated by polynomials in the norm ‖ · ‖∞,α (see, e.g., Exercise 8, p. 89 in
[59]).

In addition, by using the convolution method, we showed in the recent paper [39]
that quantitative results in terms of various moduli of smoothness for approximation
of polyanalytic functions by polyanalytic polynomials in the complex unit disc can be
obtained.

In the spirit of the above results, in this section we consider the approximation by
polyanalytic polynomials in the polyanalytic complex Fock spaces F p

α,s(C).
The novelty is that, for 1 ≤ p < +∞we present a constructive proof for the density

result with quantitative estimates in terms of higher order moduli of smoothness and
in terms of the best approximation quantity.

To this end, for the sake of clarity and completeness, we need a number of definition
and notations.

We denote by Pn,s denotes the set of all s-analytic polynomials of degree ≤ n.

Definition 2.5 Let 0 < p < +∞ and f ∈ F p
α,s(C).

The higher order L p-moduli of smoothness of k-th order is defined by

ωk( f ; δ)F p
α,s (C) = sup

0≤|h|≤δ

{∫
C

|�k
h f (z)|p · [e−α|z|2/2]pd A(z)

}1/p

= sup
0≤|h|≤δ

‖wα�k
h f ‖L p(C),

where k ∈ N, wα(z) = e−α|z|2/2,

�k
h f (z) =

k∑
s=0

(−1)k+s
(
k

s

)
f (zeish) and ‖ f ‖L p(C) =

(∫
C

| f (z)|pd A(z)

)1/p

.

In other words, ωk( f ; δ)F p
α,s (C) = ωk( f ; δ)wα,L p(C) is a weighted modulus of

smoothness with the weight wα(z) = e−α|z|2/2.
The best approximation quantity is defined by

En,s( f ;C)p,α = inf{‖ f − P‖p,α; P ∈ Pn,s}.

As in the case of the L p-moduli of smoothness for functions of real variable (see,
e.g., [23, pp. 44–45]), it can be proved that

lim
δ→0

ωk( f ; δ)F p
α,s (C) = 0, (2)

ωk( f ; λ · δ)F p
α,s (C) ≤ (λ + 1)k · ωk( f ; δ)F p

α,s (C), if 1 ≤ p < +∞ (3)

and
[ωk( f ; λ · δ)F p

α,s (C)]p ≤ (λ + 1)k · [ωk( f ; δ)F p
α,s (C)]p, if 0 < p < 1. (4)
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It is in fact a standard argument the fact that, setting (for fixed z) g(x) = f (zeix ), we

get �k
h f (z) = �

k
hg(0), where �

k
hg(x0) = ∑k

s=0(−1)s+k
(k
s

)
g(x0 + sh).

Also next definitions are standard and we already used them in various cases, see
e.g. [36].

For any 1 ≤ p < +∞ and f an s-analytic function inC, we define the convolution
operators

Ln( f )(z) =
∫ π

−π

f (zeit ) · Kn(t)dt, z ∈ C.

Here Kn(t) is a positive and even trigonometric polynomial satisfying the property∫ π

−π
Kn(t)dt = 1.

In the case of the Fejér kernel Kn(t) = 1
2πn ·

(
sin(nt/2)
sin(t/2)

)2
, we shall denote Ln( f )(z)

by Fn( f )(z).

For Kn,r (t) = 1
λn′,r

·
(
sin(n′t/2)
sin(t/2)

)2r
, n′ = [n/r ] + 1, where r is the smallest integer

with r ≥ m+3
2 ,m ∈ N and the constants λn′,r are chosen such that

∫ π

−π
Kn,r (t)dt = 1,

let us define the polyanalytic polynomials

In,m,r ( f )(z) = −
∫ π

−π

Kn,r (t)
m+1∑
k=1

(−1)k
(
m + 1

k

)
f (zeikt )dt, z ∈ C.

Then Kn,r is a trigonometric polynomial of degree n, see [46, p. 57], and conse-
quently In,m,r ( f )(z) is an s-analytic polynomial of degree n+s−1 (see, e.g., Theorem
2.2 in [39]).

Finally, we set Vn( f )(z) = 2F2n( f )(z) − Fn( f )(z), z ∈ C, and since Fn( f )(z) is
a trigonometric polynomial of degree n+ s−1, it follows that Vn( f )(z) are s-analytic
polynomials of degree ≤ 2n + s − 1 (see, e.g., Theorem 2.2 in [39]).

Next result was proved in [38] in the case of polyanalytic Bergman spaces in the
unit ball. The calculations in the proof are performed in the same way in the case of
Fock spaces inC. Note however that here the domain of the functions is unbounded so,
in principle, it is necessary to verify the validity of the various arguments. We provide
the main lines of the proof and we refer the reader to [38] for more details.

Theorem 2.6 Let 1 ≤ p < +∞, 0 < α, s ∈ N, m ∈ N
⋃{0} and f ∈ F p

α,s(C) be
arbitrary fixed.

(i) In,m,r ( f )(z) is s-analytic polynomial of degree n + s − 1, which satisfies the
estimate

‖In,m,r ( f ) − f ‖p,α ≤ Cp,m,r ,α · ωm+1

(
f ; 1

n

)
F p

α,s (C)

, n ∈ N,

where m ∈ N, r is the smallest integer with r ≥ p(m+1)+2
2 and Cp,m,r ,α > 0 is a

constant independent of f and n.
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(ii) Vn( f )(z) is a s-analytic polynomials of degree ≤ 2n + s − 1, satisfying the
estimate

‖Vn( f ) − f ‖p,α ≤ [2(p−1)/p · (2p + 1)1/p + 1] · En,s( f ;C)p,α n ∈ N.

Proof We first prove point (i) reasoning as in [31] (see also [38], Theorem 3.2 in the
case of the Bergman space in the unit disc). To this end we apply a well-known Jensen
type inequality for integrals applied to the convex function ϕ(t) = t p, 1 ≤ p < ∞,
and we get

| f (z) − In,m,r ( f )(z)|p =
∣∣∣∣
∫ π

−π

�m+1
t f (z)Kn,r (t)dt

∣∣∣∣
p

≤
∫ π

−π

|�m+1
t f (z)|pKn,r (t)dt .

Now we multiply the expression above by e−α p|z|2/2 and we integrate on C with
respect to d A(z). Using Fubini’s theorem, we obtain

∫
C

|In,m,r ( f )(z) − f (z)|pe−α p|z|2/2d A(z)

≤
∫ π

−π

[∫
C

|�m+1
t f (z)|pe−α p|z|2/2d A(z)

]
Kn,r (t)dt

≤
∫ π

−π

ωm+1( f ; |t |)pF p
α,s(C)

· Kn,r (t)dt

≤
∫ π

−π

ωm+1( f ; 1/n)
p
F p

α,s (C)
(n|t | + 1)(m+1)pKn,r (t)dt .

Using (5) in [46, p. 57], for r ∈ N with r ≥ p(m+1)+2
2 , we obtain

∫ π

−π

(n|t | + 1)(m+1)p · Kn,r (t)dt ≤ Cp,m,r < +∞, (5)

from which (i) follows.
To prove (ii) we consider f , g ∈ F p

α,s(C) and 1 ≤ p < +∞. Standard arguments
show that for all z ∈ C we have

|Vn( f )(z) − Vn(g)(z)| ≤ 2|F2n( f )(z) − F2n(g)(z)| + |Fn( f )(z) − Fn(g)(z)|
≤ 2

∫ π

−π

| f (zeit ) − g(zeit )| · K2n(t)dt

+
∫ π

−π

| f (zeit ) − g(zeit )| · Kn(t)dt
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and

|Vn( f )(z) − Vn(g)(z)|p ≤ 2p−1
[(

2
∫ π

−π

| f (zeit ) − g(zeit )| · K2n(t)dt

)p

+
(∫ π

−π

| f (zeit ) − g(zeit )| · Kn(t)dt

)p]

≤ 2p−1
[
2p

∫ π

−π

| f (zeit ) − g(zeit )|p · K2n(t)dt

+
∫ π

−π

| f (zeit ) − g(zeit )|p · Kn(t)dt

]
.

Following the standard procedure, we multiply the expression above by α p
2π e

−α p|z|2/2
and we integrate on C. We get

‖Vn( f ) − Vn(g)‖p
p,α ≤ 2p−1

[
2p

∫ π

−π

α p

2π(∫
C

| f (zeit ) − g(zeit )|pe−α p|z|2/2d A(z)

)
K2n(t)dt

+
∫ π

−π

α p

2π

(∫
C

| f (zeit ) − g(zeit )|pe−α p|z|2/2d A(z)

)
Kn(t)dt

]
.

Setting F(z) = | f (z)− g(z)|pe−α p|z|2/2, z ∈ C, and z = r cos(θ)+ ir sin(θ), we get

∫
C

|F(zeit )|pd A(z) =
∫
C

|F(z)|pd A(z), for all t,

which replaced in the above gives, after some calculations

‖Vn( f ) − Vn(g)‖p,α ≤ 2(p−1)/p · (2p + 1)1/p‖ f − g‖p,α.

Let P∗
n,s be a polynomial of best approximation by elements in Pn,s in the norm in

‖ · ‖p,α , that is

En,s( f ;C)p,α = ‖ f − P∗
n,s‖p,α.

Since dim(Pn,s) = n + s − 1 such a polynomial P∗
n,s exists.

We prove that Vn(P∗
n,s)(z) = P∗

n,s(z), for all z ∈ C.
Indeed, let us set

P∗
n,s(z) =

s−1∑
j=0

z j p∗
n, j (z) =

s−1∑
j=0

z j
[

n∑
k=0

a( j)
n,k z

k

]
.
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Denoting a( j)
n,k = r ( j)

n,ke
iθ( j)

n,k and z = reix , we obtain

P∗
n,s(z) =

s−1∑
j=0

re−i x j
[
r ( j)
n,ke

iθ( j)
n,k · reixk

]

=
s−1∑
j=0

n∑
k=0

r2r ( j)
n,k

[
cos(θ( j)

n,k + (k − j)x) + i sin(θ( j)
n,k + (k − j)x)

]
.

Using standard formulas in trigonometry, we deduce that

P∗
n,s(z) = Pn(x) + i Qn(x),

where Pn and Qn are trigonometric polynomials of degree ≤ n with real coefficients.
We then have

Vn(P
∗
n,s)(z) = Vn(Pn)(x) + iVn(Qn)(x), z = reix ,

which by Lorentz [46, p. 93], immediately implies

Vn(P
∗
n,s)(z) = Pn(x) + i Qn(x) = P∗

n,s(z).

We conclude that

‖ f − Vn( f )‖p,α ≤ ‖ f − P∗
n,s‖p,α + ‖Vn(P∗

n,s) − Vn( f )‖p,α

≤ En,s( f ;C)p,α + 2(p−1)/p · (2p + 1)1/p‖P∗
n,s − f ‖p,α,

which proves (ii). ��

3 Preliminaries on Polyanalytic Quaternionic Fock Spaces

We shall denote by H, in honor of Hamilton who introduced it, the noncommutative
field of quaternions. It consists of elements of the form

q = x0 + x1i + x2 j + x3k, xi ∈ R, i = 0, 1, 2, 3,

where the imaginary units i, j, k satisfy the relations

i2 = j2 = k2 = −1, i j = − j i = k, jk = −k j = i, ki = −ik = j .

The real number x0 is called real part of q while x1i + x2 j + x3k is called imaginary
or vector part of q. The conjugate of q is q̄ = x0 − x1i − x2 j − x3k, while the norm

of q is defined as |q| = √
qq̄ =

√
x20 + x21 + x22 + x23 .
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By S we denote the unit sphere of purely imaginary quaternion, i.e.

S = {q = i x1 + j x2 + kx3, such that x21 + x22 + x23 = 1}.

Note that if I ∈ S, then I 2 = −1 and so for any fixed I ∈ S the subset CI :=
{x + I y; | x, y ∈ R} can be identified with a complex plane.

As it is well known and easily seen, any non real quaternion q is uniquely associated
to the element Iq ∈ S defined by Iq := (i x1 + j x2 + kx3)/|i x1 + j x2 + kx3| and q
belongs to the complex plane CIq .

The real axis, obtained setting x1 = x2 = x3 = 0, belongs to CI for every I ∈ S

and thus a real quaternion can be associated to any imaginary unit I . Moreover, we
have H = ∪I∈SCI .

In the sequel we will need to introduce convolution operators of a quaternion vari-
able, and sowe recall the notion of exponential function of quaternion variable. For any
arbitrary, but fixed, I ∈ S, we define, following [41]: eI t = cos(t) + I sin(t), t ∈ R.
With this definition we have an Euler’s kind formula: (cos(t)+ I sin(t))k = cos(kt)+
I sin(kt), and therefore we can write (eI t )k = eIkt .

A class of functions of a quaternionic variable which has been widely studied in the
past fifteen years is that one of the so called slice regular (or slice hyperholomorphic)
functions. For more information on these functions and for their various applications,
we refer the reader to [20, 21, 40] and the references therein. Various approximation
results can be proved in this class of functions in this framework and a summary can
be found in [36].

Definition 3.1 Let U be an open set H. A real differentiable function f : U → H is
said to be (left) slice analytic (regular) if, for every I ∈ S, its restriction f I of f to the
complex plane CI satisfies

∂ I f (x + I y) = 1

2

( ∂

∂x
+ I

∂

∂ y

)
f I (x + I y) = 0.

The set of (left) slice analytic (regular) functions on U will be denoted by SR(U ).

Remark 3.2 Since we are in a non commutative setting, we could give the previous
definition as

∂ I f (x + I y) = 1

2

( ∂

∂x
f I (x + I y) + ∂

∂ y
f I (x + I y)I

)
= 0.

The class thus obtained is that one of right slice regular functions. The two classes
of functions contain different elements but the function theory is basically equivalent.
Thus we shall consider only the case of left slice regular functions and we shall not
specify anymore “left”. We note that SR(U ) is a right linear space over H.

Despite other function theories over the quaternions, the class of slice regular functions
contains converging power series in the variable q, thus also polynomials, and with
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quaternionic coefficients written on the right, i.e.

∞∑
n=0

qnan, an ∈ H.

Various function spaces can be defined within the class of slice regular functions,
for example: two kinds of Bergman spaces, see, e.g., [18, 19] and Bloch, Besov and
Dirichlet spaces, see, e.g., [17].

As a further generalization, we now define the class of slice polyanalytic functions
of order s.

Let s ∈ N and let Cs(U ) be the set of continuously differentiable functions with
all their derivatives up to order s on an open set U ⊆ H. Assume that U is axially
symmetric, i.e. when x+ J y ∈ U then x+ I y ∈ U for all I ∈ S. We set U = {(x, y) ∈
R
2 x + I y ∈ U }.

Definition 3.3 Let f : U → H belong to Cs(U ), s ∈ N and let f be of the form

f (q) = α(x, y) + Iβ(x, y) for q = x + I y ∈ U (6)

with α, β : U → H satisfying the compatibility conditions α(x,−y) = α(x, y),
β(x,−y) = −β(x, y). If

(∂x + I∂y)
s f (x + I y) = 0, for all I ∈ S (7)

then f is called slice polyanalytic function of order s ∈ N, or s-analytic for short, on
U .

On H, slice polyanalytic functions of order s are of the form (see Proposition 3.6
in [7] and also [8])

f (q) = f0(q) + q f1(q) + · · · + q p−1 fs−1(q), q ∈ H, (8)

where f j (q) = ∑+∞
l=0 qlc( j)

l , c( j)
l ∈ H, j = 0, . . . , s − 1, l = 0, 1, . . . , and the series

is convergent inH, i.e., f j (q) is a slice analytic function inH. In particular, f j (q) can
be a polynomial and if f j (q) is a polynomial for all j = 0, . . . , p−1 we say that f is
a slice s-analytic polynomial in H, whose degree deg( f ) is defined as the maximum
degree of the f j ’s.

Wecannow introduce the quaternionic counterpart of slice polyanalytic Fock spaces
of order s, beginning with the following definition that, in this generality, has not been
previously considered in the literature.

Definition 3.4 Let 0 < p < +∞, s ∈ N and 0 < α < +∞. The polyanalytic
quaternionic Fock space of the first kind, denoted by F p

α,s(H), is defined as the space
of functions f slice polyanalytic of order s on H and are such that

‖ f ‖p,α :=
(

α p

2π

∫
H

| f (q)|p(e−α|q|2/2)pdm(q)

)1/p

< +∞,
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where dm(q) represents the Lebesgue volume element in R4.

Remark 3.5 Using standard techniques, like in the complex case, one can prove that
for 1 ≤ p < +∞, ‖·‖p,α is a norm, while for 0 < p < 1, ‖ f −g‖p

p,α is a quasi-norm.

Remark 3.6 Any slice s-analytic quaternionic polynomial in H, P(q) = p0(q) +
q p1(q)+· · ·+q p−1 ps−1(q) with all p j (q) quaternionic polynomials, belongs to the
space F p

α,s(H).
Indeed, this is immediate from the obvious inequality

∫
H

|qk |p(e−α|q|2/2)pdm(q) < +∞, for all k ∈ N ∪ {0}.

Before to define the Fock spaces of the second kind, originally introduced in [24],
we give the following:

Definition 3.7 For I ∈ S, 0 < α < +∞ and 0 < p < +∞, let us denote

‖ f ‖p,α,I =
(

α p

2π

∫
CI

| f (q)|p(e−α|q|2/2)pdmI (q)

)1/p

,

with dmI (q) representing the area measure on CI .
The space of slice s-analytic functions on H satisfying ‖ f ‖p,α,I < +∞ will be

denoted with F p
α,s,I (CI ).

Standard techniques in slice analysis based on the Representation formula (see
e.g. Proposition 4.1 in [24]) show that for any I , J ∈ S the spaces F p

α,s,I (CI ) and

F p
α,s,J (CJ ) contains the same elements and have equivalent norms. Thus we give the

following definition:

Definition 3.8 Let 0 < p < +∞, s ∈ N and 0 < α < +∞. The polyanalytic
quaternionic Fock space of the second kind, denoted by F (2),p

α,s (H), is defined as the
space of functions f slice polyanalytic of order s on H such that f ∈ F p

α,s,I (CI ) for
some I ∈ S.

Notice that for p = α = 2, the second kind Fock space of slice s-analytic functions
have been introduced in [7], Sect. 4.

4 Density in Polyanalytic Quaternionic Fock Spaces of the First Kind

In this section we introduce the slice polyanalytic quaternionic Fock spaces of the first
kind. To this end, we need a number of notions that we list keeping the notations in
Sect. 3.

Definition 4.1 Let 0 < p < +∞ and f ∈ F p
α,s(H). The higher order L p-moduli of

smoothness of k-th order is defined by

ωk( f ; δ)F p
α,s (H) = sup

0≤|h|≤δ

{∫
H

|�k
h f (q)|p · [e−α|q|2/2]pdm(q)

}1/p
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= sup
0≤|h|≤δ

‖wα�k
h f ‖L p(H),

where k ∈ N, wα(q) = e−α|q|2/2,

�k
h f (q) =

k∑
s=0

(−1)k+s
(
k

s

)
f (qeIq sh) and ‖ f ‖L p(H) =

(∫
H

| f (q)|pdm(q)

)1/p

.

In other words, ωk( f ; δ)F p
α,s (H) = ωk( f ; δ)wα,L p(H) is a weighted modulus of

smoothness with the weight wα(q) = e−α|q|2/2.
The best approximation quantity is defined by

En,s( f ;H)p,α = inf{‖ f − P‖p,α; P ∈ Pn,s},

where Pn,s denotes the set of all slice s-analytic polynomials on H of degree ≤ n.

Note that also in this case we obtain the counterparts of (2)-(4), namely:

lim
δ→0

ωk( f ; δ)F p
α,s (H) = 0,

ωk( f ; λ · δ)F p
α,s (H) ≤ (λ + 1)k · ωk( f ; δ)F p

α,s (H), if 1 ≤ p < +∞ (9)

and

[ωk( f ; λ · δ)F p
α,s (H)]p ≤ (λ + 1)k · [ωk( f ; δ)F p

α,s (H)]p, if 0 < p < 1. (10)

Now, for any 1 ≤ p < +∞ and f a slice polyanalytic function of order s in H, we
define the convolution operators

Ln( f )(q) =
∫ π

−π

f (qeIt ) · Kn(t)dt, q ∈ H,

where Kn(t) is a positive and even trigonometric polynomial such that
∫ π

−π
Kn(t)dt =

1.

As in the complex case,we can choose Kn,r (t) = 1
λn′,r

·
(
sin(n′t/2)
sin(t/2)

)2r
,n′ = [n/r ]+1,

where r is the smallest integer with r ≥ m+3
2 , m ∈ N and the constants λn′,r are such

that
∫ π

−π
Kn,r (t)dt = 1.

For any 1 ≤ p < +∞ and f a slice polyanalytic function of order s in H, we
define the convolution operators

In,m,r ( f )(q) = −
∫ π

−π

Kn,r (t)
m+1∑
k=1

(−1)k
(
m + 1

k

)
f (qeIqkt )dt, q ∈ H.
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Note that Kn,r is a trigonometric polynomial of degree n and consequently
In,m,r ( f )(q) is a slice polyanalytic polynomial of order s of degree n + s − 1 (see,
e.g., Theorem 2.2 in [39]).

Also in the quaternionic case we can prove the following result:

Theorem 4.2 Let 1 ≤ p < +∞, 0 < α, s ∈ N, m ∈ N
⋃{0} and f ∈ F p

α,s(H) be
arbitrarily fixed.

In,m,r ( f )(q) is a slice polyanalytic polynomial of degree n + s − 1, which satisfies
the estimate

‖In,m,r ( f ) − f ‖p,α ≤ Cp,m,r ,α · ωm+1

(
f ; 1

n

)
F p

α,s (H)

, n ∈ N,

where m ∈ N, r is the smallest integer with r ≥ p(m+1)+2
2 and Cp,m,r ,α > 0 is a

constant independent of f and n.

Proof As it was mentioned before the statement, the convolution operators
In,m,r ( f )(z) are slice s-analytic polynomials of the mentioned degrees.

In what follows we will reason as in [31] and we shall apply the Jensen type
inequality as we did in the proof of Theorem 2.6, by choosing ϕ(t) = t p, 1 ≤ p < ∞.
We get

| f (q) − In,m,r ( f )(q)|p =
∣∣∣∣
∫ π

−π

�m+1
t f (q)Kn,r (t)dt

∣∣∣∣
p

≤
∫ π

−π

|�m+1
t f (q)|pKn,r (t)dt .

Now we multiply the expression above by e−α p|q|2/2 and we integrate on H with
respect to dm(q). Taking into account the Fubini’s theorem, we obtain

∫
H

|In,m,r ( f )(q) − f (q)|pe−α p|q|2/2dm(q)

≤
∫ π

−π

[∫
H

|�m+1
t f (q)|pe−α p|q|2/2dm(q)

]

Kn,r (t)dt ≤
∫ π

−π

ωm+1( f ; |t |)pF p
α,s(H)

· Kn,r (t)dt

≤
∫ π

−π

ωm+1( f ; 1/n)
p
F p

α,s (H)
(n|t | + 1)(m+1)pKn,r (t)dt .

Using relation (5) in [46, p. 57], for r ∈ N with r ≥ p(m+1)+2
2 , we obtain

∫ π

−π

(n|t | + 1)(m+1)p · Kn,r (t)dt ≤ Cp,m,r < +∞, (11)

and thus we get the required estimate. ��
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5 Density in Polyanalytic Quaternionic Fock Spaces of the Second
Kind

In this section we prove the density of polyanalitic polynomials in slice polyanalytic
Fock spaces of second kind. The result provides quantitative estimates in terms of
higher order L p-moduli of smoothness and in terms of the best approximation quantity.

For 1 ≤ p < +∞ we present a constructive proof for the density result with
quantitative estimates in terms of higher order L p-moduli of smoothness and in terms
of the best approximation quantity. For that purpose, we need somemore terminology.

Definition 5.1 Let 0 < p < +∞, 0 < α, I ∈ S and f ∈ F p
α,s,I (H).

The higher order L p-moduli of smoothness of k-th order is defined by

ωk( f ; δ)F p
α,s,I (CI )

= sup
0≤|h|≤δ

{∫
CI

|�k
h f (q)|p[e−α|q|2/2]pdmI (q)

}1/p

,

where k ∈ N and �k
h f (q) = ∑k

s=0(−1)k+s
(k
s

)
f (qeI sh).

The best approximation quantity is defined by

En,s,I ( f ;CI )p,α,s = inf{‖ f − P‖p,α,I ; P ∈ Pn,s,I },

where Pn,s,I denotes the set of all quaternionic slice s-analytic polynomials of degree
≤ n in CI .

Also in this case we have the analogs of (2)–(4):

lim
δ→0

ωk( f ; δ)F p
α,s,I (CI )

= 0,

ωk( f ; λ · δ)F p
α,s,I (CI )

≤ (λ + 1)k · ωk( f ; δ)F p
α,s,I (CI )

, if 1 ≤ p < +∞ (12)

and

[ωk( f ; λ · δ)F p
α,s,I (CI )

]p ≤ (λ + 1)k · [ωk( f ; δ)F p
α,s,I (CI )

]p, if 0 < p < 1. (13)

Indeed, this is immediate from the fact that setting (for fixed q and I ) g(x) = f (qeI x ),

we get �k
h f (q) = �

k
hg(0), where �

k
hg(x0) = ∑k

s=0(−1)s+k
(k
s

)
g(x0 + sh).

Now, for any 1 ≤ p < +∞ and f ∈ F p
α,s,I (CI ), we define the convolution

operators

Ln( f )(q) =
∫ π

−π

f (qeIq t ) · Kn(t)dt, q ∈ CI .

As in the previous section, Kn(t) is a positive and even trigonometric polynomial with
the property

∫ π

−π
Kn(t)dt = 1.
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In particular, we take the Fejér kernel Kn(t) = 1
2πn ·

(
sin(nt/2)
sin(t/2)

)2
, and in this case

we denote Ln( f )(q) by Fn( f )(q).

For Kn,r (t) = 1
λn′,r

·
(
sin(nt/2)
sin(t/2)

)2r
, where n′ ≥ [n/r ] + 1, r ≥ p(m+1)+2

2 , m ∈ N

and the constants λn′,r are chosen such that
∫ π

−π
Kn,r (t)dt = 1. We define

Gn,m,r ( f )(q) = −
∫ π

−π

Kn,r (t)
m+1∑
k=1

(−1)k
(
m + 1

k

)
f (qeIqkt )dt, q ∈ CI .

Moreover, we set

Vn( f )(q) = 2F2n( f )(q) − Fn( f )(q), q ∈ CI .

According to the reasonings in Sect. 2, for fixed I ∈ S, if q ∈ CI then Ln( f )(q),
Gn,m,r ( f )(q) and Vn( f )(q) are slice polyanalytic polynomials of order s in q on CI .

The main result of this section is the following whose proof closely follows the
proof of Theorem 2.6 in Sect. 2 and for this reason some details will be omitted.

Theorem 5.2 Let 1 ≤ p < +∞, 0 < α, m ∈ N
⋃{0} and f ∈ F p

α,s,I (H) be arbitrary
fixed.

(i) Gn,m,r ( f )(q) is an s-regular quaternionic polynomial of degree ≤ n + s + 1,
which for any I ∈ S satisfies the estimate

‖Gn,m,r ( f ) − f ‖p,α,I ≤ Cp,m,r ,α · ωm+1

(
f ; 1

n

)
F p

α,s,I (H)

, n ∈ N,

where m ∈ N, r is the smallest integer with r ≥ p(m+1)+2
2 and C(p,m, r , α) > 0 is

a constant independent of f , n and I .
(ii) Vn( f )(z) is a quaternionic polynomials of degree ≤ 2n + s − 1, satisfying for

any I ∈ S the estimate

‖Vn( f ) − f ‖p,α,I ≤ [2(p−1)/p · (2p + 1)1/p + 1] · En,s,I ( f ;CI )p,α,s, n ∈ N.

Proof For the fact that the convolution operators Gn,m,r ( f )(q) and Vn( f )(q) are slice
polyanalytic quaternionic polynomials of order s of the corresponding degrees, one
uses the arguments in Sect. 2.

(i) Below we apply the well-known Jensen type inequality for integrals already
mentioned in Sect. 2 and we follow the reasoning as in the complex case by choosing
ϕ(t) = t p, 1 ≤ p < ∞. We obtain

| f (q) − Gn,m,r ( f )(q)|p =
∣∣∣∣
∫ π

−π

�m+1
t f (q)Kn,r (t)dt

∣∣∣∣
p

≤
∫ π

−π

|�m+1
t f (q)|pKn,r (t)dt .
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Multiplying above by e−α p|q|2/2, integrating on CI with respect to dmI (q) and using
the Fubini’s theorem, we obtain

∫
CI

|Gn,m,r ( f )(q) − f (q)|pe−α p|q|2/2dmI (q)

≤
∫ π

−π

[∫
CI

|�m+1
t f (q)|pe−α p|q|2/2dmI (q)

]
Kn,r (t)dt

≤
∫ π

−π

ωm+1( f ; |t |)pF p
α,s,I (H)

· Kn,r (t)dt

≤
∫ π

−π

ωm+1( f ; 1/n)
p
F p

α,s,I (H)
(n|t | + 1)(m+1)p · Kn,r (t)dt .

Relation (5), p. 57 in [46] implies that, for r ∈ N with r ≥ p(m+1)+2
2 , it holds that

∫ π

−π

(n|t | + 1)(m+1)p · Kn,r (t)dt ≤ Cp,m,r < +∞, (14)

which proves the estimate in (i).
(ii) Let f , g ∈ F p

α,s,I (H) and 1 ≤ p < +∞. From the obvious inequality (a +
b)p ≤ 2p−1(a p + bp), valid for all a, b ≥ 0, we deduce that for all q ∈ CI we have

|Vn( f )(q) − Vn(g)(q)| ≤ 2|F2n( f )(q) − F2n(g)(q)| + |Fn( f )(q) − Fn(g)(q)|
≤ 2

∫ π

−π

| f (qeI t ) − g(qeI t )| · K2n(t)dt +
∫ π

−π

| f (qeI t ) − g(qeI t )| · Kn(t)dt

and

|Vn( f )(q) − Vn(g)(q)|p ≤ 2p−1
[(

2
∫ π

−π

| f (qeI t ) − g(qeI t )| · K2n(t)dt

)p

+
(∫ π

−π

| f (qeI t ) − g(qeI t )| · Kn(t)dt

)p]

≤ 2p−1
[
2p

∫ π

−π

| f (qeI t ) − g(qeI t )|p · K2n(t)dt

+
∫ π

−π

| f (qeI t ) − g(qeI t )|p · Kn(t)dt

]
.

Again, following the standard procedure, namely if we multiply the expression above
by α p

2π e
−α p|q|2/2 and we integrate on CI with respect to dmI (q), taking into account

the Fubini’s theorem too, we obtain

‖Vn( f ) − Vn(g)‖p
p,α,I

≤ 2p−1
[
2p

∫ π

−π

α p

2π

(∫
CI

| f (qeI t ) − g(qeI t )|pe−α p|q|2/2dmI (q)

)
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K2n(t)dt +
∫ π

−π

α p

2π

(∫
CI

| f (qeI t ) − g(qeI t )|pe−α p|q|2/2dmI (q)

)
Kn(t)dt

]
.

But denoting F(q) = | f (q) − g(q)|pe−α p|q|2/2, q ∈ CI , writing q = r cos(θ) +
I r sin(θ) in polar coordinates and taking into account that

dmI (q) = rdrdθ, q ∈ CI ,

simple calculations (made exactly as in the complex case) lead to the equality

∫
CI

|F(qeI t )|pdmI (q) =
∫
CI

|F(q)|pd AI (q), for all t,

which replaced in the above inequality immediately implies

‖Vn( f ) − Vn(g)‖p
p,α,I ≤ 2p−1[2p‖ f − g‖p

p,α,I + ‖ f − g‖p
p,α,I ]

= 2p−1(2p + 1)‖ f − g‖p
p,α,I ,

that is

‖Vn( f ) − Vn(g)‖p,α,I ≤ 2(p−1)/p · (2p + 1)1/p‖ f − g‖p,α,I .

Now, let us denote by P∗
n,s,I a polynomial of best approximation by elements inPn,s,I

in the norm in ‖ · ‖p,α,I , that is

En,s( f ;CI )p,α,I = inf{‖ f − P‖p,α,I ; P ∈ Pn,s,I } = ‖ f − P∗
n,s,I ‖p,α,I .

Note that since Pn,s,I is finite dimensional, for any fixed n, we deduce that this
polynomial P∗

n,s,I exists.
Since by similar reasonings with those in the complex case in the proof of Theorem

2.6, (ii), we get Vn(P∗
n,s,I ) = P∗

n,s,I , for all q ∈ CI , it follows

‖ f − Vn( f )‖p,α,I ≤ ‖ f − P∗
n,s,I ‖p,α,I + ‖Vn(P∗

n,s,I ) − Vn( f )‖p,α,I

≤ En,s( f ;CI )p,α,I + 2(p−1)/p · (2p + 1)1/p‖P∗
n,s,I − f ‖p,α,I

= [2(p−1)/p · (2p + 1)1/p + 1] · En,s( f ;CI )p,α,I ,

which proves (ii) and the theorem. ��
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