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Stable sets mapping with Taylor differential algebra with application to ballistic1

capture orbits around Mars2
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Abstract Ballistic capture orbits offer safer Mars injection at longer transfer time. However, the search for such an6

extremely rare event is a computationally-intensive process. Indeed, it requires the propagation of a grid sampling the7

whole search space. This work proposes a novel ballistic capture search algorithm based on Taylor differential algebra8

propagation. This algorithm provides a continuous description of the search space compared to classical grid sampling9

research and focuses on areas where the nonlinearities are the largest. Macroscopic analyses have been carried out to10

obtain cartography of large sets of solutions. Two criteria, named consistency and quality, are defined to assess this new11

algorithm and to compare its performances with classical grid sampling of the search space around Mars. Results show12

that differential algebra mapping works on large search spaces, and automatic domain splitting captures the dynamical13

variations on the whole domain successfully. The consistency criterion shows that more than 87% of the search space is14

guaranteed as accurate, with the quality criterion kept over 80%.15

Keywords Ballistic capture ·Mars · Stable sets · Taylor differential algebra ·Weak stability boundary16

1 Introduction17

Ballistic capture (BC) allows a spacecraft to approach a planet and enter a temporary orbit about it without requiring18

maneuvers in between. As part of the low-energy transfers, it is a valuable alternative to Keplerian approaches. Exploiting19

BC grants several benefits in terms of both cost reduction (Belbruno and Miller, 1993) and mission versatility (Belbruno20

and Carrico, 2000; Topputo and Belbruno, 2015), in general at the cost of longer transfer times (Circi and Teofilatto, 2001;21

Ivashkin, 2002). In the past, the BC mechanism was used to rescue Hiten (Belbruno and Miller, 1990), and to design22

insertion trajectories in lunar missions like SMART-1 (Racca et al, 2002) and GRAIL (Chung et al, 2010). In the near23

future, BepiColombo will exploit BC orbits to be weakly captured by Mercury (Benkhoff et al, 2021; Schuster and Jehn,24

2014). BC is an event occurring in extremely rare occasions and requires acquiring a proper state (position and velocity)25

far away from the target planet (Topputo and Belbruno, 2015). In fact, massive numerical simulations are required to find26

the specific conditions that support capture (Topputo and Belbruno, 2009) and only approximately 1 out of 10000 states27

lead to capture (Luo and Topputo, 2015). In a first effort to reduce the computational burden, the variational theory for28
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Lagrangian coherent structures (Haller, 2011) was recently applied to find BC opportunities more efficiently (Manzi and1

Topputo, 2021).2

Differential algebra (DA) propagation is a worthy candidate to reduce the computational burden for the search of BC3

trajectories. It consists of propagating initial conditions (ICs), not as a single point but as an interval around an IC. Thanks4

to the Taylor expansions of the flow, the state of any point in the represented interval can be determined through convenient5

polynomial evaluations (Berz, 1992, 1999). This gain in efficiency comes at the cost of a loss of accuracy due to the finite6

Taylor expansion. The automatic domain splitting (ADS) algorithm allows to represent large domains accurately when7

increasing the order of the polynomial expansions fails to do so (Wittig et al, 2015). Indeed, on poorly-defined domains,8

raising the order will increase the approximation error on the edges while the error will decrease on already well-defined9

areas. ADS splits the initial domain into smaller sub-domains to reduce the approximation error when it grows above a10

given tolerance.11

DA propagation is increasingly used in astrodynamics. Indeed, it provides high performances in uncertainty propagation12

in the two-body dynamics (Valli et al, 2013), even for highly nonlinear dynamics with large uncertainties when exploiting13

ADS, as in the case of Apophis (Wittig et al, 2015) or Apollo LM-10 also known as Snoopy (Caleb and Lizy-Destrez,14

2021). Other applications occur in orbital mechanics, such as propagation of probability density functions (Wittig et al,15

2017), maximum a posteriori estimation (Servadio et al, 2022), orbit determination (Pirovano et al, 2021; Servadio and16

Zanetti, 2021), and generation and study of orbit families in the circular restricted three body problem (CR3BP) (Di Lizia17

et al, 2008; Baresi et al, 2021).18

DA propagation allows avoiding intensive grid sampling implied by point-wise research of conventional algorithms for19

designing BC trajectories (Hyeraci and Topputo, 2010; Luo et al, 2014), as it offers a continuous description of the whole20

search-space. In addition, the computation of a Taylor expansion provides information such as the partial derivatives of21

the flow up to an arbitrary order (Wittig et al, 2017). Furthermore, the polynomial maps can be manipulated to impose22

constraints on the flown trajectories (Berz, 1999; Di Lizia et al, 2008).23

The goal of this work is to use DA mapping to carry out macroscopic analyses of the phase space about Mars to find24

BC trajectories. Hence, the adaptation of the definition of BC for DA, followed by the definition of two criteria, named25

consistency and quality, to assess the performances of DA-based mapping of BC compared to point-wise mapping.26

Cartography of large BC sets about Mars are computed using DA mapping. Mars is chosen without loss of generality27

due to its relevance in the long-term exploration. The work proposes an alternative classification algorithm to sort the28

sub-domains produced by the ADS algorithm in newly defined capture sets. While DA mapping allows performing good29

macroscopic cartography of the search space, it does not allow to fully replace point-wise mapping. However, DA mapping30

has the advantage of being continuous, so meaning that the behavior of any point in the search space is defined. On the31

contrary, a point-wise mapping delivers precise knowledge on the discrete set of propagated ICs only. As a consequence,32

the behavior of the continuous space between two points is unknown and can be challenging to interpolate due to the33

nonlinear dynamics.34

The remainder of the paper is organized as follows. In Section 2, the dynamical model employed is introduced, as well35

as the weak stability boundary (WSB) concept, the BC mechanism, and the DA propagation. Then, the description of36

the characterization process, and the mapping-assessment methodology follow in Section 3. Results are presented and37

discussed in Section 4. Eventually, conclusions are drawn in Section 5 together with the presentation of future work.38

2 Background39

Details about dynamical model, WSB, BC phenomenon, DA propagation, and ADS algorithms are herewith presented.40

2.1 Dynamical model41

According to the nomenclature introduced in Luo et al (2014), a target (also referred to as central body) and a primary42

are defined. The target being the body around which the motion of the spacecraft is studied (Mars in this work), and the43

primary being the body around which the target revolves (the Sun). Target and primary masses are mt and mp, respectively.44

2.1.1 Reference frames45

In this work, the following reference frames are used: J2000, and RTN@ti.46

J2000. Defined on the Earth’s mean equator and equinox, the J2000 is an inertial frame determined from observations of47

planetary motions which was realized to coincide almost exactly with the International Celestial Reference Frame (ICRF)48

(Archinal et al, 2011). Equations of motion (EoM) are integrated in this reference frame.49
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Table 1: Assumed spacecraft specifications.

Specification Symbol Value

Mass m 24 kg
SRP area A 0.32 m2

Coefficient of reflectivity Cr 1.3

RTN@ti. The radial-tangential-normal of date frame (RTN@ti) is an inertial frame frozen at a prescribed epoch ti. The1

frame is centered at the target. The x-axis is aligned with the primary–secondary direction, the z-axis is normal to the2

primary–secondary plane in the direction of their angular momentum, and the y-axis completes the dextral orthonormal3

triad. ICs are defined in this frame (Luo and Topputo, 2015).4

2.1.2 Ephemerides5

Precise states of the Sun and the major planets are retrieved from the Jet Propulsion Laboratory (JPL)’s planetary6

ephemerides de440s.bsp1 (or DE440s) (Park et al, 2021). Additionally, the ephemerides mars097.bsp of Mars (the7

target) and its moons are employed2. The following generic leap seconds kernel (LSK) and planetary constants kernel8

(PCK) are used: naif0012.tls, pck00010.tpc, and gm_de431.tpc3.9

2.1.3 Equations of motion10

The EoM used are those of the restricted N-body problem. The gravitational attractions of the Sun, Mercury, Venus,11

Earth (B4), Mars (central body), Jupiter (B), Saturn (B), Phobos, and Deimos are considered. Additionally, solar radiation12

pressure (SRP) is also included and implemented as a cannonball or spherical model (Scheeres et al, 2011). The assumed13

spacecraft specifications needed to evaluate the SRP perturbation are collected in Table 1. They are compatible with the14

specifications of a 12U deep-space CubeSat (Topputo et al, 2021).15

The EoM, written in a non-rotating Mars-centered reference frame are (Luo et al, 2014; Merisio and Topputo, 2021)16

r̈ =−µt

r3 r−∑
i∈P

µi

(
ri

r3
i
+

r− ri

‖r− ri‖3

)
+

QA
m

r− r�
‖r− r�‖3 (1)

where µt is the gravitational parameter of the target body; r is the position vector of the spacecraft with respect to the17

target and r is its magnitude; P is a set of N−2 indexes each referring to a perturbing body; µi and ri are the gravitational18

parameter and position vector with respect to the target of the i-th body, respectively; A is the Sun-projected area on the19

spacecraft for SRP evaluation; m is the spacecraft mass; r� is the position vector of the Sun with respect to the target.20

Lastly, Q is equal to21

Q =
LCr

4πc
(2)

where Cr is the spacecraft coefficient of reflectivity, c = 299792458ms−1 taken from SPICE (Acton, 1996; Acton et al,22

2018) is the speed of light in vacuum, and L = S�4πd2
AU is the luminosity of the Sun. The latter is computed from the solar23

constant5 S� = 1367.5Wm−2 evaluated at dAU = 149597870613.6889m corresponding to 1 AU according to SPICE24

(Acton, 1996; Acton et al, 2018).25

2.1.4 Numerical integration of EoM26

The EoM in Eq. (1) are integrated in their nondimensional form to avoid ill-conditioning (Luo et al, 2014). Nondi-27

mensionalization units are reported in Table 2. For point-wise simulations, the numerical integration is carried with28

the Dormand-Prince 8th-order embedded Runge-Kutta method (DOPRI8) propagation scheme (Montenbruck and Gill,29

2000). It is an adaptive step, 8th-order Runge-Kutta (RK) integrator with 7th-order error control, the coefficients were30

derived by Prince and Dormand (Prince and Dormand, 1981). As for the DA simulations, the propagation scheme is31

Dormand-Prince of order 8(5,3) embedded Runge-Kutta method (DOP853) (Hairer et al, 1993), which is of the same32

8th-order RK integrator family. However, the error control is performed with a 3rd-order and a 5th-order estimation. The33

dynamics are propagated setting the relative tolerance to 10−12 (Luo et al, 2014).34

1 Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440s.bsp [retrieved Feb
1, 2022].

2 ~/spk/satellites/mars097.bsp [retrieved Feb 1, 2022].
3 Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls, ~/generic_

kernels/pck/pck00010.tpc, and ~/generic_kernels/pck/gm_de431.tpc [retrieved Feb 1, 2022]. The gm_de431.tpc PCK ker-
nel is used because the new version consistent with the ephemerides DE440s has not been released yet.

4 Here B stands for barycenter.
5 https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/2301.pdf [last accessed Feb 1, 2022].

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440s.bsp
~/spk/satellites/mars097.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls
~/generic_kernels/pck/pck00010.tpc
~/generic_kernels/pck/pck00010.tpc
~/generic_kernels/pck/gm_de431.tpc
https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/2301.pdf
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Table 2: Nondimensionalization units.

Unit Symbol Value Comment

Gravity parameter MU 42828.376 km3 s−2 Mars’ gravity parameter µt
Length LU 3396.0000 km Mars’ radius R♂
Time TU 956.28142 s (LU3/MU)0.5

Velocity VU 3.5512558 kms−1 LU/TU

2.2 Weak stability boundary and ballistic capture mechanism1

Over the years, the WSB was defined in many different ways. It was initially identified as a fuzzy boundary region placed2

at approximately 1.5×106 km from the Earth in the Sun–Earth direction (Belbruno, 1987; Belbruno and Miller, 1990).3

An algorithmic definition followed in Belbruno (2004), later extended in García and Gómez (2007), Topputo and Belbruno4

(2009), and Sousa Silva and Terra (2012). Then, the WSB was interpreted as the intersection of three sub-sets of the phase5

space (Topputo et al, 2008; Belbruno et al, 2008). The WSB concept being closely connected to BC (Belbruno, 2004),6

a formal definition and a methodology for its derivation from weakly stable and unstable sets were finally proposed in7

Hyeraci and Topputo (2010). To date, despite the effort put in numerous works (García and Gómez, 2007; Topputo et al,8

2008; Belbruno et al, 2008, 2010, 2013), both WSB and BC are still not completely understood. Nonetheless, a connection9

between celestial and quantum mechanics was recently found exploiting the WSB (Belbruno, 2020), providing a fresh10

perspective to tackle the problem.11

BC orbits are characterized by ICs escaping the target when integrated backward and performing n revolutions about it12

when propagated forward, neither impacting or escaping the target. In forward time, particles flying on BC orbits approach13

the target coming from outside its sphere of influence and remain temporarily captured about it. After a certain time, the14

particle escapes if an energy dissipation mechanism does not take place to make the capture permanent. To dissipate15

energy either a breaking maneuver or the target’s atmosphere (if available) could be used (Luo and Topputo, 2021). In this16

work, BC sets for comparison purposes are derived propagating the EoM in Eq. (1) and following the procedure in Luo17

et al (2014).18

When searching for BC opportunities, most of the trajectories found are spurious solutions which are typically not19

useful for mission design purposes (Luo et al, 2014). Useful solutions are detected exploiting the regularity index1 S and20

regularity coefficient ∆S% (Dei Tos et al, 2018). The aim is seeking for ideal orbits that presents regular post-capture legs21

resulting in n revolutions about the target which are similar in orientation and shape. Numerical experiments showed that22

high-quality post-capture orbits are identified by small regularity index and coefficient (Dei Tos et al, 2018; Luo and23

Topputo, 2017, 2015; Luo et al, 2014). If the regularity index and coefficient are indicators used to qualitatively judge24

post-capture legs, capture occurrence is quantitatively measured through the capture ratio RC (Luo and Topputo, 2015).25

Typically, search spaces characterized by larger capture ratio are desirable when looking for BC orbits.26

Effects on BC by gravitational attractions of many bodies besides the primaries and SRP have been investigated in previous27

works (Merisio and Topputo, 2021; Aguiar and Topputo, 2018; Luo and Topputo, 2017, 2015), with Merisio and Topputo28

(2021), and Aguiar and Topputo (2018) also considering the target non-spherical gravity perturbations. Compared to the29

restricted three-body problem, the N-body model is more adequate for constructing ballistic capture orbits as proved in30

Luo and Topputo (2015), with a particle being more easily captured when considering additional gravitational attractions.31

The latter was later confirmed in Luo and Topputo (2017), where the presence of moons is demonstrated to increase the32

capture ratio RC and improves the regularity of post-capture orbits while accommodating larger pre-capture energies.33

Similarly, SRP increases the chances of being temporarily captured about the target and regularizes the post-capture legs34

(Merisio and Topputo, 2021; Aguiar and Topputo, 2018). Even if not duly discussed, the aforementioned remarks are35

observed also in the results of this work. Overall, supplementary terms in the dynamics seem to favor the manifestation of36

the BC phenomenon.37

2.2.1 Definitions of particle stability and sub-sets38

A particle stability is inferred using a plane in the three-dimensional physical space (Belbruno and Miller, 1993), according39

to the spatial stability definition provided in Luo et al (2014). The following indications are used to classify stability,40

see Luo et al (2014) for more details: 1) a particle completes a revolution around the target according to Remark 1 and41

Eq. (5) in Luo et al (2014); 2) a particle escapes from the target according to Remark 2 and Eq. (6) in Luo et al (2014);42

3) a particle impacts with the target according to Remark 3 and Eq. (7) in Luo et al (2014). Consistent variants of Eq. (7)43

in Luo et al (2014) can be derived to locate impacts with target’s moons, if present.44

1 In previous works this was referred to as stability index (Luo et al, 2014; Luo and Topputo, 2015, 2017). However, in Dei Tos et al (2018),
the adjustment from stability to regularity index was proposed to avoid misunderstandings with the periodic orbit stability index. The same
nomenclature introduced in Dei Tos et al (2018) is used in this work.
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Fig. 1: Sets relations according to the algorithmic definition of WSB.

Based on its dynamical behavior, a propagated trajectory is said to be: i) weakly stable (sub-set Wi) if the particle performs1

i complete revolutions around the target without escaping or impacting with it or its moons; ii) unstable (sub-set Xi) if the2

particle escapes from the target before completing the i-th revolution; iii) target–crash (sub-set Ki) if the particle impacts3

with the target before completing the i-th revolution; iv) moon–crash (sub-set Mi) if the particle impacts with one of the4

target’s moons before completing the i-th revolution; v) acrobatic (sub-set Di) if none of the previous conditions occurs5

within the integration time span. Conditions ii)-v) apply after the particle performs (i−1) revolutions around the target.6

The sub-sets are defined for i ∈ Z\{0}, where the sign of i informs on the propagation direction. When i > 0 (i < 0)7

the IC is propagated forward (backward) in time. The overall domain, union of all sub-sets, is defined as Ω . A graph8

clarifying the relations between sub-sets is shown in Fig. 1. A capture set is defined as Cn
−1 :=Wn∩X−1. Therefore, it is9

the intersection between the stable set in forward time Wn and the unstable set in backward time X−1 (Luo et al, 2014).10

2.3 Differential algebra11

DA propagation consists of assimilating a function f of v variables, contained in Ck+1, with T (k)
f the Taylor expansion of f12

at order k (Berz, 1999). The computation of such polynomials can be performed efficiently, and provides a representation13

of the function f on all of its domain. Moreover, the DA structure ensures that algebraic and functional operations are14

well-defined, particularly for the numerical solving of ordinary differential equations (Berz, 1992).15

The main advantage of this method is that the polynomial map only needs to be computed once, and then it is evaluated16

in an arbitrarily large number of points. In other words, to perform a Monte-Carlo estimation with a sample of size S,17

only one computation of the map is needed, followed by S polynomial evaluations, while classic Monte-Carlo requires S18

propagations, see Armellin et al (2010). The DA engine used in this work is the differential algebra core engine (DACE)1,19

implemented by Politecnico di Milano (Rasotto et al, 2016; Massari et al, 2018).20

2.3.1 Automatic domain splitting21

DA propagation allows reducing the approximation error by increasing the order k of the polynomial mapping. Nevertheless,22

increasing the order leads to an important growth of the computational time. Thus, the introduction of ADS, see Wittig23

et al (2015), and Pirovano et al (2021) for more details.24

The farther a point is from the constant part of the Taylor expansion, the higher the loss of accuracy. The ADS algorithm25

controls this error by dividing the domain into halves until the accuracy is below a predetermined tolerance. Therefore,26

each new sub-domain is represented by its polynomial map causing a much smaller approximation error, at a controlled27

computational cost (Wittig et al, 2015). The ADS creates a division of the initial domain separating areas with different28

behaviors from one another. The ADS algorithm requires the passing of two parameters, in addition to the order of the DA:29

the tolerance, and the maximum number of splits allowed. The former being the approximation error threshold before the30

splitting of a domain occurs, while the latter being the number of times the ADS routine can be applied to a sub-domain.31

3 Methodology32

To map BC sets on the search space using DA propagation, a novel classification algorithm is devised and herewith33

presented. To be successful, the algorithm requires an accurate revolution period estimation. Consistency and quality34

criteria are defined to evaluate performances of the resulting mapping. Finally, fresh representation methods to visualize35

properly the large resulting amount of data are exposed.36

1 Library available at: https://github.com/dacelib/dace [last accessed Feb 1, 2022].

https://github.com/dacelib/dace
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The search space is chosen to maximize the capture ratio Rc based on the analysis reported in Luo and Topputo (2015). It1

is defined in the Mars-centered RTN reference frame at capture epoch t0 on December 9, 2023, at 00:45:18.363 (UTC). At2

that epoch, Mars’s true anomaly with respect to the Sun is equal to 270 deg, maximizing Rc (Luo and Topputo, 2015). The3

selected plane is defined by inclination i = 0.6283rad, and right ascension of the ascending node RAAN = 0.6283rad.4

That because, according to Fig. 10 in Luo and Topputo (2015), such values maximize the capture ratio for Mars. Sought5

trajectories have osculating eccentricity e = 0.99 (Topputo and Belbruno, 2015), and mean anomaly M = 0rad at the6

initial epoch t0. If R♂ is the radius of Mars in km, then the search space on the plane defined above is a circular crown7

centered at Mars, from radius R♂+100km up to radius 5R♂. Hence,8

(rp,ω) ∈
[
R♂+ 100 km,5 ·R♂

]
× (−π,π] (3)

with rp the radius of the periapsis, and ω the argument of the periapsis.9

The main difference between the point-wise mapping of sets performed by GRAvity TIdal Slide (GRATIS) (Topputo10

et al, 2018) and the DA mapping presented in this work is that the DA propagator does not allow to count revolutions.11

It means the sub-domains cannot be classified in the sub-sets defined in Section 2.2.1. New sets are defined to solve12

this problem. Furthermore, instead of tracking revolutions geometrically, as in Luo et al (2014), the proposed novel13

classification algorithm counts revolution periods. Finally, a bridge between the two mapping methods is established.14

3.1 Redefinition of sub-sets and classification algorithm15

There is no direct method to use the definitions of Section 2.2.1 with DA. This is because accurately counting the16

revolutions of a continuous set of particles around the target cannot be performed as in Remark 1 and Eq. (5) in Luo17

et al (2014). Instead of using this condition to count completed revolutions, the number of period elapsed since epoch is18

used. Consequently, Di cannot be defined when using DA propagation. Moreover, if a subdomain reached the minimum19

size allowed by the ADS algorithm, and it tries to split again, the accuracy of the mapping of this sub-domain cannot be20

guaranteed. Thus, these inconsistent sub-domains need to be ruled out from the sub-sets, so that only the consistent ones21

are retained.22

Therefore, the definitions of Section 2.2.1 are adapted to DA propagation as follows: i) inconsistent (sub-set Îi) if the23

sub-domain performed the maximum number of splits allowed and tries to split again before completing the i-th period;24

ii) weakly stable (sub-set Ŵi) if the sub-domain is consistent, and performs i complete periods without escaping or25

impacting the target or its moons; iii) unstable (sub-set X̂i) if the sub-domain is consistent, and escapes from the target26

before completing the i-th; iv) target–crash (sub-set K̂i) if the sub-domain is consistent, and impacts with the target27

before completing the i-th period; v) moon–crash (sub-set M̂i) if the sub-domain is consistent, and impacts with one of28

the target’s moons before completing the i-th period. Conditions i), and ii)-v) apply after the particle performs (i−1)29

periods around the target. As in Section 2.2.1, the sub-sets are defined for i ∈ Z\{0} and the same considerations about30

propagation direction still apply. Moreover, the domain that is consistent after i periods is defined as31

Ω̂i = Ω\
|i|⋃

j=1

Îsgn(i) j. (4)

In Fig. 2, a graph reporting the relations between the sub-sets adapted to DA propagation is shown. As usual, a capture set32

is defined in DA propagation as Ĉn
−1 := Ŵn∩ X̂−1.33

3.2 Classification algorithm34

The classification algorithm shown in Algorithm 1 is a while loop divided in two parts:35
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Algorithm 1: Classification algorithm.

Set either i = 1 (forward propagation) or i =−1 (backward propagation);
Set the search space Ŵ0 = Ω ;
Set capture epoch T0 = t0;
Set maximum number of periods nmax;
while |i| ≤ nmax do

Propagate Ŵi−sgn(i) from Ti−sgn(i) to Ti;

Extract inconsistent sub-domains in Îi;
Extract crash sub-domains in K̂i;
Extract moon-crash sub-domains in M̂i;
Extract escaped sub-domains in X̂i;
Retain remaining sub-domains as Ŵi;
Set i = i+ sgn(i);

end

1. the DA propagation of the stable set Ŵi−1 from the current period to the next one, thus from Ti−1 to Ti;1

2. the extraction of all the sub-domains to classify them in the right set.2

A bridge is built between the definitions of Section 2.2.1 and the ones of Section 3.1. The similarities are3

Ω̂i→Ω , Îi→ /0, K̂i→Ki, M̂i→Mi, X̂i→ Xi, Ŵi→Wi, Ĉi
−1→ Ci

−1, /0→Di. (5)

Note that the inconsistent set Îi is mapped to the empty set due to the inability to compute these sub-domains with4

accuracy. Moreover, the acrobatic set Di is not mapped by the DA classification algorithm. Nonetheless, this region of the5

search space represents a small fraction of the total for long enough propagation times (Luo et al, 2014).6

3.3 Propagation time span7

Since it is not possible to track revolutions geometrically, they are tracked by counting the revolution periods. Thus, the8

need to estimate them with fidelity. These periods are determined by a least-square regression on data from point-wise9

computations issued by GRATIS1, with respect to the radius of the periapsis rp. Two regression shapes are chosen:10

1. a square root shape11

T√· = A+B
√

rp, with A =−0.19329, B = 2.10555; (6)

2. a logarithmic shape12

Tln(·) = A+B ln(rp), with A =−7.35410, B = 1.44254. (7)

Fig. 3 shows these regressions for 2 and 6 periods, compared to the dataset generated by GRATIS.13

For the rest of this work, the logarithmic shape is chosen over the square root one, due to a better fit. Nevertheless, the14

regression does not fit well for 2 revolutions at large rp, due to the high concentration of points at small radii, as shown by15

Fig. 4. Moreover, Fig. 5 highlights how the distribution of the revolution times is widely spread, with respect to rp, as16

the whiskers represent the minimum and maximum values, with the median in the middle. Therefore, the regressions17

displayed in Eqs. (6) and (7) make up for a strong hypothesis on the behavior on the revolution periods.18

3.4 Consistency and quality criteria19

Once the classification of the search space is performed, tools need to be developed to evaluate it. Two criteria are defined20

to do so. The first is the consistency criterion, which assesses the parts of the domain where the DA mapping cannot be21

trusted. The second is the quality criterion, which assesses the performances of the DA mapping with respect to point-wise22

reference mapping carried out with GRATIS.23

1 The time regressions have been derived from ICs propagated taking into account also the gravitational attractions of Uranus (B), and
Neptune (B), later discarded due to their negligible influence.
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(b) After 6 revolutions.

Fig. 3: Regression of the revolution periods as a function of the radius of the periapsis rp. Data from point-wise computations issued by GRATIS.
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(b) After 6 revolutions.

Fig. 4: Histogram of the periapsis rp. Data from point-wise computations issued by GRATIS.
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Fig. 5: Distribution of the revolution periods as a function of the radius of the periapsis rp. Data from point-wise computations issued by GRATIS.

Consistency criterion. The consistency is a number assigned to each sub-domain. After the classification algorithm is1

performed, each sub-domain is given a consistency of either 1 if it does not belong to an inconsistent set Îi, or 0 if it does.2

Consequently, the default consistency of a sub-domain is 1. Yet, if a sub-domain reaches the minimum size allowed and3

tries to split again, it is set to 0. The main interest is to compute the global consistency on all of the search space. It can be4

computed by performing the mean of the consistencies, pondered by the size of each sub-domain. The global consistency5

will then represent the ratio of the mapping that is not inconsistent. Therefore, it is the proportion of the mapping where6

ADS guarantees the accuracy of the mapping.7
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Legend:

Sub-domain classified by DA
× GRATIS IC accurately mapped by DA

◦ GRATIS IC inaccurately mapped by DA

qA = 1
2 = 0.5

qB = 2
4 = 0.5

qC = 2
2 = 1

#(D) = 0 =⇒ qD = 1

Fig. 6: Example of computation of the quality criterion for a given mapping.

Quality criterion. The quality criterion is a value assigned to each set issued from GRATIS’s classification. It represents1

the proportion of the set from GRATIS that is well-mapped by the DA classification algorithm. To be computed, the2

quality criterion requires a sample propagated point-wise with GRATIS. The quality qA of a GRATIS set A is computed3

as follows:4

1. for each point x ∈A, if x belongs to the set Â, according to the bridge between DA and point-wise classification5

exposed in Eq. (5), then the quality of that point qx = 1, otherwise qx = 0;6

2. the quality qA of a set A is the mean of all the values of (qx)x∈A. In other words7

qA =
#
(
A∩ Â

)
#(A)

. (8)

In the case where #(A) = 0, then #
(
A∩ Â

)
= 0. Thus, by convention qA = 1;8

3. the confidence intervals on qA are evaluated according to Robert and Casella (2004), and Hanley and Lippman-Hand9

(1983).10

The quality represents the probability for a point from the point-wise mapping to be mapped correctly with the DA11

mapping. Note that since Îi is mapped to /0, the quality criterion of Ωi is less than or equal to the consistency criterion12

after i revolutions. A schematic representation clarifying the meaning of the quality criterion is shown in Fig. 6.13

3.5 Representation methods14

The representation of the results produced by this methodology raises two issues. Firstly, due to ADS, the largest fully-split15

sub-domains have a size of ≈ 50km, while the typical length of the search space is ≈ 3000km. Thus, it is impossible16

to see them or smaller sub-domains on a global representation. To solve this problem, the resolution of the display is17

downgraded to a smaller one. Furthermore, instead of plotting each sub-domain independently, the density of sub-domains18

per pixel is preferred. It allows detecting areas with a high number of sub-domains even on a global visualization.19

Secondly, the Cartesian representation of the search space tends to shrink details for low values of the radius of the20

periapsis rp, while the size of structures located at larges values of rp is amplified. However, areas with a larger amount of21
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(a) Before propagation with ADS. (b) After propagation with ADS.

Fig. 7: Cartesian visualization of the mapping of the search space.

data to visualize are located at small rp. Thus, results are visualized on the rp×ω plane, which is the search space in1

Keplerian coordinates.2

4 Results3

In this work, the results from two simulations with initial grids having different resolution are presented. The order of the4

DA mappings is 20 to provide good accuracy on consistent domains and delay the triggering of ADS. Therefore, increasing5

the order lowered the computational time and enhanced consistency. Nevertheless, a larger order would not increase the6

approximation performances, see Wittig et al (2015). The first simulation relies on a coarse grid providing a low-resolution7

mapping where the search space is initially divided into 32×32 domains and the maximum number of splits allowed to8

the ADS algorithm is 9. On the contrary, the second is computed on a finer grid returning a high-resolution mapping. In9

the latter, the search space is divided into 128×128 domains and 10 maximum splits are allowed. Results are visualized10

in the low-resolution mapping in Cartesian coordinates. Sub-domains densities and last step epochs are computed on11

the whole search space. Then, the DA classification outcome is rendered for qualitative analysis. Finally, a quantitative12

analysis of those mappings exploiting consistency and quality criteria follows.13

4.1 Mapping14

Fig. 7 represents the low-resolution search space in Cartesian coordinates, before and after the propagation with ADS (left15

and right, respectively). Before propagation, the search space is divided regularly into small domains for parallelization16

(see Fig. 7a). Conversely, an irregular sub-divisions highlighting dynamical changes is shown in Fig. 7b. This visualization17

shows the necessity to use different visualization methods. Indeed, it is hard to analyze close to zones where ADS creates18

a large number of domains, although these are the most interesting regions.19

4.1.1 Density of sub-domains and last step epochs20

Fig. 8 shows the density of sub-domains for the low-resolution and high-resolution mappings (left and right, respectively).21

They mostly differ because the high-resolution mapping provides more variations. Indeed, the density is either maximal22

(in grey) or minimal (in white) in the low-resolution one. On the contrary, the high-resolution mapping provides more23

shades, highlighting several degrees of nonlinearity accurately mapped. In addition, the low-resolution mapping created24

7.2×104 sub-domains. It is fewer propagations than the point-wise cartography of Section 4.1.2 for the representation25

of the same search space. Meanwhile, the number of sub-domains in the high-resolution mapping is 1.2× 106, thus,26

more than ten times the number of point-wise propagations. Therefore, there is no computational benefit in using high-27

resolution mapping instead of point-wise propagations. However, as opposed to a point-wise mapping, the sub-domains28

are heterogeneously distributed, and are mainly located in highly nonlinear regions. For instance, the vicinity of Mars and29

areas that lead to collisions have a large sub-domains density compared to the majority of the search space. Furthermore,30

the sub-domain density draws the boundaries between different sets, due to their different dynamical behaviors. On that31
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(a) Low resolution. (b) High resolution.

Fig. 8: Density of sub-domains, in percent of the overall sum of sub-domains after 6 periods.

(a) Low resolution. (b) High resolution.

Fig. 9: Last step epochs, in percent of the overall propagation time span corresponding to 6 periods.

account, DA mapping provides useful macroscopic information on the search space, while grid point-wise mapping does1

not allow highlighting highly nonlinear areas or boundaries.2

Moreover, epochs of last steps carried out by the propagation scheme are shown in Fig. 9, in percent of the overall3

propagation time span. The integration of a sub-domain stops either after a collision occurs or when the sub-domain4

itself is declared inconsistent. Note that at low rp, the lightest zones on the low-resolution mapping (Fig. 9a) become5

completely white when visualized in high resolution (Fig. 9b). Therefore, propagation of these areas is now completed6

and sub-domains becomes consistent on a finer grid. In these regions, the consistency criterion is expected to rise when7

the mapping resolution increases.8

4.1.2 Classification9

Fig. 10 shows the results of the classification algorithm after two revolutions for the low-resolution mapping (left),10

the high-resolution mapping (middle), and from point-wise propagation using GRATIS (right). The latter used as a11

reference and derived through point-wise propagation from a sample of 105 points. Each color represents a different set,12

following the bridge between sets from DA to point-wise mapping established in Section 3.2. Thus, a set A from GRATIS13

classification is colored the same way as Â from DA classification. Since inconsistent sets Îi and acrobatic sets Di have14

not corresponding sets in point-wise and DA mappings, respectively, they share the same colors.15

While these three mappings have a similar macroscopic look, they differ in many ways. First of all, the sizes of the16

inconsistent sets decrease dramatically from the low-resolution mapping to the high-resolution one. Moreover, these gains17

in consistency mainly benefit the representation of the stable set W2. Furthermore, the escape sets X̂1 and X̂2 are poorly18

mapped compared to the results of GRATIS on X1 and X2. These issues in the mapping are mostly due to errors in the19

approximation of the revolution period.20
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(a) Low resolution. (b) High resolution. (c) GRATIS.

Fig. 10: Results of the classification algorithm after 2 revolutions compared to GRATIS.

(a) Low resolution. (b) High resolution. (c) GRATIS.

Fig. 11: Results of the classification algorithm after 6 revolutions compared to GRATIS.

Fig. 11 presents the results of the classification algorithm after six revolutions for the low-resolution mapping (left), the1

high-resolution mapping (middle), and from point-wise propagation using GRATIS (right). Also in this case the latter2

mapping is used as reference and it is derived through point-wise propagation from a sample of 105 points as before.3

These three charts show simplified mappings. For the sake of clarity, all sets (A j) j∈J1,6K are united under the name A,4

defined as5

A=
6⋃

j=1

A j. (9)

This representation method is adopted for all sets but W6, and Ŵ6.6

The same observations can be done for Figs. 10 and 11. However, Fig. 11 shows a strong predominance of the inconsistent7

set, especially at low resolution. The high-resolution mapping improves these results but still struggles to handle long8

accurate propagations on such a large search space. Nevertheless, these results show that DA mapping with ADS can9

highlight changes of behavior all over the search space. Moreover, DA mapping provides a continuous description of the10

domain. The dynamical behavior is the same everywhere, providing consistency. Meanwhile, point-wise computations11

deliver discrete information challenging to interpolate due to nonlinearities.12

4.2 Quantitative performance analysis13

After performing a qualitative analysis on the resulting DA mappings, the two criteria developed deliver quantitative data14

on the computed mappings.15

4.2.1 Consistency criterion16

In Fig. 12, the global consistency rate for both the low- and high-resolution mappings after several revolution periods are17

shown in bright and dark colors, respectively. The consistency at zero revolution is 100% since mappings only represent18

ICs. It appears that the consistency remains high, even after six revolutions, since it stays above 87%. It means that the19

size of the inconsistent sets is 13% or less on the total search space. Moreover, the consistency of the high-resolution20

mapping is around 5 points above the one of the low-resolution one. It demonstrates the gain of accuracy delivered by21

these additional computations.22
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Fig. 12: Consistency criterion for several number of revolutions and the two mapping resolutions.
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Fig. 13: Quality criterion in percent of several sets and revolution periods. Note that Ωi is used to refer to the quality criteria of Ω after i periods.

4.2.2 Quality criterion1

Fig. 13 represents the quality criterion for both low- and high-resolution mappings on the left and right, respectively. Each2

group of bars corresponds to a different collection of sets. For instance, Xi for i ∈ J1,6K. Differently, each color represents3

a different number of periods, from 1 (light) to 6 (dark). A bar’s height represents the quality of that set in percent, while4

whiskers inform on the confidence interval at 95% on such value. These estimations of the quality criterion are computed5

against the sample of size 105 obtained with GRATIS.6

The quality of acrobatic sets Di is not shown since they are not mapped by the DA algorithm. In fact, their qualities are7

automatically set to 0%. In addition, the quality of moon-crash sets Mi is always 100%. Indeed, among the 105 propagated8

trajectories, none of them crashed on Mars’ moons. The quality of these empty sets is then 100% by convention.9

The quality criterion is always higher for the high-resolution mapping than for the low-resolution one. Especially for stable10

sets Wi and capture sets Ci
−1 since a larger part of these sets becomes inconsistent during the low-resolution propagation,11

as shown by Fig. 11. Furthermore, capture sets Ci
−1 are mapped in a better or equal way compared to stable sets Wi. This12

is due to the positioning of Ci
−1 farther from Mars (Merisio and Topputo, 2021), than most of Wi. Thus, as highlighted13

in Figs. 10 and 11, the consistency of this region is higher, which enables better quality. However, designing a specific14

mission with ballistic capture requires much more data than these two criteria and is beyond the scope of this work.15

Moreover, this work does not provide any additional property on the identified solutions, except that they belong to capture16

sets.17
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Except for those two groups of sets, only slight improvements are remarkable when switching from low resolution to high1

resolution. Indeed, apart from X1, escape sets Xi and crash sets Ki fail to be accurately mapped, even though these regions2

of the search space are consistent. Indeed, the proposed classification algorithm does not track revolutions geometrically3

but uses period approximations. Consequently, the classification implies major approximations. Nevertheless, the poor4

mapping of these sets hardly impacts the quality of sets Wi due to their small sizes. Therefore, the global quality never5

drops below 80% in low resolution. The overall quality can be improved at a high computational cost, compared to6

the point-wise mapping, thanks to high-resolution mapping. Such a mapping improves the global classification results7

by at least 4. These poor performances are mainly due to the inability of the DA mapping engine to track revolutions8

geometrically instead of temporally. Thus, DA mapping as presented in this work cannot outperform point-wise mapping9

in terms of classification precision, but it exceeds point-wise mapping concerning computational cost.10

5 Conclusion11

This article presented a methodology to build cartography of ballistic capture sets using differential algebra mapping.12

It proposes an alternative classification algorithm to sort the sub-domains produced by the automatic domain splitting13

algorithm in newly defined capture sets. Moreover, instead of tracking revolutions with geometrical methods, as in Luo14

et al (2014), they are counted temporally, using regression on point-wise data. This work establishes a bridge between the15

point-wise mapping and DA mapping, allowing us to assess the performances of this new method. Hence, the introduction16

of two criteria. The first one is the consistency criterion, which represents the proportion of the search space where the17

mapping accuracy is guaranteed by the ADS algorithm. The second one is the quality criterion, which represents the18

success rate of the DA classification algorithm compared to the point-wise one.19

Results show that DA mapping of BC sets could be performed on large search spaces, as ADS captured the dynamical20

variations on the whole domain. Furthermore, the consistency criterion shows that more than 87% of the search space21

is guaranteed by the ADS algorithm as accurate, even for low-resolution mappings. Moreover, the quality criterion22

demonstrates that the global error rate of DA mapping is below 20%. However, some small sets are either not or poorly23

mapped using revolution period regression, mainly due to the incapacity to count revolutions via geometrical information.24

This phenomenon does not disappear when the resolution of the mapping is increased. Nonetheless, DA mapping of25

BC sets can prove useful in various situations. For instance, it can be used for fast mapping of a plane, to then target a26

restricted domain of the search space. Either with a dense point-wise mapping or with a high-resolution DA mapping of27

the restricted area of interest.28
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