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Abstract—Laparoscopic robotic surgery has redefined complex
surgical interventions offering enhanced precision and control.
However, challenges persist due to the limited field of view and
the lack of haptic feedback. To address these challenges, assistive
technologies, such as Augmented Reality (AR), are gaining
prominence, promising safer procedures, quicker recovery, and
reduced hospitalization.
To develop these technologies, the integration of computer vision
tasks into robotic systems is a fundamental step, allowing robots
to perceive and understand the surgical environment in real-
time. In this context, Deep Learning (DL) techniques are key
technologies in addressing complexities arising from intra-patient
variability, lighting issues, occlusions, and texture limitations.
In this study, we present a comparative evaluation of various deep
learning techniques to demonstrate their efficacy in reconstruct-
ing the surgical scene in 3D and accurately segmenting blood
vessels with the aim to develop AR applications in the future.
The accuracy and speed of these methods have been validated
and compared using public or private laparoscopic datasets,
providing valuable insights into the strengths and weaknesses
of each approach.
The obtained results underscore the high potential of deep learn-
ing approaches, especially when leveraged on high-performance
GPUs, to meet the demanding requirements in terms of accuracy
and speed imposed by the surgical context. These findings repre-
sent a foundational step towards conducting more comprehensive
comparisons in the future, ultimately paving the way for the
advancement of augmented reality (AR) applications in surgical
procedures.

Index Terms—3D reconstruction, Laparoscopic segmentation,
Augmented Reality

I. INTRODUCTION

Laparoscopic robotic surgery has revolutionized the ap-
proach to surgical procedures, offering surgeons increased
precision and enhanced control during interventions. However,
despite these advancements, surgeons still face significant
challenges due to the reduced field of view and the lack of

haptic feedback, factors that make the technique extremely de-
pendent on the experience of the practitioner [3, 4]. A possible
solution to face these challenges relies on the integration of
assistive technologies, such as Augmented Reality (AR) [6], in
order to reduce the risk of complications and increase surgical
precision.
AR applications allow to overlay virtual information onto
the real operative field, providing surgeons with additional
detailed vision and critical information during the procedure.
The development of these applications involves the integration
of combined vision algorithms to create immersive and contex-
tually relevant experiences for users and offer a wide range of
functionalities, from object recognition and tracking to spatial
mapping and gesture recognition. In the context of Robotic
Assisted Minimally Invasive Surgery (RAMIS), AR can be
leveraged to provide surgeons with enhanced visualization,
information about surgical planning and navigation, as well as
visual feedback related to instrument distance and anatomical
structures. While assistive technologies remain an evolving
research area, their integration into RAMIS is complicated by
issues inherent to the surgical context. These challenges pri-
marily stem from intra- and inter-patient variability, challeng-
ing lighting conditions, dynamic scenes, occlusions, and areas
with limited texture. A promising approach to tackle these
challenges involves using Deep Learning (DL) techniques that,
compared to traditional methods, have demonstrated signif-
icant promise in handling vision tasks even under complex
conditions. By learning patterns and feature representations
from extensive datasets, these approaches enhance accuracy
and robustness. Thus, Deep Learning holds the potential to
address the quality of outcomes in the field of assistive
technologies within RAMIS. For this reason, the aim of this
study is to investigate the potential of deep learning techniques



in addressing the challenges of laparoscopic robotic surgery,
paving the way for the advancement of augmented reality
applications and ultimately enhancing the quality of surgical
procedures.

II. METHODOLOGIES

In this work, we present a comparative evaluation of some
state-of-the-art Deep Learning techniques. Our focus centers
on three distinct DL approaches designed for computing the
disparity map and performing 3D scene reconstruction through
passive triangulation: HSM [9], CFNet [8], and RAFT [5].
Additionally, we explore two methods to perform the vessel
segmentation: U-Net [7] and SETR [10]. The evaluation, in
terms of accuracy and speed, was performed using Ubuntu
server with an NVIDIA A100 GPU. The Wilcoxon rank-sum
test is then performed to show significant differences in the
performance.

A. Dataset

3D reconstruction models have been evaluated by testing
the weights provided by the authors in a publicly available
medical dataset (SCARED) [1], composed by images with a
resolution of 1280x1024 pixels.
Segmentation models have been trained and tested using a
private dataset provided by the Istituto Europeo di Oncologia:
the dataset was composed by 686 images with a resolution
of 1280x960 in which the common iliac artery was manually
annotated using CVAT annotation Tool. The 80% of the data
were used for training, tuning the hyperparamenters, and 20%
of the data was used for testing.

B. Performance metrics

1) 3D reconstruction: The accuracy metrics were computed
by calculating the error between the ground truth (GT) dis-
parity map values and the predicted values. Every DL model
was evaluated in terms of Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE), described by the following
equations in which d’(x,y) is the value of GT in the pixel (x,y)
and d(x,y) is the value of the predicted disparity map:

• Mean Absolute Error (MAE)=

1

N

N∑
i=1

|di(x, y)− d′i(x, y)| (1)

• Root Mean Square Error (RMSE)=√√√√ 1

N

N∑
i=1

(di(x, y)− d′i(x, y))
2 (2)

2) Segmentation: The two proposed segmentation methods
were evaluated in terms of speed and accuracy. The training
was performed tuning the set of hyperparameters and then
they were tested extracting performance metrics. These metrics
need the values of true positive (TP), pixels correctly classified
as part of the vessel, true negative (TN), pixels correctly
classified as background, false positive (FP), pixels classified
as vessel while contained in the background, and false negative

(FN), pixels classified as background while belonging to the
vessel. The employed metrics are described by the following
equations:

• Dice Similarity Coefficient

DSC =
2TP

2TP + FP + FN
(3)

• Accuracy

ACC =
TP + TN

TP + TN + FP + FN
(4)

• Sensitivity
SENS =

TP

TP + FN
(5)

• Precision
PREC =

TP

TP + FP
(6)

III. RESULTS

A. 3D reconstruction

The results of the 3D reconstruction models are summarized
in Table I, which presents the MAE, RMSE, and inference time
for each model. The three implemented methods demonstrated
comparable accuracy in predicting the disparity map, without
statistical significance. However, the HSM technique outper-
formed the others in terms of real-time performance, making
it more suitable for practical applications. It’s important to
note that resolution of the images is highly correlated with
latency, and resizing the image could potentially improve
speed performance. However, further experiments are required
to evaluate if image resizing could affect the reconstruction
error.

MAE RMSE Time[s]
HSM 2.64±1.64 5.47±1.46 0.06±0.00

CFNet 2.72±1.48 5.54±1.39 0.45±0.08
RAFT 2.63±1.65 5.47±1.49 2.15±0.01

TABLE I: Performance metrics of the 3D reconstruction mod-
els. The highligthed values represent the significant difference
between the different architectures in terms of the Wilcoxon
rank-sum test with p<0.01

B. Segmentation

Figure 1 reports the performance results obtained with clini-
cal dataset while Table II shows the inference time. The results
demonstrate that the U-Net architecture achieves significantly
higher levels of accuracy compared to other architectures,
although it comes with the trade-off of a higher inference time.
However, meeting real-time requirements is still feasible by
resizing the images or employing high-performance GPUs. It
is worth noting that the dataset used in this study is charac-
terized by several issues related to the clinical context, which
considerably complicates the task and ultimately reduces the
accuracy of the outcomes. Despite these challenges, the U-Net
architecture shows great potential for improving accuracy, and
with optimization strategies, real-time performance can still be
achieved for practical applications.



Fig. 1: Segmentation accuracy results. The asterisks represent the significant difference between the different architectures in
terms of the Wilcoxon rank-sum test with ***p<0.001

Inference time [s]
U-Net 0.20±0.03
SETR 0.09±0.01

TABLE II: Inference time of the segmentation models. The
highligthed value represent the significant difference between
the different architectures in terms of the Wilcoxon rank-sum
test with p <0.01

IV. CONCLUSION

In conclusion, the integration of assistive technologies into
RAMIS holds great promise for advancing surgical outcomes.
In this work, we contribute by conducting a comprehensive
comparative evaluation of various DL techniques for 3D
reconstruction and segmentation in the context of laparoscopic
robotic surgery. The evaluation of DL techniques for 3D recon-
struction revealed that while different methods displayed sim-
ilar accuracy in predicting disparity maps, the HSM technique
demonstrated superior real-time performance. In the realm of
segmentation, the U-Net architecture shows higher accuracy
albeit with increased inference time, suggesting optimization
avenues. Despite the challenges coming from clinical context,
these outcomes underscore the potential of DL techniques in
enhancing surgical precision and patient care. Further research
and development in this area, emphasizing the integration of
computer vision tasks into robots, could lead to even greater
strides in the field of laparoscopic robotic surgery [2].
In the attached video, it’s possible to observe the results of
combining 3D reconstruction and vessel segmentation into a
surgical scene. The visual presentation, in fact, showcases the
3D reconstruction of the surgical scene, with the common
iliac artery highlighted in green. This demo highlights the
practical benefits of our work, representing a foundation for

the development of augmented reality (AR) applications in
laparoscopic robotic surgery, with the aim of enhancing sur-
gical procedures through AR technology, improving surgical
precision and patient outcomes.
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