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Abstract. In the rapidly advancing realm of Connected Autonomous
Vehicles (CAVs), achieving reliable and precise positioning is of
paramount importance. This paper presents a comprehensive approach
integrating vehicular sensing, communication, and advanced filtering
techniques to enhance vehicle positioning in urban areas. By leveraging
LiDAR point clouds along with a light and accurate object detector, we
create cohesive environmental sensing that improves situational aware-
ness in autonomous systems. Central to our methodology is the integra-
tion of the Labeled Multi-Bernoulli Mixture (LMBM) filter, which offers
a probabilistic framework for dynamic state estimation in environments
characterized by high uncertainty and clutter. In turn, enhanced object
locations are exploited as anchors for vehicular self-localization via an
Extended Kalman filter (EKF). Our experimental results show that the
proposed solution significantly enhances vehicular positioning accuracy.
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1 Introduction

Global Navigation Satellite Systems (GNSSs) have widespread application in
Connected Autonomous Vehicle (CAV) scenarios. However, conventional GNSS
systems suffer from multipath propagation in urban environments, leading to
high positioning errors [8] that can not tolerated in safety-related vehicular ser-
vices. A promising solution to overcome this problem is represented by collabo-
rative sensing systems that leverage the presence of multiple actors in the same
driving area to enhance positioning accuracy thanks to the coherent fusion of
localization measurements acquired by nearby vehicles, as done in Implicit Coop-
erative Positioning (ICP) [2].
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This paper introduces a novel method for cooperative LiDAR-based vehicular
self-positioning that leverages data sharing among vehicles to enhance localiza-
tion accuracy. The innovative aspect of this method lies in its ability to address
and mitigate key challenges such as false detections, object-measurement asso-
ciation, and measurement-measurement association which must be handled for
real-world implementations. By integrating LiDAR data from various vehicles,
the method ensures a more reliable and accurate vehicle positioning. Validation
was conducted using a real-world dataset where multiple vehicles approached a
zebra crossing on a two-way urban road featuring stationary road elements at
the crossing. The results demonstrate the method’s effectiveness in improving
positional accuracy and robustness in complex urban environments, underscor-
ing its potential for practical applications in autonomous driving and advanced
driver-assistance systems.

The rest of the paper is organized as follows. In Sect. 2, the cooperative
sensing-based self-positioning solution is described. Section 3 presents the details
of the experiment and provides a quantitative assessment, followed by concluding
remarks in Sect. 4.

2 Cooperative Self-positioning

The proposed method fundamentals on implicit cooperative sensing and posi-
tioning. Vehicles equipped with LiDAR sensors generate point clouds. These
point clouds encompass useful information for autonomous driving such as the
location of road elements. In this end-to-end method, the object detector pro-
posed in Sect.2.1 clusters separable 3D points in the body reference system
and identifies them as objects. Among these detected objects, there exist noise-
derived detections. Besides, the other two onboard units are actively engaged,
namely GNSS and Inertial Measurement Unit (IMU). Here, the GNSS position-
ing is enhanced with a Satellite-Based Augmentation System (SBAS), if avail-
able, which requires Line-Of-Sight (LOS) conditions with at least two geosatel-
lites. Otherwise, Single-Point Positioning (SPP) is considered.

Additionally, vehicular heading is required for LiDAR-GNSS calibration.
Some approaches used for the calculation of vehicular heading are visual odom-
etry, dual-antenna GNSS localization, and fusion of GNSS and IMU [4]. Simply,
we used single-antenna GNSS fixes to calculate vehicle heading and then cali-
brated the rotational component of LiDAR and GNSS reference frames.

While the proposed method can be implemented in a centralized or decen-
tralized way, this paper focuses on centralized cooperation. In turn, the follow-
ing data is exchanged with Road Side Unit (RSU) via Vehicle-to-Infrastructure
(V2I) communications: detected object locations in the local framework and
GNSS position fix. RSU synchronizes the aggregated data and projects objects
onto the global reference system. At this step, a Multi-Target Tracking (MTT)
filter tracks the static road elements in the presence of clutter. Here, vehicles are
considered different sensors making observations in the same area and a special
form of Labeled Multi-Bernoulli Mixture (LMBM), also known as multi-sensor
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LMBM, is utilized. This operation returns object locations with lower uncer-
tainty to be considered as anchors for the subsequent steps. It is worth noting
that, the accuracy and precision of target locations in the global reference frame
are tightly correlated to the number of vehicles as the higher the number of vehi-
cles, the better the accuracy. These objects are back-propagated to each vehicle
via V2I communications. Within this transmission, GNSS position fix, detected
targets with clutters, and augmented object locations are available at each vehi-
cle. Subsequently, vehicles individually employ a custom Extended Kalman Filter
(EKF) given in Sect. 2.3 and leverage their global positioning.

2.1 Grid-Based Spatial Detector

The Grid-Based Spatial Detector (GSD) employed in this work is designed to
isolate sets of points in the 3D space that objects have generated. The process
is initiated by inserting a point cluster at a known position within the point
cloud to mitigate segmentation noise. Subsequently, the point cloud is projected
onto a 2D space and segmented to generate a density map. This density map
is subsequently filtered to reduce noise-induced segments. At the core of this
object detector is a density-based clustering method, namely density-based spa-
tial clustering of application with noise (DBSCAN) [3] which is utilized to gen-
erate clusters in the density map. In turn, the inserted point cloud has been
recognized among all detections and the segmentation bias has been eliminated
by shifting clusters. Consequently, clusters with small dimensions are averaged
and represented as single-point objects, ensuring accurate and reliable object
detection.

2.2 Cooperative LMBM

MTT is a critical process performed in autonomous systems, for detecting and
tracking multiple objects in a dynamic environment. An advanced MTT method
is LMBM [5], efficiently handling measurement-target data association and clut-
ter. This filter relies on a multi-Bernoulli birth model that initiates Bernoulli
components at predefined locations.

The projection of detected objects on a global reference system depicts
a multi-sensor configuration with independent imaging sensors. Likewise,
the detected objects are independent. Therefore, Bernoulli components are
independent and follow separate Bayesian recursions. A Bernoulli Random
Finite Set (RFS) [ is comprised of components at time t, RFSz; £
{(T,L)g,vet.8, i, 3. Xr,3}, where T is the birth time, Lg is a unique label
assigned to Bernoulli $ born at time t, and p; g is the first central moment
and Y, g is the covariance of Gaussian distribution. Bernoulli components fol-
low a static motion model, namely ji; g3 = pt—1 3, as fixed targets in the driving
scenario are considered.

For the propagation of existence probability, r., and marginal association
probabilities over time, Gibbs’s sampling [6] has been employed thanks to its
capability to handle high dimensional problems. After conducting the gating,
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pruning and capping steps, target states are obtained by processing the remain-
ing Bernoulli components. These states contain the spatial attribute of objects
in 2D, denoted by the object set O = {X,+} : |O] = N,, and their corresponding
covariance to be used by the filter introduced in the following section.

2.3 Extended Kalman Filter-Based Refinement Stage

A set of vehicles V = {1,..., Ny} cruise in a 2D area. Each vehicle v, with
v € V, is represented by its state X, = [y, Vy,¢] Where u,; and v, ; are the
2D position and 2D velocity, respectively. The vehicle’s state changes over time
according to a nearly constant velocity motion model [7], defined as

Xy tlt—1 = FXp -1+ Ly -1, (1)

where F = [I3TsI5; 00551 and L = [0.57215;T,I5], Ty the sampling time,
while qq 1—1 ~ N(0, IQO’iU) is a zero-mean Gaussian random variable with stan-
dard deviation o, y modeling the acceleration uncertainty of the v-th vehicle.

EKF is employed for tracking as follows. States are predicted according to
the motion model in (1) and are exchanged with RSU along with detected
objects provided by GSD explained in Sect. 2.1. Subsequently, the LMBM filter
(Sect. 2.2) is utilized. The leveraged object locations are then back-propagated
to vehicles and object-object association between detected objects and leveraged
targets is established according to the maximum likelihood criterion.

For the update step of the EKF, both GNSS and object-derived measure-
ments are utilized to enhance vehicular positioning. The GNSS measurement of
vehicle v is modelled as follows:

ngt) = hg(xv,t) + n, ¢ = Txv,t + Ny, (2)
where T = [Iz,02x5), while n,; ~ N(0,I02) is a zero-mean Gaussian ran-
dom variable with standard deviation o2 characterizing the GNSS positioning
accuracy of the v-th vehicle.

Any object 0 € O with state Xy 01 = [Uz,0,t, Uy,0,] refined by the RSU is
more accurate compared to the detection j, such that x, ;; = [Uz ¢, Uy j¢l,
generated by the same object on vehicle v. Leveraging this fact, so o and 7,
the measurement models pgt’v) and pgtv ), define the distance and the clockwise
angle from positive x-direction between object j and vehicle v, namely they are

P = (x,50) + 0 = (8 = x40 + 0, (3)
P = ha(xu 1) + 0l = £(p7) %0 54) + 0, )

where £ is the angle while nff;”) ~ N(0,1,02) and n{7;”) ~ N(0,I502) are zero-
mean Gaussian random variables with standard deviations ¢, and o, respec-
tively. EKF refinement exploits the measurements pg‘%v) and pg’f ) to improve
the vehicle state. Accordingly, the state estimate of the vehicle is updated as

Xo,t = Xy, tlt—1 + Gy (Pw —h (Xv,t|t—1a Xu,1,ty+ -+ s Xo,N t)) , (5)
C, = Ct|t—1 - GtBCt|t—17 (6)
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Fig. 1. Trajectories show GNSS measurements along with RTK-corrected ground truth
(GT) positions, SBAS and SPP available regions along with prototypes

where G = Cy;_1 B (BCt‘t_lBT + E)_l is the Kalman gain, B = [T,J ,J,|"

in which J, and J, are the Jacobian matrices extracted from (3) and (4), p, , =

Iy, ool el e 1T, B & blkdiag(o21y, 021y 021y ),
h = [hy(x, 1), b2, hg]T with h? = [ha(xv,lﬁt),...,hg(xv,N )T, and he =
[h2(xy,1,t), - - -, hO(xy N +)]T which are range and angle measurements calculated
using augmented objects.

3 Experimentation and Results

To assess the performance of the proposed method, we collected real-world data
through several experiments using two different instrumented prototype vehicles,
an electric light quadricycle and a prototype bus as shown in Fig. 1, equipped
with comprehensive sensor systems. Collected data includes RTK-corrected and
uncorrected GNSS measurements as well as LiIDAR point clouds. Five objects
detectable by LIDAR were used to enhance positioning, aiming to evaluate local-
ization improvement compared to ICP. The setup, shown in Fig. 1, featured both
vehicles converging towards an area with the deployed objects. For further elab-
oration on the experimental campaign and dataset we refer to [1].

During the implementation of the proposed method, an assumption of lossless
and zero-latency V2I communication has been made. Data collected by sensors
were aggregated and processed at a central computational unit offline. As con-
cerns the computational cost, the bottleneck is LMBM in which the number
of measurement-target association hypotheses increases exorbitantly. While this
problem can be overcome by investigating lighter MTT algorithms, we limited
the number of hypotheses and Gibbs’s samples and initiated Bernoullis in the
center of the surveillance area, so near to objects.

Figure 2 shows the Cumulative Density Function (CDF) of the vehicle posi-
tioning error considering ICP with [1] and without multipath compensation [2],
raw GNSS ego vehicle position, proposed method, referred to as Cooperative
Self-Positioning (CSP), along with Circular Error Probability with 95% confi-
dence (CEP95). When CEP95 is concerned, CSP has a positioning improvement
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of 68% and 66% compared to GNSS for vehl and veh2 respectively. Besides, CSP
has similar performance to the benchmark ICP which assumes perfect associa-

tion among detected objects, making it unemployable in real applications.
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Fig. 2. Performance comparison of CSP against ICP with and without NLOS compen-

sation and Ego-GNSS.

4 Conclusion

This paper proposed a cooperative sensing-aided positioning method relying
on environmental perception with LiDAR sensors. This model-based algorithm
handles the uncertainty of a dynamic environment by exploiting collaborative

sensing and employing the LMBM filter. This method has been assessed in a real-
world application and its effectiveness has been reported. The planned future
work is to establish V2I communications and integrate RSU as both an observer

and the central computational unit.
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