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processing of unlabeled data.[2] Although 
many research efforts have been devoted 
to the realization of such systems by dedi-
cated hardware with conventional com-
plementary metal–oxide–semiconductor 
(CMOS) technologies, the benefits of this 
approach are still under question.

Emerging solid-state memory devices 
have been proposed as ideal candidates 
for the realization of efficient neuromor-
phic systems.[3,4] Among all the avail-
able options, innovative devices based on 
bidimensional (2D) materials offer low-
power consumption, outstanding scaling, 
back-end integration and the ability for 
3D  integration.[5,6] In the last few years, 
significant progress has been made 
regarding the deposition of 2D materials 
with processes like chemical vapor depo-
sition (CVD)[7,8] or pulsed laser deposition 
(PLD),[9] thus enabling the fabrication of 
CMOS-compatible large-scale memory 
array. Such memory devices typically con-

sist of a field-effect transistor (FET) with a 2D semiconductor 
as the channel material. To achieve a memory effect, various 
physical processes have been adopted to modulate the cur-
rent–voltage characteristics of the transistor.[10] Memory mecha-
nisms include defect migration to tune the Schottky barrier at 
the channel contact with the metal source and drain regions,[11] 
switching of the spontaneous polarization of a ferroelectric 
layer in the gate stack[12] and the migration of ionic species in 
the channel.[13]

This work presents a charge-trap memory (CTM) based on a 
FET with molybdenum disulfide (MoS2) as the channel mate-
rial for neuromorphic computing applications. The memory 
effect in the device is achieved by capture/emission of charge 
carriers in the microscopic defects at the interface between the 
channel and the gate oxide. Capture/emission processes are 
controlled by gate or drain voltage pulses and cause a change of 
the threshold voltage VT of the FET. For a given gate voltage VG, 
the VT shift results in a change of the channel conductance G. 
With respect to previously reported CTM devices based on 2D 
semiconductors[14–16] or van der Waals heterostructures,[17] our 
MoS2-based CTM displays the smallest channel length, thus 
being attractive for high-density applications. Within the neu-
romorphic computing scenario, the investigated CTM can be 
considered as an artificial synapse and the conductance modu-
lation can be viewed as the potentiation or depression of the 
synaptic weight. Repeated weight potentiation and depression 

Novel memory devices are essential for developing low power, fast, and accu-
rate in-memory computing and neuromorphic engineering concepts that can 
compete with the conventional complementary metal−oxide−semiconductor 
(CMOS) digital processors. 2D semiconductors provide a novel platform for 
advanced semiconductors with atomic thickness, low-current operation, and 
capability of 3D integration. This work presents a charge-trap memory (CTM) 
device with a MoS2 channel where memory operation arises, thanks to elec-
tron trapping/detrapping at interface states. Transistor operation, memory 
characteristics, and synaptic potentiation/depression for neuromorphic 
applications are demonstrated. The CTM device shows outstanding linearity 
of the potentiation by applied drain pulses of equal amplitude. Finally, pattern 
recognition is demonstrated by reservoir computing where the input pattern 
is applied as a stimulation of the MoS2-based CTMs, while the output current 
after stimulation is processed by a feedforward readout network. The good 
accuracy, the low current operation, and the robustness to input random bit 
flip makes the CTM device a promising technology for future high-density 
neuromorphic computing concepts.

ReseaRch aRticle
 

1. Introduction

In the recent few years, the widespread adoption of artificial 
intelligence and big data analysis has raised the demand for 
fast and efficient computing systems capable of processing 
large amounts of data. Given the inherent limitation of digital 
computing systems, a growing interest has been devoted to 
new computing paradigms that can go beyond the conven-
tional von Neumann architecture.[1] In this context, neuromor-
phic engineering emulating the human brain functionality is 
one of the most promising solutions for fast, energy-efficient 
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events are demonstrated with the device operating in the deep 
subthreshold regime, where the ultra-low values of G in the nS 
range are extremely attractive for low power consumption and 
large scalability of the synaptic network. In addition, the device 
is extremely attractive for its potential use in hardware accel-
erators of neural networks thanks to the high linearity of the 
weight update obtained with equal amplitude pulses and the 
ultrawide conductance window.

The suitability of the proposed CTM device for neuromor-
phic computing applications is validated by demonstrating a 
reservoir computing (RS) system for the classification of digit 
images[18] by the logistic regression method.[19,20] Excellent clas-
sification performance metrics are demonstrated, with an accu-
racy of 95.5% and a good robustness to noise corruption of the 
input data. These results support the proposed CTM device as 

a promising solution for low-power, highly scalable neuromor-
phic computing systems inspired by the brain.

2. Device Characteristics

Figure 1a shows a sketch illustrating the CTM device, fea-
turing a MoS2 channel deposited via mechanical exfoliation 
from a bulk sample on an oxidized p-doped Si substrate used 
as back gate.[13,21,22] The typical MoS2 thickness is of order of 
few atomic layers (Figure S1, Supporting Information). Source 
and drain contacts are deposited on top of the MoS2 flake by 
thermally evaporated Ag (Figure 1b and Figure S2, Supporting 
Information) and patterned by electron-beam lithography (see 
the Experimental Section). Figure 1c shows a scanning electron 

Adv. Mater. 2023, 35, 2205381

Figure 1. Transistor characteristics of the CTM device. a) Schematic of the device highlighting the MoS2 flake deposited by mechanical exfoliation on 
top of the oxidized Si substrate and the Ag source and drain regions. b) Optical image of two devices made on a single MoS2 flake. c) SEM image 
of the device. d) Measured ID–VGS characteristic at constant VDS = 100 mV for a forward and reverse sweep of VGS with a sweep rate of 3.45 V s−1.  
e) ID–VDS characteristic measured at increasing gate voltage VGS. f) Measured ID–VDS characteristics in a log–log plot at negative VGS. The observed 
linearity confirms the ohmic behavior of the CTM even for relatively large VDS and deep subthreshold regime. g) Qualitative band diagram of the CTM 
device highlighting the defects at the interface between MoS2 and SiO2 which are responsible for the observed hysteresis effect. h) Qualitative band 
diagram after the application of a positive VGS resulting in electron trapping at interface states. i) Qualitative band diagram after the application of a 
negative VGS resulting in hole trapping at interface states.
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microscopy (SEM) image of the channel region. The triangular 
shape of the electrodes allows to reduce proximity effects in the 
channel region during exposure. The typical channel length L 
ranges from 50  nm to 100  nm, as evidenced by atomic force 
microscopy (AFM) image in Figure S3 (Supporting Informa-
tion). The adoption of short channel lengths allows to investi-
gate the device performance in the context of high integration 
densities.

Figure 1d shows the drain current ID as a function of the gate 
voltage VGS for a constant drain voltage VDS = 0.1 V and forward 
or reverse sweeps of VGS. A relatively large VGS was applied 
due to the thick SiO2 gate-oxide layer of our device, which was 
required to easily identify the MoS2 flake by optical microscopy 
after exfoliation. The subthreshold and on-state regimes in 
Figure 1d differ by more than 5 orders of magnitude, thus sup-
porting the excellent transistor performance of the CTM device. 
All the measured devices display a depletion-type FET opera-
tion with negative VT, which can be explained by an intrinsic 
n-type doping of MoS2, possibly due to S vacancies,[23] short 
channel effects and oxide charges. Figure  1e shows the meas-
ured ID–VDS at relatively low |VDS| < 0.1 V for increasing VGS. 
The highly linear characteristics confirm the ohmic-type con-
tact between Ag source/drain electrodes and MoS2.[24] The lin-
earity of the characteristic is still observable for higher VDS (up 
to 1 V), even for very low VGS, as it can be seen in Figure 1f. The 
large hysteresis of the ID–VGS characteristic can be attributed to 
trapping/detrapping at the defects either in the MoS2 semicon-
ductor,[25,26] or in the SiO2 layer,[27,28] or at the SiO2–MoS2 inter-
face.[29,30] Electron/hole trapping these defects cause a shift in 
the threshold voltage VT, as illustrated in Figure 1g–i. Initially, 
in the pristine state (Figure  1g), defects are filled according to 
the equilibrium energy distribution dictated by the Fermi level 
EF in the substrate. As VGS is increased (Figure 1h), defects are 
filled with electrons as a result of channel inversion and the cor-
responding increase of EF, thus resulting in a positive VT shift 
in Figure 1d. On the other hand, when a negative VGS sweep is 
applied (Figure 1i), defects are filled by holes as a result of the 
decrease of EF, thus causing a decrease of VT in Figure 1d. Hys-
teretic behaviors were observed systematically in all the devices 
even after 650 repeated VGS sweeps (Figure S4, Supporting 
Information). The hysteresis characteristics can change from 
device to device, as can be seen in Figure S5 (Supporting Infor-
mation), probably due to differences in the properties of the 
MoS2 flake obtained by mechanical exfoliation. Interface defects 
generally display a wide distribution of capture/emission times, 
thus changing the VGS sweep rate results in a change in the 
VT hysteresis window.[31] Note that the threshold hysteresis can 
be caused also by gas adsorption/desorption.[16,32] This is sup-
ported by evidence of hysteresis reduction after device passi-
vation, as shown in Figure S6 (Supporting Information). The 
adsorbed atoms/molecules might act as trapping sites, in addi-
tion to intrinsic interface states or bulk defects in SiO2, thus 
contributing to the observed hysteresis. Note that dipole ori-
entation of adsorbed polar species, such as H2O, would result 
in an opposite direction of the threshold shift (see Figure S7, 
Supporting Information), thus should not represent the main 
contribution to the VT hysteresis in our devices.

Figure S8a (Supporting Information) shows the measured 
ID–VGS characteristics for increasing sweep rate, while Figure 

S8b (Supporting Information) reports the measured VT after 
positive and negative VGS sweep. The positive threshold voltage 
shows a larger shift, which can be explained by the large posi-
tive overdrive voltage VGS – VT for VGS  =  +40  V compared to 
the negative overdrive for VGS  =  −40  V. Decreasing the sweep 
rate results in a wider hysteresis, since more traps have enough 
time to be charged or discharged.[27] Finally note that the hys-
teresis is also present in the ID–VDS characteristic for relatively 
large VDS inducing potentiation, as shown in Figure S9 (Sup-
porting Information). The increase of the drain voltage causes 
charge trapping and a consequent increase of conductance at 
the origin of the hysteresis behavior.

3. Synaptic Characteristic

Based on the hysteresis behavior in Figure 1d, a pulsed scheme 
was developed to operate the CTM device as an artificial syn-
apse with the weight corresponding to its channel conduct-
ance G. To test the synaptic potentiation, the device was first 
biased with a constant negative VGS and VDS  = 100  mV (see 
Figure S10a, Supporting Information). After 20 s of constant 
bias, negative voltage pulses were applied to the gate while 
monitoring IDS. The bias preconditioning excludes furthers 
drift during the application of pulses and bring the device in 
an equilibrium condition. The negative VGS pulses induce a 
decrease of VT by emptying some defects at the MoS2/gate-
oxide interface, hence in a growth of G which can be viewed 
as the potentiation of the artificial synapse. After each poten-
tiation pulse, a read pulse at the same voltage of the pre-bias 
phase was applied to VGS to monitor the channel conductance 
G (Figure S10b, Supporting Information). All pulses have the 
same amplitude and duration (1 ms for both potentiation and 
read). Figure 2a shows the conductance G during a sequence of 
100 negative pulses. A clear increase of G (potentiation of the 
device) can be seen, as a result of the negative shift of VT. The 
evolution of G with the number of applied potentiation pulses 
was reproduced with the formula[33]

( )= − +ν−1 e0 minG G Gp  (1)

where p is the normalized number of pulses, ν is a shape 
factor depending on the linearity of the potentiation charac-
teristic, Gmin is the initial value, and G0 is a fitting parameter 
representing the G dynamic range. Based on Equation  (1), a 
relatively low value of ν indicates a good linearity of the poten-
tiation curve. From Figure 2a, the increase of VGS gives rise to 
a larger modulation of G at the cost of a decrease of linearity of 
the potentiation trend.

The same potentiation behavior was obtained by applying 
drain pulses. Here, instead of negative gate pulses, positive 
drain pulses were applied at constant negative VGS that act as 
a reference for the potentiation and the depression (Figure S11, 
Supporting Information). Note that the positive VDS is equiva-
lent to a more negative VGS relative to the pre-bias condition, 
thus causing an increase of the trapped hole concentration, 
hence in potentiation. On the other hand, a negative VDS cor-
responds to a more positive VGS relative to the pre-bias and/
or potentiation bias, thus a decrease of trapped hole and a 

Adv. Mater. 2023, 35, 2205381
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consequent depression. Similar to the gate-pulse potentia-
tion, the device was biased for 20 s before the application of 
the drain pulses, to reach a steady-state initial charging of the 
interface states. Each drain pulse has a constant amplitude of 
VDS  = 2.5  V and pulse-width of 200  ms. Figure  2b shows the 
measured potentiation characteristics: as VGS becomes more 
negative, the modulation of G decreases and the update lin-
earity increases, with a minimum shape factor ν = 0.25. Note 
that there is a trade-off between the conductance window 
and the linearity of curves, as illustrated in Figure S12 (Sup-
porting Information). Here, the shape factor increases, hence 
the linearity decreases, for increasing conductance window 
Gmax – Gmin of potentiation. This saturation effect can be attrib-
uted to the filling of interface states at large concentrations of 
trapped charge. All the conductance curves have extremely low 
Gmin, generally below 1 nS (R > 1 GΩ), even for the highest VGS 
values. The low value of Gmin and its relative independence on 
the pre-bias VGS can be explained by the stabilization mecha-
nism in Figure  2c. Here the device was biased with negative 
gate VGS for 20  s before sweeping VGS to + 35 V while moni-
toring IDS. The IDS curve shifts to negative voltages as the neg-
ative pre-bias VGS is increased, due to the emptying of some 
defects at the MoS2/gate–oxide interface. The resulting shift of 
VT results in the stabilization of Gmin to a value that is almost 
independent of the initial VGS value. Note that such stabiliza-
tion effect is useful to reduce possible device-to-device varia-
tions of VT. In addition, the low conductance G in Figure 2b can 
be considered an ohmic conductance given the high linearity 
of the ID–VDS characteristics in Figure 1f, even for low VGS in 
the deep subthreshold regime. Note that ohmic conduction is 
essential for in-memory matrix-vector multiplication where the 
product is obtained from Ohm’s law I  = GV.[1] Figure S13a,b 
(Supporting Information) shows the distribution of conduct-
ance change ΔG measured after each pulse and the average (µ) 
and standard deviation (σ) of the distributions. Both µ and σ 
decrease for decreasing VGS in deep subthreshold regime. The 
linearity of the potentiation characteristics in Figure 2b, the very 
low conductance values, the linearity of the ID–VDS curve and 
the extremely small footprint makes the CTM device extremely 

appealing with respect to other emerging devices, including 
RRAM,[34,35] phase change memories (PCM),[36] electrochemical 
random access memory (ECRAM)[37] and MoS2 heterostruc-
tures,[38] as illustrated in Figure S14 (Supporting Information). 
Table S1 (Supporting Information) provides an overview of syn-
aptic transistors based on 2D material. With respect to previ-
ously reported devices in the literature,[14–17,36–40] the proposed 
CTM device shows the lowest conductance levels and lowest 
pulse amplitude, resulting in a very low energy consumption. 
The latter can be further reduced by minimizing the gate oxide 
thickness, hence the gate operating voltages.

In addition to synaptic potentiation, we also studied synaptic 
depression by applying pulses of opposite polarity. Figure 3a,b 
shows repeated cycles of potentiation and depression, each con-
sisting of 50 voltage pulses with VDS = 2.5 V and VDS = −1 V for 
potentiation and depression, respectively, for various VGS bias. 
The VDS values for potentiation and depression were selected 
to achieve the same dynamic range G0 for potentiation and 
depression within the same number of pulses, i.e., 50 pulses 
in Figure 3a,b. The measured characteristics show analog and 
bidirectional weight update with good reproducibility. Similar 
to data in Figure 2b, changing the gate bias results in a change 
of the conductance window.

Depression in Figure  3a,b shows a slightly higher nonlin-
earity compared to potentiation, which can be explained by the 
spontaneous discharge contributing to the depression transi-
tion. The low linearity of the depression can be overcome by 
a 2-CTM synapse, where potentiation of the positive CTM or 
potentiation of the negative CTM results in an overall potentia-
tion or depression, respectively, as illustrated in the Figure S15 
(Supporting Information). To better address the retention in 
our CTM device, Figure 3c shows the measured G after appli-
cation of 50 positive VDS pulses for potentiation, followed by a 
read phase with a small VDS  = 150  mV to monitor the spon-
taneous depression of conductance. Data show a spontaneous 
exponential decay of conductance with a retention time con-
stant around 5 s. The decay can be understood by electron re-
trapping at interface states after potentiation. The asymmetric 
potentiation/depression in Figure  3a,b can thus be attributed 

Adv. Mater. 2023, 35, 2205381

Figure 2. Potentiation and depression characteristics of the CTM devices. a) Channel conductance G as a function of the number of pulses for negative 
applied VGS pulses at various VGS of the read condition. A repetition of 100 identical pulses with relative amplitude ΔVGS = −5 V was applied starting 
from the read VGS reported in the legend with VDS = 100 mV. Also shown are the fitting curves according to Equation (1) to assess the linearity of the 
potentiation characteristics. b) Channel conductance G as a function of the number of pulses for positive applied VDS pulses at increasing read VGS. The 
fitting by Equation (1) indicates an increase of linearity for increasingly deep subthreshold regime. c) Measured ID–VGS characteristics after a prepara-
tion step at increasing read VGS. The device was first biased at a constant negative VGS and VDS = 100 mV. After 20 s, VGS was gradually increased to 
35 V while monitoring the drain current.
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to the additional contribution by the spontaneous electron re-
trapping during the depression phase. Spontaneous re-trapping 
can be mitigated by proper drain voltage pulses after potentia-
tion. For instance, Figure 3d shows the application of 50 pulses 
with VDS  = 4  V applied at a frequency f1  = 1.66  Hz, followed 
by another train of 50 pulses with the same amplitude and a 
reduced frequency f2. Adopting a frequency f2  = 1  Hz, allows 
to compensate the spontaneous re-trapping, thus allowing to 
effectively refresh the CTM to achieve a constant G.

4. Reservoir Computing

The proposed MoS2-based CTM was used to implement the 
reservoir layer of the reservoir computing system shown in 
Figure 4a. An image made of n × m pixels of binary amplitude is 
encoded in a spatio-temporal sequence of pulses. More specifi-
cally, for each column of pixels in the image, m voltage pulses 
of duration T (200 ms for experiments in Figure 4b) and ampli-
tude equal to 0 or V are simultaneously produced. The ampli-
tude of each of these pulses encodes the amplitude of a pixel 
on the rows of the image, where a voltage 0 and V are used to 

represent a pixel in off and on states, respectively. The voltage 
pulses are applied as input signals to an array of n artificial syn-
apses made by the proposed CTM devices, which act as a reser-
voir layer and convert the applied pulses to a current depending 
on the device conductance G. The current can be sensed as the 
output voltage in a transimpedance amplifier (TIA) with RTIA 
feedback resistance. The output of the reservoir layer is fed 
to the classification network of the RC system, which is com-
posed of a single-layer, fully connected neural network whose 
weight matrix can be realized using crosspoint arrays of resis-
tive memories, enabling a fully in-memory implementation of 
the proposed network.[41] The output vector resulting from the 
matrix-vector multiplication between the n × 1 reservoir output 
vector and the n × d weight matrix is fed to an array of d neu-
rons equipped with a sigmoid-type activation function, where d 
is the number of classification labels. The final pattern classifi-
cation is extracted by considering the largest neuronal output.

Owing to the RC concept,[42,43] training is necessary for the 
classification network weights only, as the reservoir layer is a 
network with a fixed connectivity structure where the neurons 
evolve dynamically under the stimulation of the spatiotem-
poral input pattern. Training of the classification network was 

Adv. Mater. 2023, 35, 2205381

Figure 3. Pulsed potentiation and depression experiments. a) Repeated positive−negative drain cycles with VDS = 2.5 V and VDS = −1 V, respectively, 
demonstrating reproducible consecutive potentiation and depression characteristics. The VGS was kept constant at −15 V. b) Same as (a) but with 
VGS = −10 V. The window increases with increasing gate bias, similar to data in Figure 2b. c) Measured G during potentiation (initial 50 pulses) followed 
by read at low VDS, to monitor the spontaneous depression of the CTM. The conductance shows an exponential decay due to spontaneous re-trapping 
with a retention time tr around 5 s. d) Analog conductance tuning obtained by applying potentiation pulses at reduced frequency during the read phase. 
Applying potentiation pulses at f2 = 1 Hz allows for a dynamic refresh of the conductance state.
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performed using the logistic regression method[19] via the pseu-
doinverse matrix concept (see the Experimental Section). To 
reduce the computation time and energy of the pseudoinverse 
matrix, the operation can be directly executed by in-memory 
directly on the crosspoint array.[44]

To evaluate the performance of the CTM devices as reser-
voir element in the RC system, we considered a toy problem 
consisting of the classification of 5 × 4 monochrome images of 
digits from 0 to 9. Each 4-pixels image row was fed to the cor-
responding CTM input channel as a sequence of four pulses 
applied to the gate or the drain terminal. Figure 4b shows the 

reservoir states measured at the end of the submission of each 
input pattern as negative gate pulses to the CTM. Figure S16 
(Supporting Information) shows similar results for drain pulses 
adopted as input stimulation signals. Despite the variability of 
the CTM response for a given input temporal sequence, the 
final 5 × 1 output state is clearly unique for each input digit.

Supervised training of the feedforward readout network was 
achieved by using the dataset of Figure 4b and considering the 
variability of the reservoir output (see the Experimental Sec-
tion). To evaluate the network accuracy, we performed Monte 
Carlo simulations by testing 2 million images uniformly 

Adv. Mater. 2023, 35, 2205381

Figure 4. Demonstration of reservoir computing (RC) for image recognition. a) Schematic of the RC experiment, where an input spatial pattern is trans-
formed to a spatiotemporal pattern which is applied to a vector of five CTM devices. The vector of CTM conductance values is used as input of a linear 
feedforward neural network performing the classification of the input pattern. The supervised training of the readout layer can be carried out in just one 
single step via logistic regression. b) Conductance response of the CTM layer (gate input) for each digit image. For the training, conductance curves for 
each input stream were randomly extracted from an experimental dataset to take into account the stochastic variation of CTM potentiation/depression.
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sampled from the digit dataset. Figure 5a shows the resulting 
confusion matrix, where the large average value of about 95.5% 
of the diagonal elements highlights the good accuracy of the 
classification network, only limited by the response variability 
of the reservoir output. The accuracy drops to 87.7% when the 
input signal is submitted via drain pulses instead of gate pulses 
(Figure S17, Supporting Information), due to the lower con-
ductance window (see Figures S18 and S19, Supporting Infor-
mation), hence the larger sensitivity to stochastic variations. 
The robustness to input noise was also assessed by performing 
Monte Carlo simulations with corrupted images, where 1, 
2, or 3 bit flips at random locations were assumed for each 
input stream set. The accuracy generally drops as the number 
of noisy pixels increases, as shown in Figure 5b, owing to the 
additional variation due to the random bit flip. Figure 5c shows 
an example of an image dataset with one random bit flip. The 
corresponding confusion matrix for the Monte Carlo experi-
ment is reported in Figure  5d, supporting the capability of 
noise rejection up to one bit flip. Note that the loss of accuracy 
for one bit flip images is mainly caused by a single digit fail, 
confirming the robustness of the RC system (see also Figure 
S20, Supporting Information).

5. Conclusion

We have realized a CTM device based on a MoS2 channel, 
metallic source/drain contact and memory effect arising 
from trapping/detrapping at the interface states between 
MoS2 and the SiO2 gate dielectric. The application of voltage 
pulses of equal amplitude at the gate (negative) or at the 
drain (positive amplitude) causes a linear increase of the 
channel conductance due to the negative VT drift. Synaptic 
potentiation characteristics with high linearity are obtained, 
thus supporting the potential of the CTM device for synaptic 
applications. In addition, the relatively long retention times 
in the order of few seconds is extremely useful for neuromor-
phic applications such as gesture and speech recognition. 
Reservoir computing for the recognition and classification of 
pattern images is also demonstrated with a test accuracy of 
95.5% over 2000 test images and a good robustness against 
random corruption of the input pattern. The low-power 
consumption, the high scalability and integrability into in-
memory computing frameworks make the MoS2-based CTM 
device an attractive technology solution for in-memory com-
puting applications.

Figure 5. Results of the digit images recognition with reservoir computing. a) Confusion matrix showing the classification results for images and 
experimental CTM datasets in Figure 4b. The colors represent the normalized numbers of correct classification respect to the total number of each 
occurrence. b) Test accuracy of the RC system as a function of the number of flipped bits in the images. All data are extracted with the gate-pulse 
configuration. c) Example of a one-bit flip image dataset used as test images. d) Confusion matrix for 1-bit flip test images. Most of the digits are still 
correctly classified, although there is a decrease in the accuracy.
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6. Experimental Section
Device Fabrication: The MoS2-based charge-trap memory devices were 

fabricated on p-doped silicon substrate with a 285 nm thick top layer of 
SiO2 grown in an STS Multiplex PECVD deposition tool. The thickness 
of the oxide is measured using a J. A. Woollam VASE ellipsometer. The 
resulting substrate sample was then cleaned in acetone and isopropyl 
alcohol (IPA). To entirely remove any residual organic material, the 
sample was treated with oxygen plasma before the transferring of 
the MoS2 flakes, using a Plasma Asher PVA TEPLA 300 AL, 200  W 
power, 2  min. The MoS2 was transferred by mechanical exfoliation 
and the interesting flakes were selected with an optical microscope, 
exploiting the blue contrast obtained with the chosen oxide thickness. 
As a confirmation, some flakes were also characterized with an atomic 
force microscope (Keysight 5600LS) in contact mode. Source and 
drain electrodes were patterned by electron-beam lithography using 
poly(methyl methacrylate) (PMMA) resist and realized by silver thermally 
evaporated. Typical channel lengths were between 50 and 100 nm, while 
flake thickness was below 4 nm.

Electrical Characterization: The characterization of the MoS2 CTM was 
performed in Probe Station, using a Keithley 4200A-SCS semiconductor 
parameter analyzer. Pulsed measurements were carried out using a 
Keithley custom library (with some modules) realized for the scope. 
Experiments for the RC system were realized by applying all the 16 
pulsed data streams multiple times. Pulses are composed by a program 
phase and a read phase. In case of zero code the program phase is 
substituted by another read phase. For the drain, program pulses have 
3  V amplitude and the same width of the read phase (200  ms). Same 
pulse width was chosen for gate pulses, while the amplitude was bigger 
(−5  V). To avoid correlation between measurements, each stream was 
applied after a complete sweep of the gate from −40 to +40 V.

Classification Network Simulation: Simulations were realized using 
Matlab. Each output of the reservoir was chosen randomly from a set 
of measurements. To be robust to the variation of the initial state of the 
device, the difference between the final conductance state and the initial 
one (ΔG) was considered as an output of each CTM. The feedforward 
network had also an addition input (the bias), set at the mean values 
of the current reservoir output state. Each neuron had a sigmoid-type 
activation function, with characteristic slope equal to 0.001. Network 
weights were initialized to random values. Training was performed using 
a dataset equally composed by 2000 digit images. The output of the 
reservoir was always randomly chosen from an experimental stream set 
composed by 100 experiments. At the end of the classification phase, the 
target label matrix Y was converted to a summation matrix S applying 
the sigmoid inverse. The weights were then obtained in one step by the 
pseudoinverse concept, with the operation:

·W X S= +  (2)

where X+ is the pseudoinverse of the reservoir output. The test accuracy was 
computed by performing Monte Carlo simulations with datasets of 2 million 
images and random CTM response. Images were classified according to the 
highest neuronal output of the final classification layer. Noisy images were 
realized by performing random bit flips on the dataset images.

Statistical Analysis: Conductance points in Figures 2a,b and 3a–d were 
obtained by averaging 80 measured current points during the read phase 
(sample time = 200 µs or 20 µs for the faster pulses). Each curve is the 
result of a single experiment (no averaging of multiple experiments) and 
no pre-processing of data was done. For the reservoir computing results, 
the test accuracy was obtained, for a single training, by the test of 1000 
images (100 for each digit), 2000 times. The confusion matrices show 
the result of 200 000 images for each digit. Figure 5b shows the median 
values and the 25th and 75th percentiles of the 2000 test accuracies.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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