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A B S T R A C T

This study proposes an optimal design approach, based on the Pelican Optimization Algorithm (POA), to
configure the optimal sizing of design variables on an islanded microgrid: photovoltaic (PV) modules, wind
turbines (WT), diesel generators (DG), and batteries in Kutubdia, Bangladesh based on optimal life cycle cost
(LCC) and cost of energy (COE). Additionally, the economic analysis of three independent battery technologies,
notably lead acid, lithium-ion, and nickel-iron are carried out to find the economically feasible technology, to
ensure uninterrupted power supply. Moreover, reliability and sensitivity analyses of the optimized microgrid
using POA were conducted for various reliability indices and variable interest rates. Results show that proposed
POA method provides the optimal island microgrid configuration with lead acid (LA) batteries (PV/WT/LA/DG)
based on a minimum LCC of $8334901, COE of 0.1080$/KWh and greenhouse gas emission amount of 19664
kgs/year. Furthermore, the outcomes generated by the POA are compared with genetic algorithm, particle swarm
optimization, moth flame optimization algorithm, whale optimization algorithm and grey wolf optimization. It is
found that POA method achieves more competitive results compared to other optimization techniques due to its
ability to adjust parameters, fast convergence speed, and straightforward computations.

1. Introduction

Microgrids, also known as micro-energy networks, have become
increasingly popular as a method to address the significant rise in con-
sumption of electricity [1–4]. Integrating microgrids with existing
electrical networks offers several advantages because they can handle
specific local electricity demands, either in isolation or in combination
with the utility grid. Oftentimes, these networks lack distinct financial
obligations and do not require advanced technical expertise to operate
[5]. Self-sufficiency in meeting load requirements in isolated microgrids
is essential because of the independent generation, transmission, con-
trol, and distribution of power within these small-scale power systems
[6,7]. Implementing a techno-economic solution for providing elec-
tricity to rural areas necessitates the use of a renewable energy system.
Currently, it is widely believed that small-scale distributed renewable
generation technologies are crucial for addressing energy-related prob-
lems [8]. Furthermore, the integration of microgrids with battery stor-
age systems, demand response, and other conventional generation

methods can mitigate the unpredictable nature of renewable energy
sources (RESs), such as solar and wind power [9,10].

Optimal sizing of the microgrid is necessary to ensure that the
microgrid system meets the necessary performance criteria while
minimizing the system’s total cost [11], optimal sizing is required. The
purpose of microgrid optimal sizing is to determine the best combination
of component quantity and size to achieve the desired levels of resil-
ience, cost-effectiveness, and dependability [12]. The lack of a main grid
in isolated microgrids makes optimal sizing particularly crucial for
ensuring a consistent power supply [13,14]. Numerous researchers have
tackled optimization problems using different techno-economic ana-
lyses, classical techniques, commercial software, and optimization al-
gorithms to determine the optimal sizing of microgrid systems. Classical
techniques have several limitations, including inflexibility, challenges in
identifying a global optimum, and difficulties in adapting to dynamic
changes. When it comes to handling various objectives, commercial
software tools have restrictions and lack advanced optimization capa-
bilities. Optimization algorithm techniques overcome the limitations of
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classical techniques and commercial software tools by providing a
globally optimal solution with a fast convergence speed. Algorithm
outcomes provide greater efficiency in resolving complex problems [15,
16].

Different types of optimization algorithms have been proposed in the
literature to solve the optimal sizing issue of microgrid systems. For
instance, Alturki, F.A., et al. [17] used a genetic algorithm (GA) to
minimize the annualized system cost. However, it needs to include the
life cycle cost (LCC) and cost of energy (COE) while also addressing the
issue of GA optimization, which tends to rapidly converge and get
trapped in a locally optimal solution. Mohammed, A.Q., et al. [18]
minimize the total system cost and total emission through particle
swarm optimization. However, there is a need to consider LCC while
addressing the PSO issues, which exhibit early convergence and become
stuck in local optima. Bandopadhyay, J., et al. [19] used the moth flame
optimization algorithm (MFOA) to minimize the price of electrical en-
ergy. However, it is necessary to address LCC, while MFOA issues such as
limited population variety and premature convergence fall into local
optima. Abo-Elyousr & Elnozahy [20] employed ant colony optimiza-
tion (ACO) to minimize the net present cost, levelized cost of energy, and
greenhouse gas emissions. However, it is necessary to consider LCC
while addressing the ACO issue, as improper parameter setups can
rapidly ignore a high-quality solution. Geleta, D.K., et al. [21] utilized
the artificial bee colony (ABC) algorithm to minimize the total annual
cost. Nevertheless, it is necessary to consider LCC while addressing ABC
algorithm issues such as accuracy requirements, premature conver-
gence, and additional processing demands. Diab, A.A.Z., et al. [22] used

the whale optimization algorithm (WOA) to minimize the cost of energy.
However, it needs to include the LCC while also addressing the WOA
issues, which exhibit a slow convergence rate and limited accuracy.
Al-Shamma’a, A.A., et al. [23] employed the grasshopper optimization
algorithm (GOA) to minimize the annual system cost. However, it needs
to include the LCC while also addressing GOA issues, as an optimal so-
lution requires a large number of iterations. Sanajaoba, S., et al. [24]
used the firefly optimization algorithm (FOA) to minimize the cost of
energy. However, it needs to consider LCC while also addressing FOA
issues, the optimal solution of which entails challenges in local searches
and a high convergence rate. Kaur, R., et al. [25] utilized grey wolf
optimization (GWO) to minimize the levelized cost of energy. Yet, it
needs to be considered LCCwhile also addressing the GWO issues, which
prevent local search from existing because of the slow convergence
speed in the later stages of the iteration. Cetinbas, I., et al. [26] used
harris hawks optimization (HHO) to minimize the cost of energy.
However, it needs to include the LCC while also addressing the HHO
issues; the imbalance between its exploration and exploitation capabil-
ities quickly converges, and it becomes stuck in local optima. Kumar,P.
P., et al. [27] used the salp swarm algorithm (SSA) to minimize the
annual levelized cost and levelized cost of energy. However, there is a
need to consider LCC while also addressing issues with SSA, such as
ineffective exploration and exploitation, a slow convergence rate, and
inadequate exploitation. Sallam, M. E., et al. [28] used the turbulent
flow of water (TFW) algorithm to minimize the annual system cost and
carbon dioxide emissions. However, it needs to consider LCC while also
addressing TFW algorithm issues, eliminating control parameter

Table 1
Summaries of related studies on optimal sizing of microgrid.

Ref. Sources
used in
microgrid

Optimization
Technique

Objective Function Application &
Sizing

Constraints Limitations Issues of optimization techniques

[17] PV, WT, DG,
BESS

GA Minimize the
annualized system cost

Residential Area &
Installed 456kW

Reliability: Loss of
power supply
probability (LPSP)

LCC and COE are
not taken into
account.

GA converges quickly and gets stuck in
the local optimal solution of a complex
problem.

[18] PV, DG, BESS PSO Minimize the total
system cost and total
emission

Residential Area &
Installed 250kW

Reliability:
Continuous
supply of the load
demand

LCC are not taken
into consideration

The PSO algorithm shows early
convergence and becomes caught in
local optima when used for complex
problems.

[19] PV, WT, DG,
BESS

MFOA Minimize the price of
electrical energy

Residential Area,
Installed 50 kW
and 15 households

Reliability: LPSP LCC are not taken
into account.

Issues such as limited population
variety fall into local optima and
premature convergence.

[20] PV, WT, DG,
Biomass
BESS

ACO Minimize the net
present cost, levelized
cost of energy and
greenhouse gases
emissions

Rural area &
Installed 100kW

Reliability: LPSP
Energy resources
installation limit

LCC are not taken
into
consideration.

Setting parameters is a complex
process, and improper parameter
setting makes it simple to ignore a
high-quality solution.

[22] PV, WT, DG,
BESS

WOA Minimize the cost of
energy

Residential Area &
Installed 400kW

Reliability: LPSP LCC is not being
considered.

WOA exhibits a slow convergence rate
and limited accuracy.

[23] PV, WT, DG,
BESS

GOA Minimize the annual
system cost

Rural Area &
Installed 1 MW

Reliability: LPSP,
renewable energy
factor,
PV, WT, DG &
Battery power
limit

LCC are not being
considered.

The computation requires large stages.

[24] WT, PV,
BESS

FOA Minimize the cost of
energy

Rural Area &
Installed 100kW

Reliability: Loss of
load probability
(LOLP)
Limit the
generations

LCC are not taken
into account.

The algorithm may encounter
difficulties in local search and exhibit a
rather lengthy convergence time.

[25] PV, WT,
BESS

GWO Minimize the levelized
cost of energy

Rural Area &
Installed
10kW

Reliability: LPSP,
excess energy
generation (EEG)

LCC is not taken
into
consideration.

Lack of ability to exist local search due
to slow convergence speed at the later
part of the iteration. It needs to
improve in precision and accuracy.

[26] PV, WT, DG,
BESS

HHO Minimize the cost of
energy

Campus& Installed
500kW

Reliability: LPSP There is no
consideration of
LCC.

The early convergence of HHO occurs
when there is an imbalance between its
exploration and exploitation
capabilities, leading to the algorithm
getting stuck in local optima.

Here, PV, WT, DG and BESS stands for photovoltaic, wind turbine, diesel generator and battery energy storage system respectively.
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selection, and increasing the convergence rate. Yang, D., et al. [29]
utilized teaching learning-based optimization (TLBO) to minimize the
total annual cost. However, it is necessary to consider LCC while also
addressing TLBO issues that arise from weak exploration, so it has poor
performance for solving complex optimization problems and capturing
the global optimal solution in a smaller number of function evaluations.
Khan, A., et al. [30] used jaya learning-based optimization (JLBO) to
minimize the total annual cost. However, it needs to consider LCC while
also addressing the JLBO issues that arise from premature convergence
and local optima trapping. Cai, W., et al. [31] used gorilla troops opti-
mization (GTO) to minimize the cost of energy and the net present cost.
However, it is necessary to consider LCC while addressing GTO issues
such as the imbalance between exploration and exploitation and its slow
convergence rate. Table 1 displays the summary of related studies on
optimal microgrid sizing along with their limitations.

From the aforementioned studies, it can be observed that even
though life cycle cost (LCC) is the most crucial factor of the microgrid

systems to evaluate the life cycle of equipment, this factor has not been
considered in the above study. LCC is a method for evaluating costs over
a specific period, taking into account all relevant economic factors, such
as capital expenses and future operational costs [32]. This methodology
enables the quantification of costs and benefits, facilitating the com-
parison of different solutions using a consistent economic standard. It
achieves this by discounting all future costs and benefits by a specified
reference year. Although the LCC methodology relies on estimating and
evaluating future events and their unpredictable outcomes, it provides a
thorough and inclusive method for evaluating and comparing different
investment opportunities [33]. Furthermore, the optimization tech-
niques used for optimal sizing of microgrids also possess drawbacks
(rapid or premature convergence, improper parameter setting, compu-
tational complexity, etc.), which are presented in Table 1. To overcome
the shortcomings of the previously used optimization algorithms for
microgrid sizing, in this study, a pelican optimization algorithm (POA) is
proposed for microgrid optimal sizing considering LCC and cost of

Fig. 1. The study area location is on the map. (Source: Google maps).

Table 2
Load profile of the case study area [35].

SL. Load Types Appliances Rated Power (W) Quantity Toal Entities Total Load (kW)

1 Household load High income Light 40 6 500 120
Fan 70 3 105
Fridge 20 1 10
TV 80 1 40
Washing Machine 500 1 250
Motor-Pump 1000 1 500

Middle income Light 40 3 1000 120
TV 70 2 140
Fan 20 1 20

Low income Light 40 2 500 40
Fan 70 1 35

2 Residential hotel and resort Light 40 50 10 20
Fan 70 20 14
Motor-Pump 20 10 2
TV 2000 2 40

3 Educational Institutes Light 40 10 10 20
Fan 70 5 14
Motor-Pump 2000 1 40

4 Super-shops Light 40 10 10 4
Fan 70 5 3.5
Motor-Pump 1000 1 10
TV 20 1 0.2

5 Motor-pump Light 40 100 1 4
Fan 70 20 1.4
Fridge 20 1 1
Motor-Pump 1000 1 5

6 Factory makes ice 10,000 1 1 10
7 Charging station for EV 5000 1 1 5
Total demand 1574.1
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energy (COE). The benefits of POA include the ability to adjust param-
eters, fast convergence speed, and straightforward computations. The
POA technique outperforms existing techniques by efficiently balancing
the exploration and exploitation phases, resulting in better and more
competitive performance. It offers a population-based method via an
iterative process that converges to nearly the optimal solution [34,48].
Incorporating LCC calculations during the computing process improves
an island microgrid’s techno-economic analysis. The contributions of
the study are as follows:

• Pelican optimization algorithm (POA) is used to determine the
optimal configuration of microgrid that minimizes life cycle costs
(LCC) and cost of energy (COE), satisfies demand, and ensures a loss
of power supply probability (LPSP).

• Determine the most cost-effective and sustainable options for storing
energy in a microgrid, focusing on photovoltaic (PV), wind turbine
(WT), diesel generator (DG), and battery technologies, especially
lead acid (LA), lithium-ion (Li-ion), and nickel-iron (Ni-Fe).

• The effect of different reliability index (LPSP) constraints is pre-
sented to confirm the reliability of the proposed approach for mini-
mization of LCC and COE.

• A sensitivity study is conducted to determine how designed variables
affect LCC, COE, and CO2 emission.

The following sections are structured: Section 2 details the case study
area. Section 3 provides a detailed explanation of the microgrid
modelling. The mathematical formulation model is presented in Section
4. The use of the POA to solve the problem is explained in Section 5. The
results and discussions are shown in Section 6. The conclusion is pre-
sented in Section 7.

Fig. 2. Daily load profile for summer and winter seasons.

Fig. 3. Proposed microgrid.

Fig. 4. Energy management strategy (EMS) of the proposed microgrid.
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2. Case study: Kutubdia island, Bangladesh

The Kutubdia is an upazila in the Chittagong division of the Cox’s
Bazar district in Bangladesh. In 1983, the island was elevated to the
status of upazila. Kutubdia covers a length of 18 miles (29 km), a width
of 2 miles (3.2 km), and an area of 36 m2iles (93 km2). The coordinates
of Kutubdia are 21.8167◦N 91.8583◦E. The municipality comprises
58,463 households and covers 215.79 km2s (83.3 m2iles). Sea level rise
and climate change face a hazard of submerging the island in the Bay of
Bengal. Fig. 1 displays a satellite view of the site provided by Google
Maps.

Connected loads for Kutubdia Island include a community of 2000
households, 10 hotels and resorts, 10 educational institutions, 10 su-
permarkets, one hospital, one ice plant, and one electric vehicle (EV)
charging station. Table 2 represents the specific information on load
categories, equipment ratings, quantity, and other relevant factors.
Households are classified into high-, middle-, and low-income categories
based on their level of consumption. A high-income individual’s
household domestic load comprises a water pump, lamp, fan, television,
and refrigerator. Both a washing machine and a water pump are absent
from middle-class households. The educational institute’s load demand
occurs from 8:00 – 17:00 hours. The supermarkets operate from early
morning till midnight. The primary electrical loads in the shop area are
the light fittings, fans, and motors. The medical facility must maintain a
constant connection as a vital load to ensure the provision of emergency
services. Additionally, during all days of the week, the ice-making fa-
cility is in continuous operation, as fishing is the primary occupation of
the people who live on the island. The expected load indicates the ex-
istence of two distinct seasons: winter, which occurs between November
to February, and summer, which occurs between March to October.
Fig. 2 illustrates the load profile of two seasons based on the expected
load consumption of the island area. During both seasons, the highest
level of demand occurs between 21:00 and 23:00 [35].

3. Proposed microgrid modelling

During the optimal sizing procedure of microgrids, it is essential to

have accurate mathematical models of their components. The study
presented a microgrid that integrates PV and WT energy sources,
together with a backup system comprising a DG and BESS. The sche-
matic diagram of the proposed microgrid is depicted in Fig. 3, with
detailed descriptions of the component models provided below.

The operational energy management strategy (EMS) for the proposed
microgrid is depicted in Fig. 4 and detailed as follows:

• The primary source is PV &WT, which can satisfy the load demands.
• The battery is used when PV &WT cannot satisfy the load demands.
• When BESS is empty, the DG system runs on 50% of its nominal
power.

3.1. PV power generation

The PV output power can be mathematically represented as [36]:

PPV(t) = PV rated ×

(
Gt

Gref

)

×
[
1+KT ×

(
Tc − Tref

)]
(1)

Where Gref and G(t) denotes the reference solar irradiation with a
value of 1000 w/m2 and hourly solar irradiation. KT denotes the
maximum power temperature coefficient, with a value of 3.7×
10− 3(1/∘C). Tref indicates the reference PV cell temperature, with a
value of 25∘C. PV rated represents the PV rated power.

The following equation determines the cell temperature (Tc):

Tc = Tamb(t) + (0.0256 ×G(t)) (2)

Where Tamb(t) represent the hourly ambient temperature.
The energy generation of PV panel (EPV) is as follows:

EPV(t) = NPV × PPV(t) × Δt (3)

Where NPV represent the number of PV panel and Δt represent the is
the time period and its considered 1 h.

3.2. Wind power generation

The wind power generation can be calculated as follows [36]:

PWT(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 V(t) ≤ Vcin and V(t) ≥ Vcout

Pwr Vrat ≤ V(t) ≤ Vcout

Pwr
V(t) − Vcin

Vrat − Vcin
Vrat ≤ V(t) ≤ Vcout

(4)

Where Prw represents the WT rated power, Vcin denotes the cut-in
speed, Vcout denotes the cut-out speed, Vrat represents the rated wind
speed and V(t) denotes the intended reference height for the wind speed.

V(t) = Vr(t)
(
HWT

Hr

)λ

(5)

Where V(t) represents the wind speed at a specific height. The wind
speed at the reference height is denoted as Vr(t) and the friction coef-
ficient, λ, usually equals 1/7 for a smooth surface.

3.3. Battery energy storage system (BESS)

The following equation is utilized to determine at a specific hour t,
how much energy can be stored in the battery bank [36]:

EBatt(t) = (1 − σ) × EBatt(t − 1) +
(

EG(t) −
EL(t)
ηConv

)

× ηCC × ηrbatt (6)

Where ηrbatt, ηcc, ηconv & σ represent efficiency of the battery’s round-
trip, charge controller, converter and hourly self-discharge rate,
respectively.

The equations used for electrical energy generation are as follows:

Fig. 5. Flowchart of POA.
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EG(t) = [EDC(t)+ EAC] × ηConv (7)

EDC(t) = EPV(t) (8)

EAC(t) = EWT(t) (9)

When Electrical power generation is not meet the demand by RESs,
the battery energy system provides the required load, which can be
calculated follow as:

EBatt(t) = (1 − σ) × EBatt(t − 1) +
(
EL(t)
ηConv

− EG(t)
)/

ηrbatt (10)

3.4. Diesel generator (DG)

The linear law of DG hourly fuel consumption, which is determined
by the amount needed to satisfy demand, can be calculated as follows
[36]:

FDG(t) =
(
aDG × PDG,gen(t)+ bDG ×PDG,rat

)
l
/
h (11)

Where bDG and aDG represent coefficients of DG consumption curve
and their respective values are bDG = 0.08414 (l/KWh) and aDG= 0.246
(l/KWh).

DG total annual fuel consumption in liters (TAFCIL) is calculated
using the following equation:

TAFCIL =
∑8760

t=1
FDG(t) (12)

3.5. CO2 emission

The expected CO2 emissions are determined by the estimated fuel
consumption per hour, which is as follows [37]:

CO2 = SECO2 (kg / l) × FDG(t)
(
l
h

)

(13)

Where SECO2 represent the per liter diesel’s specific emission, and its
value is 2.7 kg/l.

The estimation of the DG’s total annual CO2 emissions is as follows:

TACO2 =
∑8760

t=1
CO2(t) (14)

3.6. Bi-directional with a charge controller (BDC-CC)

When converting electrical energy, the BDC-CC is both a rectifier and
an inverter. In rectifier mode, AC is transformed into DC; in inverter
mode, DC is converted back into AC. The charge controller is advanta-
geous by preventing the battery bank from being overcharged or dis-
charged excessively. The calculation for determining the power rating of
the BDC-CC (PBDC-CC) is as follows [38]:

PBDC− CC = ET,max × 1.1 (15)

Where ET,max represents the highest amount of energy that can be
transferred by the converter. The multiplication factor of 1.1 indicates
that the converter can handle an additional 10 % of its maximum
capacity.

3.7. Economic analysis

The LCC of the complete system is calculated by summing up the
following costs: initial capital costs (ICC), erection cost (EREC), the
present value of yearly O&M (PV,O&M) costs, the present value of
replacement (PV,REP) costs, and the present value of fuel (PV,FUEL) costs
[39].

LCC = ICC+ EREC+ PV,O&M + PV,REP + PV,FUEL (16)

The following equation will be employed to calculate the Initial
Capital Costs (ICC) of the microgrid components:

ICC =
[ (

NPV × CPV,cap
)
+
(
NWT × CWT,cap

)
+
(
NBATT × CBATT,cap

)

+
(
CBDC− CC,cap

)
+
(
CDG,cap

)] (17)

Where NPV, NWT, NBATT, CPV,cap, CWT,cap, CBATT,cap, CBDC-CC,cap and
CDG,cap represent the no.of PV panel, WT, batteries(BATT), initial capital
costs of PV, WT, BATT, BDC-CC and DG.

For microgrid component erection costs (EREC), the following
equation is followed:

Fig. 6. Pseudocode of POA.
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EREC =
(
NPV × CPV,erec

)
+
(
NWT × CWT,erec

)
+
(
NBATT × CBATT,erec

)

×
∑Nr

b=1

(1+ x)bNc − 1

(1+ y)bNc
)+

(

CBDC− CC,erec ×
∑Nr

b=1

(1+ x)bNc − 1

(1+ y)bNc
)

)

+

(

CDG,erec ×
∑Nr

b=1

(1+ x)bNc − 1

(1+ y)bNc
)

)

(18)

Where CPV,erec, CWT,erec, CBATT,erec, CBDC-CC,erec and CDG,erec represent
the erection costs of PV, WT, BATT, BDC-CC and DG.

Following this, the present value of the microgrid components’
annual O&M costs is calculated:

PV,O&M =
[ (

NPV × CPV,O&M
)
+
(
NWT × CWT,O&M

)
+
(
NBATT × CBATT,O&M

)

+
(
CBDC− CC,O&M

)
+
(
CDG,O&M

)]
×
∑N

i=1

(1+ x)i− 1

(1+ y)i
]

(19)

Where CPV,O&M, CWT,O&M, CBATT,O&M, CBDC-CC,O&M and CDG,O&M
represent the operation and maintenance costs of PV, WT, BATT, BDC-
CC and DG.

y =
Inom − x
1+ x

(20)

Where N, x, Inom and y represent the project’s life span, inflation rate,
nominal interest rate, and discount rate, respectively.

The annual replacement costs of microgrid components are

computed as follows to determine their present value:

PV,REP =
(
NBATT × CBATT,REP

)

×
∑Nr

b=1

(1+ x)bNc − 1

(1+ y)bNc
)+

(

CDG,REP ×
∑Nr

b=1

(1+ x)bNc − 1

(1+ y)bNc
)

)

(21)

Where CBATT,REP and CDG,REP represent the replacement cost of BATT
and DG.

Nr = int
(
N − NC

NC

)

(22)

Where NC represent the life duration of each component, while Nr

denotes the quantity of replacements necessary for the system
components.

The following equation will be used to determine the annual fuel
expense of the microgrid component:

PV,FUEL = TAFCILDG ×
∑N

i=1

(1+ x)i− 1

(1+ y)i
(23)

Where TAFCILDG represent the total annual fuel consumption in li-
ters of the DG.

4. Problem formulation

The objective function is defined based on the life cycle cost (LCC),
cost of energy (COE), and constraints involved with the PV, WT, BESS,
and DG. These factors will now be addressed in detail below:

4.1. Objective function

Life Cycle cost (LCC):
Minimize the LCC of the system while addressing the constraints

with an LPSP of 0%. The LCC depend on four parameters: the number of
PV panels (NPV), wind turbines (NWT), batteries (NBATT) and diesel
generator (NDG).

min LCC(NPV , NWT, NBATT, NDG) =
∑min

C=PV,WT,BATT,DG
(LCC)C (24)

Cost of Energy (COE):
One of the most important factors in assessing the economic feasi-

bility of a microgrid is the COE, which includes the LCC, capital recovery
factor (CRF), and electrical load (EL).

Fig. 7. Proposed optimization approach using POA.

Fig. 8. Annual load demand.
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COE =

(
LCC

∑8760
t=1 EL(t)

)

× CRF (25)

4.2. Constraints

Upper and Lower bounds:
The study’s lower bound is zero, and the upper bound is the

maximum generation limit. Therefore, it remains subject to all con-
straints. Apply the following constraints to the remaining sources: solar,
wind, battery, and diesel.

0 ≤ NPV ≤ NPVmax (26)

0 ≤ NWT ≤ NWTmax (27)

0 ≤ NBATT ≤ NBATTmax (28)

0 ≤ NDG ≤ NDGmax (29)

Battery Energy Storage limits:
The battery bank will store or discharge a certain amount of energy,

which the following constrain [40]:

EBATTmin ≤ EBATT(t) ≤ EBATTmax (30)

The maximum and minimum limits for battery energy stored are
calculated as follows:

EBATTmax =
(
NBATT × VBATT × SBATT

1000

)

× SOCmax− bat (31)

EBATTmin =
(
NBATT × VBATT × SBATT

1000

)

× SOCmin− bat (32)

Where VBATT and SBATT represent the voltage and rated capacity (Ah)
of the battery.

The minimum and maximum limits for the state of charge (SOC) of
the battery are calculated as follows:

SOCmin− bat = 1 − DOD (33)

SOCmax− bat = SOCmin− bat + DOD (34)

Where DOD represent the depth of discharge.
Diesel Generator (DG) Limit:
The study determines that the minimum load necessary for DG

operation is 50% of its rated capacity. Consequently, the DG will operate
in a simulation once it complies with the specified limits outlined below
[41]:

EL(t)
ηconv

≥ PDG, rat × Δt (35)

Power Reliability Index:
The reliability index for energy relates to its consistent ability to

provide a dependable power supply under particular conditions. The
evaluation of microgrid power reliability entails the computation of the
loss of power supply probability (LPSP), which denotes the likelihood of
power supply failure. The hourly energy demand and power supply loss
(LPS) are utilized to derive the calculation [42]:

LPS(t) =
EL(t)
ηconv

− EG(t) − [(1 − σ)×EBATT(t − 1) − EBatt− min] × ηrbatt (36)

Fig. 9. Annual ambient temperature.

Fig. 10. Annual solar irradiance.

Fig. 11. Annual wind speed.
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LPSP =

∑T
t=1LPS(t)
∑T

t=1EL(t)
(37)

5. Pelican optimization algorithm (POA)

Dehghani and Trojovsk [34] developed the POA in 2022, drawing
inspiration from nature. The reasons for selecting the POA technique are
that it outperforms existing techniques by efficiently balancing the
exploration and exploitation phases, resulting in better and more
competitive performance and fast convergence speed [48]. The POA
method is population-based; pelicans are included. In algorithms based
on populations, each element signifies a prospective solution. All pop-
ulation members set forth proposed values for the variables linked to the
optimization problem based on their respective positions in the search
space. Eq. (38) randomly populates the population, constrained by the
problem’s upper and lower bounds.

Xi,j = lj + rand.
(
uj − lj

)
, i = 1.2,…,N, j = 1,2,…, m, (38)

Where xi, j represents the jth variable in the ith feasible solution. The
population size is denoted by the symbol N. The quantity of variables
representing problems is denoted as m. The random number “rand” is
inside the interval [0, 1]. Lj represents the jth lower bound and jth upper
bound of the problem variables, denoted as uj.

Where X is the matrix that represents the pelican population, and Xi
represents the ith individual pelican.

As every individual in the POA population is a pelican, this may
present an acceptable resolution. Thus, evaluating the problem’s
objective function is feasible by analyzing every possible solution. Eq.
(40) and a vector referred to as the objective function vector are utilized
to ascertain the values of the objective function.

F =

⎡

⎢
⎢
⎢
⎣

F1
⋮
Fi
⋮

FN

⎤

⎥
⎥
⎥
⎦

N×1

=

⎡

⎢
⎢
⎢
⎣

F(X1)

⋮
F(Xi)

⋮

F(XN)

⎤

⎥
⎥
⎥
⎦

N×1

(40)

The pelican’s hunting process consists of two distinct phases, which
are referred to as exploitation and exploration. Exploration entails
movement in the direction of the prey, as opposed to exploitation, which
requires flying on the water’s surface. During the initial phase, pelicans
identify and go towards their prey. The random generation of the
location of the prey enhances POA’s exploration efficiency. The initial
phase is mathematically represented by Eq. (41).

Table 3
Economic and technical specifications of PV, WT and DG parameters.

Parameters Value Parameters Value

Project lifetime 25 years Cut-out speed of WT 21 m/s
Nominal interest rate 8% Rated speed of WT 11 m/s
Inflation rate 3% Capital cost of WT $2500
Rated power of PV Panel [43] 0.25kWp AO&M cost of WT $75
Lifetime of PV Panel 25 years DG (Company: Mitsubishi, Model No: ST-M1600GF) [49] 2000 KVA
Capital cost of PV Panel $250.00 C&R of DG $200,000
AO&M cost of PV Panel $6.25 Diesel Price $0.97
Rated power of WT [43] 1kW Rated power of BDC-CC [40] 2000kW
Lifetime of WT 25 years Lifetime of converter 10 years
Hub height of WT 20 m Capital cost of converter $172,800
Reference height of WT 10 m AO&M cost of converter 2.5% of CC
Cut-in speed of WT 2.5 m/s Efficiency of converter 95%

Table 4
Economic and technical specifications of the batteries.

Battery Type Lead Acid (PbSO4) Lithium Iron Phosphate (LiFePO4) Nickel Iron (Ni-Fe)

Manufacturer Trojan [50] Victron [51] Iron Edison [52]
Model SSIG 06 490 LFP-12.8/200-a TN 1000
Round trip efficiency (ηrbat) 85% 92% 80%
Lifespan in years 3 years @70% DOD 9 years @70% DOD 30 years @70% DOD
Self-discharge rate (%/day) (σ) 0.30% 0.20% 1.00%
Capital cost (CC) $410 $3317 $1057
Annual O&M cost 2.5% of CC No maintenance 2% of CC
Operating temperature − 20 ◦C to +45 ◦C − 20 ◦C to +50 ◦C − 30⁰ C to +60⁰ C
Cycle life of the batteries 800 cycles 3000 cycles 11,000 cycles
Operating temperature − 20 ◦C to +45 ◦C 300Ah 1000Ah

(39)
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xP1i,j =

{ xi,j + rand.
(
pj − l.xi,j

)
, F1p < Fi;

xi,j + rand.
(
xi,j − pj

)
, else,

(41)

Where Fp & xP1i,j represent the prey’s objective function value, a
random number l equal to 1, or 2, and the ith pelican’s new status in the
jth dimension based on the first phase. A new position of a pelican be-
comes permissible within the bounds of POA if the objective function
value increases at that particular location. By employing this method-
ology, known as "effective updating," the algorithm avoids its progres-
sion through suboptimal regions. From a mathematical standpoint,

Xi =

{
XP1
i , FP1i < Fi;
Xi, else,

(42)

Where XP
i
1 denotes the updated status of the ith pelican, whereas FPi1

represents the value of the pelican’s objective function calculated during
the initial phase.

During the second phase, pelicans employ the water’s surface to
generate upward propulsion for the fish by extending their wings, sub-
sequently trapping the prey in their throat bag. Consequently, pelicans
can catch a greater quantity of fish. The exploitation potential of POA is
enhanced during this phase as the algorithm approaches more optimal
solutions in the hunting zone. The hunting procedure is formulated as
follows:

xP2i,j = xi,j + R.
(
1 −

t
T

)
. (2.rand − 1).xi,j (43)

Where xP2i,j denotes the updated state of the ith pelicans in the Jth

dimension during the second phase. The constant R equals 0.2 and
R.(1 − t /T) is an expression using t and T variables. The neighborhood
radius of xi,j is determined by the iteration counter t and the maximum
number of iterations T. At this point, the approval or rejection of the

newest pelican position has been determined through efficient updating,
as illustrated in Eq. (44):

Xi =

{
XP2
i , FP2i < Fi;
Xi, else,

(44)

Where XP2
i indicates the updated status of the ith pelican, and de-

notes the objective function value of the pelican. This next iteration
begins once every member of the population has been updated.
Throughout this process, a series of operations guided by Eqs. (41–44)
are repeated until the execution is finished. The process of POA is
illustrated in the flowchart and pseudocode are provided in Fig. 5 and 6.

5.1. Proposed solution

The proposed solution applied POA to determine the most efficient
sizing for the microgrid, as depicted in Fig. 7. At first, the particular
details of the PV, WT, DG, battery, converter, and load were figured out.
Meteorological information about the installation site has been recor-
ded, which includes longitude, latitude, wind speed, solar radiation, and
ambient temperature. Also,

EMS incorporates microgrids that manage power flow among
numerous system elements. Each probable solution, which includes the
number of PV panels (NPV), the number of wind turbines (NWT), and the
number of batteries (NB), undergoes the POA steps. The LPSP is
computed to evaluate the proposed solution’s reliability. A convergence
of the LPSP to one signifies that the load is unsatisfied, leaving the so-
lution unfeasible. When this occurs, the procedure is iteratively applied
to the following feasible solution from the population. The RESs pro-
duced can meet the capacity requirements once the LPSP reaches zero.
Through the iterative repetition of the procedures, the iterations are
ultimately concluded, yielding an accurate microgrid capable of ful-
filling the load demands for the system’s life.

Table 5
Optimization results for sizing of the microgrid components.

Configuration Quantity GA PSO MFOA WOA GWO Proposed POA

PV/WT/LA/DG Number of PV (NPV) 8186 9854 8446 8112 9180 8621
Number of WT (NWT) 10 10 16 9 10 10
Number of batteries (NB) 6590 5464 5831 6173 5919 6298
Total annual fuel consumption in liter (TAFCIL) 293 293 3535 9303 293 7283

PV/WT/Li-ion/DG Number of PV (NPV) 11,205 11,205 11,345 11,210 11,200 11,190
Number of WT (NWT) 10 10 6 11 14 17
Number of batteries (NB) 3413 3413 3378 3357 3380 3365
Total annual fuel consumption in liter (TAFCIL) 1752 1751 1270 1878 1749 2100

PV/WT/Ni-Fe/DG Number of PV (NPV) 11,206 11,205 9925 11,208 7519 7494
Number of WT (NWT) 11 10 18 12 13 15
Number of batteries (NB) 4458 4458 5145 4380 5680 5725
Total annual fuel consumption in liter (TAFCIL) 1751 1751 4560 1930 20,425 23,125

Table 6
Optimized results for LCC and COE for different configuration of microgrid components.

Configuration Cost GA PSO MFOA WOA GWO Proposed POA

PV/WT/LA/DG LCC ($) 8,424,687 8,395,820 8,370,410 8,402,974 8,343,961 8,334,901
COE ($/kWh) 0.1092 0.1088 0.1085 0.1089 0.1082 0.1080

PV/WT/Li-ion/DG LCC ($) 25,806,669 25,724,017 25,711,682 25,745,936 25,706,042 25,645,632
COE ($/kWh) 0.3346 0.3335 0.3333 0.3337 0.3331 0.3323

PV/WT/Ni-Fe/DG LCC ($) 12,312,606 12,229,955 12,192,940 12,280,376 12,038,965 11,926,161
COE ($/kWh) 0.1596 0.1584 0.1579 0.1590 0.1561 0.1546

Table 7
Amount of GHG emission for different configuration of microgrid components.

Configuration Emission GA PSO MFOA WOA GWO Proposed POA

PV/WT/LA/DG CO2 (kgs/year) 789 789 9545 25,120 789 19,664
PV/WT/Li-ion/DG CO2 (kgs/year) 4730 4729 3429 5071 4723 5670
PV/WT/Ni-Fe/DG CO2 (kgs/year) 4729 4729 12,312 5211 55,148 62,437
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6. Results and discussion

The study implements the microgrid system’s optimal sizing utilizing
MATLAB, considering GA, PSO, GWO, and the proposed approach POA.
The microgrid system comprises PV, WT, DG, and BESS. The case study
area is Kutubdia Island of Bangladesh, located at 21.8167◦S and
91.8583◦E. Initially, input data, such as wind speed, solar irradiance,
and load demand data, were collected. The historical data was sourced
from the National Aeronautics and Space Administration (NASA). The
island microgrid undergoes fluctuations in its hourly load requirement,
which can vary from 50 – 1100 kW. Fig. 8 illustrates the yearly load
curve for a typical year. Fig. 9–11 display the annual temperature,
irradiance, and wind speed respectively. The island microgrid’s com-
ponents are vulnerable to the effects of natural disasters. To guarantee
the system’s dependability, it is necessary to consider components with
suitable rated capacity to prevent outages resulting from equipment
failure. The economic and technical specifications of the PV, WT, DG
and battery parameters are presented in Table 3 and 4.

The optimal solutions for the three configurations of microgrid
generated by the six algorithms are displayed in Tables 5, 6, and 7. The
default parameters of the algorithms, GA, PSO, MFOA, WOA GWO, and
the proposed approach, POA, are run with a maximum number of iter-
ations of 100 and a maximum population size of 100. Each solution has
an LPSP value of 0 %. All the results presented in the tables show that LA
battery-based configuration (PV/WT/LA/DG) is the best among all the
three configurations. In Table 5, the optimal number of PV panels, wind
turbines, batteries, and diesel generators are presented for different
configurations of microgrid to achieve optimal sizing. The proposed
POA approach predicts 8621 PV panels, 10 wind turbines, 6298 batte-
ries, and 7283 liters of DG annually are required to design an econom-
ically feasible microgrid compared to other optimization techniques.
The optimal results for LCC and COE are presented in Table 6 for all the
three configurations of microgrid. POA approach obtained PV/WT/LA/
DG configuration has a minimum LCC and the system’s lowest COE
which are $ 8,334,901 and 0.1080 $/kWh. Table 7 provides the GHG
emission results for microgrid different configurations obtained by
different optimization methods. It is observed that for the proposed POA
approach, the total GHG emission is 19,664 kgs/year for microgrids PV/
WT/LA/DG configuration. The charging and discharging process for the

LA battery bank in response to load demand, along with the annual
energy generation from PV, WT, and DG, are depicted in Fig. 12.
Comparing the proposed method to different methods for determining
the variation of LCC and COE is shown in Fig. 13. The proposed
approach has a lower LCC and COE than other methods. The GWO
method show an increase of 0.1 %, the WOA method show a rise of 0,82
%, the MFOA method show an increase of 0.43 %, the PSO method
shows a rise of 0.7 %, and the GA method shows an increase of 1 %.
Fig. 14 and 15 show the energy output graphs for the base case in the
summer and winter seasons for one month (May and December),
respectively. According to the figure, it is observed that from morning 7
a.m. to evening 5 p.m. in summer, and frommorning 9 a.m. to evening 4
p.m. in winter, the PV and WT supply the estimated load demand. The
excess energy generated is used to charge the batteries. The batteries and
WT supply the total load demand from 6 a.m. to early morning,
repeating this cycle for the summer and winter seasons.

Fig. 12. Annual electricity generation of microgrid.

Fig. 13. LCC and COE variation for different algorithms.

Fig. 14. Energy outputs of islanded microgrid during summer season in
May month.
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6.1. Effect of LA/Li-ion/Ni-Fe battery technology

The LA battery-based microgrid shows the lowest LCC and COE,
equal to $8,334,901 and 0.1080$/KWh, as presented in Table 4. This
study’s base case represents an optimal value in comparison to different
configurations of battery-based microgrids. The Li-ion-powered micro-
grid has an LCC and COE of $25,645,632 and 0.3323$/KWh, respec-
tively, approximately 207 % greater than the base case. The Ni-Fe

battery-powered microgrid exhibits an LCC of $11,926,161 and a COE of
0.1546 $/kWh, roughly 43% greater than the base.

6.2. Convergence speed

The convergence curve of each algorithm for the LA-based microgrid
is illustrated in Fig. 16. The proposed method reached the minimum LCC
at the 20th, 18th, 19th, 23rd, 17th, and 13th (orange circle) iterations,
respectively, through the convergence of GA, PSO, MFOA, WOA, GWO,
and POA algorithms to the optimal value of LCC.

6.3. Effect of reliability index (LPSP)

As mentioned in Section 6.1, the LA-based microgrid using the pro-
posed technique is the best configuration at 0% LPSP. Further analysis
was conducted using the proposed POA approach at various reliability
index values to identify optimal values. The optimized value of the
proposed technique based on the LA microgrid for different reliability
index (LPSP) values is shown in Table 8. A significant difference has
been noted between the LPSP values of 0 % and 1 %. An analysis of the
data shows a significant reduction in the quantity of PV panels (8621 –
7296) and batteries (6298 – 4458), respectively. However, the number
of WTs remains unchanged across all values. Moreover, the LCC and
COE values have each been lowered by 29 %. LPSP, or Loss of Power
Supply Hours, comprises just 88 out of 8760 hours, or 1% of the total. As
shown in Fig. 17, the corresponding values for LPSP increase while those
for the remaining parameters decrease.

6.4. Sensitivity analysis

A sensitivity analysis evaluated the optimal configuration to deter-
mine the effect of the interest rate input parameter by varying LCC, COE,
and CO2. The study involved adjusting the interest rate by ±20%. The
optimum configuration is the base case, with an LCC of $8334,901 and a
COE of 0.1080 $/kWh. Table 9 presents the optimum design outcome

Fig. 15. Energy outputs of islanded microgrid during winter season in
December month.

Fig. 16. Convergence curve of the LA battery based microgrid for
different algorithms.

Table 8
Different reliability index (LPSP) values within the optimal configuration.

Configuration Quantity & Cost LPSP (0%) LPSP (1%) LPSP (2%) LPSP (3%) LPSP (4%) LPSP (5%)

PV/WT/LA/DG NPV 8621 7296 6766 6536 6418 6339
NWT 10 10 10 10 10 10
NB 6298 4458 3843 3707 3576 3462
CO2 (kgs/year) 19,664 14,502 12,913 11,702 11,139 9884
LCC ($) 8,334,901 6,738,262 6,386,766 6,205,964 6,107,525 6,026,669
COE ($/kWh) 0.1080 0.0876 0.0830 0.0804 0.0791 0.0780

Fig. 17. Variation in corresponding components LCC, COE and CO2 at various
LPSP values.
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when varying the interest rate. A rise in the interest rate on the system
from 10 % to 20 % of its base case has been found to result in an increase
in the system LCC and COE from 0.9 % – 1.9 %, and CO2 emission from
13 % – 23 % compared to the base case. In the same way, a reduction in
the system’s interest rate from 10 % –20 % relative to its base case re-
duces the LCC and COE by 0.4 % – 1 %, respectively, and decreases CO2
emissions by 12 % and 27 % compared to the base case. The effective-
ness of the system is greatly affected by the interest rate.

6.5. Comparative analysis

Table 10 presents a comparative study that illustrates the perfor-
mance of the developed system at Kutubdia Island in previous works.
Several studies have been conducted on the design of a microgrid sup-
plied by RESs for Kutubdia Island. LCC has not been taken into consid-
eration in majority the studies. The COE and CO2 emissions for the
proposed approach are 0.1080$/kWh and 19,664 kg/yr, which is less
than the previous works. Furthermore, the proposed approach, POA-
based performance used for microgrids optimal sizing has been
compared with optimization techniques such as GA [12], PSO [13],
MFOA [14], ACO [15], WOA [17], GOA [18], FOA [19], GWO [20], and
HHO [21] based on values of LCC, COE and amount of CO2 emission
which is presented in Table 11. From the table it is observed that pro-
posed POA optimization technique has outperformed the performance

of all existing methods which have been used for optimization of
different microgrid around the world.

7. Conclusion

An optimization approach, POA, is proposed to determine the
optimal sizing of microgrid components for Kutubdia Island in
Bangladesh, where the expansion of the distribution network is not
feasible while attaining minimum LCC and COE. Furthermore, a study
on the selection of three battery technologies has been conducted on LA,
Li-ion, and Ni-Fe for continuous power supply. The proposed POA gives
the optimal configuration of the island microgrid with optimal LCC and
COE values compared to other optimization techniques, GA, PSO, GWO,
MFOA, and WOA. LA battery-based microgrid provided the optimal LCC
and COE, amounting to $8,334,901 and 0.1080$/KWh, respectively, as
determined by the results. The Li-ion-powered microgrid exhibits a COE
of 0.3323 $/KWh and an LCC of $25,645,632, approximately 67.5 %
greater than the optimal configuration. The LCC and COE of the Ni-Fe
battery-powered microgrid are $11,926,161 and 0.1546 $/kWh,
which are 30% greater than the optimal configuration. Optimal con-
figurations are determined across a range of LPSP values between 0%
and 5 %. Despite a slight reduction in power supply hours, it is noted
that the optimal configuration yields superior outcomes in terms of LCC
and COE. Additionally, a sensitivity analysis was performed by regu-
lating interest rates. It has been observed that interest rates have a
greater impact on system effectiveness. Finally, a comparative study
based on LCC, COE, and CO2 emissions with previous works was per-
formed, demonstrating that the proposed POA provides superior results
compared to the previous works. The future scope involves the devel-
opment of a multi-objective algorithm based on POA to solve continuous
multi-objective problems. Additionally, effective planning can reduce
peak load demands by implementing energy conservation management
and rescheduling off-peak load demand periods. Implementing this
strategy may result in a substantial decrease in investment expenses.
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Table 9
Variation of interest rates within the optimal configuration.

Components -20% of
base case

-10% of
base case

Base case +10% of
the base
case

+20% of
base case

Interest rate 6.4% 7.2% 8% 8.8% 9.6%
LCC 8,255,859 8,306,619 8,334,901 8,413,215 8,496,312
COE 0.1069 0.1076 0.1080 0.1090 0.1101
CO2 22,829 26,000 19,664 33,416 37,707

Table 10
Comparison among POA and other approaches used for techno-economic anal-
ysis at Kutubdia Island.

Ref. Sources used
in microgrid

Techniques LCC COE CO2

emission

[35] PV/WT/DG/
BESS

HOMER × 0.235
$/kWh

522,110
(kg/yr)

[44] PV/DG/BESS HOMER × × 2649,251
(kg/yr)

[45] PV/WT/DG/
BESS

NSGA × 0.2
$/kWh

62,075 (kg/
yr)

[46] PV/WT/DG HOMER × 0.4
$/kWh

132,786
(kg/yr)

[47] PV/ Biogas/
DG

HOMER × 0.42
$/kWh

×

Proposed
work

PV/WT/DG/
BESS

POA √ 0.1080
$/kWh

19,664
(kg/yr)

Table 11
Comparison among optimization methods used for optimal sizing of different
microgrid systems.

Ref. Techniques LCC COE CO2 emission

[17] GA × × 104,323.10 (kg/yr)
[18] PSO × 0.10006 $/kWh 272,811.16(kg/yr)
[19] MFOA × 0.60 $/kWh ×

[20] ACO × 1.082 $/kWh 11,833 (kg/yr)
[22] WOA × 0.1986 $/kWh ×

[23] GOA × × ×

[24] FOA × 0.085 $/kWh ×

[25] GWO × 0.12 $/kWh ×

[26] HHO × 0.20 $/kWh ×

Proposed work POA √ 0.1080 $/kWh 19,664 (kg/yr)
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