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Featured Application: The work presented in this paper is an investigation of the limitations of
precision due to environmental disturbances (like thermal effects) in traditional algorithms based
on operational modal analysis (OMA) that are used in dynamic structural health monitoring in
civil and mechanical engineering.

Abstract: The data from a laboratory test on two aluminum rods are analyzed in this work. The rods
are subjected to environmental excitation in an uncontrolled environment, attempting to replicate
real operational conditions of structural health monitoring with external disturbances. Different
damage levels are simulated on one of the two tension rods. Three of the most frequently used OMA
methods are applied to evaluate the effects of the simulated damage on the dynamic behavior of the
system. The complexity of the three applied OMA methods is gradually increased. The difference
between the results from the different approaches is assessed. The aim of this work is to assess the
performance of the proposed OMA methods, to understand their limits, and to assess the role of
environmental disturbance parameters, such as temperature, in the evaluation of the health status of
structures.

Keywords: structural health monitoring; dynamic monitoring; operational modal analysis; peak-picking;
poly-reference least squares complex frequency method; Cov-SSI

1. Introduction

Structural health monitoring (SHM) is the process of checking the condition of a
structure through an automated monitoring system. SHM techniques started in aerospace
and automotive fields, but due to their multidisciplinary nature and potential, in the last
decades they are widely used and adapted for civil engineering.

In an SHM process, the data acquisition can be carried out periodically, or as is more
common in recent years, continuously. In this second case, the volume of sampled data
may be not negligible, and therefore advanced data management skills are needed [1,2].

The objectives of SHM can be divided into the following five levels [2,3]:

1.  Damage detection: giving a qualitative indication of the probable presence of damage
in the monitored system.

2. Damage localization: giving an information about the probable location of the damage

in the monitored system.

Damage classification: giving an information about the possible type of damage.

Damage assessment: giving an estimate of the probable extent of damage.

5. Damage prognosis: giving information on the structural safety, e.g., estimating the
useful life of the structure after damage.
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High-order levels generally require the information necessary to determine the lower
order levels. The first two levels will be investigated in this work for the monitoring of the
examined system.

The development of an SHM-based method generally depends on two key factors: the
technology of the sensor used for monitoring, and the algorithm used for the interpretation
of sampled signals. A structural monitoring system generally consists of several key
components: sensors, data acquisition, data transmission, data processing, data storage,
and structural health assessment [2]. Each of these phases plays a key role. The following
work will examine the stages of data processing and health assessment.

Strategies for monitoring the health status of a structure can be categorized into two
main groups that generally provide different types of information [2]: global monitoring
and local monitoring. The most appropriate type of monitoring depends on the kind of
structure. For example, a global approach should be chosen when access to specific parts
of the structure is impossible [2]. For a global monitoring system, accelerometers are one
of the most-used type of sensors. The measurement of acceleration data can be used to
estimate the modal parameters of the system and damage can be investigated by evaluating
their variation over time.

In this paper, a global approach was used. Two aluminum rods are monitored by
means of a network of accelerometers. A series of simulated damages of different mag-
nitudes were simulated in different positions of the rods by adding small masses. The
modal parameters of the system were derived using different OMA techniques. The raw
modal parameters were cleaned of environmental thermal effects to separate the effect of
environmental disturbance parameters from the effect of the damage. The effectiveness
of the applied OMA methods and the limits of the monitoring system were evaluated,
studying the capacity for detecting the variation of the modal parameters due to applied
damage without being blinded by the ambient disturbances.

OMA techniques have been studied for years and are well established nowadays.
In recent years, many studies have been conducted on automatic OMA techniques that
allow the automatic identification of modal parameters. These techniques are particularly
suitable in continuous monitoring situations over long periods [4-6].

However, there has never been enough focus on the aspects that can influence the
interpretation of dynamic identification results. In fact, the dynamic behavior of most types
of structure is strongly influenced by the environmental conditions in which the structure
operates. The influence of environmental conditions can mislead the assessment of the
health status of the structure. Therefore, their influence on the modal parameters must be
studied very carefully. The authors of this paper would like to highlight this last aspect.

2. Dynamic Monitoring

Dynamic monitoring of a structure is the process of assessing structural characteristics
through the study of induced vibrations [1]. It is based on the hypothesis that a change
in the mechanical characteristics of the structure due to damage or deterioration causes
a more or less appreciable change in the structural dynamic behavior [1]. An extensive
description and classification on modal analysis methods is given in [1] and [7]. Modal
parameters, such as natural frequencies, mode shapes and their variants, and damping
are commonly used in SHM. However, the use of natural frequencies alone as damage
indices has some limitations; they are quite insensitive to local damage and the number of
available frequencies is limited—generally less than 10 [8].

For multi-degree-of-freedom (MDOF) systems, the dynamic behavior can be described
by a system of differential equations in the time domain, shown in expression (1).

IMI{5(t) } + [Cl{y (1)} + [K{y ()} = {f(t)} 1)

where: {§j(t)}, {y(t)} and {y(t)} are the vectors of acceleration, velocity and displacement,
respectively; [M], [C] and [K] are the mass, damping and stiffness matrices, respectively;
and {f(t)} is the forcing vector. Expression (1) is valid for a linear, invariant ([M], [C]
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and [K] are constant), observable system with viscous damping. It describes the dynamic
behavior of a system with N degrees of freedom. The equation of motion, which is
coupled in this formulation, can be decoupled under the assumption of viscous proportional
damping using the principle of orthogonality between the modes of vibration and solving
an eigenvalue problem. This leads to a system of algebraic equations and the modal
model [1,2,7,9,10].

The dynamic model at the basis of the most used OMA methods, which is proposed in
the following, is represented by the model in phase space. This is obtained through a series of
mathematical manipulations of the spatial model shown in (1) [1]. In the phase-space model,
the dynamic behavior of the structure is described through three fundamental matrices: the
state matrix [A], the controllability matrix [C] and the observability matrix [O].

A fundamental role for the application of methods based on operational modal analysis
is played by the theories of signal analysis [1,2]. The roles played by statistical operators,
especially second-order operators (correlation functions), and by transformations from
time to frequency domain, i.e., the Fourier transform, are fundamental.

3. Methodology

In this section, the authors describe the methodology followed in the study. In the first
step, the accelerometer data are observed, and a simple visual assessment is made to see
if there is any macroscopic anomaly. If no anomaly is found visually, the accelerometer
data are analyzed using the peak-picking method; the simplest and least computationally
demanding OMA method.

The frequencies obtained by peak-picking are then compared with the theoretical
results obtained from mechanical formulations of vibrating rods and ropes.

After this first phase, two more complex OMA methods with higher computational
burdens are applied: Cov-SSI and PolyMAX. The frequencies of the first three vibration
modes are calculated.

These frequencies show a trend over time that is correlated with the ambient tempera-
ture trend. The correlation with temperature is cleaned to the best possible standard and
the reliability of the cleaned frequencies is assessed, attempting to find known damages
introduced in the rods.

Figure 1 shows the flow-chart of the study.

Evaluation of structural
frequencies from theoretical
mechanical formulations

Application of more complex
OMA methods: Cov-5SSI and
PolyMAX

Visual analysis of accelerograms

Evaluation of temperature
effect

Evaluation of system
frequencies using peak-picking

Temperature drift cleaning of
modal parameters

Comparison with the results of
theoretical mechanical models

Figure 1. Flow chart of the study.

Can a know damage be
individuated from modal
identification after temperature
drift cleaning?
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4. Applied OMA Methods

Three of the most used OMA methods are used in this paper. The results obtained
from their application are compared to understand which method is the most effective in
providing early warning of damage in the examined structure in a noisy environment. A
parametric method in the time domain, Cov-SSI [1,7,11], and two methods in the frequency
domain; a non-parametric method, peak-picking [1]; and a parametric method, poly-
reference least-squares complex-frequency method (PolyMAX) [1,12,13], are examined.

4.1. Peak-Picking

Peak-picking is the non-parametric method in the frequency domain that requires
the lowest computational burden. It is based on the evaluation of the power spectral
density [14-16]. The name of the method derives from the fact that the proper modes of the
structure are identified by looking for peaks in the power spectral density (PSD) graph [1].
The PSD is estimated by the Welch method [17] as follows.

Calf) = i VI @

=

where Gy (f) is the one-sided auto-spectral density function;  is the number of contiguous
segments into which the signal is split; Nt; is the length of each segment into which the
signal has been divided; and |X;(f) |? is the FFT of the segment.

A few preventive operations, such as the application of appropriate windows to the
raw signal to avoid the leakage phenomenon, need to be performed on the raw signal
before applying Welch’s method [1,7,9,14,15,18].

The peak-picking method assumes that in proximity to the structure’s resonance, close
to the peak, the structure behaves like a one-degree-of-freedom system (1DOF), as only one
mode is dominant, and the contribution of the other modes can be neglected.

This method has the advantage of providing an acceptable approximation of the modal
parameters of the system quickly and easily if the modes are well separated, but it shows
low accuracy and an inability to identify modes that are very close to each other, or cases of
high damping [1]. It is especially useful for a first check on the sampled data and for a first
estimation of the modal parameters of the system.

In the present work, the peak-picking method is applied on a single sensor output. A
MDOF approach with frequency-domain decomposition (FDD), based on the SVD of the
3D PSD matrix, is not performed.

4.2. Covariance-Driven Stochastic Subspace Identification (Cov-SSI)

Cov-5SSI is one of the most effective and widely used methods in civil engineering.
It is a parametric method in the time domain. It approaches the problem of stochastic
realization, identifying a stochastic model from output-only data [1,7,11,19]. A complete
and exhaustive mathematical treatment of the method can be found in [1].

The system under evaluation should be observable and controllable [20]; for a system
of order N, its observability and controllability matrices must have rank N. In practice, the
order of the system is unknown, and its accurate determination is very complex due to the
uncertainty and the noise that accompanies the sampling. For this reason, a conservative
approach will overestimate the system order. This will cause the appearance of non-physical
modes that must be separated from the physical modes by specific methods represented by
the stabilization diagrams [1,7].

Only the poles that exhibit stability between the different orders of the model represent
physical modes. The most used stability criteria, as reported in [1], are generally the

following:
f(n) = f(n £+ 1)
Fin) <0.01

®)
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C(n) = &(n+1)]
¢(n)
where f(n) is the natural frequency of the order n model; {(n) is the damping of the order
n model; f(n + 1) is the natural frequency of the order n + 1 model; and {(n + 1) is the
damping of the order n + 1 model.

< 0.05 4)

4.3. Poly-Reference Least-Squares Complex Method (PolyMAX)

PolyMAX is a parametric frequency domain model of operational modal analy-
sis [1,7,12,13]. It is a method based on least-squares complex-frequency (LSCF) -type
estimators [1]. Its main advantage is the possibility of obtaining very clear stabilization
diagrams [1,12]. As a parametric method, it has a high complexity and high computational
effort. It is based on the right fraction of the FRF (frequency response function) matrix.

[H(w)] = [Br(w)][AR(w)] " ®)

where [H(w)] is the FRF matrix; [Bg (w)] is the numerator polynomial matrix and [Ag (w)] !
is the denominator polynomial matrices.

The FRF matrix relates the inputs exciting the system to the system’s response. In
the case of operational modal analysis, the system inputs are unknown, so the analogy
between PSD matrix and FRF matrix is used, assuming that the input is wide-band noise.
The common-denominator model (also known as the scalar matrix-fraction model) of the
FRF represents a special case of the right fraction of a matrix, where the numerator is a
polynomial matrix and the denominator is a polynomial characterized by scalar coefficients.

C[Bw)]  Tio[Bi(@)] Y (w)
CAw)] a0 (w)

(6)

where (V(w) is the polynomial basis function, which is used to describe a frequency-
domain model that is derived from a discrete-time model; 1 is the model order; ;(w) are
the numerator matrix polynomial coefficients; and «; are denominator matrix polynomial
coefficients.

The least squares complex frequency (LSCF) method is based on the common denomi-
nator model shown in (6). The PolyMAX method is an extension of the LSCF motivated by
some limitations arising from the application of the common denominator model in the
LSCF method. The most important limit of LSCF is the difficulty in identifying very close
modes [1].

By deriving the modal parameters for different model orders, the stabilization diagram
can be constructed. As in the Cov-SSI algorithm, the pole alignment indicates the modal
parameters of the system under examination.

For the complete and exhaustive mathematical treatment of the method, reference can
be found in [1,13].

5. Description of the Experimental Set-Up

Continuous monitoring is performed on two aluminum tensioned rods with the same
geometric characteristics and subject to environmental excitation. The experimental set-up
is shown in Figure 2.

The geometrical characteristics of the rods are given below:

e  Material: aluminum 6000 series.

o Density: 2700 kg/m?
0 Young modulus: 69 GPa

Beam cross section: rectangular, with base b = 15 mm and depth & = 25 mm.
Clear span between fixed ends L = 4000 mm.
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e  Nominal tensile force in the beams T= 8 kN (axial force at installation). The axial force
is then variable because of environmental thermal cycles.

Each of the two rods is equipped with the following instrumentation:

e  4single axis piezo accelerometers, placed in vertical direction, model 603C01 produced
by PCB PIEZOTRONICS [21]. They are industrial accelerometers with a sensitivity of
0.1 V/g, a full scale £50 g, frequency range 0.5+-10,000 Hz.

e  Strain gages arranged in a full-bridge configuration to measure tension. The condition-
ing unit is a National Instrument board NI 9236 and the system has been pre-calibrated
against a certified load cell.

A thermocouple measuring ambient temperature during the test is also present and
connected to a conditioning device with an analog output, so that temperature data can be
acquired together with acceleration data. Only ambient air temperature is measured, not
the temperatures of the aluminum rods.

Figure 2. Experimental setup and accelerometers used [22].

All data are sampled thanks to a series of National Instruments NI 9234 boards, having
a £5V full scale and a 24 bit ADC; data have been collected at a sampling frequency
fs = 512 Hz, considered enough to measure at least the first vibration modes of interest. A
global acquisition time Tcguisition Of 600 s has been chosen.

Figure 3 shows the position of the accelerometers on the rods; they are named with
the letter C followed by a number, indicating the column of the matrix in which the data
for that accelerometer are collected. For beam 1, the sensors are C1, C2, C3 and C4 and
the accelerometer data are collected in column 1, 2, 3 and 4 of the acquisition matrix. For
Beam 2, the sensors are C5, C6, C7 and C8 and the accelerometer data are collected in
columns 5, 6, 7 and 8 of the acquisition matrix.

C1/5 C3/7 C4/8 C2/6

| 5% 25% 50% 90%

Figure 3. Position of the accelerometers on the rods [22].

6. Mechanical Model

The experimental setup was mechanically modelled to obtain a theoretical prediction
of the natural frequencies of the rods for a comparison with the identified frequencies.

The exact constraint conditions of the rods are not known in detail, as the level of
restraint provided by the clamps and the strong floor (see Figure 2) is difficult to estimate.
The aluminum rods are clamped to the test floor using the mechanical restraints visible in
Figure 2. The bending stiffness of these restraint is not zero and not infinite; therefore, the
rod has an unknown level of rotation restraint at the ends.

Several different mechanical approximations of the rods were studied: tensed rope;
simply supported beam with and without axial force; and fully restrained beam with and
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without axial force. Some structural schemes that may seem quite different from the real
schemes are taken into consideration to fully understand the effect of each mechanical
parameter on the structural behavior.

6.1. Tensed Rope

As a first approximation, the rod can be considered as a tensed rope, neglecting its
bending inertia due to the great slenderness of the profile. The frequencies can therefore be
obtained in the following way [23]:

1 /T

fn:nﬁ % (7)

where T represents the tensile force in the beam, L the span, and m the mass per unit length.
These frequencies should be lower than the real frequencies because the bending
stiffness is neglected.

6.2. Simply Supported Beam without Axial Force

The natural frequencies of a simply supported beam without axial force are [24,25]:

1 2 2L* [m
fu= 1 =22 ®
where: T, is the period of the n-th mode, L is the beam length, n is the mode number
n=1,2,3,... ), mis the mass per unit length (m = 1.0125 kg/m), E is the Young mod-
ulus of alluminuim, and [ is the inertia of the cross section related to vertical bending
(I =1.953-1078 m*).
These frequencies should also be lower than the real frequencies because the bending
stiffness is taken into account, but the stiffening effect of the axial load is neglected.

6.3. Simply Supported Beam with Axial Force

The natural frequencies of a simply supported beam subjected to axial force can be
calculated according to [24,25]:

n?rm TL> [EI
=\ 14—/ = 9
fo= SV B\ ©)
All the parameters are already explained in Sections 6.1 and 6.2

These frequencies should again be lower than the real frequencies because the bending
stiffness of the clamps is not taken into account.

6.4. Fully Restrained Beam without Axial Force
The natural frequencies of a fully restrained beam without axial force can be calculated
according to [24,25]:
cos(ayL) cosh(ayL) =1 (10)
The first five solutions are: w L = 4.730, apL. = 7.853, azL. = 10.996,
agL = 14.137, a5L = 17.279, where o = 1/ mE—“I’Z, and w is the circular frequency.

6.5. Fully Restrained Beam with Axial Force

When a fully restrained beam is also subjected to axial force, the natural frequencies
can be calculated according to [24,25] as follows.

0.5

T 1

fu0 = fu1=0 (1 trptae T ) (11)
o mT B
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where «, B, e, 7y are parameters depending on boundary conditions and on the considered
mode (see Table 1) and P, is the critical axial load, evaluated using the inertia moment, I,
of the cross section of the beam related to vertical bending;:

4712E]

Pcr - 12

(12)

Table 1. Boundary conditions parameters for fully restrained beam.

Mode lod B Y
1 0.195 1.211 0.816
2 0.148 1.151 0.857
3 0.088 0.996 0.979
4 0.068 0.828 0.991
5 0.055 0.739 0.996

The natural frequencies obtained under the different hypotheses described in the
previous paragraphs are presented in Table 2. The outputs of each mode refer to similar
modal shapes. The modal shapes of the first 5 vibration modes are shown in Figure 4 for
simply supported beam and fully restrained beam conditions.

If we compare the results of the tensed rope scheme with the simply supported scheme
with axial force, it is possible to observe that for the low order modes (1 and 2) the rope-like
behavior is common (11.1 = 11.7 and 22.2 = 26.4). On the contrary, when the modal
order increases, the bending inertia starts playing a dominant role, increasing the natural
frequencies (46.3 > 33.3, 72.5 > 44 4, etc.).

From the comparison of column 3 with column 5, it can be seen that the effect of the
full restraint at the ends is smaller for the low order modes (+26% for Mode 1) than for
high order modes (+92% for Mode 5).

The laboratory-tested rods should behave like tensed beams with an intermediate
boundary condition between hinge and full restraint; therefore, the authors expected the
rod specimens to have the first three natural frequencies within the limits listed below:

e 117< f; <147Hz(lab f; = 14 Hz)
264 < f, <40.7Hz (lab f, = 31 Hz)
o 464 < f3 <824Hz(lab f3 = 53 Hz)

The values effectively measured in the lab confirmed these design hypotheses.

Table 2. Comparison between natural frequencies calculated with different static schemes.

Frequency [Hz]
Mode 1 2 3 4 5
Tens. Rope Simply Supp. Simply Supp. Fully Restrained Fully Restrained
T#0 T=0 T#0 T=0 T#0
1 11.11 3.58 11.67 8.12 14.65
2 22.22 14.33 26.44 22.38 40.69
3 33.33 32.24 46.37 43.88 82.40
4 44.44 57.31 72.52 75.53 141.69
5 55.56 89.54 105.38 108.35 202.93
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(a)

(b)

Accelorometer 1

Accelorometer 1

—— Mode 1
Mode 2
—— Mode 3
—— Mode 4
Mode 5

Accelorometer 3 Accelorometer 4 Accelorometer 2

—— Mode 1
Mode 2
—— Mode 3
—— Mode 4
Mode 5

Accelorometer 3 Accelorometer 4 Accelorometer 2

Figure 4. Modal shapes of the first five modes of vibration. (a) Simply supported beam. (b) Fully

restrained beam.

7. Data Analysis with Applied OMA Methods

In this section, a portion of the sampled data is analyzed using the three OMA methods.
The system’s own frequencies are chosen as the modal reference parameters to be studied.
The following datasets are analyzed:

e  72-h dataset: both rods in nominal condition. For both Beam 1 and Beam 2, this dataset
is called: “Nominal Conditions”.

e  12-h dataset: Beam 1 with an additional mass in midspan equal to 1% of its nominal
mass and Beam 2 in nominal condition. This dataset is called “Mass 1%” for Beam 1
and “Set 1” for Beam 2.

e 12-h dataset: Beam 1 with additional mass in midspan equal to 3% of the nominal
mass of the beam and Beam 2 in nominal condition. A disturbance coming from a
fatigue test carried out in the same lab affects this dataset. This dataset is called “Mass
3% a” for Beam 1 and “Set 3 a” for Beam 2.

e 12-h dataset: Beam 1 with additional mass in midspan equal to 3% of the nominal
mass of the beam and Beam 2 in nominal condition. This dataset is called “Mass 3% b”
for Beam 1 and “Set 3 b” for Beam 2.

e 12-h dataset: Beam 1 with additional mass at L/10 equal to 5% of the nominal mass
and Beam 2 in nominal condition. This dataset is called “Mass 5%” for Beam 1 and
“Set 5” for Beam 2.

In each of the twelve-hour datasets, a mass is fixed on Beam 1 to decrease the natural
frequencies of the rod in order to simulate the effect of a reduction of cross-section without
effectively damaging the rods. The presence of a mass generates an effect similar to
the reduction of the cross section: the bigger the mass introduced, the more severe the
virtual damage is. The magnitude of the added masses is very small compared with the
mass of the beam; therefore, the effect of the simulated damage is small and difficult to



Appl. Sci. 2023,13, 1477

10 of 24

investigate because of thermal actions and ambient noise. This choice is aimed to evaluate
the sensitivity of the different OMA methods applied.

The data sets are discretized in intervals of constant length of 5 and 10 min, both
granting an adequate spectral resolution. Five- and ten-minute intervals are chosen to
evaluate the effect of the record length on the effectiveness of the adopted algorithms. All
data analysis has been carried out in MatLab [26].

Cov-SSI and Poly-Reference Least Squares Complex Frequency Method imply a high
computational burden; therefore, the only modal parameter chosen as an indicator of
damage at this stage are the frequencies of the system vibrational modes. Obviously,
this approach has limitations [8], but considering the simplicity of the structural system
analyzed, it provides good results.

7.1. Application of the Peak-Picking Method

The PSDs are estimated using Welch’s method with a Hanning-type window with
three different extensions: 1 min, 30 s and 15 s.

Two PSDs coming from two different sampling intervals for Beam 1 under nomi-
nal conditions (72-h dataset) are shown in Figure 5. Windows with a larger amplitude
(i.e., 1 min) provide higher PSD frequency resolution. On the other hand, a smaller window
width guarantees a higher number of averages, with a reduction in the signal-to—noise
ratio. In this paper, fairly large windows were used in order to guarantee good frequency
resolution to be able to investigate frequency variations arising from small damages.

Comparison of estimated PSDs with Welch's method with different window widths

103g T T T T T 1 I I I
= —PSD estimated with Welch s-1 minute window |
PSD estimated with Welch s-30 seconds window!
104k ——PSD with Welch s-15 seconds window| |
10°E =
108 x25 =
w Y 3.717e07
N .
~
=2 197 ol
@ g3
o
10 E
X21.53 E
Y 2.41e-09 Y 2.4720:09
H X31.16 ,
10° Y 8.501e-10
1070
6™
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
f[Hz]
3 Cor i of esti d PSDs with Welch's method with different window widths
107 E T I T T T T 1 i I I 3
F ——PSD estimated with Welch s-1 minute window |7
PSD estimated with Welch s-30 seconds window
10 E ——PSD esti with Welch s-15 seconds window| |
10°F 4
108 E
N
&
~
2 107 F -
b 3
%]
[N
10 fry x2173 X2498 =
My Y3.49%00 Y 3183000 e :
By | i X315 V1654009 X53.94
9| hath ) Y 8.809e-10 i Y 8.1280-10 ol
10 e TR i : M)
I YT e AR B bk e it bl V| T Y
i RN by o A M i A !
1010k | ) 1Y 1T T D (it g
I I I 1 1 I 1 I I I

oMt
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

f[Hz]

Figure 5. Comparison of PSD peaks. (a) PSD obtained for a 5-min discretization interval at the start
of sampling. (b) PSD obtained for a 5-min discretization interval at the 36th hour of sampling.
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By comparing the two diagrams shown in Figure 5, it is possible to notice a consid-
erable variability in the amplitude of the peaks between the intervals due to different
levels of environmental excitation during sampling. Furthermore, in some intervals, the
peaks are confused with the PSD noise, as happens for the first peak; present in Figure 5a
around 14Hz and not present in Figure 5b. In this paper, the amplitude of the peaks is
not taken into consideration because the uncontrolled environmental conditions cause the
peaks” amplitudes to vary considerably. Only the position of the peaks is assessed. The
signal-to—noise ratio is relatively low, as the two beams are only subjected to ambient
excitation. Therefore, when there is very little environmental excitation, noise dominates,
especially during the night when no human activity is present in the laboratory. In addition,
the first frequency of the rods is about 14 Hz (because they are tensed) which is difficult
to excite with ambient excitations. The second and third mode are therefore even more
difficult to excite.

The peak-picking operation is performed by using the ‘findpeaks’ function of the
MatLab package [26]. The results obtained for Beam 1 under nominal conditions (72-h data
set) are shown in Figure 6.

Peak 1—Figure 6a—has a frequency between 14.5 and 13 Hz with an inverse correlation
between the frequency and the environmental temperature. This range of frequencies (with
an average of 13.8 Hz) lies between the natural frequencies calculated for the simply
supported beam and the fully restrained beam in Section 6 (11.67 < 13.8 < 14.65).

Peak 2—Figure 6b—is around the frequency of 25 Hz. The lack of correlation with
ambient temperature suggests that this peak represents a narrow band not controlled
excitation, rather than a dynamic system behavior; this is an important warning about the
verification of the presence of broad-band noise excitation to properly work with OMA.
In addition, 25 Hz lies outside the range of natural frequencies calculated for Mode 2 in
Section 6.

Peak 3—Figure 6c,d—has a frequency between 32.3 and 29.7 Hz, with inverse correla-
tion between identified frequencies and ambient temperature. Moreover, Accelerometer
4, positioned in the middle of the beam, is ineffective as it is blinded by noise; therefore,
Peak 3 can represent an even-order vibration mode of the beam. The natural frequencies
calculated for Mode 2 for the simply supported beam and the fully restrained beam in
Section 5 are well coupled with the results for this peak (22.4 < 31.0 < 40.7).

The frequencies of Peak 4 and Peak 5—Figures 6e and 6f—can be found around 50 Hz,
inversely correlated with temperature; however, the outputs are considerably disturbed.
This is due to the fact that high-order modes are difficult to excite; in PSD they are confused
with the noise of the transform.

It should be noted that the vertical lines in Figure 6 represent outliers, i.e., frequencies
that cannot be identified. The presence of these outliers increases with increase in the mode
order being considered.

In conclusion, the peak-picking method proves efficient for the low-order modes,
which are those most easily excited and therefore more easily detected. For the higher
order modes, which are harder to excite, the signal-to-noise ratio becomes unfavorable; the
signal starts to be buried in the PSD noise and the output can hardly be used for damage
detection.

Nevertheless, peak-picking can be useful in a preliminary analysis to understand the
overall structural behavior.
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Figure 6. First five peaks extracted from PSD. Correlation with temperature (a) Peak 1 (b) Peak 2
(c) Peak 3 (d) Peak 3, cleared of the effects of accelerometer 4 (e) Peak 4 (f) Peak 5 (g) Legend.

7.2. Application of the Cov-SSI Method and the Poly-Reference Least Squares Complex
Frequency Method

Two of the most widely used methods of operational modal analysis are presented in
this paragraph: Cov-SSI and PolyMAX.

Figure 7 compares two stabilization diagrams obtained from the application of the two
methods. They are both obtained for a 5-min record extracted at the 36th hour of sampling
for Beam 1 under nominal conditions (72-h dataset).



Appl. Sci. 2023,13, 1477

13 of 24

(@)

10

107

PSD [g%/Hz]

10-10

10-11 i

10°®

Stabilization diagram

1818

-
o,
1
N
o
(=]

o
o
Model Order

1100

0
100

St_abilizatiqn diagram

50

eovee e
es®o0*®
B
LT
. o.o;:
HE11 14
>
&
R
LA
L DA
. ..'o
.s, 8
x
.
.
.
|
» S
o (6]

Y

e
w
[3,]

Soe8808c0ccee
.

copl
1

N w

(6} o

Model Order

.
eegy

e o
.
.
1
N
o

! 1 | - 0
60 70 80 90 100

Figure 7. Stabilization diagrams. (a) Cov-SSI (b) PolyMAX.

Red dots indicate unstable poles, i.e., where one of the two conditions expressed in
Equations (3) and (4) is not fulfilled. The green points indicate stable poles, where both
conditions expressed in Equations (3) and (4) are fulfilled. Where the stable poles (green
dots) align vertically, a structural mode is identified.

Using PolyMAX, pole stabilization occurs for low-order models, particularly for
Mode 2 and Mode 3. On the contrary, using the Cov-SSI algorithm, pole alignment occurs
for higher model orders if modes higher than the first mode are considered. In the case of
stabilization with a frequency deviation of 1% —Equation (3)—and a damping deviation of
5%—Equation (4)—Cov-SSI algorithm provides more than 50% stable poles (green points)
in the alignment. That is, the stable poles that fulfil both conditions expressed in Equations
(3) and (4) are more than 50% of the poles in the alignment. The other poles of the alignment
fulfil only the condition expressed in Equation (3).

Using the PolyMAX, even though the frequencies are aligned, the presence of stable
poles (green points) in the alignment is below 20%, in contrast with the Cov-SSI method
which ensures that stable poles in the alignment are always above 50%. This indicates that
the difference in damping between two consecutive model orders for the same frequency is
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higher than 5%. To ensure a sufficiently high presence of stable poles for the PolyMAX also,
the permissible damping deviation in Equation (4) should be greater than 5%.

In addition, it is also possible to notice the presence of an alignment of poles at 25 Hz
using both methods, but the presence of stable poles within the alignment is lower than for
the poles representing real vibrating modes of the structure (shown in Table 3). Furthermore,
for some modal order ranges, no poles are provided at 25 Hz frequency. Thus, the 25 Hz
alignment, as already discussed during the application of the peak-picking method, should
not be considered as a mode of the structure.

Table 3. First three modes identified in 5-min interval extracted at the 36th hour of sampling for

Beam 1 under nominal conditions.

Mode Cov-SSI Frequencies [Hz] PolyMAX Frequencies [Hz]
1 13.94 13.94
2 31.25 31.10
3 53.24 53.10

The frequency graphs in the function of time for the 72 h interval obtained with the
Cov-5SI method and the PolyMAX method for the first three vibration modes are shown in
Figure 8.

Frequencies Mode 1 PolyMAX vs Frequencies Mode 1 Cov-SSI
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Figure 8. Beam 1, discretization of the dataset in 5-min intervals. Comparison between PolyMAX and
Cov-SSl identified frequencies for the first three vibration modes. (a) Mode 1. (b) Mode 2. (c) Mode 3.

Both methods can identify the frequencies for the first three vibration modes. Results
are more robust than using peak-picking method for Modes 2 and 3, moreover, the frequen-
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cies extracted with the Cov-5SI algorithm for Modes 2 and 3 present a lower variance than
those extracted with the PolyMAX method. It should be underlined that the structures are
very simple and have well separated modes. Such characteristics help the identification
remarkably.

The identified frequencies are correlated with the axial force trend and with the
temperature trend.

8. Correlation of Natural Frequencies with Temperature and Axial Force

In this section, the effects on the structure of environmental temperature are evalu-
ated, trying to separate frequency variations due to environmental factors from frequency
variations due to structural damage.

Very light levels of damage have been introduced to stress the disturbance on the
identification coming from environmental parameters.

The correction of the effect of temperature is performed in two different ways: firstly,
by using ambient temperature regression; then, by using axial force variation directly
measured on each beam as the correction input. This second approach will lead to much
better results than the correlation with ambient temperature.

8.1. Regressions between Natural Frequencies and Temperature or Axial Force

The regressions between the identified raw frequencies and temperature and between
the identified raw frequencies and axial force are shown in Figure 9. The raw frequencies
used for the graphs are obtained with the peak-picking method for Mode 1. Results of
all data sets for the first three vibration modes are similar to those shown in Figure 9,
regardless of the adopted approach (peak-picking, Cov-SSI and PolyMAX); therefore, the
following considerations can be applied to all results.

The following considerations can be drawn from the linear regression results:

e  discretizing the data set in 5-min or 10-min records leads to almost equal correlation
results: 10-min records give generally better R? values of the regression than 5-min
ones, but the differences are negligible.

e  The correlations between ambient temperature and the frequencies show different and
distinct regressions for each dataset for both beams.

e  The correlations between the axial force and the identified frequencies for Beam 1
present distinct regressions for each dataset, except for the two datasets where the
same damage is simulated (same additional mass). Beam 2 (undamaged) shows the
same behavior in each dataset. Thus, correlations between axial force and frequencies
are much better than correlations between temperature and frequencies, as will be
explained in detail in the next paragraph.
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Figure 9. Linear regressions between frequencies and ambient temperature, and between frequen-
cies and axial force. (a) Beam 1, discrete datasets in 5-min intervals, correlation with temperature.
(b) Beam 1, discretization datasets in 5-min intervals, correlation with axial force. (c¢) Beam 1, dis-
cretization datasets in 10-min intervals, correlation with temperature. (d) Beam 1, discretization
datasets in 10-min intervals, correlation with axial force. (e) Beam 2, discretization datasets in 5-
min intervals, correlation with temperature. (f) Beam 2, discretization datasets in 5-min intervals,
correlation with axial force. (g) Beam 2, discretization datasets in 10-min intervals, correlation with
temperature. (h) Beam 1, discretization datasets in 10-min intervals, correlation with axial force.
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8.2. Frequency Correction with Temperature or Axial Force

Raw frequencies can be corrected using temperature regression parameters as follows:

fei = fraw,i — Di(T; — To) (13)
where:
e  f.;is thei-th value of the corrected data set; namely, corrected for temperature effects.
®  frwiis thei-th raw frequency value.
e Dy is the temperature drift coefficient.
e T;is the instantaneous temperature.
o Tjis a temperature value chosen as a reference. The average temperature on the 72-h

data set has been chosen as the temperature base point, Tp = 21.29 °C.

The same parameters D; and Ty, coming from the 72-h dataset (chosen as reference)
are then used for the correction of all the other datasets.

Raw frequencies can also be corrected using axial force regression parameters as
follows:

fC,i :fmw,i_Df(Fi_PO) (14)

where:

fe,i is the i-th value of the frequency corrected using axial force.

fraw,i is the i-th raw frequency value.

Dy is the force drift coefficient.

F; is the instantaneous axial force.

Fy is an axial force value chosen as a reference. The average force on the 72-h data set
has been chosen as the force base values Fy = 8.08 kN for Beam 1 and Fy = 8.63 kN
for Beam 2.

The same parameters D¢ and Fy, coming from the 72-h dataset (chosen as reference),
are then used for the correction of all the other datasets.

A comparison between frequencies corrected using temperature (green curves) and
frequencies corrected using axial force (red curves) is shown in Figure 10. These results are
related to the 72-h dataset for Mode 1 frequencies extracted with the peak-picking method.
Similar results are obtained for the remaining four datasets for the frequencies of modes
higher than the first, and for PolyMAX and Cov-SSI results.

The result of the correction of the raw frequencies using ambient temperature is
still strongly correlated to the daily thermal cycles, while the correction using axial force
provides a better and more stable result.

In Beam 1, the 72-h dataset corrected with temperature obtains:

average frequency 13.79 Hz
maximum frequency 13.88 Hz (+0.7% form average)
minimum frequency 13.68 (—0.8% from average)

whereas, if axial force is used, the same values are:

average frequency 13.78 Hz
maximum frequency 13.81 Hz (+0.1% form average)
minimum frequency 13.76 (—0.1% from average)

Similar results are obtained for Beam 2.

A comparison of the corrected frequencies over 12 h of the five analyzed datasets
is shown in Figure 11 for the results obtained using peak-picking method for Mode 1.
Completely similar results are obtained for higher modes with PolyMAX and Cov-SSI.

In Beam 1, where the damage is simulated, the frequencies of Mode 1 decrease depending
on the magnitude of damage and its location, as will be discussed in the next paragraph.

In Beam 2, where damage is not present, the force-corrected frequencies lie in a very
narrow range of values (red curves), whereas the temperature-corrected frequencies (green
curves) show a less stable trend and therefore seem unreliable to detect damage.
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Figure 11. Comparison of the corrected frequencies of the 5 analyzed datasets. (a) Beam 1, dataset
discretized in 5-min intervals. (b) Beam 1, dataset discretized in 10-min intervals. (¢) Beam 2, dataset
discretized in 5-min intervals. (d) Beam 2, dataset discretized in 10-min intervals.

8.3. Evaluation of the Effect of Simulated Damage

The following tables quantify the frequency variations between the 12-h datasets and
the 72-h dataset that was chosen as benchmark. The variation is the difference between the
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averages of the corrected frequencies done on the 12-h dataset and on the first 12 h of the
72-h dataset.

The results obtained by applying peak-picking, Cov-SSI and PolyMAX methods
are comparable, but peak picking gives clear results only for Mode 1. The differences
between datasets discretized in 5-min records and datasets discretized in 10-min records
are negligible. The most important difference is between frequency corrections with
temperature and with axial force.

Beam 2 is sound in each dataset; therefore, no frequency variation should be appreci-
ated between the 72 h benchmark and the 12 h datasets. When the correction is carried out
by using axial force (Tables 4 and 5), the absolute maximum frequency variation between
the different datasets is smaller than 0.5%; this result is in line with what expected, since
Beam 2 remains in nominal conditions in each dataset. When the correction is carried out
using ambient temperature (Tables 6 and 7), wider spreads can be observed, up to 2.5%.

Table 4. Beam 2: frequency variation, 5-min intervals discretization, correction with axial force.

PP Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Set1 0.0% 0.0% 0.0% 0.0% —0.1% 0.0% +0.1%
Set 3a ~0.3% ~0.3% [-] ~0.2% ~0.1% [-] ~0.1%
Set 3b 70.20/0 *0.10/0 70.20/0 70.10/0 70.20/0 70.20/0 0.00/0
Set 5 —0.4% —0.4% —0.2% 0.0% —0.4% —0.4% 0.0%
Table 5. Beam 2: frequency variation, 10-min intervals discretization, correction with axial force.
PP Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Set1 —0.1% 0.0% —0.1% 0.0% —0.1% 0.0% +0.1%
Set 3a —0.3% —0.3% [-] —0.2% —0.2% [-1 —0.3%
Set 3b —0.2% —0.1% —0.2% —0.1% —0.2% —0.2% —0.1%
Set 5 —0.5% —0.4% 0.0% 0.0% —0.4% —0.3% —0.2%
Table 6. Beam 2: frequency variation, 5-min intervals discretization, correction with temperature.
PP Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Set1 —2.0% —2.0% —1.6% —-1.2% —2.0% —1.6% —1.2%
Set 3a +0.3% +0.3% [-] +0.2% +0.5% [-] +0.2%
Set 3b —0.6% —0.5% —0.5% —0.3% —0.6% —0.6% —0.2%
Set 5 —2.5% —2.5% —1.9% —-1.3% —2.4% —2.1% —1.4%
Table 7. Beam 2: frequency variation, 10-min intervals discretization, correction with temperature.
pr Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Set1 —-1.9% —2.0% —1.7% —1.2% —2.1% —1.6% —1.3%
Set 3a +0.4% +0.3% [-] +0.2% +0.4% [-1 +0.1%
Set 3b —0.4% —0.5% —0.5% —0.3% —0.6% —0.4% —0.4%
Set 5 —2.4% —2.5% —1.9% —1.3% —2.4% —2.0% —1.6%

In the set 3a dataset, no results were obtained for Mode 2 due to the interference
caused by a neighboring laboratory test. The neighboring fatigue test produced a forcing
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with a frequency close to the second mode of vibration of the beam. Therefore, for the
entire duration of the sampling, for Mode 2, values at a constant frequency of 33.75 Hz
were obtained. Consequently, it was not possible to correlate the frequencies with either
temperature or axial force.

In case of “Mass 1%” tests, Beam 1 has a fixed mass of 1% in midspan. A frequency vari-
ation on Mode 1 of 0.0% <+ 0.1% on the sound beam (Tables 4 and 5) and of —1.3% + —1.4%
on the damaged beam (Tables 8 and 9) is appreciated by all methods using the correction
with axial force. It can be therefore be estimated that the additional 1% mass causes a
variation of the first mode frequency of —1.2% <+ —1.4%.

Table 8. Beam 1: frequency variation, 5-min intervals discretization, correction with axial force.

pr Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Mass 1% —1.4% —1.4% 0.0% —0.6% —-1.3% +0.3% —0.6%
Mass 3% a —4.2% —4.2% [-] —2.5% —4.1% [-1 —2.5%
Mass 3% b —4.0% —4.1% —0.2% —2.5% —3.9% +0.1% —2.7%
Mass 5% —0.7% —0.7% —-1.1% —2.1% —0.6% —0.6% —2.6%

Table 9. Beam 1: frequency variation, 10-min intervals discretization, correction with axial force.

PP Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Mass 1% —1.4% —1.4% —-0.1% —0.6% —1.3% +0.3% —0.6%
Mass 3%a —4.2% —4.2% [-] —2.6% —4.1% [-1 —2.5%
Mass 3%b —4.0% —4.1% —0.2% —2.5% —3.9% 0.1% —2.7%
Mass 5% —0.7% —0.7% -1.1% —2.2% —0.5% —0.5% —2.1%

When the correction is performed using ambient temperature, the difference can rise
to —1.9% <+ —2.1% on the sound beam (Tables 6 and 7) and to —3.3% + —3.5% on the
damaged beam (Tables 10 and 11). The compensation with ambient temperature provides
an initial error on the frequency of about —2%; this is greater than the effect of 1% mass in
midspan (1.3% to 1.5% of variation on frequency). Therefore, the introduction of this mass
cannot be clearly appreciated if frequency correction is done using ambient temperature. A
limit in detecting a structural change due to the imperfect environmental effects correction
is therefore recognized.

In case “Mass 3%”, Beam 1 has a fixed mass of 3% in midspan. When correction with
axial force is done, a frequency variation on Mode 1 of —0.1% = 0.3% on the sound beam
(Tables 4 and 5) and of —3.9% <+ —4.2% on the damaged beam (Tables 8 and 9), can be
appreciated by all methods. Therefore, it can be estimated that the additional mass causes
a variation of the frequency of the first mode of —3.6% + —4.1%; this is about 3 times that
measured for 1% additional mass.

When the correction is performed using ambient temperature, the frequency variation
is —0.6% + +0.5% on the sound beam (Tables 6 and 7) and —3.3% + —4.4% on the damaged
beam (Tables 10 and 11). Therefore, it can be estimated that the frequency variation of the
first mode, visible after temperature compensation, is —2.7% =+ —4.9% (less accurate than
—3.6% + —4.1% estimated with axial force compensation).

In case “Mass 5%”, Beam 1 has a fixed mass of 5% at L/10. The most accurate
predictions can be done observing Mode 3.

A frequency variation on Mode 3 of 0.0% < —0.2% on the sound beam (Tables 4 and 5)
and of —2.1% =+ —2.6% on the damaged beam (Tables 8 and 9) can be appreciated by
Cov-SSI and PolyMAX methods using the correction with axial force. Therefore, it can be
estimated that the additional 5% mass at L/10 causes a variation of the frequency of the
third mode of —1.9% + —2.6%.
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When the correction is performed using ambient temperature, the difference can rise
to —1.3% + —1.6% on the sound beam (Tables 6 and 7) and to —3.1% + —3.3% on the
damaged beam (Tables 10 and 11). The compensation with ambient temperature provides
an initial frequency spread of about —1.45%; this is large if compared with the effect
of the mass —1.5% = —2.0%. Therefore, the introduction of this mass cannot be clearly
appreciated if frequency correction is done using ambient temperature.

Table 10. Beam 1: frequency variation, 5-min intervals discretization, correction with temperature.

PP Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Mass 1% —3.5% —3.4% —1.7% —1.8% —3.4% —1.2% —1.9%
Mass 3%a —3.4% —3.4% [-] —2.1% —3.3% [-] —2.1%
Mass 3%b —4.2% —4.4% —0.4% —2.6% —4.2% —0.2% —2.9%
Mass 5% —2.4% —2.4% —2.5% -3.1% —2.3% —1.9% —3.3%

Table 11. Beam 1: frequency variation, 10-min intervals discretization, correction with temperature.

4 Cov-SSI PolyMAX
Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Mass 1% —3.3% —3.5% —-1.7% —1.8% —3.4% —1.2% —-1.9%
Mass 3%a —3.2% —3.4% [-] —2.1% —3.3% [-] —2.0%
Mass 3%b —4.1% —4.4% —0.4% —2.6% —4.2% —0.1% —2.9%
Mass 5% —2.3% —2.4% —2.5% —3.2% —2.3% —1.8% —3.2%

9. Conclusions

The present work aims to highlight the limits of structural health monitoring tech-
niques based on the analysis of output-only data from an accelerometer network, when
the variation of the frequencies of the monitored system is used as the only indicator of
damage. The main cause found to limit the effectiveness of OMA are thermal disturbances.

Three of the most common OMA methods are applied to the same experimental
data to obtain a comparative assessment and to study the effect of ambient parameters
(temperature) on the output of the methods.

Longer sampling (10 min instead of 5 min) provides slightly better results because of
the higher dynamic information content, but the difference is almost negligible for all the
three methods used. Therefore, using 5-min signals as input could be useful to shorten the
calculation time.

The application of the peak-picking method is successful only for the first mode of
vibration which is easier to excite with environmental vibrations. However, the peak-
picking method is useful for preliminary analysis of sampled signals. It allows an initial
assessment of the sampled data, a qualitative evaluation of the system’s own frequencies
and an initial understanding of the system’s behavior.

For high-order modes, the excitation due to environmental vibrations is lower and
the system’s own modes begin to be confused within the ambient noise. The limitations
shown by the peak-picking method can also be related to the fact that no optimization for
PSD evaluation was performed. The focus was on obtaining their maximum frequency
resolution. In addition, optimization would require the evaluation of PSDs on discretization
intervals different from those chosen and working well with the other methods. Therefore,
a comparison between the peak-picking method and the other two methods would not
have been possible.

The other two methods, Cov-SSI and PolyMAX, can provide good results for modes
higher than the first.

Three different simulated damages on one beam are identified with different degrees
of accuracy, depending on the cleaning procedure of the signal from temperature drift.
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A result of considerable interest is the difference between the results obtained per-
forming correction of the raw frequency data using a mechanical parameter (the tensile
force in the rods) and the results obtained using ambient temperature correction.

In the case of correction with ambient temperature, the results show a highly variable
trend over time; on the contrary, when the correction is done using the axial forces in the
rods, the results are significantly stable over time.

Cleaning of the raw frequencies by means of a parameter not measured directly on
the beam, such as ambient temperature, leads to variability in the results which can hide
the presence of damage on the specimens.

In the presented experimental campaign, the vibration of the rods is influenced by a
single parameter affected by temperature: the axial force. This is a very simple case, as
the specimens’ geometry is extremely simple. Moreover, the presence of a load cell and
strain gauges allows to directly measure this parameter on both rods, therefore cleaning the
frequency response using a parameter that is not available for more complex real structures
in the field.

In real SHM cases [27-31], when bridges or historical buildings are under investigation,
the frequency response of the structure is not related to a single mechanical parameter
(axial force); therefore, it is usually not possible to measure physical parameters that are as
good as the axial force in controlling the test results, as is the case in the present work.

Therefore, the frequency correction is commonly done using environmental tempera-
ture, or in the best situations, using the temperature obtained by thermocouples fixed on
the surfaces of the structure. The data coming from real-life SHM applications are then
more similar to those obtained from the experimental dataset of this campaign corrected
with ambient temperature.

Therefore, it is extremely difficult to assess small damages causing frequency variations
close to those caused by ambient temperature.

The following key points emerge from the study reported in this paper:

e  Mechanical models (such as EE.M) are very useful to check the results obtained from
operational modal analysis. In the study reported in this paper, the knowledge of the
theoretical frequencies was very important to be able to exclude non-physical modes
and external forcing (the fatigue test).

e  The peak-picking method is only effective for identifying the frequency of the first
mode of vibration, as the signal-to—noise ratio was very low, whereas Cov-SSI and
PolyMAX provide better and more robust results.

e  The correction of frequency data using ambient temperature is not entirely effective
and leads to results affected by a variability that can have an order of magnitude
similar to the effect of the damage that need to be individuated.

In SHM applications of structures like bridges or buildings, it is therefore very im-
portant to evaluate the data provided by OMA techniques with care, as they are highly
affected by external environmental factors.

In many cases the damages that are under investigation generate very little frequency
variation in serviceability conditions (especially in prestressed concrete structures); thus,
they can be easily hidden within the thermal noise. Damage such as reinforcement corrosion
in prestressed structures can in fact generate sensible reduction of bearing capacity with
very small reduction of stiffness; therefore, generating very small frequency variation.

For these reasons, OMA techniques are undoubtedly useful for dynamic identification,
but their limits in open field use should be assessed with care to avoid misleading results.
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