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Abstract

We study the problem of designing walking school bus lines (Pedibus) limiting
the deviation with respect to the shortest path for each child, with the objective
of minimizing the number of accompanying persons and the perceived risk of the
selected trajectories. The problem is formulated using a path model and a column
generation approach is proposed. Computational experiments compare the lower
bounds and the solutions of the proposed approach with the arc model and a simple
heuristic proposed in a previous work.
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1 Introduction

Pedibus lines are an effective tool to educate young generations to an envi-
ronmental sustainable behavior and to decrease the traffic congestion and air
pollution in urban areas. Helping in designing efficient Pedibus lines is of
great importance to propose an attractive system able to reach the objective.
The problem can be described as follows: given the school location, the chil-
dren home addresses, and the distance between each pair of locations, find the
minimum number of lines rooted at the school so that each location belongs
to one line and the distance from school to each location along the line is
below a given threshold that depends on the length of actual shortest path.
The objective function has two components: on the one hand it minimizes
the number of supervising adults (one per line), on the other hand minimizes
the perceived risk by favoring the merging of lines. We refer to this problem
as Minimum Leaf Pedibus Line design Problem (MLPLP ). Looking at the
problem in an abstract way, it recalls a minimum leaf spanning tree with a
limit on the distance of each node from the root.

The Pedibus line design problem is usually approached in practice with
common sense solutions, which are suitable in small contexts but are not able
to manage the system on a large scale. It has some similarities with the
well studied School Bus Routing problem, though peculiarities such as the
tight constraint on deviations and the merging of lines make it different and
justify a specific study to take advantage of them. The problem in this form
is proposed and studied in [5] where a brief survey on the related literature is
presented. That work proposes a simple arc model that fails to solve instances
with more than 50 pupils and a simple heuristic that behaves reasonably well
on large instances. In this work we build upon that experience and we directly
compare with those results.

We propose an alternative path based formulation. For that formulation
we describe a Column Generation approach to solve optimally the linear re-
laxation of the problem and generate a heuristic solution by solving the cor-
responding integer version of the master problem. The lower bounds and the
feasible solutions obtained with this approach are compared with the solutions
obtained with the simple arc model and the heuristic algorithm proposed in
[5].



2 Problem definition and path-based model for MLPLP

The problem can be described considering a directed graph G = (N ,A). The
nodes in N represent walking-bus stops, that is children homes and the school
(denoted by index 0 and called root), and the arcs in A correspond to shortest
path connections between nodes. A coefficient cij associated with every arc
(i, j) ∈ A gives the length of the shortest path from i to j, thus ci0 gives the
length of the “ideal” path from node i to the root. Another coefficient dij gives
the measure of the perceived risk traveling from i to j, or alternatively the cost
to adapt the trajectory from i to j to a given standard to avoid risks. Given
a coefficient δ > 1, the problem consists in finding an arborescence routed
in 0 and spanning all nodes in N \ {0} such that considering the path going
from any node i to 0 in the arborescence, its length is less than or equal to δ

times the length of the ideal path. The objective is to minimize the number
of leaves and also the sum of coefficients dij for all arcs in the arborescence.
Note that, in this representation, the leaves correspond to the accompanying
persons and the paths converging to the root correspond to Pedibus lines.
Lines can merge in some intermediate nodes to minimize the second term of
the objective function.

The path model that we propose is based on the set P of all feasible paths.
A path p from any node i to the root 0 is feasible if it is elementary (no two
nodes are visited more than once) and its total length cp ≤ δci0. To complete
the notation let Pi ⊂ P represent the subset of all paths visiting node i ∈ N ,
Pij ⊂ P the subset of all paths using arc (i, j) ∈ A and P̄i ⊂ P the subset of
all paths starting from node i ∈ N .

The model makes use of two sets of binary variables: xp equal to 1 if path
p ∈ P is selected and yij equal to 1 if the arc ∀(i, j) ∈ A is used. The complete
formulation for the path-based MILP is given in (1-7).

The objective function (1) is made of two parts: minimization of the num-
ber of the selected paths, this corresponds to the minimization of the number
of leaves, and minimization of total risk/cost multiplied by a suitable trade-off
parameter ǫ.

Constraint (2) imposes that all nodes have to be visited at least once.
Inequality (3) defines the activation constraint for yij variables. Constraint
(4) limits the number of paths originating from a leaf to one. Finally, the last
constraint (5) imposes that for each node but 0 a single outgoing arc must
be selected, meaning that if two paths reach the same node they are merged
together.



min
∑

p∈P

xp + ǫ
∑

(i,j)∈A

dijyij (1)

−
∑

p∈Pi

xp ≤ −1 ∀i ∈ N (2)

∑

p∈Pij

xp − |N |yij ≤ 0 ∀(i, j) ∈ A (3)

∑

i∈P̄i

xp ≤ 1 ∀i ∈ N \ {0} (4)

∑

(i,j)∈A

yij = 1 ∀i ∈ N \ {0} (5)

xp ∈ {0, 1} ∀p ∈ P (6)

yij ∈ {0, 1} ∀(i, j) ∈ A. (7)

Since the number of paths in P is exponential in |N | and we cannot ex-
plicitly generate all variables xp even for relatively small graphs, our solution
approach is based on the column generation paradigm (see [1]).

The restricted master problem (RMP), given by the linear relaxation of
(1-7), is initialized with either a set of |N | − 1 dummy columns represent-
ing the shortest paths from any node in N \ {0} to 0 or a set of columns
corresponding to the heuristic solution provided by the greedy randomized
algorithm described in [5].

In the pricing sub-problem we look for the most violated dual constraint
(8) corresponding to the primal variable xp with the most negative reduced
cost.

Let denote α, β and γ as non-positive vectors of dual variables associated
with constraints (2), (3) and (4) then the expression of the dual constraint
associated with xp is:

−
∑

i∈Np

αi +
∑

(i,j)∈Ap

βij + γh ≤ 1 ∀p ∈ P̄h, ∀h ∈ N \ {0} (8)

In practice, the pricing procedure has to find the feasible minimum cost
path starting from any of the nodes inN\{0} and arriving at the node 0 where
the cost depends on αi for each node i ∈ N and βij for each arch (i, j) ∈ A.
The total cost of a path p is then defined as rp =

∑
i∈Np

αi−
∑

(i,j)∈Ap
βij −γh

where h is the starting node of the path. If rp < 1 then the reduced cost of



the variable xp associated with path p is negative and xp is added to P in the
RPM.

The problem of finding the feasible path with the most negative reduced
cost can be seen as a resource constrained elementary shortest path problem
(see [6] for a recent survey) in which the resource, that is monotonically con-
sumed along the path, is the maximal allowed deviation from the shortest
path (∆).

In each iteration of the column generation procedure |N | − 1 independent
pricing sub-problems, one for each node in N \ {0}, are solved. Two different
procedures are employed to tackle this problem. The first one is heuristic,
it is based on a very fast nearest neighbor algorithm and it is mainly used
to rapidly populate the set P in the first iterations of the column generation
procedure. The second procedure solves the problem exactly using a slightly
modified version of the pulse algorithm presented in [4], the procedure is
executed every time the heuristic algorithm is not able to find any path with
negative reduced cost. In our version of the pulse procedure the resource ∆
is initialized to δch0 where h is the starting node of the path associated with
that pricing sub-problem and it is reduced every time the path is extended. In
detail, when the path is extended from node i, with resource value ∆i, to node
j the new value for the resource ∆j is equal to min(∆i − cij, δcj0). Moreover,
denoted with ∆min and ∆max the minimum and the maximum values δci0
∀i ∈ N \ {0}, then the bounding procedure of the pulse algorithm is executed
starting with a resource value equal to ∆min and it is increased by one tenth
of ∆max −∆min in each iteration until ∆max is reached.

At the end of the column generation procedure an integer solution for the
problem is achieved solving the MIP model (1-7) with all variables that has
been included in P . Therefore, since we do not perform a full branch and
price scheme the optimality of the integer solution cannot be guaranteed.

3 Computational experiments

In order to test our approach the column generation procedure has been im-
plemented in Python 2.7 using Pyomo 5.0 as optimization modeling language
(see [3] and [2]) and IBM CPLEX 12.7.0 as LP an MIP solver. Note that in
our implementation of the pulse algorithm the use of multi-threading differs
from the original. In particular, since for each iteration of column generation
|N |−1 independent pricing sub-problems have to be solved we prefer to solve
all problems in parallel using a single-thread pulse implementation instead of
solving pricing problems sequentially with a multi-thread algorithm.



To provide a fare and coherent comparison between the path based and
the arc based model, the testing campaign has been carried out on the same
set of instances and on the same machine that were used to evaluate the
performances of the arc based approach for MLPLP (see [5]).

The results obtained are shown in table 1. For each instance, columns
in the table report: the number of nodes |N | (school excluded) in G, the
maximum allowed δ value, the value of the linear relaxation of the arc based
model (LP), the value of the linear relaxation computed with the column
generation procedure (CG LP, ∗ used when the optimum is reached), the
value of the solution found by the greedy algorithm (Heur), the value of the
best integer solution found by the arch based model without initialization
and initialized with the greedy algorithm (MIP and HMIP, ∗ used when the
optimal solution is reached), the value of the best integer solution found by the
path based procedure initialized with dummy columns (CG MIP) and with the
solution found by the greedy algorithm (HCG MIP), the percentage residual
gap for the MIP model (1 - 7) solved with all the variables found in the column
generation procedure initialized with the results of the greedy algorithm (G%
HCG) and the total computational time that is the sum of execution time
of the greedy algorithm, the column generation procedure (time-limit 1 hour)
and the solving time of the resulting MIP (time-limit 1 hour plus what remains
from the column generation procedure).

The LP relaxation provided by the column generation procedure is greatly
superior to the linear relaxation of the arc based model. Indeed, the average
gap between the CG LP and the corresponding HMIP on instances solved
to the optimality is about 12% while it is more than 400% when the linear
relaxation of the arc based model (LP column) is taken into account. However,
computing LP CG can be time expensive and in 1 hour we are only able to
compute the optimal continuous value of the RMP for graphs with less than
200 nodes. When δ is small (1.1, 1.2) this computational time is equally
split between the solution of pricing sub-problems and the linear relaxation of
the RMP. On the other hand, if delta is large then longer paths have to be
considered and so the pricing phase is more time expensive and can take up
to 80% of column generation procedure.

The integer solution found by the column generation procedure (CG MIP)
is on average 13.76% better than the solution found by the arc based model
(MIP). This value is greatly reduced, it is about 2.14%, when both procedures
are initialized with the results of the heuristic procedure (HMIP vs HCGMIP).

The greedy multi-start algorithm is very useful in particular in instances
with more than 150 nodes and, when combined with the column generation



procedure, provides solution that are on average 12.78% better than the solu-
tion found by the column generation procedure alone (HCG MIP vs CG MIP).

Considering only instances in which we are able to compute the optimal
linear relaxation for the master problem (almost all instances with less than
200 nodes), the gap between CG LP and HCG MIP is about 13.58% while
the final MIP gap, after 2 hours of computation, for the arc based model was
about twice as much on the same instances (see [5] for detailed results).

Finally, a note on the computational time required by the MIP problem
solved at the end of the column generation procedure for instances with more
than 150 nodes. On the one hand, when δ is big the exact pricing procedure
is extremely time consuming and can be executed only a few times (2 or 3)
generating a small MIP problem that can be solved in a few seconds. On the
other hand, when δ is small the pricing sub-problem can be solved more than
100 times and thousands of columns are added into the RMP. This generate
a very large MIP problem that usually cannot be solved within 1 hour.
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Table 1
Path Model Results on Random Instances

|N| δ LP CG LP Heur MIP HMIP CG MIP HCG MIP G% HCG T HCG

10 11 1.267 5.053
∗

5.713 5.571
∗

5.571
∗

5.571 5.571 0.000 1.025

10 12 1.265 4.063
∗

4.693 4.693
∗

4.693
∗

4.693 4.693 0.000 0.830

10 15 1.262 3.049∗ 3.576 3.482∗ 3.482∗ 3.482 3.482 0.000 1.422

10 18 1.259 2.307
∗

3.562 3.418
∗

3.418
∗

3.418 3.418 0.000 1.524

10 20 1.257 2.050
∗

3.590 2.550
∗

2.550
∗

2.550 2.550 0.000 2.433

20 11 1.024 7.005
∗

7.124 7.114
∗

7.114
∗

7.114 7.114 0.000 1.814

20 12 1.024 6.006∗ 7.120 6.115∗ 6.115∗ 6.115 6.115 0.000 3.082

20 15 1.023 3.605
∗

5.098 4.084
∗

4.084
∗

4.086 4.086 0.000 4.969

20 18 1.023 2.823
∗

3.097 3.090
∗

3.090
∗

3.094 3.097 0.000 2.431

20 20 1.023 2.604
∗

3.102 3.071
∗

3.071
∗

3.087 3.081 0.000 2.872

30 11 1.030 9.505
∗

10.191 10.143
∗

10.143
∗

10.151 10.150 0.000 5.599

30 12 1.030 7.505
∗

9.175 8.132
∗

8.132
∗

8.137 8.137 0.000 9.461

30 15 1.029 4.360
∗

5.155 5.109
∗

5.109
∗

5.129 5.129 0.000 26.700

30 18 1.029 3.005
∗

4.151 4.097 3.146
∗

3.146 3.146 0.000 101.306

30 20 1.029 2.694
∗

3.137 3.111 3.111 3.140 3.137 0.000 7.474

50 11 1.031 12.006
∗

13.314 12.281
∗

12.281
∗

12.281 12.281 0.000 25.529

50 12 1.031 9.450
∗

11.288 10.255
∗

10.255
∗

10.279 10.279 0.000 34.825

50 15 1.030 6.783
∗

8.282 8.193 8.194 7.294 7.294 0.000 23.301

50 18 1.030 4.719
∗

7.247 7.146 7.145 6.241 6.222 0.000 1364.550

50 20 1.029 3.943
∗

6.243 6.148 6.150 5.234 4.261 0.000 2621.581

80 11 1.034 9.364
∗

12.419 10.342 11.287 10.392 10.394 0.000 125.507

80 12 1.033 7.235
∗

9.413 9.263 9.264 8.408 8.408 0.000 2491.820

80 15 1.032 4.848
∗

6.409 7.183 6.269 7.395 6.409 0.000 92.759

80 18 1.032 4.164
∗

5.375 8.131 5.236 7.368 5.375 0.000 137.700

80 20 1.032 5.023
∗

5.380 8.123 5.202 7.398 5.380 0.000 324.440

100 11 1.036 19.854
∗

24.590 21.488 21.486 21.522 21.533 0.000 146.327

100 12 1.036 14.179
∗

18.561 17.367 17.384 16.486 15.536 0.000 374.995

100 15 1.036 8.436∗ 11.522 15.226 10.387 11.505 10.497 11.930 7200.000

100 18 1.036 6.393
∗

7.559 14.217 7.446 9.509 7.559 0.000 215.956

100 20 1.036 6.105
∗

7.517 13.245 7.417 8.500 7.517 0.000 385.414

150 11 1.004 16.491
∗

21.082 21.051 20.056 19.071 19.073 10.423 7200.000

150 12 1.004 11.729 15.080 17.048 15.056 13.075 13.075 20.347 7200.000

150 15 1.004 9.676
∗

10.078 18.035 10.067 15.077 10.078 0.000 746.739

150 18 1.004 8.003
∗

8.076 21.027 8.070 16.081 8.076 0.000 1546.788

150 20 1.004 7.003
∗

7.077 28.029 7.076 15.079 7.077 0.000 1483.544

200 11 1.004 29.805∗ 38.119 33.080 33.081 31.105 31.105 0.000 843.554

200 12 1.004 21.405 29.115 28.064 27.067 25.094 25.094 11.667 7200.000

200 15 1.004 16.164 19.106 28.049 19.070 19.097 19.106 16.672 7200.000

200 18 1.004 13.207 14.105 37.038 14.100 22.097 14.104 0.000 3684.441

200 20 1.004 12.798 13.101 37.040 13.095 19.102 13.101 0.000 3632.482

250 11 1.005 31.346 43.140 39.088 38.093 36.127 36.127 0.000 7200.000

250 12 1.005 24.531 32.131 35.068 31.080 31.130 32.127 20.272 7200.000

250 15 1.005 18.742 20.130 31.065 20.114 30.125 20.129 0.000 3657.909

250 18 1.005 15.162 16.124 48.062 16.119 26.131 16.122 0.000 3688.617

250 20 1.005 13.004 13.125 48.061 13.120 25.131 13.125 0.000 3643.244

300 11 1.005 33.737 44.165 43.096 41.096 37.147 37.147 8.035 7200.000

300 12 1.005 25.848 35.156 41.075 34.107 43.149 35.156 7.500 7200.000

300 15 1.005 21.004 21.150 53.075 21.148 38.148 21.150 0.000 3671.378

300 18 1.005 14.004 14.150 61.064 14.149 36.143 14.150 0.000 3658.683

300 20 1.005 13.004 13.148 82.068 13.145 35.156 13.148 0.000 3687.936
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