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Abstract: We develop KAM theory close to an elliptic fixed point for quasi-linear
Hamiltonian perturbations of the dispersive Degasperis—Procesi equation on the circle.
The overall strategy in KAM theory for quasi-linear PDEs is based on Nash—-Moser
nonlinear iteration, pseudo differential calculus and normal form techniques. In the
present case the complicated symplectic structure, the weak dispersive effects of the
linear flow and the presence of strong resonant interactions require a novel set of ideas.
The main points are to exploit the integrability of the unperturbed equation, to look for
special wave packet solutions and to perform a very careful algebraic analysis of the
resonances. Our approach is quite general and can be applied also to other 1d integrable
PDEs. We are confident for instance that the same strategy should work for the Camassa—
Holm equation.
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1. Introduction and Main Result

In this paper we prove existence and stability of Cantor families of quasi-periodic,
small amplitude, solutions for quasi-linear Hamiltonian perturbations of the Degasperis—
Procesi (DP) equation

Up — Uyxr +Uyx — 4y — Ullyxy — 3Uylyx + AUty +/\/8(M, Uy, Uy, Uxxy) =0 (1.1)
under periodic boundary conditions x € T := R/27Z, where

NS(’/" Uy, Uxy, Uyxy) = —(4 — 0xx)0x[(u /) (W)], (1.2)

the “Hamiltonian density” f belongs to C*° (R, R) and is such that

fu) = 0w, (1.3)

where O(ug) denotes a function with a zero of order at least nine at the origin. The
Eq. (1.1) is a Hamiltonian PDE of the form u; = J VH (u) where VH is the L*(T, R)
gradient and the function

I/t2 M3
H(u) = / > ¢t f@ydx, J=(1—08.)"" (4= 000 (1.4)

is defined on the phase space HO1 (T) := {u e HY(T,R) : fT udx = 0}. The Eq. (1.1)
for f = 0 1is the DP equation which was first proposed in [29] in the form

2 ! 2
U+ Colly + YUyxxy — O Uy = —?u +oo(uy +uuyy) ) (1.5)
X

where cg, c1, 2, ¥, o € R, o # 0. By applying Galilean boosts, translations and time
rescaling to (1.5) one obtains Eq. (1.1) with f = 0.

The DP equation can be regarded as a model for nonlinear shallow water dynamics
and its asymptotic accuracy is the same as for the Camassa—Holm equation and a degree
more than the KdV equation [23]. There is a rather large literature on this equation
starting form the paper [28] in which the complete integrability is proved. The local and
global well-posedness, for instance, have been extensively studied as well as existence
of wave breaking phenomena (peakons, N-peakons solutions). Without trying to be
exhaustive we quote [18,20-22,48,54] and we refer to [32] and references therein for
more literature about Degasperis—Procesi equation.

Actually many of these results (notably the wave breaking) are studied in the disper-
sionless case, which corresponds to (1.1) with f = 0 and u ~» u+1. In the present paper
the presence of the dispersive terms —4u, + u, ., is fundamental. Our main purpose is
to prove existence of quasi-periodic solutions in high Sobolev regularity by following
a KAM approach. In this setting a quasi-periodic solution with v € N frequencies is
defined by an embedding

T 3 ¢ > U(p, x) € HY (T, R) (1.6)
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and a frequency vector w € R", with rationally independent entries, such that u(¢, x) =
U(wt, x) is a solution of (1.1) and U(p, x) € HP(T"*',R) for some p sufficiently
large.
Notice that, in a neighbourhood of u = 0, (1.1) can be seen as a perturbation of the
linear PDE
Vp — Uxxr + Uxxx — 40y =0, (L.7)

whose bounded solutions have the form

e 4+ 2 3j

v(t, x) = Z vy DY) = ;2 =j+s +’j2, jez, (18
J€Z
where j +— A(j) is the linear dispersion law. It is easily seen that all solutions of (1.7)
with compact Fourier support are periodic, but with period depending on the support. In
this context it is natural to investigate whether Eq. (1.1) has periodic or quasi-periodic
solutions close to to small amplitude linear solutions (1.8). We remark that, since the so-
lutions of (1.8) are all periodic, the existence of quasi-periodic solutions, if any, strongly
relies on the presence of the quadratic nonlinearity in (1.1).

In the present paper we construct quasi-periodic solutions mainly supported in Fourier
space at v > 2 distinct fangential sites

St ={7 ... T, S:=STU(=SY, 7, eN\{0}, Vi=1,...,v, (1.9

where, without loss of generality, we shall always assume that 7; = max;=1 ., j;. We

denote by
e -2 T (4 =2
@ = (’1( AP ””)) cQ’ (1.10)

—2 )
I+77 1+7;
the linear frequencies of oscillations related to the tangential sites. More precisely our
solutions will have the form

u(t, x:£) =2 & cos(wit +7;x) +o(/[E)., o=+ O(&)), (L.11)

i=1

where 0(+/|€]) is meant in the H*-topology with s large. Itis well know that in looking for
quasi-periodic solutions “small divisors” problems arise. To overcome such problems
we shall require that S* satisfies a wave packet condition and that the unperturbed
amplitudes & belong to an appropriate Cantor-like set of positive measure.

The following definition quantifies the wave packet condition.

Definition 1.1. For r € (0, 1), we say that a set of natural numbers S* = {7,...,7,}
isin V(x) if

1 7.
min j; > — and ‘1—’—1 <r; (1.12)
i=l,..., v r ]1
v _.
> ]l_zei;éo, YeeZ': |¢ =4 (1.13)
P 1+Ji

Denoting by B(0, o) the ball centred at the origin of R of radius ¢ > 0, our result can
be stated as follows.
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Theorem 1. Let v € N, v > 2, and consider f € C®(R,R) satisfying (1.3). There
exists a constant ro > 0 such that, for any choice of S* in V(r), with0 < r < ry, there
exists > 1,0 < o <« 1 and apositive measure Cantor-like setd C B(0, o) such that the
following holds. For any & € 2, the Eq. (1.1) possesses a small amplitude quasi-periodic
solution u(t, x; &) = U(wt, x; &) of the form (1.11) where U (¢, x) € H*(T"*', R) and
w = w(&) € R is a diophantine frequency vector. Moreover for 0 < & < ,/0o, the set

2 has asymptotically full relative measure in [¢2, 2&%]".

Moreover we have the following stability result.

Theorem 2 (Linear stability). The quasi-periodic solutions (1.11) u(t, x) = U(wt, x)
of Eq. (1.1) are linearly stable and reducible in the following sense. Consider Eq. (1.1)
linearized at the embedded torus U (¢, x), then the corresponding operator has purely
imaginary spectrum and there exists a change of variables H(T,R) — H*(T, R),
quasi periodic in time with frequency w, which diagonalizes it in the directions normal
to the torus. As a consequence the Cauchy problem of the linearized equation is stable,
i.e. the Sobolev norms are uniformly bounded in t.

Theorems 1, 2 are formulated in the typical style of results on reducible KAM tori
for PDEs. For the proof we use the overall strategy of [4], which however has to be
substantially developed to deal with (1.1). Let us briefly explain the main new issues.

e The dispersion law is asymptotically linear as for the Klein—-Gordon equation, stud-
ied for instance in [6,7]. As explained in those papers, the fact that the dispersive
effects are very weak (essentially time and space play the same role) creates a num-
ber of difficulties even in the study of KAM theory for semi-linear PDEs. Of course,
since (1.1) is quasi-linear, there are additional serious difficulties coming from the
strong perturbative effects of the nonlinearity.

e The DP equation is resonant at zero and does not depend on any external param-
eters. This is a fundamental difference w.r.t. the Klein—-Gordon equation, where one
modulates the mass in order to avoid resonances. Moreover the DP has non-trivial
resonances already at order four (see Sect. 1.3), differently from the previous KAM
results for quasi-linear PDEs. As a further difficulty the algebraic structure of the
resonances is quite complicated. In order to avoid the inherent problems we rely on
the presence of “many” (precisely eight) approximate constants of motion of (1.1)
coming from the integrable structure of the DP equation. Dealing with the problems
related to resonances is the core of this paper and requires a set of new ideas and a
careful analysis.

e The very strong restriction of the tangential sites S* is exploited several times to
simplify the problems arising from the rational and asymptotically linear dispersion
law. Physically we are looking for solutions mainly supported in Fourier space on
modes which are relatively close to each other.

It seems reasonable that such condition could be weakened, but it is not clear to us
how to deal with the technical difficulties which would arise.

e As in other resonant cases, the diophantine constant y is related to the size of
the solution one is looking for (see (1.11)). Moreover, due to the linear dispersion
law, we are forced to impose very “weak” non-degeneracy conditions on the linear
frequencies of oscillations. As a consequence we need a refined bifurcation analysis in
order to find a very good first approximate solution and fulfil the smallness conditions
required for the Nash—Moser scheme.

Some comments on Eq. (1.1) and on Theorems 1, 2 are in order.
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The unperturbed DP equation. We look at (1.1) as a perturbation of the linear equation
(1.7), in order to fit the typical perturbative setting of KAM for PDEs , we refer to
Sect. 1.1 for more details.

Actually, since the Degasperis—Procesi equation is completely integrable (see [28])
it would be very natural to try to construct solutions of (1.1) which bifurcate from
quasi-periodic solutions of the unperturbed DP equation

U — Uyyr + Upypy — Ay — Ulyyy — SUyllyy +duu, =0, (1.14)

which corresponds to (1.1) with f = 0. Indeed, near zero, the (1.1) can be seen also as a
perturbation of (1.14). Unfortunately even though algebro-geometric finite-gap solutions
have been already constructed in literature for the DP equation (see [42]) it is not clear
to us whether they are real quasi-periodic solutions in the sense of (1.6). Of course if
one were able to bifurcate from finite-gap solutions of (1.14) then it would be possible
to prove existence of large quasi-periodic solutions, by requiring that f is small. Such
a strategy has been followed successfully for the KdV and cubic NLS equation on the
circle. Actually for those equations one can prove the existence of Birkhoff coordinates
[41,43] (the Cartesian version of action-angle variables), which trivialize the dynamics
(in the sense that the solutions turn out to be all periodic, quasi-periodic or almost
periodic) and provide a fundamental tool for investigating the dynamical consequences
of small perturbative effects, also far from the origin, see [14].

For 1d integrable PDEs one would expect this to be the typical scenario at least in a
neighborhood of zero, see [5,46]; however, as far as we know, up to now such results are
available only for the KdV, the NLS and the Toda system. Theorem 1 provides, again
as far as we know, the first existence result of quasi-periodic solutions, in the sense of
(1.6), for (1.14).

It would be interesting to apply our KAM approach to the Camassa—Holm equation,
which is a well-known integrable PDE with an asymptotically linear dispersion law, but
with a different symplectic structure. Even though we have not performed the computa-
tions, we expect to be able to prove the equivalent of Theorems 1, 2 also for this equation.
We remark that in this case, the finite gap solutions are known to be quasi-periodic tori,
see [20].

One could start by comparing them with the solutions predicted by our method and
then possibly develop KAM theory close to large finite gap solutions.

Approximate constants of motion of (1.1). Even though we do not fully exploit the
integrability of (1.14) it is fundamental for us that (the non integrable) (1.1) has at least
eight approximate constants of motion (up to an error of order O (1°)). It is interesting
to notice that, as shown in [29], no other equation with the same dispersion law, and
the same symplectic structure, has ei ght approximate conserved quantities. This means
that in (1.1) we cannot consider any quadratic nonlinearity, but we really need the DP
structure.

The request of the presence of such approximate conserved quantities it is not only a
technical matter. In order to implement a Nash/Moser-KAM algorithm one looks for a
family of approximately invariant tori of (1.1) (with a sufficiently good approximation)
such that the dynamics on the tori is integrable and non-degenerate, while the dynam-
ics normal to the torus is non-degenerate at the linear level and satisfies the Melnikov
conditions. If there are external parameters modulating the linear frequencies, then we
can consider as approximate solutions the linear ones. Otherwise the modulation must
come from the initial data and, hopefully, this can be achieved by means of Birkhoff
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normal form (BNF), see for instance [4,39]. In this case, where the the dispersion law
in (1.8) is a rational number and is asymptotically linear, such procedure is very diffi-
cult. One has to explicitly compute some potentially dangerous resonant terms in the
Hamiltonian and show that they vanish. This is the same type of computations which
have been done for water waves, see Craig—Worfolk [27] where the authors verify (by
computing them) the vanishing of the coefficients of fourth order resonant interactions,
the so called Benjamin—Feir resonances. In our case we have to deal with higher order
resonances (up to eight), so this would be computationally extremely heavy. Our ap-
proach is to use the approximate constant of motions. This will be explained more in
detail in Sect. 1.3. Once we have constructed the approximate invariant tori we have to
impose the non-degeneracy and Melnikov conditions. Differently form the KdV case,
this will not be possible for any choice of the tangential set, and it is where we will use
the condition S* € V(r), see Definition 1.1.

Linear stability The linear stability result of Theorem 2 is of course a relevant dynamical
information in the study of evolutionary PDEs, but it is also the consequence of a
fundamental ingredient of our proof: the reducibility of the linearized equation at any
quasi-periodic approximate solution. Reducibility for the Degasperis—Procesi equation
linearized at a quasi-periodic function has been obtained in [33], under some appropriate
diophantine conditions on the frequencies. Unfortunately, due to the resonances, our case
does not fit such hypotheses, and a major point will be to overcome this difficulty. Here
we shall use such result (appropriately adapted) inside a nonlinear algorithm to prove
the existence of quasi-periodic solutions. This is a classical feature of the literature of
KAM theory.

1.1. Some literature. Proving existence and stability for quasi-periodic solutions for
PDE:s close to an elliptic fixed point is a natural extension of the classical KAM theory for
lower dimensional tori [51]. The first results in this direction were for model PDEs on an
interval with no derivatives in the nonlinearity and with either Dirichlet, [44,47,51,53] or
periodic, [16,19,26], boundary conditions. For extension of KAM theory to higher spatial
dimension we mention [8,11,17,25,30,34,52]. While KAM methods for constructing
quasi-periodic solutions for PDEs on the circle with no derivatives in the nonlinearity
are by now well established, generalizing to cases with derivatives is in general not at
all trivial, even in the semi-linear cases (where the derivatives in the nonlinearity are of
lower order w.r.t. the linear terms). We mention [45] for the KdV, [49] for the derivative
NLS, and [6,7] for the derivative NLW. Recently an innovative strategy was proposed,
[3,4] to deal with quasi-linear and fully nonlinear PDESs on the circle. This approach was
first developed for the KdV equation but can be applied to many equations of interest in
hydrodynamics, such as NLS, [37,38] Kirchhoff [50] or directly the water wave equation
[2,15]. While these methods were first thought for PDEs on the circle, of course a very
interesting point is the generalization to higher dimensions.

Equation (1.1) is a quasi-linear PDE on the circle and in our study we shall follow
the general strategy of [4], extended and adapted to our case. Let us briefly explain the
point of view of [4], referring also to [2] for more details.

1.2. The general strategy. We describe the strategy to prove existence and linear stability
for small, reducible quasi-periodic solutions of completely resonant quasi-linear PDEs.
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(i) Thestarting point is a Nash—Moser theorem of hypothetical conjugation following
[9]. The strategy is to construct quadratically convergent sequence of families
of approximately invariant (isotropic) tori. Such construction is based on fame
estimates on the inverse of the operator associated to the Eq. (1.1) linearized at
an approximate torus and restricted to the normal direction. This is proved by
exploiting the Hamiltonian structure and exhibiting symplectic variables adapted
to each approximate invariant torus, which essentially decouple the linearized
dynamics. Then the bounds on the inverse are achieved by removing all the “bad”
values of the parameters. We mention also [24] for a parallel strategy which does
not rely on the Hamiltonian structure.

(i7) To construct the sequence of item (i) we need a good starting point, i.e. a first
family of approximately invariant tori parametrized by real vectors § € R".

As explained before this is achieved by BNF techniques. In particular, in the quasi-linear
context, it is convenient to perform a Weak BNF, i.e. to exhibit a change of variables,
close to the identity up to a finite rank operator, such that the following holds. The
Hamiltonian H transforms to Hgjx + R where R is a small remainder, and

1. The finite dimensional subspace Us := {u; = 0, Vj ¢ S} is invariant for Hpj;
2. The Hamiltonian restricted to Ug is integrable and non-degenerate in the sense that
the “frequency-to-amplitude” map is invertible.

In order to describe in a simpler way the dynamics in a neighborhood of Uy it is con-
venient to define action-angle variables. This allows to distinguish the tangential and
normal dynamics to the approximately invariant tori.

We remark that, for semi-linear PDEs, typically one performs a stronger BNF prelim-
inary step, in order to “normalize” also the linearized dynamics normal to the torus, i.e.
the terms in the Hamiltonian which are quadratic in the normal directions. In this case the
Birkhoff map is close to the identity up to a bounded operator (at most one-smoothing),
see for instance [47,51]. Compared to the latter approach, the weak procedure has the
disadvantage that the normal form depends on the angles; on the other hand we do not
have to address well-posedness issues, since these changes of coordinates are time-one
flow maps of an ODE. Note that the recent papers, [10,35,36] directly study the full
Birkhoff normal form for quasi-linear PDES.

(iii) The third key point is to study the invertibility of the linearized operator restricted
to the normal directions. Thanks to the very “mild” conjugation procedure of item
(i7) (with a map = identity+finite rank) it turns out that such linear operator is
pseudo differential (with non constant coefficients) up to a finite rank remainder.
This is the most important reason for adopting the weak procedure described in
(@@i).
The invertibility of the linearized operator, with appropriate tame estimates, is based on
a reducibility argument which is divided into two parts:

(a) A reduction in decreasing order procedure which conjugates the linearized operator
to a pseudo differential one with constant coefficients up to a remainder which is a
bounded/regularizing term i.e. maps H*(T, R) to H***(T, R), p > 0. The choice of
p depends of course on the problem one is studying;

(b) A quadratic KAM scheme (for bounded operators) which completely diagonalizes
the bounded/smoothing remainder of the previous step.

We want to point out the following:
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e The step (a) strongly relies on the pseudo differential structure of the operator;

e The normal form contains angle-dependent terms and some of them turn out to be
not perturbative for the KAM scheme (b). The conjugation to constant coefficients of
such terms relies on purely algebraic arguments. We refer to this procedure as linear
Birkhoff normal form;

e As aconsequence of having applied the weak and the linear Birkhoff procedure, the
normal form around the approximately invariant tori has constant coefficients also in
the normal directions.

In order to perform the diagonalization procedure of step (b) one needs the second Mel-
nikov conditions, which essentially amount to requiring that the operator has simple
eigenvalues with a lower bound on the differences. Once one has diagonalized the op-
erator, the bounds on the inverse follow trivially from lower bounds on the eigenvalues,
i.e. first Melnikov conditions.

(iv) In the scheme above, at each step we have removed some bad values of the
parameters & where the Melnikov conditions do not hold. Hence the last (but not
least) step is to prove that at the end of the procedure one has still a positive
measure set of parameters. Note that often it is more convenient to express such
conditions in terms of the frequency of the quasi-periodic solution. This can be
done thanks to the invertibility of the frequency-to-amplitude map.

1.3. Main novelties and scheme of the proof. We describe the structure of the paper
following Sect. 1.2, and with particular attention to the main novelties.

In Sect. 2 we introduce the Hamiltonian formalism for the DP equation and the
functional spaces on which we shall work.

In Sect. 3 we perform the weak Birkhoff normal form explained in item (ii) of the
previous section. The result is stated in Proposition 3.2. In order to reach a sufficiently
good first approximate solution we need to perform 6-BNF steps. As is well-known,
at the n-th step of this procedure one has to take into account the denominators (recall

(1.8))

AGD + -+ A(jne2)- (1.15)
We say that a (n+2)-uple of integer indices (i, - . . , jn+2) is aresonance, and hence may
appear in Hpir, if (1.15)= 0 and the momentum condition holds, namely Zf‘j Ji =
0. We say that a resonance is trivial if it has the form (i, —i, j, —j,...) so that the
corresponding monomial is integrable.

As mentioned before a major difficulty comes from the fact that the DP equation
has many non-trivial resonances (already at order four) and in principle there is no
reason why the Birkhoff Hamiltonian restricted to Ug should be integrable. By the fact
that the Hamiltonian density f is of order O(u°) the perturbation does not affect the
leading terms of the Birkhoff Hamiltonian and we can exploit the integrability of the DP
equation. Indeed the same Birkhoff transformation should normalize simultaneously all
the commuting Hamiltonians. This means that a resonant monomial contributes to Hpirk
if and only if it is resonant for all the constants of motion. This was proved in detail in
[32] at the level of formal power series. Here we adapt this result to the Eq. (1.1) which
is only approximately integrable (close to the origin) and we reformulate it in a way
better suited to the weak Birkhoff normal form context, see Proposition 3.6.

Once we have shown that the Hp;rk-dynamics restricted to Uy is integrable, in Sect. 4,
we prove that it is non-degenerate, i.e. that the frequency to amplitude map is a diffeo-
morphism. We have a very explicit description of this map and hence this step amounts to
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proving that the matrix A in (4.6) (which depends only on S*) has determinant bounded
away from zero (the so-called twist condition), see Lemma 4.1. A big difference with
[4] is that, in our case, the determinant of A is a rational function of several variables J;
that could accumulate to zero as |j;| — oo. By imposing the wave packet condition we
restrict the study of its asymptotic behaviour to regions in which it behaves like a one
variable function. Then we use continuity arguments to guarantee the invertibility of A
for every choice of S* € V(r) (see Definition 1.1) for r small enough. Outside V(r)
the proof of lower bounds for det A should rely on purely algebraic arguments and not
on perturbative ones.

In Sect. 5 we introduce the Nash Moser hypothetical conjugation theorem (see Theo-
rem 5.4) and in Sect. 6 we explain how to prove the invertibility of the linearized operator
at an approximate solution by only studying it in the normal direction. Since there is no
difference with [4] we only give a synopsis.

In Sects. 7 and 7.3 we prove the Theorems 7.1 and 7.13 which provide the reducibility
of the linearized operator following item (iii) of Sect. 1.2. As we already mentioned, in
[33] we provide a reducibility result for the DP equation (1.1) linearized at sufficiently
small quasi-periodic functions under appropriate diophantine conditions on the frequen-
cies . Unfortunately in our case the diophantine constant y is related to the size of the
approximate solutions (see (5.3)) and then the smallness and diophantine conditions
above cannot be met.

In [4] this issue appears only in the step (b) of the strategy, where it is solved by the
linear Birkhoff normal form method. A first difficulty in our case is that this problem
appears also in step (a). So that we first need to perform some preliminary steps (see
Sect. 7.1), more precisely we need changes of coordinates, preserving the pseudo differ-
ential structure, that conjugate the leading order of the linearized operator to a diagonal
one plus a correction, which is unbounded but perturbative in the sense of [33]. In such
steps the provided changes of coordinates are similar in structure to those of step (a) but
they are proved to be well-defined not by using perturbative arguments, but by algebraic
computations involving the Birkhoff resonances (see Lemma A.1). These difficulties
appear also for the quasi-linear generalized KdV [39], but here we have several further
problems due to the complexity of the symplectic structure of the DP equation. The
first step, removing terms of order ¢, is straightforward. Already at the second step we
encounter the difficulties arising form the presence of non-trivial resonances of order 4,
and a priori there is no reason why the normal form should be integrable. Here it does
not appear simple to apply the strategy of the weak BNF, using the constants of motion.
On the other hand, computing the normal form explicitly by hand, as done in [39], is
unmanageable. To bypass this problem we take a different point of view, based on an a
posteriori identification argument of normal forms. More precisely in Theorem 7.9 we
prove that the normal form obtained after the weak BNF, the preliminary steps and the
linear BNF coincides with the one that we would obtain by performing the full formal
BNF and then projecting on the quadratic terms in the normal variables. This result
strongly relies on the fact that all the resonances contributing to the formal normal form
are trivial. A similar identification argument has been used, for instance, in [12,13].

A further point is that, due to the rational dispersion law A(j), it is possible that a
denominator in the linear BNF is not zero but is still uncontrollably small. In the third
step, in order to deal with this problem we need to take into account in the unperturbed
Hamiltonian also the integrable terms of order £ coming from the previous steps of linear
BNF. For this reason it is important to know the exact expression of the main order of
the correction at the eigenvalues given by the perturbation, see for instance (5.5). This is
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also needed in the KAM scheme (b), in order to impose the second Melnikov conditions.
Computing these corrections by hand would be a very difficult task, but this comes for
free from Theorem 7.9.

In the first part of Sect. 8 we show the convergence of the Nash—-Moser algorithm
(see Theorem 8.1), which requires the ratio between the size of R = H — Hpjx and
y7/ 2 to be small (see the smallness condition (8.5)); in the second part we prove that
the set of “bad” parameters, i.e. the frequencies which do not meet the first and second
Melnikov conditions, has small measure (see (8.25), note that such sets are indexed by
three parameters ¢, j, k).

In Lemma 8.4 we provide the measure of the single bad set. Here we use the algebraic
arguments provided by Lemma A.1, which guarantees the non-degeneracy of the leading
terms of the small divisors. In Sect. 8.1.2 we deal with the summability of the bad sets
in j, k for fixed €.

The key difficulty is that the spectral gap A(j) — A(k) is asymptotically constant,
hence there is a bad separation property of the eigenvalues. The same occurs for the
wave equation [6,7]. Due to the asymptotically constant spectral gap, these sets are
infinitely many. Then the key ingredient is to show that for j, k sufficiently large the
second Melnikov conditions are implied by the first ones. This is possible provided that
we consider two different diophantine constants. More precisely we have to impose
second order Melnikov conditions with y3/2 (see (8.6)), which is clearly much smaller
than y. This is why we have to perform many steps of Birkhoff normal form in order to
obtain a very good first approximate solution.

We point out that, differently from [2], our Melnikov conditions do not imply a loss of
regularity in space. In [2] this loss is acceptable, since in the regularization step ((a) p. 5)
the diagonalization is performed up to a very smoothing remainder. In this procedure it
is fundamental that the diophantine constant y is independent of the size of the solution.
Of course in our case this is not true and thus in the regularization step we end up with
a remainder of order —1, and then in the measure estimates we put some extra efforts to
prove second Melnikov conditions without loss of regularity.

2. Functional Setting

Hamiltonian formalism of the Degasperis—Procesi equation For any u, v in the space

HJ(T) := {u e LX(T,R) : /Tudx = o}
we define the non-degenerate symplectic form
Qu,v) = /T(J_lu)vdx = w2 2.1)
where J is defined in (1.4) and (-, -) ;2 is the L?(T, R) scalar product. To any C! function
H : HOl (T) — R we associate a vector field Xy by requiring
dHw)[hl = (VHu),h);2 = Q(XH W), h), Yu,he HO1 (T).

The Hamiltonian vector field X i is uniquely determined since the symplectic form €2 in
(2.1) is non-degenerate, in particular X iy (#) = JV H (1). The Poisson bracket between
two C! functions F, G : H(} (T - Ris

{F,G}:=Q(Xp, Xg) = (VF,IVG),>. (2.2)
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In this way
X(r,6) =[XF,Xg]l, where [X,Y]:=dX[Y]-dY[X]. (2.3)
Finally, given a Hamiltonian H we define its adjoint action as the operator
adgy[-]:={H,}. 2.4)

Consider now two Hamiltonians H, G and let @ be the time-1 flow map of the vector
field X . Then we have (formally)

(—DF - 1
Hodg =Y o adS[H], Hody' = Zﬁad’é[H],
k>0 ’ k>0 "

ad$[H] := adg[ads '[H]], (2.5)

where ad% := L is the identity map.

Functional space We consider functions u(¢p, x) defined on T x T. Passing to the
Fourier representation

u(p, x) = Z”j((l’) eVt = Z ugj €Y Ti() = u_j(p), Wy =u_y_j.
JEZ Lelv,jel

(2.6)
We define the scale of Sobolev spaces

H® = {u(go,x) e XM R : ulf == ) luglP(e, )™ < oo} (2.7)
Lelv,jel

where (€, j) := max{1, €], [j|}, [¢] :== >_;_,|¢;|. We shall work on the phase space
H’N HO1 (T, R). We denote by B, (0, X) the ball of radius r centered at the origin of a
Banach space X.

Lipschitz norm Fix v € N* := N\{0} and let O be a compact subset of R". For a
function u: O — E, where (E, ||-||g) is a Banach space, we define the sup-norm and
the lip-seminorm of u as

sup sup,O
lullg? == llully”"™ = sup |u(@)|£,
we®
li lip,© lu(w1) — u(w2) |l E
lully’ == llullg”™ = sup : (2.8)
w1,w€0, w1 — w2
W1 Fw)

If E is finite dimensional, for any y > 0 we introduce the weighted Lipschitz norm

,O sup,O lip,O
Ll ™ o= Nl 5™ + yllull (2.9)

If E is a scale of Banach spaces, say E = H?, for y > 0 we introduce the weighted
Lipschitz norm

0 0 lip,O
Nl = Nalls™™ + ylull 77, Vs = [v/2]+4 (2.10)



1692 R. Feola, F. Giuliani, M. Procesi

where we denoted by [r] the integer part of r € R.

Linear operators Let A: T' — L(L*(T,R)), ¢ — A(p),bea @-dependent family of
linear operators acting on L2(T, R). We consider A as an operator acting on H* (T"*!, R)
by setting

(Au) (@, x) = (A(@u(p, ) (x).

This action is represented in Fourier coordinates as

Aup.x)= Y A @up@d = 3 S AT yujp e,
J,j'eZ LelV,jeL Vel ,j €L
(2.11)
Conversely, given a Topliz in time operator A, namely such that its matrix coefficients
(with respect to the Fourier basis in ¢, x) satisfy

A=Al w0y Ve 6l e (2.12)

we can associate it a time dependent family of operators acting on H*(T) by setting

Aph= Y Al ©hjyiet,  Vhe H(T,R).
J.j'€L LDy
Form =1, ..., v we define the operators d,,, A(¢) as

Bg, Al@)u(, x) = > > ittm—1t,) Ajﬁ’(z —Yug j VD (2.13)
LelV,jel Vel €L

We say that A is a real operator if it maps real valued functions in real valued functions.
For the matrix coefficients this means that

Aj. ) = A:j. (—=20).

Hamiltonian linear operators In the paper we shall deal with operators which are
Hamiltonian according to the following Definition.

Definition 2.1. We say thatalinear map is symplectic if it preserves the 2-form Qin (2.1);
similarly we say that a linear operator M is Hamiltonian if Mu is a linear Hamiltonian
vector field w.r.t. € in (2.1). This means that each J~! M is symmetric respect to the
real L2-scalar product. Similarly, we call a family of maps ¢ — A(gp) symplectic if,
for each fixed ¢, A(p) is symplectic, same for the Hamiltonians. We shall say that an
operator of the form w - d, + M (¢) is Hamiltonian if M (¢) is Hamiltonian.

Notation. We use the notation A < B to denote A < C B where C is a positive constant
possibly depending on fixed parameters given by the problem. We use the notation
A <, Btodenote A < C(y)B if we wish to highlight the dependence on the variable
y of the constant C(y) > O.

Linear Tame operators Here we introduce rigorously the spaces and the classes of
operators on which we work.
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Definition 2.2 (o -Tume operators). Given o > 0 we say that a linear operator A is
o -tame w.r.t. a non-decreasing sequence {914 (o, s)}s (with possibly S = +00) if

S=50
[Aulls < Ma(o, $)ullspro +Malo, so)ulls+e  u € H', (2.14)

forany so < s < S. We call M4 (o, s) a TAME CONSTANT for the operator A. When the
index o is not relevant we write T4 (o, s) = M4 (s).

Definition 2.3 (Lip-o-Tame operators). Let c > 0 and A = A(w) be a linear operator
defined for w € O C RV. Let us define

Alw) — A(@)

Ay A=
lw — ']

, w0 €0. (2.15)

S

Then A is Lip-o -tame w.r.t. a non-decreasing sequence {24 (o, )}5_y,

estimate holds

if the following

sup |Aulls, ¥ sup [(Ag o A)lls—1 <s M (0, $) |t llsgro+0 (0, ) ttlls+o, u € H'.
weO w#w

(2.16)
We call smg (o, s) aLIP- TAME CONSTANT of the operator A. When the index o is not

relevant we write Dﬁg (o,5) = mﬁ (s).

Modulo-tame operators and majorant norms The modulo-tame operators are in-
troduced in Sect. 2.2 of [15]. Note that we are interested only in the Lipschitz variation
of the operators respect to the parameters of the problem, whereas in [15] the authors
need to control also higher order derivatives.

Definition 2.4. Let u € H®, s > 0, we define the majorant function u(g, x) =
Z(EzuyjezlugjIe‘(e"/’”"). Note that |lull; = |lus.

Definition 2.5 (Majorant operator). Let A € L(H*) and recall its matrix representation
(2.11). We define the majorant matrix A as the matrix with entries

WO =1 @ e ter
We consider the majorant operatorial norms

Ml epsy == sup [|Muls. 2.17)

lulls=<1
We have a partial ordering relation in the set of the infinite dimensional matrices, i.e. if
M <N & MO <IN @] Yj,j' t = Mg < INlzws),
IMulls < [IMully < IINuls. (2.18)

Since we are working on a majorant norm we have the continuity of the projections on
monomial subspace, in particular we define the following functor acting on the matrices

M@ ifle <K,

I K M = .
0 otherwise

Mg :=1- M.

Finally we define for bp € N
(8,)2M)] (0) = (O™ M] (©). (2.19)

In the sequel let 1 > y > y3/2 > 0 be fixed constants.
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Definition 2.6 (Lip-o-modulo tame). Let 0 > 0. A linear operator A := A(w), w €

Lo . 3/2 .
O C RV, is Lip-o-modulo-tame w.r.t. a non-decreasing sequence {Sﬁi’y (o, s)};gzs0 if
the majorant operators A, A,, s A are Lip-o-tame w.r.t. these constants, i.e. they satisfy

the following weighted tame estimates: for o > 0, for all s > s¢ and for any u € H?,

3/2 3/2
sup [[Aully, sup 2| Ap.oAully < ML (0, s0)lullsso +I57 (0, 5) 1]l g0 -
weO w#aw' €O -
(2.20)

3/2 .
The constant Smi{y (o, 5) is called the MODULO- TAME CONSTANT of the operator A.

. . . 3/2 3/2
When the index o is not relevant we write ‘)ﬁi’y (0,5) = Sﬁi‘y (s).

Definition 2.7. We say that A is Lip-—1-modulo tame if (D,)'/2A(D,)'/? is Lip-0-
modulo tame. We denote

#,y3/2 ) 8,932
M (—1s) = MM oy 12 (008),

3/2

f.y3? 8,y
9),tA (_15 s, a) = EIn(a(p)a(DX>1/2A(DX)1/2(O’ S)a az= 0. (221)

In the following we shall systematically use — 1 modulo-tame operators. We refer the
reader to the “Appendix” of [33] for the properties of Tame and Modulo-tame operators.
Pseudo differential operators Following [15] we give the following definitions.

Definition 2.8. Let m € R. A linear operator A is called pseudo differential of order
< m if its action on any H*(T, R) with s > m is given by

AZujeijx = Za(x,j)ujeijx,

JEZ JEZ

where a(x, j), called the symbol of A, is the restriction to T x Z of a complex valued
function a(x, y) which is C* smooth on T x R, 27 -periodic in x and satisfies

10¢00a(x, y)| < Cap(M)™F. Va,peN. (2.22)

We denote by A[-] = Op(a)[-] the pseudo operator with symbol a := a(x, j). We
call O PS™ the class of the pseudo differential operator of order less or equal to m and
OPS™ :=[),, OPS™. We define the class S as the set of symbols which satisfies
(2.22).

We will consider mainly operators acting on H*(T, R) with a quasi-periodic time
dependence. In the case of pseudo differential operators this corresponds' to considering
symbols a (g, x, y) with ¢ € T". Clearly these operators can be thought as acting on
functions u (@, x) = ZJ»GZ uj(p)e’* in H* (T*!, R) in the following sense:

(Au)(p, x) =Y _alg, x, puj(p)e’™, alp,x, j) € 5™
JEZL

The symbol a(g, x, y) is C® smooth also in the variable ¢. We still denote A := A(p) =
Op(a(p, 1)) = Op(a).

I Since o is diophantine we can replace the time variable with angles ¢ € T". The time dependence is
recovered by setting ¢ = wt.
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Definition 2.9. Leta := a(¢, x, y) € " and set A := Op(a) € OPS™,

|Alm.s.o := max sup [[88a(., -, y)[s(y) ™" (2.23)
fﬁfa yeR
We will use also the notation |a|,; 5. = |Alm.s.a-

Note that the norm | - | 5.« is non-decreasing in s and . Moreover given a symbol
a(y, x) independent of y, the norm of the associated multiplication operator Op(a) is
just the H® norm of the function a. If on the contrary the symbol a(y) depends only on
v, then the norm of the corresponding Fourier multipliers Op(a(y)) is just controlled by
a constant.

As in formula (2.10), if A = Op(a(w, ¢, x,y)) € OPS™ is a family of pseudo
differential operators with symbols a(w, ¢, x, y) belonging to S”* and depending in a
Lipschitz way on some parameter w € O C RY, we set

,O |Op(a(wr, @, x,y) —a(wz, @, X, ¥)) lm.s—1.
|A|3r/1,s,ot ‘= sup |A|m,s,a +y sup ( ) m,s o ]

weO 1,0 |1 — ws]

(2.24)
For the properties of compositions, adjointness and quantitative estimates of the actions
on the Sobolev spaces H® of pseudo differential operators we refer to “Appendix B” of
[33].

3. Weak Birkhoff Normal Form

The aim of this section is to construct a &-parameter family of approximately invari-
ant, finite dimensional tori supporting quasi-periodic motions with frequency w (¢). We
will impose the map & +— w(€) to be a diffeomorphism and we will consider such
approximate solutions as the starting point for the Nash—-Moser algorithm.

In order to state the main result of this section, we need some preliminary definitions.
We write the DP Hamiltonian in (1.4) in the following way:

Hw)=H®w) + HYw) + HZY
1 1
HP ) = —f wrdx, HY ) = ——/ wdx, HZ) ) := / fudx.
2 Jr 6 Jr T
3.1
Recall S in (1.9) and define S¢ := Z\ (S U {0}). We decompose the phase space as

HOI(T) = Hs & HSL, Hs := span{e'/* : j € S}, HSL := span{e' /¥ : j € 5,
(3.2)
and we denote by I1g, Hj: the corresponding orthogonal projectors. The subspaces Hg

and H SL are symplectic orthogonal respect to the 2-form 2 (see (2.1)). We write

u=v+z, v:=Igu ::Zuje‘”, z:l'[ﬁu = Zuje'”.
JES jese

For a finite dimensional space

E = E¢ ::span{eijx:0<|j|§C}, C>0, (3.3)



1696 R. Feola, F. Giuliani, M. Procesi

let [Tz denote the corresponding L?-projector on E. The notation R(v¥~9z%) indicates
a homogeneous polynomial of degree k in (v, z) of the form

R(kaqzq) =M[v,...,v,z,...,2], M = k-linear.
— ——
(k—g)—times g —times

We denote with H=K g6 .=k the terms of type R(v" ™ z*), where, respec-
tively, s > k, s = k, s < k, that appear in the homogeneous polynomial H,, of degree n
in the variables (v, z). Given an n-uple {ji, ..., ju,} C Z\{0} and a set B C Z\{0} we
define

g({Jj1,..., ju}, B) := number of j; belonging to B.

Now we start the “weak” Birkhoff normal form procedure, i.e. we look for a change
of coordinates which normalizes the terms in (3.1) independent and linear in the normal
variable z.

Asitis well known, one of the main problem of the Birkhoff normal form procedures is

to deal with the resonances given by the equations (1.15) =0 which arise from considering
the kernel of the adjoint action ad ;) (see (2.4)). It turns out that when n > 2 there are
many non-trivial solutions of (1.15)=0. A way to deal with this problem is to exploit
the integrability of the DP equation.
In [32] the authors construct an infinite number of conserved quantities K, for the
Eq. (1.1) with f = 0O starting from the ones given in [28]. By an explicit characterization
of the quadratic part of each K,,, they deduce that, at a purely formal level, the Birkhoff
normal form of the Degasperis—Procesi equation is action preserving (or integrable). Here
we rename these constants of motion in the following way, writing only the quadratic
parts (which are fundamental for the study of the Birkhoff resonances at u = 0)

Kow) := Hw), Ki(u) = l/(J*lux)udx,
2 Jr
Kpi2 = /(agw)zdx +0@W®), n>0, (3.4)
T

where we denoted by
wi= AT U= u A= (1= B) (3.5)

We remark that K is the momentum Hamiltonian arising from the translation invariance
of the equation.

Definition 3.1. Given a quadratic diagonal Hamiltonian Q(u) = > j [(j)|u j|2, we
define ITker(p) as the projection on the kernel of the adjoint action (recall (2.2) and
J = diag;c(A())))

n

ado(K) = > (D 1GDAGN ) Kooty -,

jls--ujn i=1

K@) = Y Kj. juj...uj,. (3.6)
Jlseensn

We define the projector on the range of the adjoint action as Ilrg() := I — IKer(g)-
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We say that K, as in (3.6), “preserves” momentum if and only if

n
(D) Kiin =0 Vit n € Z\O)

i=1
The main result of this section is the following.

Proposition 3.2. There exist r > 0, depending on S (see (1.9)), and an analytic sym-
plectic change of coordinates

®p: B0, H)(T)) — HJ(T), ®p=I+V¥, W=TgoWollg (3.7)

where E is a finite dimensional space as in (3.3), such that the Hamiltonian H in (3.1)
transforms into

H:=Hodg=H?P+H*O 4 56O L yBO 4 3y(=9.=D 4 1y(=3.22 (38

where
HGZD .= —1/ vz2dx — l/ 2 dx
2 Jr 6 Jr ’
1 A2J) A(j1+)2)
PP S Y PP ) N TP
2 = 20(j) — A (2)) = AGD*FA(2) — A1+ )2)
JES J1.2€87,
J1—j2#0
A1 — J2) 2 2
+ - - - —lujy |7 |uj, | (3.9)
. Z A —AG) —AGE— o)
J1,J2€S87,
J1—2#0

and H*0 = HKer(Hu))H(k’O) withk = 4, 6, 8 depend only on |u 2. The same change
of variables ®p puts all the Hamiltonians in (3.4) in weak Birkhoff normal form up to
order eight as in (3.8). In particular we have K1 o ®p = K;.

In order to prove the Proposition 3.2 above we need some preliminary results proved in
detail in [32].

Definition 3.3 (M-resonances). Fix M € N, M > 3. We recall that the quadratic part
of Hand K,,2 <r < M, in (3.4) are

KP@ = 3 A+ 202 HO G =Y Jujl

JE€Z\{0} izl
We say that an n-uple {ji, ..., j.} C Z\{0}, withn < M, is a M-resonance of order n
for the DP hierarchy if
n n n
. ; 232 2(r=2)
D=0 > a0y =0, YA+ TIMG) =0 Vr=2,.. M+1.
i=1 i=1 i=1

(3.10)

Proposition 3.4. Fix M € N, M > 3. All the M-resonances of the DP equations (3.4)
are trivial, namely there are no resonances of odd order and the even ones are, up to
permutations, of the form

(i, =i, j,—j, k,—k,p,—p,...). (3.11)
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Proof. Since this Proposition is proved in [32] with different notations, for completeness
we restate here a concise proof by induction on M. For M = 3 the thesis follows trivially:
indeed direct computations show that

3 3
Y i=0, Y A =0 & ji=—jn jz=0
i=1 i=1

up to permutations, and this solution is incompatible with j; € Z\{0}.
Let us now suppose that the thesis is true up to M — 1 > 3 and prove it for M. We
start by noticing thatif n < M then (3.10) withr < M — 1 can hold only if {ji, ..., j.}

is a M — 1 resonance of order n. The inductive hypothesis then says that {ji, ..., j,}
is trivial. Similarly if {ji,..., j,} contains a trivial resonance, i.e. if j;, + ji, = 0
for 1 < iy,i2 < n, then j;,, ji, do not appear in (3.10) and hence {ji, ..., j,} is an

M -resonance of order n if and only if
{71, .-+, jn?\lJi\» Jin}, 1san M — 2 resonance of order n — 2.

Without loss of generality we assume that » = M and that j;; + j;, # O for any
1 <ij,ip <M.

Up to a permutation we can assume that for some M > k > 1 and aq, ..., > 1
one has
N T A e i T T T T3 X
N e’ N’
o o

Consequently rewrite the third equation in (3.10) as Zf:l ai(1+77)2 72020 =0,

Vr =2,..., M+ 1. Then we can extract k equations from these ones and write them in
the form
1 1
~ L 1L+ 71520 0
52 .. Rm2 ai(I+717)2(G1)
. . : =|:1]- (3.12)
o (h— ~ ar(1+ %5210k 0
5261 sz(k ) k(1 + 797 A(0k)

The determinant of the Vandermonde matrix in (3.12) is H #h( 7T =Tn ) # 0, since,
by hypothesis, 7; # +7;,. Then the only possible solution corresponds to 7; = 0 for all
i, which is not compatible with 7; € Z\{0}. O

Remark 3.5. Notice thatif ji, ..., jy € Z\{0}, ji+---+jy = 0and#({j1, ..., jn}, S
< 1, then max;—1,_ n|ji| < (N — 1)7;. Thus, the vector field X pv <1), generated by
the finitely supported Hamiltonian

N,<l1
FW.<Dh _ > F](1 7N> Wi ...y (3.13)

Jit+jn=0
#{j1,-»JN 1S9 <I1

is finite rank, and, in particular, it vanishes outside the finite dimensional subspace
E := E(v-17, (see (3.3)) and it has the form

Xpwv=y(u) = DX pw.<n (Igu).

Therefore its flow ®™) is analytic and invertible on the phase space Hj (T), provided
that |T1gu| is appropriately small.
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In order to prove Proposition 3.2 we need the following result.

Proposition 3.6. Fix M € N, M > 2 and consider H in (1.4) and K,,, m = 1,..., M,
in (3.4). Then, forany N < M —?2, there exists r > 0 and an analytic symplectic change
of coordinates Cbﬁl : B, (0, HO1 (T)) — HO1 (T) of the form

Oy =1+Wy, Pg=1, Wy@u)=TgoWyollg, (3.14)

where E is a finite dimensional space as in (3.3), such that

-1 2 (=N+2,0) (=N+3,<1) (23,22) -1
Hody' = H? + Z§; +RY; +Hy 7Y, Ko@)y =Ky,
Kno®y = K@+ wET0 4 gENH=D L gB222 00y — 0 M, (3.15)

N+2,0 <N+2,0 2
where Zg N0 WETHY e M| Ker(K,) N Ker(H®).

Proof. The terms of degree at most 2 in the variable z are not affected by the procedure
that we are going to describe.

We argue the result by induction on the number of steps N. For N = 0 it is trivial
since @y is the identity map.

Suppose that we have performed N steps. By the fact that {H, K,,} = 0 then
{H,K,}o CI>X,1 = 0. For the latter, we are interested in the corresponding equations for
the terms of homogeneity at most N + 3 and degree in the variable z less or equal than

one. So we consider the projection H(5N+3’51)({H, K)o CI>;1> = 0 and we get, for

anym = 1, ..., M, the following system of equations { H?, K1 =0 and

N+2,0 N+2,0 N+2,0 N+2,0
(HO w20y 4 (z20, K@)+ mENDZ (20 V20 — o,

H(N+3){ZI(VN+2,O), W}(V[Y'ZZ,O)} + {1_1(2)7 anl\”;:i,fl)} + {RI(VN+3,§1)’ K,g/%)} — O
By the inductive hypothesis WI(\,}YH:Z’O), Z;VNJ'Z’O) e NY_, Ker(K 2)y \Ker(H®), hence

2,0 2,0
(HO, W20y =z kD) =0

and
(H?, QW=+ (RY=D K@y =0, m=1,.... M, (3.16)

since {H®, Q'V}*=} e Rg(H®) and (R{=", K7’} € Re(Ky).
We note the following fact, which derives from the Jacobi identity: if f € Ker(H®)

then { f, K2} € Ker(H®).
Then we have that ([T yo, Ry =", KN} € Ker(H®) and by (3.16)

N+3,<1 N+3,<1
{nKer(H(z))Rz(v +3,< )’ Kr(nZ)} — _{HRg(H<2>)R1(V +3,< )’ K’§12)}

N+3,<1
+H?, 0\ =D} e Rg(H®).

Thus {HKCI.(H(Z))RI(VN-'S’S]), Kr(n2)} = 0 and

(N+3,<1) (N+3,<1)
RY) RY) :

Hger(n@) = Hger(n@) HKer(K,(nz))
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N+3,<1 N+3,<I1
By symmetry HKer(Kﬁ?))Q( 3= HKer(H<2>)HKer(K(2))Q( +3,<D) . Hence
(N+3.<1) (N+3,<1)
HRg(H(Z))HKer(K,E,,Z)) O N = I, (K(z))HKer(H(z))R =0, m=1,..., M.

(3.17)
In order to obtain the Birkhoff normal form at order N + 3 we consider a Birkhoff
transformation ® p(v.3.<1) with generator FV+3)-=1 of the form (3.13) (with N ~» N+3)
and we define @y = Ppw+s,< o Py. By Remark 3.5 the flow @ pves <n) is well
defined in an appropriately small ball and it has the form Identity plus a finite rank
operator. Note that, since F (N+3.=D) {5 Fourier supported on (ji, ..., jy+3) such that
j1+- -+ jn+3 = 0, the Hamiltonian K; commutes with F (N+3.=D) anq, by the inductive
hypothesis, K1 o ®1T11+1 = K. The function FN+3.=D i chosen in order to solve the
homological equation

3,<1) (3;7) N+3,<1)

N s
{H(Z)’ F(N+3,§1)} — HRg(HQ))R](v + HRg(K,(nZ>)HRg(H(2))R§V <

We now show that F(V*3.=D solves also the homological equation for the commuting
Hamiltonians K, o <I>;,], m =1,..., M.Indeed, by the fact that ad ,, ,, commutes with

ad x@ on the intersection Rg(H (2)) NRg(K, ,5,2)), we have

e

H(Z) {K;«(nz)v H

(N+3,<1)
Re(k2) MRg(H) Ry ),

and by (3.16), (3.17) we get

3<1)} N+3, <1)}

K\, HRg(Ka))HRg(H(z))R (H?, T, (K<2>)HRg(H<2>)Q

By (3.17) we have that the resonant term Z](VI\:Ig =D.—n Ker( H(g))R =D belongs to
the intersection of the kernels and by Proposition 3.4 these terms are supported only on n-
ples of indices of the form (i, —i, j, —j, k, —k, . ..). By the symmetry of the tangential set
S this is possible for a set of indices with at most one outside S if and only if all the indices
belong to S. Hence ZI(\,I\E3 ‘D' = 0 and we define ZI(\,<+IY+3 0 ZJ(VA:f 0 Z](V§N+2’O). We
do not compute explicitly the radius r of the ball in wh1ch we can perform the Birkhoff
change of variables, however one can easily check thatr — Qas N — ocoorasr — 0
in Definition 1.9. O

Proof of Proposition 3.2. We apply Proposition 3.6 with N = 6 and M = 8 and we
obtain (3.7), (3.8) by setting ®p := dm]. To prove (3.9) we have to show explicitly the
computations of the first step of Birkhoff normal form.

First we remove the cubic terms independent of z and linear in z from the Hamiltonian

1 1 1 1 1
H® = ——/ uddx = ——/ vidx — —/ vizdx — —/ vz?dx — —/ 2 dx.
6 Jr 6 Jr 2 Jr 2 Jr 6 Jr
(3.18)
We consider @ := (CI>37(3151>)|,=I as the time-1 flow map generated by the Hamiltonian

vector field X pa,<1), with an auxiliary Hamiltonian F G.=D of the form (3.13) with

= 3. The transformed Hamiltonian is Hy := H o ®| - HO 4 H(S) + H(4) + H(>5)
W1th

(3) {F(% =D H(z)}+H(3) H1(4) — %{F(ifl)’ {FG’SI), H(Z)}}_'_{F(lfl)’ H(3)},
(3.19)
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and where H 1(25) collects all the terms of order at least five in (v, 7). We choose F3-=D
such that the following homological equation holds

(FOD HOY L O = HO2D o (HO FO=D) = My oy HO=D. (3.20)
Recalling (2.2) and (3.18), the solution of the Eq. (3.20) is given by F® = asin (3.13)
with N = 3 with coefficients defined as

1

3,51 — . . if 4({j1. jo. j3}. S) < 1, ji+ jo+ j3 =0,
FP=D = 161 (1) +A(j2) + A(j3)
0

otherwise.

(3.21)
The Hamiltonian F3=D is well defined since, by Proposition 3.4, there are no non-
trivial 3-resonances of order 3. Since l'IRg(H(z))H( =D = gGED e get (see (3.19),
(3.20))

H(z) g6 >2) H1(4) — %{F(?’»Sl)’ H(3’51)} + {F(3’51), H(3’22)}. (3.22)

In the second step we normalize the terms of total degree 4 and < 1 in the variable z.
The term g gy H 1(4’51) is Fourier supported on the set of 4-resonances of order 4,

which are trivial by Proposition 3.4. By Proposition 3.6 TTg., H(z>)H1(4’l) = 0. Thus we
have to compute only g,y H 1(4’0). We have

1 A1+ J2)
(4.0) (4,0) Jit )2
V4 =II oH =— - - - — U U U U,
’ S M B DR Ty For S e TS R
J1:J2,J3, J4€S,
Ji+j2+j3+ja=0
Jr2#0, j3+ja#0,
Yo AGi0=0
(3.23)
The remaining steps of this procedure do not affect the terms with degree of homogeneity
less or equal than 4. Hence by (3.23), the fact that L(—j) = —A(j) (see (1.8)) and the

symmetry of S we obtain (3.9). O

4. Action-Angle Variables

On the submanifold {z = 0} we put the following action-angle variables

Vx[0,00)" — {z=0}, O.D)r—v=>) %N (4l
jes
Note that this change of coordinates is real if and only if /_; = I; and 6_; = —0;.

The symplectlc form in (2.1) restricted to the subspace Hg transforms into the 2-form
Z]€S+ e )dQ A dIj. We have that the Hamiltonian HED@G,1,0) = Zj55+ I +

H® O)(I )+ HO 0)(1 ) + HE O)(I ) depends only by the actions / and its equations of
motion read as

(=8) j +
!9, = 1(j) 8, H =0, 1,0), jes, 4.2)

I = —k(])ae HED @B, 1,0) =0, jest,
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where, by (3.9),

A2J) :
G HENG, 1,O)=1+— ] bl + O(1? st
IO L0 =1+ o ey U keS‘ka;ﬁ s ler OUD, T €5
J
(4.3)
2 (1+EH0+ HQ+k2+ 2
bt = / J (4.4)

3C+E2+ 2+ k)B+k2+ 2 —kj)’

In order to highlight the fact that we are working close to zero, we introduce a small
parameter ¢ > 0 and we rescale I — &21, so that the frequency—amplitude map can be
written as

o) ~ a(l) =o+>AT + 0(Y), (4.5)

where o is the vector of the linear frequencies (see (1.10)),

1 r2j
A= =D diag <¢) +D B, D:=diag(A())); s
2 20()) = 22)) ) jesr !
b if j#k,
gk . |Pi 4.
j [o if j=k. 0

The submanifold {z = 0} is foliated by tori, parameterized by the actions, supporting
small amplitude quasi-periodic solutions for the truncated system with Hamiltonian
H(=8). We shall select some of them as starting point of the Nash—Moser scheme, by
fixing I = & (here & is a parameter), so that appropriate non-resonance conditions on
the frequency o (/) hold.

In order to work in a small neighbourhood of the prefixed torus {/ = &£} it is advanta-
geous to introduce a set of coordinates (0, y,z) € T" x R x H SL adapted to it, defined
by

u=A.0,y z) =eve:(0,y) +e’z

= JEi+ 22Ny € i, e S,
uj = e"zj, J€Sse,

with b > 1 and where (recall u; = u_;)
E =&, §>0, y_j=y;, 0_;=-0;, 0, €T, y;eR, VjeSs.
The parameter b will be chosen close to one, to this purpose we shall set
a:=2b-2, (4.8)
and fix a > 0 appropriately small. For the tangential sites S* := {7, ..., 7,} we will

also denote 07, = 0, y7, = Vi, 57[ :=&,i =1,...,v. The symplectic 2-form 2 in
(2.1), up to rescaling of time, becomes

! 1 1
W::;d@i/\dyi+zjz ) dzj Ndz— /—<1212d9 /\dyz)GBQSi’ (4.9)
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where Q21 is the symplectic form €2 in (2.1) restricted to the subspace H SJ- in (3.2). The
Hamiltonian system generated by H in (3.8) becomes

H, = Ho A,. (4.10)

In the following lemma we prove that, under an appropriate choice of the tangential
set (1.9), the function (4.5) is a diffeomorphism for ¢ small enough and then the system
(4.2) is integrable and non-isochronous.

Lemma 4.1 (Twist condition). There exist ro, cx > 0 such that, for any choice of the
tangential sites St € V(r) with 0 < r < r( (see Definition 1.1), one has |det A| >
Cx 7?”.

Proof. The proof is postponed in “Appendix A”. O

As a consequence of the non-degeneracy condition in Lemma 4.1 the map in (4.5) is
invertible and we denote

£:=Ew) =a P (w) =e?A (0 —®) + 0. 4.11)

5. The Nonlinear Functional Setting

We write the Hamiltonian in (4.10) (possibly eliminating constant terms depending only
on & which are irrelevant for the dynamics) as

He=N+P,
1 1 1
N@O,y,0)0=w-y+ E(N(G)z, 212, E(N(G)z, 2= E((DZVZHS)(O, 0,0)[z], 2) 2,
(5.1)

where N\ describes the linear dynamics normal to the torus, and P := H, — A\ collects
the nonlinear perturbative effects. Note that both N and P depend on w through the map
w— £(w).

We consider H; as a (w, ¢)-parameter family of Hamiltonians and we note that, for
P =0, H, possess an invariant torus at the origin with frequency w, which we want to
continue to an invariant torus for the full system.
We will select the frequency parameters from the following set (recall (4.11))

Q. ={welR’: &w) €[1,2]"). (5.2)

Setting (see (4.7))
y =¢e?, 1:=2v+6, (5.3)

we define the non-resonant sets
G i={weQ o€ >y ()77, Ve Z"\(0}], (5.4)
gV = {a) € Qe [@-£+e2AE(w) - L+A(]) — 1(j) + 2D — (DL > Cy,

v
Y Titi+j =i =0, Vel <3, L€ Z\[0} j,j € S, (L), j)#, ], j)},
i=1

(5.5)
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for some constant C depending on S, where A is defined in (4.6) and

. 2 ) -2
2 Z A+j)A+ )2+ j5+j°) §p (@) (5.6)

[j:=—
73 BG+j— jpj+iDB+ i3+ jj+j2)

J2€S*

We require that
weGo=6"ngV. (5.7)

Lemma 5.1. We have that |Q2:\Go| < Cxe2"~ Dy for some C,, = Cy(S) > 0.

Proof. The proof is postponed in “Appendix A”. O

Remark 5.2. The diophantine condition w € gg’) is typical of KAM scheme. The lower

bound in Q'(()l) involves resonances of order five with two normal modes. As explained
in the introduction, in order to impose such lower bounds we need to take into account
also the corrections of order 2. The matrix A comes from the weak BNF of Sect. 3.
The terms [; come from the /inear BNF procedure of Sect. 7.2. In particular they are
evaluated explicitly using the identification argument of Theorem 7.9.

Remark 5.3. Note that the definition of y in (5.3) is slightly stronger than the minimal
condition for which is possible to prove that géo) has large measure, namely y < c &2,
with ¢ > 0 small enough. Our choice turns out to be useful for proving that the Cantor set
of frequencies of the expected quasi-periodic solutions has asymptotically full measure

(as e — 0).

‘We look for an embedded invariant torus
i: T — T xR" x Hy, ¢ i(p):=(0), (@), z(p)) (5-8)

of the Hamiltonian vector field X g, (see (5.1)) supporting quasi-periodic solutions with
diophantine frequency w € Gy.
For technical reason, it is useful to consider the modified Hamiltonian

He (0,y,2):=He(0,y,2)+¢ -0, ¢eR" (5.9)

More precisely, we introduce ¢ in order to control the average in the y-component in our
Nash Moser scheme. The vector ¢ has no dynamical consequences since an invariant
torus for the Hamiltonian vector field X g, , is actually invariant for X g, itself.

Thus, we look for zeros of the nonlinear operator (i, ¢) = F(i,{, w, &) := w -
0pi (0) — Xnr(i(p)) — Xp(i(p) + (0, ¢, 0) defined as

w - 0,0(¢) — 3y P(i(¢))
Fi,8) = | @ 3yy() + 506 (NO(@)2(@) 1207y + o P(i (9)) + ¢ (5.10)
w - 9y2(9) — IN(0(9)) 2(9) = JV P(i(p))

where O (¢) := 0(¢) — ¢ is (2r)"-periodic. We define the Sobolev norm of the periodic
component of the embedded torus

(@) :=i(p)—(9.0,0) := (O(p), y(9), z(¢))  [ITlls == IOls+Iylls+llzlls, (5.11)
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where z € H g ,=H'NH SJ- (recall (3.2)) with norm defined in (2.7) and with abuse
of notation, we are denoting by || - || the Sobolev norms of functions in H*(T", R").
From now on we fix sg := [v/2] + 4.

Notice that in the coordinates (4.7), a quasi-periodic solution corresponds to an em-
bedded invariant torus (5.8). Therefore we can reformulate the main Theorem 1 as
follows.

Theorem 5.4. There exists a small constant ¥ > 0 such that, for any ST € V(x) (see
(1.9) and Definition 1.1), there exists 9 > 0, small enough, such that the following
holds. For all ¢ € (0, gg) there exist positive constants C = C(v), u = u(v) and a
Cantor-like set C; C Q2 (see (5.2)), with asymptotically full measure as ¢ — 0, namely

ICe|
1m
e—0 | Q|

=1, (5.12)

such that, for all w € Cq, there exists a solution ioo(¢) ‘= iso(w, €) (@) of the equation
Flico, 0, w, &) = 0 (see (5.10)). Hence the embedded torus ¢ +— iso (@) is invariant
for the Hamiltonian vector field X p,, and it is filled by quasi-periodic solutions with
frequency w. The torus i~ Satisfies

lioo(9) = (9,0, 0)]1%555 < Ce>7 2y,
Moreover the torus i is linearly stable.

We can deduce Theorem 1 from Theorem 5.4, indeed the quasi-periodic solution u in
(1.11)is

u(t, x) = (@B o Ag>ioo(a)t)

for w = w(&) € Ce, where w (&) is the frequency amplitude map (4.5).
The rest of the paper is devoted to the proof of Theorem 5.4.

5.1. Tame estimates of the nonlinear vector field. We give tame estimates for the compo-
sition operator induced by the Hamiltonian vector fields X or and X p in (5.10). Since the

functions y — /& +£20=Dy 0 — ¢1? are analytic for £ small enough and |y| < C,
classical composition results (see for instance Lemma 6.2 in [3]) imply that, for all

~n,O
13155 <1,
,O O
| Ae(0(9), y(@), 2NV s e(L+[1T)05).

In the following lemma we collect tame estimates for the Hamiltonian vector fields
XN, Xp, XH,,see(5.1). These bounds rely on tame estimates for composition operators
and their proof is completely analogous to the one in Sect. 5 of [4].

Lemma 5.5. Let 3(¢) in (5.11) satisfy |3117°C < e9-26y 1. Then we have

so+1 ~
7
19, P TC <, &7 + 2131175,
. ,O
186 P (i) 1Y e~ 2h<1+||J||S+1
. ,O _
IV.PG)IY ss e+ e,
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. ,O _
||xp<z)||y <5 &7 4 23117
1990, P)IVC <y e +88y—1|u||5+1,

,O
19, V. PN < €64 4+ 620713178
g2 yO o5+2b 4 6+2b, —1
Iy P() = —-AQI ¥ +2by, =139, (5.13)

s+1 ’

s+1

and for all T := (@, 3, 2),

layDi X p DENNLC Sy 62~ ‘(|ﬂ|s+1 IS IR,
ID: X 1, DI + 0,0, TDNFC < e + 1315 IR0
102X 1, DIETLC s e(T1LTIRIL S + 13155 A7)

In the sequel we will use that, by the diophantine condition (5.7), the operator (e - 8¢,)’]
is defined for all functions u with zero p-average, and satisfies

—1 —1 -1,7.0
(@ - dp) ™ ulls Ss v lullsee, o - a(p) uls™ Ssy~ ||u||5+2r+1

6. Approximate Inverse
We want to solve the nonlinear functional equation (see (5.10))
F@i,£)=0 (6.1

by applying a Nash—-Moser scheme. It is well known that the main issue in implementing
this algorithm concerns the approximate inversion of the linearized operator of F at any
approximate solution (i,, ¢,), namely DF (i, {,). Note that DF (i, &) is independent of
Zn- One of the main problems is that the (6, y, z)-components of DF (i,,, {,) are coupled
and then the linear system

DF (in, &)1, C) = @ - 9,7 — D; Xy, (in)[7] — (0,2,0) = g = (@, g™, @) (6.2)

is quite involved. In order to approximately solve (6.2) we follow the scheme developed
by Berti—Bolle in [9] which describe a way to approximately triangularize (6.2). This
method has been applied in [4,39]. Since the strategy is identical to [39] we only summa-
rize it and underline the differences which mainly come from the symplectic structure.
For a fully detailed expository presentation see [40].

‘We now study the solvability of Eq. (6.2) at an approximate solution, which we denote
by (io, ¢0), io(¢) = (Bo(®), yo(®), zo(¢)) in order to keep the notations of [4], [39] .
Assume the following hypothesis, which we shall verify at any step of the Nash—Moser
iteration,

e Assumption The map w > ip(w) is a Lipschitz function defined on some subset
Oy C Gy C Q, (recall (5.7),(5.2)) and, for some pg := po(v) > 0,

7,0 9-2b,—1 7,0 9-2b 2b
1Tolligpe <€ v N Zlggepy <€ . vy =€, (6.3)

where Jo(p) := ig(p) — (¢, 0, 0) and Z is the error function

Z(@) = (21, Z2, Z3) () := F(io, o) (@) = w - dpio(@) — Xn, , (io(@)). (6.4)
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By estimating the Sobolev norm of the function Z we can measure how the embedding
io is close to being invariant for Xp, . If Z = 0 then iy is a solution. In general we
say that ip is “approximately invariant” up to order O (Z). We observe that by Lemma
6.1 in [4] we have that if i( is a solution, then the parameter ¢y has to be naught, hence
the embedded torus io supports a quasi-periodic solution of the “original” system with
Hamiltonian H, (see (5.1)).

By [9] we know that it is possible to construct an embedded torus is(¢) = (6p(¢),
vs(®), zo(¢)), which differs from iy only for a small modification of the y-component,
such that the 2-form WV (recall (4.9)) vanishes on the torus is(T"), namely i; is isotropic.
In particular i5(p) is approximately invariant up to order O(Z) (see Lemma 7 in [9])
and, more precisely, there exists p := p(v) > 0 such that

A

. . 0,0 ~
lis — iolls"" <s 90ll45

(6.5)
The strategy is to construct an approximate inverse for DF (ig, ¢p) by starting from an
approximate inverse for the linear operator DF (is, o). The advantage of analyzing the
linearized problem at is is that it is possible to construct a symplectic change of variable
which approximately triangularizes the linear system thanks to the isotropicity of is. For
the details we refer to [9] and [4], here we only give the relevant definitions and state
the main result. We define the symplectic change of coordinates

0 @ B0 ()
y]|=Gs | n| =1y +0,00@)1 Tn+[@0z0) G0N T lw | (6.6
z w 20(p) +w

where Zo := z0(6, 1(0)). We denote the transformed Hamiltonian by K := K (¢, n, w,
Zo). We then define
Ly =w-0y —JKn(p), (6.7)

where K is the linear operator representing the terms quadratic in w of K, i.e.
1
5 Koa(@)w], w) = Ne=2K = N=2H, o G;. (6.8)

L, corresponds to the w-component of the linearized operator after the change of variable
Gs.
In [9] (see also [4,39]) the following result is proved.

Theorem 6.1. Assume (6.3) and the following

Inversion Assumption There exist p; := p1(v) > 0 and a set Qo C Go S Qg such
that for all @ € Qo and every function g € H*™1 N HSJ‘, there exists a solution
h:= E;lg of the linear equation L,h = g which satisfies

_ Q00 _ , Q00 — ,O Q00
1L, gl <o vy Il nes, + ey 2 13s1kip gl ™). (6.9)

Then there exists | := u(v) such that, for all ® € Q there exists a linear operator T
such that:

1. Forall g :== (g, g™, g©), one has

@)

Qo0 — Q0 — ~ s , Q00
IToglly ™ <o vy Uglys, ™ + ey = 213007 gl (6.10)
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2. To is an approximate inverse of DF (ip), namely

. Qoo 1. - . .0 Q00
I(DF (o) o To — Dl < e~y =2 (1o, ) Iyt g 1%is

. O — . O O Q0
+ (1o, 601735 + ey 21 F o, G050 13013 Mg s ).

(6.11)

6.1. The linearized operator in the normal directions. Recalling the assumption (6.3),
in the sequel we assume that Js5 := Js(¢; ) = is(¢; @) — (¢, 0, 0) satisfies, for some
p1 >0,

~V-0 9-2b,,—1
1351500 S &y (6.12)
We note moreover that G5 in (6.6) is the identity plus a translation plus a finite rank

linear operator; moreover, assuming (6.12), one has that G is 0(89_2b y_l)-close to
the identity in low norm. Returning to the initial variables we set (see (4.7),(6.6))

Ty i= Ac(Gi(9,0,0)) = eus +720, vy = 3 \J&) +e22A())lysy (p)e! T+ 1@

jes
(6.13)
and we have, for some o := o (v) > 0,
N&) ~ 17,0 . .
[Pp(THITT° <o A+1Ts126 ") IDiPp(T)s S5 elillswo+1Ts lls+o i llsgro)-
(6.14)

By following Sect. 7 in [4] (see Lemma 7.1), Ko in (6.8) has rather explicit estimates.

Proposition 6.2. Assume (6.12). Then there exists oy = og(v) > 0 such that the follow-
ing holds. The Hamiltonian operator L, in (6.7) has the form

Lo =g (03— Jo(I+ag(, x)+Q0),  ao(p,x) == —(Pp(Ts)+d; f(Pp(T5))).

(6.15)
Recall that Ty is defined in (6.13), ®p is the Birkhoff map given in Proposition 3.2, f is
the Hamiltonian density in (1.3). The operator Qy is finite rank and has the form

1
Qpw= Y [0 (w, (7. ) 12m) X, (T, ) d. (6.16)
[jl1=C

In particular we divide Qg = Zle &'R; + R~s, where the R;, R~s are finite rank
operators. Moreover we have

.0 ~ 7.0 ~
laoll¥"™° Sy &1+ 17515000, IDiaolillls Ss €Tllsvop + 1755400 [Tlls) - (6.17)

The remainders R; do not depend on Js and satisfy
i) y,O i) y,O
[ S PR (6.18)
while R~ s satisfies
570 5,7.0 5,7.0 5,7.0 6, .2 .O
g I o120 + g7 3 1L IO <5 68 + 21901457, (6.19)

5 5 5 5 5 5 5
198731 o + 10187 s 17 s + 1187 Mo 1D 3l + 187 D1 s
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2 b~
§s & |m|s+a +é& ||J5||s+<r|m|so+a- (6.20)

Finally, recalling the Definition 2.3, we have
My, 0,5) Ss ¢ 21+ IIJ3||5+0 2 (6.21)

My, 0o (0, 5) ss % Tlls+00 + €227 1 Ts 15400 [Tl 5900 - (6.22)

Proof. The expression (6.15) follows from the definition (6.8) by remarking that G5 and
the weak BNF transformation ®p is the identity plus a finite rank operator, while the
action angle change of coordinates is a rescaling plus a finite rank operator (acting only
on the v). Then, in applying the chain rule, we get

(4.10)

Dy Vi (H: 0 Gs) e (D, V (Ho A.)) o Gs + Ry = (D,V,H) 0 A 0 G5+ Ry

D (D,V.(H o ®p)) o A 0 Gs + Ry

=(D;V;H)o®Pgo A, 0Gs+ R+ R (6.23)

where the finite rank part contains all the terms where a derivative falls on the change of
variables. Then (6.15) follows from the definition of H in (1.4). Regarding the estimates,
(6.17) follows from (6.14); regarding the bounds (6.18), (6.19), we split the finite rank
part Ry + R; as follows. The operator R; contains all terms arising form derivatives of
Gs. By tame estimates on the map G (see for instance Lemma 6.7 in [4]), it satisfies the
bounds (6.19) and we put it in R~ 5. The finite rank term R, comes from the Birkhoff
map. This is an analytic map so we consider the Taylor expansion

5
Pp(u) =u+ Yy W)+ Ws6u), (6.24)
i=2
where each W; () is homogeneous of degree i in u, while W>¢ = O (u%) and all map
HO1 (T) in itself. We have to evaluate ®p and its derivatives (up to order two) at u =
Ts = evs + b z0. We denote by v the function

U(p.x) = Y &I = A (,0,0) (6.25)
jes

where 1(7;) is the i-th vector of the canonical basis of Z" and is such that 1(—7;) =
=1()-
We observe that? o o

llos =TI S 13515777,

and hence we can expand

5
Dp(Ty) = v+ W) +§ = D5 +4. (6.26)
i=2
where ¢ is a remainder which satisfies
~ O ~ ~
11290 S5 &8 +elTs 1, 1Dl S el + 1355 7)- (6.27)

2 The function £v represents a torus supporting a quasi-periodic motion which is invariant for the system
(5.1) with P = 0, namely it is the approximate solution from which we bifurcate.
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Then in R; we include all the terms homogeneous of degree i coming from derivatives
of ®p — I, evaluated at ¢ = 0; we put in R~ 5 all the rest. The (6.21), (6.22) follows by
(6.18), (6.19) and (6.20). O

Remark 6.3. The motivation for separating the R; and R s is the following. Consider
the Hamiltonian H, as a function of £ instead of w. Then in all our expressions we can,

and shall, evidence a purely polinomial term Z?:o &' f; (where the f; are ¢ independent)

plus a remainder, which is not analytic in ¢, of size £® + ¢||Js ||§”O°. By the assumption
(6.3), this means that in low norm s = so + p1 all these remainders are negligible w.r.t.
terms of order £°. This distinction is needed because, due to the resonant nature of the
DP equation, we need to perform (see Sects. 7.1 and 7.2) five steps of the order reduction
and of the linear BNF by hand, before entering in a perturbative regime.

In this framework R - 5 is purely a remainder, while the R; are homogeneous polynomial
terms. One could apply the same division to the non finite rank terms, one would get

H?(w(é) Sph — J[(1 — Dp(Ty) — 32 f(Dp(Th)))
= 11§ (@ - dph + &AL - dph — J (1 — ®F (T)h + gh (6.28)

where g satisfies the same estimates as (6.19).

6.1.1. Hamiltonian of the linearized operator Following Remark 6.3, we evidence the
terms homogeneous in the Hamiltonian of L, let us call it H, whose Hamiltonian
vector fields have degree < 5, since they are NOT perturbative. As explained in (6.26)
this entails expanding the map ®p(75) in powers of ¢ up to order five plus a small
remainder q.
We consider the symplectic form in the extended phase space (¢, 17, z) € R” x RV x
1
Hy
1
Qe(p,n,2) :=do Ndn+ —
‘ ]ZS i2.(/)

de AN dZ—j (6.29)

with the Poisson brackets (recalling {-, -} defined in (2.2))
{F,G}e :=0,F0,G — 0,F3,G +{F, G}. (6.30)

The Hamiltonian of the operator (6.15) respect to the symplectic form (6.29) is (see
(6.28))
5 5

H:.= H0+ZSiHi +H>5+ZSiHRi +HR>5 (6.31)
i=1 i=2

with

1 1 1
H0:5~n+—/zzdx, H, =——/522dx, H2=As-n—-/qz2(mz2dx,
2 Jr 2 Jr 2 Jr

1
H; =—5/wi<v)z2dx, 3<i<5 and [ X 7P [ Xpg  IT
: :

,O,
<o e +ell 350000 (6.32)
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for some o > 0. The functions Hg,, H_ are the quadratic forms associated to the
corresponding linear operators, thus the estimates on the Hamiltonian vector fields can
be deduced from (6.19), (6.18). It is easily seen that

5
Ho+ D" e (H + Hr,) = 4220400 0 A =,
i=1 =

Of course one can be even more explicit and write everything in terms of the original
Hamiltonian (1.4) and of the generating functions of the weak BNF, for example one
has

3.22
Ho= (H® o Ap)ly=n, H (Z)(HG’Z)OAl)ly:n,
O=¢ O0=¢p
Hy+Hg, = MH=1(Z8 0 A + ME=HFG=D HOY o Aply=y.  (633)
O=¢

The terms H; can be computed explicitly, however we only need to prove that they fit
the following definitions.
Definition 6.4. We say that a matrix B := ((B)]:, (A )) is almost diagonal
J 3 IR ANE=rAL

if there exists a constant C > 0 such that, if (B)i. ({—1U)#0,then (j — j', I -1y <C
forall j, j/ € S¢,1,I' € Z".

Let B(¢): H*(T) — H*(T) be a Topliz in time operator (recall (2.12)). We say that
B(p) is almost diagonal if its associated matrix is almost diagonal.

Let H := H(¢) be a quadratic Hamiltonian of the form H = (A(¢)z, z) 2, Where

A(p) is a Topliz in time operator. We say that H and its vector field are almost diagonal
if A(yp) is almost diagonal.

Remark 6.5. Ttis easy to verify that if X and Y are almost diagonal operators then X +7,
X o Y are almost diagonal.

Definition 6.6. Let p € N and m € R. We say that a pseudo differential operator
B = Op(b(y, x, j)) (recall Definition 2.8) is homogenenous of degree p in the function
v in (6.25) if its symbol b(g, x, j) € S has the form

J1s-esjp€ES

Definition 6.7. Let p € N. We say that a Hamiltonian is pseudo differential and p-
homogeneous if it has the form

1 1 1
Hy(z) = E/Tfp(i)z~zdx+E/T‘B,,Z-Z+E/TR,,Z~Z, (6.35)
where f, is a homogeneous real valued function of v (of degree p) of the form
@) = Z (fp)jl,...,jp /§j] .. ,Ejpei(jl+~--+jp)xei(l(jl)+---+l(jp))‘(/” (6.36)
Jlsenjp€S

B, OPS ~2 is a p-homogeneous pseudo differential operator according to Definition
6.6 which is self-adjoint w.r.t. to (-, ), 2; finally R, is a finite dimensional operator of
the form (6.16) with g;, x; p-homogeneous functions of v.
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Lemma 6.8. The Hamiltonians H; +Hg, in (6.31) are almost diagonal according to Def-
inition 6.4 and pseudo differential homogeneous Hamiltonians according to Definition

6.7.
Proof. Tt follows by Proposition 6.2 and Remark 6.3. O

Lemma 6.9. Let p, g € Nand consider H, G ; two pseudo differential and homogenous
Hamiltonians of degree respectively p and q. Then there is a pseudo differential and
(p + q)-homogeneous Hamiltonian H such that X = X(u,.G,),» where {-, -} are
defined in (6.30) and X i denotes the Hamiltonian vector field generated by H.

Proof. By assumption H, and G, have the form (6.35) for some f, f, real valued and
some self-adjoint pseudo differential homogenenous operators B, and B,. Then we
have (recalling (2.2), (1.4) and (3.5))

{prGq}eZ/AIZ'de+/A2Z'de7 Ay = fpodxo fy,
T T

Ay:=froJoBy+BroJofu+B,0J0B,+3f,0Ad 0 f,.

One has that the Hamiltonian
~ 1 N 1 N
H:=- [ (A1+ADz -zdx+ = | (Ay+ A5)z-zdx
2 Jr 2 Jr

is equivalent to {H,, G4}, in the sense that they generate the same vector field. Here
A;", i =1, 2, denotes the adjoint of A; w.r.t. the L? scalar product. Notice that

AL+ AT = SpSqox + fo(f)x — fgo0x o fp= fpfaox+ fp(fo)x — fq fpox
_fq(fp)x = fp(fq)x - fq(fp)x,

which is an homogeneous function of v of degree p+¢. Using the results on compositions
of pseudo differential operators in Sect. 2 of [33], the fact that J is skew-self-adjoint, B;,
i = p, q, are self-adjoint, and f,, f), are real valued, we deduce that the operator A is
a skew-self-adjoint operator in O PS~!. Hence, using the formula (2.13) in [33] for the
adjoint, we have that A, + A is pseudo differential homogeneous operator (according
to Definition 6.6) in OPS™2. O

7. Reduction and Inversion of the Linearized Operator

The aim of the section is to prove the claim in (6.9). As explained in the introduction, first

one should reduce the unbounded parts of £, and then use classical KAM reducibility

results to diagonalize. The difficulties arise from the fact that a few steps of this procedure

must be done by hand, since they do not fit the typical smallness conditions, see [33].
The key result of this section is the following.

Theorem 7.1. Consider L, = L, (Js) in (6.15) and fix

T=2v+6, by:=6T+6, b=Dby+sp. (7.1)
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There exist S > so and 1 = 1(v) > 0 such that, if condition (6.12) is satisfied with
P1 = W1, then the following holds. There exists a constant m(w) defined for w € Q¢
with

. R R 2 .
Im—1—g%c()|”%% <&, m|"? <1, c(w):=v& U= 5(14‘]1%), k=1,...,v,
(7.2)
3 such that for all @ in the set (’)gg, where (recall that Oy C Gy, see (5.7))
2y 2y .. . 2V v . c
08 =050) ={we Oy: |-l —m(w)j| > W,VZ eZ’, VYjeSY, (1.3)

there exists a real, bounded linear operator ¥ = Y (w) : H ; . — H:

s forallso =5 <
S, such that

L:=TL, T =5 (w-dy —mJ — e*D(w) + Py) (7.4)
where ® () is the diagonal operator of order —1 defined as ® := D (w) = diag(ix ) jese,
with

) = (@) = 1) (@) — c@) €R, i ["7 S 1717, (7.5)

where | is defined in (5.6). The constant m depends on i and for v € (’)gg (N Ogg (i2)
one has

|Aam] S ellit = i2llspps s (7.6)

where A1om := m(i1) — m(iz). The remainder Py in (7.4) is defined and Lipschitz in o
belonging to the set Oi@,’ and is Lip-—1-modulo tame (see Definition 2.7) with

R — — O
ML (—1,5,b0) Sy &+ ey 1T 1) (7.7)
(D) 2 A1 Po (D) Pl £emsoys (D)2 A12(8p) 20 Po (D) 2l oo

S ey it — i2llsgrn (7.8)

forallw € Ogg (il)mof,g (i2). Moreover ifu = u(w) depends on the parameter w € Ogg
in a Lipschitz way then

2y 2y 2y
+1, 7.0 .0 1y~ 117-Oo 7,0
10"l Ss llulls ™ +ey ™ 11 Ts gt lullsy =, so<s<S. (7.9)

The result above has two relevant consequences. Firstly it shows that the operator
L, in (6.15) can be conjugated to an operator (see (7.4)) which is “diagonal”, at the
highest order of derivatives, plus a remainder which is —1-smoothing. In addition to
this, thanks to a linear BNF procedure (performed in Sect. 7.2), the non-diagonal term
Po in (7.4) has a size much smaller than ¢ (see estimates (7.7), (7.8)). In particular it
is “perturbative” w.r.t. the constant y in (5.3). This allows us to apply the reducibility
scheme of [33] in order to complete the diagonalization of the operator £ (see Theorem
7.13). Then the inversion assumption (6.9) follows directly from Proposition 7.14).
Strategy of the Proof of Theorem 7.1.

3 Notice that &€ = & (), recall (4.11).
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e Reduction at the highest order The first step is to exploit the pseudo differential
structure of the operator L, in order to conjugate it to an operator which has constant
coefficients up to a smoothing remainder of order — 1. To this purpose we use changes
of variables generated as the time-one flow map ®*|,—; of Hamiltonians of the form

S(.¢.2) = / bz, ¢, 0)2dx,  b(t,¢,%) = %

0 dTu = TE[(J o D)5 [®7u)], 'u =u, (7.11)

(7.10)

where B is some smooth function. In Proposition C.2 we show that ®7 is well defined
as symplectic map on H, (see Lemma C.1) and study the structure of ®* £, (@®H~
Proposition C.2 gives an explicit formula for the new coefficient at the highest order
(see (C.17)). Then Corollary 3.6 of [31] (see also Proposition 3.6 in [33]) provides the
solution for the Eq. (C.17)=const provided that some smallness condition is satisfied.
This smallness condition has the form

— O
Csn)y aollh” <« 1 (7.12)

for some s + p; > 51 > s9 and some constant C(s;) > 0. As shown in [33], due to
the Hamiltonian structure, this reduces L, to constant coefficients up to a correction of
order —1.

Unfortunately, since here y = ¢2*%, a > 0, by (6.17), the coefficient ag (¢, x) in L,
does not satisfy (7.12). This is why we have to perform some preliminary steps in order
to enter in the perturbative regime where we apply the scheme described in the proof of
Corollary 3.6 in [31].

We first “regularize” the purely polynomial terms H; (see (6.32)) by hand, by ex-
ploiting their homogeneity according to Definition 6.7. After that we are left with only
unbounded terms which satisfy the smallness conditions of [33]. We “regularize” them
by applying the results of [33] adapted to our slightly more general setting, see Propo-
sition C.2.

Remark 7.2. In order to determine the correct change of variables in the regularization
of H;, it will be convenient to use the Formal Lie expansions. We recall that H o (d7) ™!
satisfies, for T € [0, 1],

9:(H o (®°)™ 1) = {S(1), H o (®7) '} (7.13)

By setting S := S(0), the Lie expansion of the conjugated Hamiltonian H o &~ is the
following:

2
Ho (@) ' = H+1{S, H}, + %({s, (S, H}ulo + (3, 9)(0), H}e> +eee, (1.14)

where the Poisson brackets {-, -}, are in (6.30). Recall that ® is a C¥ map from H® to
H*~k_ Therefore the Taylor expansion of the conjugated Hamiltonian coincides with the
Lie series of the generator up to any order t¥.

e Linear BNF The second step is to diagonalize the bounded terms. Here we diago-
nalize “by hand” the terms up to order &3, by exploiting the fact that they are almost
diagonal according to Definition 6.4 and applying a linear BNF. Once this is done, the
full diagonalization follows by a standard KAM reducibility theorem (see Theorem
7.13).
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7.1. Reduction at the highest order. In the following we shall assume that the (6.12)
holds with some p; >> 1. The loss of regularity p; will be determined explicitly at the end
of the section. In order to perform the non-perturbative steps, we construct changes of
coordinates B;, i = 1,2, 3,4, 5, as the time-one flow maps generated by Hamiltonians
as in (7.10). Then we set Ly := L, and define iteratively £; := Biﬁi_lel. Note that
Lo is pseudo differential plus a finite rank operator. Even though the 5; preserve the
pseudo differential structure, in order to have a good quantitative control on the symbols
we shall fix appropriate values

p =50, p=so+6T+09, (7.15)
and write

Li=BiLi B = ng(w -0y — J o (1+&2ci (@) +ai (¢, x)) +Op(ay) + @i) (7.16)

where c; (w) is a constant, a;, qg; are symbols, Op(q;) is of order —1 and @i € Ly p-
This is a class of operators of order —p which we introduced in [33] (we recall it in
Definition C.5). Note that by Lemma C.7 Qp =: Qg belongs to L, , for all p, p, with
bounds on I\\/JIVQ0 (s, b) given in the same lemma. Then one proves iteratively that

lai 1790 Sy 61 + 61350150 0100 8 = 50,
1Anaill, Sp e+ 135l progsons) i1 — iz proprosss- (7.17)
il S €L+ 1T5010 5000, 5 = 50,

|A12<Ii|7],p,a ,Sp,a,p ‘9(1 + ||78 ||p+<70+<7,-+3)||i1 - i2||P+UO+(Ti+3‘ (7-18)

Note that the size of @; (in the low norm) is decreasing in i. Regarding the remainders,
the numbers MVQ (s, b) control the norm of the corresponding operator, see Definition

C.5. We have

,O
My@i (S’ b) <S,ﬂ 8(1 + ||38”?Y/+0'00+0'i+3)3 S0 S N S S 5 0 S b 5 P — 2,

~

MAIZ@:‘ (p.b) ,Sp,p e(1+ ||38||p+(ro+ai+3)||il - i2||p+ao+0,-+3, 0<b=<p-3,
(7.19)

with op defined in Proposition 6.2 and 0;43 > 0i = 1,...,5, depending only on v
(essentially o;43 are the losses coming from the application of Proposition C.2). Note
that we can obtain (7.16) for any p, p satisfying (7.15); however, if we want (7.18) to hold
for some given p, we have to assume a smallness condition (6.12) with p+oo+0i+3 < p1.
Step (¢). Consider the Hamiltonian

1 &b
S(t) == [ bi(t, ¢, x)22dx = eS1 +2t S + 31283+ S4 (1), b = —————,
(1) 2/]1‘ 1,0, x)z7dx =eS1+e° TS +e71°53 + S4(7) 1 T+ 2e(B),
(7.20)
1 1 1
S| = —/ﬂ] 22dx, S):= ——/ Bx(ﬁlz)zzdx, S = —/ﬁl(ﬂl)zzzdx,
2 T 4 T 2 T
(7.21)

with S4(t) ~ O(t3&*) and for some function f; of the form (6.36) with p = 1 and
some coefficients (81);, j € S, to be determined. The Hamiltonian system associated
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to S(t) is of the form (7.11) with b ~~ b;. We call 3; the flow at time-one generated

by S(t), then the Hamiltonian of the conjugated linearized operator 3 EwBl_l is (recall
(6.31), (6.32) and Remark 7.2)

Ho B! —H0+8H(l)+82H(1)+83H(1)+0(83), H{" := {S1. Ho}e + Hi, (7.22)

HY .= {Sh{sl,Hon}e+{Sl Hi}, + {SQ,HOE'*HZ*'HRQ, (7.23)

where, by Lemma 6.9, Hgl) is some pseudo differential 3-homogeneous Hamiltonian of

the form (6.35). Notice that also H 1(1) and Hél) (for n = 0) are pseudo differential and
1-homogeneous, resp. 2-homogenenous, Hamiltonians according to Definition 6.7. We
want to solve the following equation

H" = Hy + {81, Hole = Hi +{S1, Ho} + @ - 8,81 = /‘Bl(z)zdx, (7.24)

where B is some pseudo differential operator of order —2. Recalling (6.32), and ex-
panding {S;, Ho} as in the proof of Lemma 6.9, we note that the Eq. (7.24) is equivalent
to the following one

@ - 9pf1 — (B1)x —v =0. (7.25)

Hence we choose 1 = %(Aax)_lﬁ and we note that

BT <o 1, Vs = 5. (7.26)
With the choice in (7.25) we have
B :=[3A0, B1]. (7.27)

In this way the Hamiltonians in (7.22), (7.23) become

1 1
HY .= /%1(Z)zdx, H .= Ha + 2(82. Hole + H, + (51 Hi)

+1{Sl,/ B1(z) zdx}. (7.28)
2 T

By (7.26) the smallness assumption of Lemma C.1 is satisfied. By (6.17), (6.21), (6.22)
and using the assumption (6.12) with p; sufficiently large the condition (C.15) holds. In
this case g ~~ 0 (see (C.13)).

Then Proposition C.2 applies and the new linearized operator £ := B 1£w81_1 has
the form in (7.16) with i = 1 and ¢; = 0. By (7.26), (6.21), (C.19), (C.17), (6.15), we
have that Q; € £, ,(O) (see Definition C.5) (with p, p satisfying (7.15)) and (7.18),
(7.19) hold fori = 1.

The only estimates that are not given by Lemma C.2 are (7.17). The coefficient a; is
given by (C.17) withm ~» 1,a ~» ag, ay ~> a; and B such that x — x + 3 is the inverse
of x — x + B1. By the ch01ce of B1 in (7.25) we have eliminated the e-terms from aj.
Hence by (7.26) and (6.17) we get (7.17) fori = 1.

Step (£2). Now we deal with the terms of order &2 of the Hamiltonian (6.31). We consider
the auxiliary Hamiltonian

&2

. 1 .
S(t)== | ba(x,p)2dx =&>5 + S4(r), byi= ——1= |
() 2/1r 2(x, )27 dx = &Sy + S4(v), by T+ 22(B),
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_1
S == / Ba 2% dx, (7.29)
2 Jr

where 5’4(1) = S‘(t) — 825’2 ~ O(teh andJBz is some function of the form (6.34),
with p = 2, to be determined. Notice that (9; 5)(0) ~ O(&*). The Hamiltonian system
associated to S(z) is of the form (7.11) with b ~» by. If B; is the flow at time-one
generated by S(7), then the Hamiltonian of the conjugated linearized operator £, :=
Bzﬁle_l is (recall (7.22), (7.28), (7.14))

HoB " o By = Ho+eH{” + e2HY + e HY +o(e?)

HPY = H + (35, Hole,  HY = HY + (55, HV),. (7.30)

We want to solve the equation
HY = HY) +@ - 3,5 + (52 Ho) = c+/ B1(2)2dx +Hg,. (7.31)
T

where ‘B is some pseudo differential and 2-homogeneous operator of order —2 (see
Definition 6.6), ¢ is some constant to be determined and Hy, (possibly different from
the one in (6.31)) is a Hamiltonian with the form (6.35). By Lemma 6.9 we have that

Hg) + {82, Ho} can be written in the form (6.35) with, in particular (see (6.24) for the
definition of W)

1 1 1
S2) = =W (V) + 7 Oxx (B7) — FPrvx + V(B (7.32)

and some B, € O PS~2, as in Definition 6.6, up to a finite rank remainder. Hence the
Eq. (7.31) is equivalent to

@ - 0pP2 — (B2)x + [2(V) =c. (7.33)

Since f; in (7.32) has the form (6.36) with p = 2, we look for a function 8, of the same
form in (6.36) with some coefficients (8) ;. j, € C. Hence Eq. (7.33) reads

[AGD+A0G2) — G+ )] (B jijp + ()1, =0, for A(j1) +A(j2)— (i + j2) #0,

(2 ji,jp=c, for A(jU+A(j2) — (j1+ j2) =0. (7.34)
We have that, for ji, jo» € S, A(j1)+A(j2) — (j1+j2) = Oif and only if j; + j» = 0, since
j1j2 # —1. The terms with j; = — j, corresponds to the average in x of the function

f>(v). Hence we set
1
ci=— / fH@)dx. (7.35)
2w T
and we evaluate explicitly it. The functions W, (v) and 0y (,812) do not contribute since

they have zero average in space.
Recalling that 1 = %(Aax)_li we have

/fz(v)dx = 1/ (A0 0.9) 7 — (A0, D) 7 )dx = 1/(A’16) - Vdx
T 6 Jr 3Jr

1
S —/(ﬁ2+6§).
3Jr
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Then the constant ¢ = c¢(w) (recall the (4.11)) in (7.35) is given by

1 ) 2 .2
d@=§2m+”%=§szJﬁr (7.36)
JjeS jest
By noting that
12l VC <, €2 Vs > so, (737)

by (7.18)—(7.17) with i = 1 and using the assumption (6.12) with p; sufficiently large
the smallness assumption of Lemma C.1 and the condition (C.15) are satisfied. In this
case g ~» di, hence by (7.18), (7.19) the bounds (C.13), (C.14) hold with k; ~~ &,
ky ~= &, k3 ~» &, f ~» Js. Then Proposition C.2 applies and £, := <I>2/.11CI>271 with
i =2 and cz(w) := c(w) given in (7.36). By (7.37), (6.21), (C.19), (C.17) we have that
Qs € £,,,(0) (with p, p as in (7.15)) and (7.18), (7.19) hold for i = 2. By (7.37),
(7.18)—(7.17) fori = 1, (C.20), we have that (7.18)—(7.17) holds for i = 2.

Steps (¢3)-(¢*)-(¢°). Consider i = 3,4,5. We proceed exactly as in the previous
steps. We consider a change of coordinates B3; as the time-one flow map of

Ur = Hé_[(] Obi(r)) ul, b= %

for some smooth function B; of the form (6.36) (with p = i) to be determined. Using
Lemma 6.9 for the Hamiltonians of order &', i = 3, 4, 5, we can choose §; in order to
solve an equation like the following

(7.38)

@ - 0,Bi — (Bi)x = fi(V), (7.39)

where f; is a homogeneous function as in (6.36) (with p = i). The condition (1.13)
implies that the Eq. (7.39) for i = 4 is solved up to remainders of the form

d) :=dEw) =Y 4G, &p- (7.40)

J1,2€S

By (A.3) there are no small divisors for (7.39) if i = 3 ori = 5. By (7.18), (7.19) and
by noting that

1 Bi7C <& i =3,4.5, Vs > 50, (7.41)

the smallness assumption of Lemma C.1 and the condition (C.15) are satisfied for the
system (7.38). Arguing as in the previous steps we obtain that L5 := 5’5845384_185_ !
has the form (7.16) withi = Sand cs = ¢; +82d(§). Moreover the bounds (7.18)—(7.17)
hold fori = 5.

Remark 7.3. Since the symplectic maps B;,i = 1, ..., 5aresmoothin ¢ v (see (6.25) and
Remark 7.2) and the Hamiltonian H has the Taylor expansion (6.31), then the operators
Op(qgs), Qs in (7.16) may be expanded, in degree of homogeneity of ev , in the following
way (see Remark C.3)

3 3
6 s A A
Opas) =Y &' al’ +af®, 0s:=) QY + OFY
i=1

i=1
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with

>4),v,0 4 ~ O O,
a0 S €+ el Tsllg s Myms) Sop €t HelTsllig?  (742)

—1,s,0 ~*

for some o > 0. Following Remark C.3 the Q(’) Q( =% are in £, p'» as is habitual we
rename them p, p.
By (6.31) and the fact that the generators f; in (7.10) are Js-independent, it is clear

that q( = and @gz4) contain terms of size %, which are functions just of v, and terms
dependent also on J;s of "size" O (e||Ts]ls+o ), see the estimates (7.17), (7.18), (7.19). By

the uniqueness of the Taylor expansion we have that Y°;_, &' (af Dy Q(l)) coincide with
the vector field — Z?:l et J V K; where, recalling (7.22), (7.30), (7.23), (7.36),

Ki=HP,  zo+Ky:=H?, 29:=A&-n+ @/ 22 dx, (7.43)
T
and 3 is some pseudo differential 3-homogeneous Hamiltonian as in (6.35) with the

corresponding function f3(v) = 0.

Now we apply Proposition 3.6 in [33] (or Corollary 3.6 in [31]) in order to make
constant the coefficient as of the linearized operator L5, namely we find 8 such that

w- 3,8 — (1+&%c(w) + *d(w) + as(p, x))(1 + B) = constant. (7.44)

Note that, by (7.17) with i = 5 and (6.12), the smallness condition (7.12) is satisfied by
the function as. We have the following.

Proposition 7.4. There exists B (¢, x) such that (¢, x) — (¢, x + B (¢, x)) is a
diffeomorphism of the torus T"+' with the following estimates (recall (1.3)),

03X~
1B < v llas gt Vs = so,
18128 Sp ey~ A+ 1Tsl ps) it — 2l psz (7.45)
for some ¢ > 0, and the following holds. If B is the function such that (¢, x)

(¢, x + B(@, x)) is the inverse of the above diffeomorphism and Bg is the flow of the
Hamiltonian PDE

=TI ob@) 0], b= b0 = (140
X
then the conjugated of the operator Ls in (7.16) withi = 5 is
Lo :=BoLsB;' = nﬁ(w-aq,—mugf,), (7.47)

where Q¢ = Op(agg) + @6 is of order —1, as in Proposition C.2, and m is a constant
such that

Im — 1 —&2c(w) — e*d(w)” <72 m|''P <1,

. 2
[Aom| < ellit — illsgs2, Yo € O5F. (7.48)
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Moreover, for any s > sy,

0¥ .0, _ .
jasl”0%, S5 2L+ 1351720, 1A1asl-1pa Sp ev A+ 1351 )it — i2ll iz
R (7.49)
and Q¢ € £, p, for sop < s < S, satisfies
,O
My@ﬁ(s, b) S e+ 1T5105%), 0<b<p-2, (7.50)

My, 5, 0) Sp ey A+ 1Tl pa)llit — 2l 0<b<p—3 (15D

With G = o + 09 + p + 1 — 8o for some o9, possibly larger than og (recall (7.16) with
i = 5 and s1 given in Proposition 3.6 in [33]).

Proof. The first order linear differential operator (recall (7.36), (7.40))
w0y — (1+&%c(w) +&*d(€) +as(p, ), (7.52)

defined on H ; | (TV*1) is associated to the vector field on T"*+!
Xo=w- — — (1 +e“c(w)+e7dE) +a5((p,x))—.
ap ox
For p; in (6.12) large enough, i.e. if p; > o9 + 51 + 03, and by (7.17) with i = 5, we
have

(7.53)

_ 0¥ _
Cs)y Yas|}¥® < Csne? = 5% « 1,

provided that ¢ is small enough. This is the condition (7.12), hence Proposition 3.6 in
[33] applies to the vector field (7.53). Thus there exist ﬂ(o") and m such that the bounds
(7.45), (7.48) hold. In particular the second bound in (7.45) follows by Lemma 3.7 in
[33]. Moreover the operator (7.52) conjugated by the transformation

Thoo  u(p, %) = ulp, x + B (g, ),

is associated to the vector field

d -1
(Tgeo))xXo = - PP (Tg))

9
(a) 3, — (1 +%c(w) + e*d(€) + as(p, x)(1 + ﬁ;“)))a,
and by Proposition 3.6 in [33] we have that
w- 3,8 — (1 +&%c(w) + e*d(w) + as(p, x))(1 + ) = —m. (7.54)

By Lemma 11.4 in [1] the function (> satisfies the bound (7.45). By (7.45) and p;
large enough, for & small enough, the function g satisfies the smallness condition of
Lemma C.1, indeed

0 _ ’Ogé’ (717) _ ~ No)
1B Nvor < Cy Hasll oty = CleDy ™ (€% + 035l
6.12)
<7 C(spete, (7.55)

Hence Bg is well defined. By (7.17), (7.18), (7.19), i = 5, the bounds (C.13), (C.14)
hold with k| ~» €% ko ~» &, k3 ~» ey~ and Proposition C.2 applies and the thesis
follows. O
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Let us define
32286085034083082081. (7.56)

Then the Hamiltonian of the operator Lg is (recall (6.31), (7.43) and (7.47))
K:=HoB'=Hy+eki+ 82<Zo + /Cz) +63 K3 +o0(e?). (1.57)

Notice also that {Hp, Zg}. = 0. The expansion (7.57) allows us, together with Remark
7.3, to give a more precise expression of the remainder Qg in (7.47). This is the content
of Lemma 7.6 in the next section.

7.2. Linear Birkhoff normal form. The aim of this section is to eliminate /i, '3 and
normalize the Hamiltonian /Cp from (7.57). Our first point is that the —1 smoothing
remainder o(¢?) belongs to a special class of operators defined in Definition C.6 and
denoted by €_; . It turns out that this class is preserved under the changes of variables
used in the linear Birkhoff normal form procedure (see Lemmata C.8, C.9).

Remark 7.5. In the following steps of linear Birkhoff normal form we shall use the
relation

v
Y Jili+j —j =0, if (| <3, Vj. j es", (7.58)
i=1

which holds by the conservation of momentum.
Lemma 7.6. Recall (7.47). We have
Lo=Tg(w-dy—mJ —eXi, — ' X, — & Xic, +R) (7.59)

where Xic, := JVK;, i =1, 2,3, are almost diagonal and in €_1(Ogg) (recall Defini-
tions 6.4 and C.6) satisfying

Bl jyic, () < €C(s), k=1,2.3. (7.60)

The remainder SR belongs to €_ (O?)Z ) and satisfies

M= Q¢ +eXi, + &2 X, + & X, (7.61)
_ 1~ O 1 - .
Bl (s) Ss ¥+ ey NT5005°0,  BapmGo) S ey lin —idlsgrs,  (7.62)

for @ given in Proposition7.4.

Proof. By the discussion of Sect. 7.1 K;, i = 1, 2, 3, are of the form (6.35) with f; =0
fori = 1,2, 3. Hence the vector field X, are pseudo differential of order —1 up to
a finite rank term. In addition, they are almost diagonal by (6.34) and the momentum
condition (7.58). By Lemma C.8-(ii) e X, , €2 X, , £* X, belong to €_; and, by (7.27),
(7.26), (7.35), (7.37), (7.41), satisfy (7.60). By Proposition 7.4, the choice of p as in
(7.15) and by Lemma C.8-(i) taking p = so and p; large enough, Qg € €_;. Thus
Rel_.

Note that only Qg in (7.61) depend on the torus embedding is, then the second bound
in (7.62) follows by Lemma C.8-(7), (ii), (7.49) and (7.51). To prove the first bound in
(7.62) we reason as follows.



1722 R. Feola, F. Giuliani, M. Procesi

By (7.45) and (7.17) with i = 5 we have that

< ety aey”

~

0% 0% -
181 IBC5T* < et (7.63)

”J5 ||S+2'L’+4+O'0+Gg

Then the map B¢ leaves invariant (using Remark 7.2) the terms of size g, e2,&%in £5, and
hence, by Remark 7.3, those terms in Qg are givenby —e JV K1, —e2JV Ko, —e3JV K3.

From the proof of the bounds (C.18), (C.20) in Proposition C.2 one can notice that
the operators Op(ge) and Q6 admit a “formal” expansion in 8 (by expanding the
flow in 7). Of course, by the discussion above, the biggest term in R are the ones which
are linear in 8>, Such term comes from the conjugation of £5 under the map Bg, more
precisely from the conjugation of

(J — 3y) o (1 +&%c(w) + e*d(w) +as (g, x)).

We refer to the formula (3.11) in Proposition 3.1 of [33] to see the term bounded by the
norm of ﬂ(oo). Comparing the bounds (7.63) and (7.42) one can deduce the first bound
in (7.62). O

In order to normalize the vector fields &' JV/C; we will look for changes of coordi-
nates Y; generated as one-time flow of quadratic Hamiltonians Hx; described by almost
diagonal matrices 2; (see (C.47), (C.48) ,(C.49), (C.50)). We remark that the Hamilto-
nian 2% is left invariant by these changes of coordinates, since {Hg, Zg}, = 0. At any
step of the procedure we shall verify that JB; (see (C.49), (C.50)) are almost diagonal
and belong to €_; in order to apply Lemma C.13, which guarantees well-posedness and
tame estimates of Y;.

Step one (order ¢) At this step we want to eliminate ¢ X, from (7.59). We have

KD = Koyt = Ho+eklD + 82(20 + ;ch) +e3K0 +o0(e?), (7.64)
K=K, +{HA1, Ho}e = K1 +@ - 9, Ha, +{Ha,, Ho},

KD =Ky + E{HA_ {Ha,, Holele + {Ha,, K1}e

1 1
= Ko+ 5 {Ha,. KMy + S Hay K ). (7.65)
We choose A; such that
K" =@ d,Ha, + (Ha,, Ho} + K1 = 0. (7.66)
Recalling that Iy := H(l), we have (see (7.27), (7.28))
Kiwy = > (B} (@ uju_j. (7.67)

J.Jj'ese

Then we choose By = B in (C.49). By recalling the definition of B in (7.27) it is easy
to see that JB; € €_y, since it is a pseudo differential operator of order —1. Moreover it
is almost diagonal because J, 3 A d, are diagonal operators and $; is a function supported
on the finite set S.

Given X € €_; to shorten the notation in the following lemma we write (recall (2.3))

adx[-] :=[X, -]. (7.68)

Under this notation we have the following lemma.
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Lemma 7.7. The transformed operator is (recall (7.59), (7.64))

Loh =LY = T1§ (00, —mJ = X = X +R7)  (769)
3

Kl

where

1
X = JVKS) = Xy, +ady, [Xi, ]+ 5ad%, [0 3y —mJ], (7.70)

0
’CZ

1 1
1
Xy = JVKS) = Xic, +adx, [Xic,] + EadﬁA1 [Xic,]+ gacy%@1 [w-dy —mlJ],

(7.71)
the operator R7 € €_1 with
_ —1y~ ,O, — . .
Bl () Ss & +ey THITs115 0, Bayrs(50) Sev ™ A+ 1Tsllspes) i1 —i2llgss
(7.72)

for some & > G (recall the loss of regularity in (7.49), (7.50), (7.51)).
Proof. By using (C.58) we have that formulz (7.70), (7.71) hold and that

2
&
R7:=R+eady, [ Xy, + R]+ 7;1(11§(A1 [—&* X, — &3 X, +R]

3 k

£ 13 2 3 ek

+ gadXA] [—eXk, — "Xk, — & X, + R+ E HadxAl [Le]. (7.73)
k>4

ForY € €_; define Z, := ) ,., —ff, adlj(A [Y]forany n > 1. By Lemma C.9, and using
>n & .
(C.54), we deduce that

B (5) Ss Cls, m)BY (s0) + C(s0, ))BY (5)

Bapz,(50) S Cls0.m) (Br(s0) +Baysr (s0) ) (7.74)

for & small enough. In (7.73) there are terms of the form ad’)‘(Al [Y], for some k > 1, with

Y = Xk, Xx,, Xxc;» R which belong to € | by Lemmata C.8 and 7.6. We note that
by (7.66)

ady, [0 3y —mJ]l=—eXi, — (@ — @) - 9Xa, — (m — D[Xa,, J1 € €y (1.75)

since A1 is almost diagonal. Hence (w — @) - 9, Xa,, [Xa,, J] € €_1 (see the proof of
Lemma C.13) and by Lemma C.8-(iii) the remainder R7 € ¢_;. By (7.73), (C.43),
(C.44), (71.74), (1.75), (7.60), (7.62) and the fact that |w — @| < &2 we get the bounds
(7.72). O

Step two (order £2) At this step we want to normalize e2X el from (7.69). We have
2

K@ = ’C(I)OTZ_l = H()+82<Zo+K§2)>+83’C§2)+0(83), IC%Z) = {Hp,, Ho}e+IC§1),
(7.76)
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where ICS) is given in (7.65) (see also (7.70)). We choose A; in order to solve the
following equation

— 1 1
@ - 8y Hay + {Hay, Ho} = K3 — Mgerrg K3 (7.77)

Hence we choose By = VIlggH,) IC&D (u) in (C.49). Note that X i, is pseudo differential
of order —1 and JA;, Xx, belong to €_; and so also their Poisson brackets. Hence
JB, € €_1. By Remark 6.5 we have that JB, is also almost diagonal.

In order to perform the third step in the linear BNF we need to explicitly compute the

corrections O (2) coming from HKer(HO)/Cg)- The point is that a priori, it is not clear

whether the resonant terms HKer(HO)ICél) are supported only on trivial resonances. Our
approach is then to show that the normal form we obtain must necessarily coincide with
the formal one, which is relatively easy to compute.

Definition 7.8. Recalling the notations used in Sect. 3, we denote by IT1% =K, respectively
T1%=* the projector of a homogenous Hamiltonian of degree n on the monomials with
degree less or equal than k, respectively equal &, in the normal variable z, i.e.

sk g . H("»Sk)’ mé%=kgm . gk

We denote by Iy the projection onto trivial resonances (of the form (3.11)), i.e. mono-
mials of the form

Uju—jUuil—j ... UU_[.

The following proposition allows to easily compute the resonant terms HKer(HO)KS) in
(B.17).

Theorem 7.9 (Normal form identification). Consider the symplectic change of coordi-
nates Ag in (4.7). Then

- /1
M Mg (20 + K5 ) = [ M 1972 (569 HOY) |0 . 279)
0_

where A| = A5I5=|’ Hy is in (6.32) and we set (recalling (2.4)) G .= [adH(z>]_1H(3)
with H® in (3.1).

Proof. The proof is postponed to the “Appendix B”. O
As a consequence of the identification above, we have, by (7.78), (3.21), (3.1),
c(w) 1 1
(T 3 it + Tker o) K )) =3 >t (7.79)
jese jese

where (recall (1.8))

A2+ 1)
[i = i
/ Z A(j2) + () — A+ J) 5
J2€S
_2 (L+jHA+H2+ )5+ )% :, 7.80)
3 G+j3—jpj+jDGB+ 3+ jpj+jH 7"

joeS*t
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We define the diagonal operator (recall (7.36))

D 1= D) = diag (i) jese, ;= () (Ij — c(w)) € R. (7.81)

Lemma 7.10. We have
ki =1(j)([j —c@), ljllkjl<C Vjes, (7.82)

for an appropriate constant C > 0 depending on the set S.

Proof. Recalling the definitions (7.36) and (7.80) we have, for j € S¢,

2 3 (1+J0)(7+5J0+JO+3J2) _P()

[' —C(a)) = .
! 3 Joes* G+jg — joj + NGB +jg + joj )T 00y

(7.83)

It is easy to prove that |A(j)| < 411, 3+ jé + j> £ joj = 2% and (1 + j3)(7 +5j3 +
j61+3j2) < 14jgj2.Hence k(NI < % Zjoes+ jg. O

Lemma 7.11. The transformed operator is (recall (7.69))
Ly =075 = l_léw‘(a) g —md —DE) — X o + Rg) (7.84)
3

where IC(Z) ICgl), (&) is the diagonal operator of order —1 defined in (7.81), Rg €
¢ sansﬁes

4-3 -1 -1 ~ . .
B%’gg(S) Ss e +ey IIJsllHUO, Baprs(0) Sev™ (L+ [1Tsllspra) 11 — i2lls46»
(7.85)

for some & possibly larger than the one in Lemma 7.7.

Proof. The proof follows by using the same arguments of the proof of Lemma 7.7. In
particular, expanding the left hand side of (7.84) using (C.58) we get

2k
Rg := Ry +&’adx, [-£°D(E) — ¢ X,C@ +R8]+Z —radx,, [L7]. (7:86)
k=2

By (7.77) and Theorem 7.9 we have that
ady, [ 3, —mJ] + K = —D(E) — (0 —®) - 0,Xn, — (m — D[ Xay, J1.

By (7.10) ®(£) € €_; and by the fact that A5 is almost diagonal we have that (v — ) -
09 Xny, [Xay, J1 € €_1. Then Rg € €_;. The bounds (7.85) are obtained by using the
estimates (C.43), (C.44), (7.74), (C.54) and (7.72). 0O
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Step three (order ¢*) At this step we eliminate £3 X 2 from (7.84). Recalling that Ing)
¢ :
is given in Lemma 7.11, we have
K® .= K@ o T;l = Hy+ EZICEZ) + 83IC§3) + 0(83),
2
&

K := (Hay, Ho + 62AE - 7+ 5

3 ©)z)z-jle + K. (7.87)

Jjese

Note that we consider in the normal form also the £2-terms. We want to solve the equation

2
&
Dgiezng Has + {Hag. Ho+ — > @)z} + K =0. (7.88)
jese

Hence we choose the matrix B3 := VICgI) (u) (note that ICél) = IC§2)). Recalling (7.71)
it is easy to see that JB3 is sum of Lie brackets of elements of €_j, hence by Lemma
C.8 it belongs to €_1. By the fact that A; is almost diagonal and by Remark 6.5 we have
that J B3 is almost diagonal.

Lemma 7.12. The transformed operator is (recall (7.69))
Lo = T3LgY; " =Tt (w 0, —mJ — XD(E) + Rg) (7.89)

where D (&) is the diagonal operator of order —1 defined in (7.81), Rg € €_; satisfies

4-3 1y~ 17O —1; .
IB%Q(S)Sse “+ey T2 Bapre(so) S ey it —inllsgges.  (7.90)

for some & possibly larger than the one in Lemma 7.11.

Proof. The proof follows the same arguments used for proving Lemma 7.7. By (C.58)
we deduce

Ro =Ry +e'adx, [~ X o + Rsl + > %ad’;(A3 [Ls]. (7.91)
k>2
We note that by (7.88) we have (recall (4.5) and (7.36))
adx, [0 8y —mJ —2DE)] = &’ X0 + (0 =@ — e2AE) - B33
—(m =1 = &c(w)[Xny, J] € €y,

since A3 is almost diagonal . Hence the bounds (7.90) follows by (C.54), (7.85) and by
using Lemma C.9. 0O

Proof of Theorem 7.1. We choose i = ¢ given in Lemma 7.12. We consider p and p
so that

S()+p1—82pZSO, O’9+O’0+(S1—S())+01+,0+1§5, 55}31, (7.92)

where & is the loss of regularity in Lemma 7.12, o¢ has been introduced in Sect. 7,
see estimates (6.17)—(6.22), o1 > 0 and s are given respectively in Lemma C.1 and in
Proposition 3.6 in [33].
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We define the map (recall (C.48), (7.56))
T:=T30T07Y;0B.

By Proposition 7.4 the map B is defined for w € Ogg (see (7.3)), and so also Y. By
(7.26), (7.37), (7.41), (C.55), (C.54), (7.45), (7.17) (with i = 5) and Lemma C.1 we
have (7.9).

The result follows by setting £ := Lg (see (7.89)), Py := Ro, and m is the constant
given by Proposition 7.4. Indeed (7.48) implies (7.2) and (7.6). Moreover, by Lemma
7.12, we have that Py € €_; and satisfies (7.90). Lemma C.10 implies that Py is —1-
modulo tame together with g derivatives in the variable ¢ (recall the Definition C.32
and the fact that y3/2 < y). The bounds (7.7), (7.8) follow from (C.45)—(C.46) , the
definition of B;;O (s) (see (C.32),(C.34)) and (7.90). By Lemma 7.10 we deduce (7.5).

O

7.3. KAM reducibilty and Inversion of the linearized operator. In this subsection we
prove the claim (6.9) by diagonalizing the operator £ in (7.4). We first write

Li=w8,—My. Mg:=Do+P. Dp:=diagid”)jes,
d;‘” = d;‘” (@) = m(w)r(j) + e j (). (7.93)

Notice that (by the smallness condition (7.94)) Proposition 4.1 in [33] applies to the
operator L in (7.4). Hence by following almost word by word the proof of Theorem 1.7
in [33] one has the following.

Theorem 7.13 (Reducibility). Fix y € [y3/2/4, 4)/3/2]. Assume that w +— is(w) is a
Lipschitz function defined on Oy C 2. (recall (6.3)), satisfying (6.12) with p; > |

where 1 := 1(v) is given in Proposition 7.1. There exist 5o € (0, 1), No > 0, Cp > 0,
such that, if (recall that by (4.8) y = £2*9)

NOCO€473LIJ/73/2 — Nocoglf(9/2)a S 80, (794)

then the following holds.

(i) (Eigenvalues) For all w € Q, there exists a sequence*

d;’o(a)) = d?o(a), is(w)) == m(w, is(w)) A()) +82Kj(a)) + r}x’(a), is(w)), jeS,
(7.95)

with m and k j in (7.48) and (7.81) respectively. Furthermore, for all j € S¢

sup<j>|r,(<°°)ly3/2 et = (7.96)
j

All the eigenvalues id;’o are purely imaginary.

4 Whenever it is not strictly necessary, we shall drop the dependence on ig.
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(i1) (Conjugacy) For all w in the set

27 25 .
Q= QL (is)

2y

= {a) € O?)Z o - K+d}’°(w)—d,f°(w)| > W,

VeeZ', Vj, ke S, j ;ék}
(7.97)

there is a real, bounded, invertible, linear operator @ (w): H;L(']T”“) —

H g L (TV*Y), with bounded inverse Cbgol (w), that conjugates L in (7.4) to constant
coefficients, namely

Loo(®) 1= Doo(@) 0 Lo D) () = w - 8, — Deo (),
Doo(w) := diagjesf{id}’o (w)}. (7.98)

The transformations @, 43501 are tame and they satisfy for so < s < S (recall |11
in Theorem 7.1)

.
y2.0

32,37 3a. — 520~ 17O,
I(@% — DhllY So (Y7 2 4 ey 2N T1T ) I,

S+
_ _ 3/2’950
+e+730y 32 )Y : (7.99)

Moreover @, dbgol are symplectic, and Lo is a Hamiltonian operator.

(iii) (Dependence on is(w)) Let i1 (w) and i2(w) be two Lipschitz maps satisfying (6.12)
with Js ~ ix(¢) — (¢, 0,0), k = 1, 2, and such that

lir = i2llsgap S PN~ (7.100)

for N sufficiently large and 0 < p < y3/2/4. Fix yi € [y3/%/2,2y3?] and
Yy = y1 — p. Let r](.oo)(a), ix(w)) be the sequence in (7.95) with y ~» yi for
k =1,2. Then forall w € Qgé(il) we have, for some k > (3/2)t,

y A m] +sup( A1 < ey it = il + €N (7.101)
J

Proof. The proof of items (i)—(ii) follow by Theorem 1.9 in [33]. The only point left
to prove is item (iii). We apply Theorems 1.4, 1.5 in [33]. We have that

y Hm ™ Gi2) — @)l + ()1 2) = 1G] < ey~ iy — iallsge +&* TN
(7.102)
where k > 1. Here m@) (i), r](.N)(iz) are defined in (1.39) of [33] and they are an

approximation of m(i») and rj(.oo) (ip) satisfying

y " m N (i) = m(in) | + ()1 (i) = 1™ )] S N (7.103)

The bounds (7.102), (7.103) imply the (7.101). O
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7.4. Proof of the inversion assumption (6.9). We are in position to give estimates on the
inverse of the operator £, in (6.15). Let us now define (recall (5.3))

2
(Z)/T, VeeZ' VjeSY  (7.104)

Fl(is) == {w e Op: o€ — d¥ )| >

We deduce the inversion assumption (6.9) by the following result.

Proposition 7.14. Assume the hypothesis of Theorem 7.13, (6.12) withpy > u1+2t+1,
32

where 11 is given in Theorem 7.1. Then for all € Qs = ch,g (is) N fgoy (is) (see

(7.97)), for any function g € H;jzr”(’]l‘”“) the equation L,h = g has a solution

h=L,'ge Hg, (TV*YY, satisfying

Q

—_ 5900 —_ 7QOC _ ) o0 7900
1L, gl <oy gl e, + ey 2 13s 1 kip = llgllly ™). (7.105)

Proof. We conjugated the operator £, in (6.15) to a diagonal operator Lo = x Lox ",
see (7.98), with (recall (7.99) and Theorem 7.1) x := &, o T. Moreover, by (7.9) and

(7.99) we have the following estimates

+1y 7,9 1Y -5/2 7.0 7.
I E R So RIY > + ey 21350l IRl .

We have
- 8¢j i(C-p+jx)
L= ites) (7.106)
j#ol(a)-ﬁ —dj (a)))
and then [|L) |1 < y~1|lg)17;5,. Thus we get the estimate (7.105). O

8. The Nash—-Moser Nonlinear Iteration

In this section we prove Theorem 5.4. It will be a consequence of the Nash—-Moser
theorem 8.1.
Consider the finite-dimensional subspaces

E,:={3(¢) =(0,y,2(p) : @ =110,y =y, z = Iz}

where
Ny:=NJ, n=0,1,2,..., x:=3/2, No>0 (8.1)

and IT,, are the projectors (which, with a small abuse of notation, we denote with the
same symbol)

M,0(p) = Y O, Mylp) = Y ye?,

€| <Ny [€] <Ny
where ©(p) = > O, y(p) = Y yret?,
LezZy LeZ”
Muz(p.x) = Y 2599 where z(p.x)= Yz (82)

[(€,j)|<Nn LeZY,jese



1730 R. Feola, F. Giuliani, M. Procesi

We define l'I,J; = I — II,. The classical smoothing properties hold, namely, for all
o,s >0,

~ 7.0 ~ 17,0 ~ 0
T35S <N I0C, Vi) € HY, |T1E3))
< NI V(@) e H. (83)

Recall (5.3), (4.8) for the definition of b we set a := 2b — 2. We define the following
constants

o = 3u+ 3, o :=3ap+1, o = (e —3u)/2,

k:=3+p H+1, B1:=6ap+3p""

1 <1 — (9/2)a) 1—(9/2)a
2\ Ci(1+a) Ci(l1+a)

+3,

(8.4)
where p := w(v) > 0 is the “loss of regularity” given by the Theorem 6.1 and Cj is
fixed below.

Theorem 8.1 (Nash-Moser). Assume that f € C* (see (1.3)). Let T := 2v + 6. Then
there exist C; > max{ag + «, Co} (where Coy := Co(v) is the one in Theorem 7.13),
80 := So(v) > O such that, if

NS ettty T2 < 5,y = =%, No:=(ey )P, be=9-2b, (8.5

then there exists C, = Cy(S) > 0 such that for all n > 0 the following holds:

(P1), there exists a function (J,,n): Gn € Qe — E—1 X R, 0 = (T (w), &(w)),
(o, o) := (0,0), E_1 := {0}, where the set G is defined in (5.7) and the sets
Gy, for n > 1 are defined inductively by:

2 ¥n
(e’

2
Gurt == (AL, with AV, = {a) €Gn:lw-L+mlin)jl = Vies te Z”} ,
i=0
2y
o8

n+l "

AD {wegn:|w~€+d;’°(in)|2 ,VjeS",ZeZ”},

3/2
2)’11/

o°

INE {wegn:|w‘€+d§-’°(in>—d,§’°(in>|z

n+l T

Vi keSC, #k,éeZ”},
(8.6)

where vy i=y(1+27"), y¥ == y32(1 +27") and A (@) = d (o, iy () are
defined in (1.95) (and d3° (w) = 0). Moreover |¢,|"9" < | F U5 and

19,159 < CogPy =", NFWUDILT 5 < Cre®™, 8.7)

— So+pu+3 —
where Uy := (in, &) with iy(¢) = (¢,0,0) + J,(p). The differences /3\,1 =
3y — Jn—1 (where we set Jo := 0) is defined on G, and satisfy

G159 < Cuebry ™, 1,105 < Cueby T INTS, Vn=2. (8.8)

n—1°

(P2)n ||.7:(Un)||§/0’g'1 < C*Eb*Nn__Ol1 where we set N_1 := 1.
(P3), (High Norms) | 3,19 < Cieby~IN* | and IFUS < C.eP* Nk,

so+B1 so+B1
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(P4),, (Measure) The measure of the “Cantor-like” sets G, satisfies
19:\Gol < Co® Dy, 1G\Gusi| < Cue® Dy N, (8.9)

Proof. To simplify the notations we omit the index y, G, on the norm ||-|;.
Proof of (P1)o, (P2)o, (P3)o. Recalling (5.10), we have, by the second estimate in
(5.13),

IF U5 = IF(9,0,0),0)[ls = 1 Xp (@, 0,0)]ls <5 2.

Hence the smallness conditions in (P1)o, (P2)o, (P3)o hold taking C, large enough.
Assume that (P1)n, (P2)u, (P3)n hold for some n > 0, and prove (P1)u+1, (P2)n+1,
(P3)n+1. By (8.4) and (8.5)

Noclgb*+1y—7/2 — 81—(9/2)a—pC1(1+a) <&

for ¢ small enough. If we take Cy bigger than Cp in Theorem 7.13 then (7.94) holds.
In (6.12) we consider py = py + p, where py := puq + 27 + 1 and p appears in (6.5).
Since > po (8.7) implies (6.3) and so (6.12), and Proposition 7.14 applies. Hence
the operator L, := Ly, (w, i, (w)) in (6.15) is defined on Oy = G, and is invertible
for all w € G,41 since G, C Qg”* (ip) N .7-"32;" (i) and the (7.105) holds. This means
that the assumption (6.9) of Theorem 6.1 is verified with Q+, = G,;+1. By Theorem 6.1
there exists an approximate inverse T, (®) := To(w, i, (w)) of the linearized operator
L,(w) :=DF(w, in(w), &) = DF(w, in(w), 0), satisfying (6.10). By (8.5), (8.7)

ITuglls Ss v lgllsen + €72 UTnllser + ¥~ 10 g 1F Un) lstpe 18 lsgpe)s
(8.10)

ITugllsy S ¥ lgllsors (8.11)
and, by (6.11), using also (8.5), (8.7), (8.3),

I(Ly 0 Ty — Dglls Sse® 'y 2UF U lsprre I gllsare + 1F U syl g

+ 87 2T s | F U sprp 18 lsgrre) (8.12)
I(Ly © Ty — Dgllsy Sy UL F U lspare + ITLEF U o) 1€ llspie
(8.13)
<y 2N (IF W o + Ny P IF ) o ) 18 s
(8.14)

Now, for all w € G,1, we can define, for n > 0,
Ups1 = Uy +Hpy1, Hpyl = (§n+lva+l) = _ﬁnTnnn}-(Un) € E, x va (8.15)
where 1:1,1(3, ¢) := (I1,,3, ¢) with IT,, defined in (8.2). By construction we have

-7:(Un+1) = F(Un) + Ly Hyv1 + Qna
Qp = Q(Uy, Hys1), QWUy, H) := F(U, +H) — F(Uy,) —Ly,H, He€E,xR".

Then, by the definition of H,4; in (8.15), using [L,, I1,] and writing 1:[,}(3, ¢) =
(Hij, 0) we have

«F(Un+l) = ]:(Un) - Lnl:[nTan]:(Un) + Qn = ]:(Un) - LnTan]:(Un)
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+ LT, T, T F(Un) + O
= F(Up) = My Ly Ta Ty F (Up) + (Lo Ty = T L) Ty T F(Un) + O
= [, F(Un) + Ra+ Qu + O,
where
Ry i= (LyTL;E — T L) T, 1L, F(Uy), Q) i= —T1,(L, T, — DI, F(Uy). (8.16)
Lemma 8.2. Define
W = ey IFU)lsgs Bu = ey ITnlsgrpy + ¥ 2 IFUn)llsgupy - (8.17)
Then there exists K := K (so, 1) > O such that, for all n > 0, setting g := 3 +3
Woe1 < KN PB4+ KNW2 B, < KN B, (8.18)
The proof of Lemma 8.2 follows almost word by word the proof of Lemma 9.2 in [4].
Proof of (P3)n+1- By (8.18) and (P3),,

Byt < KNYO*P ' B, < 2C,Kebtly 2N+ ' NK_ < € eb ¥y 72Nk (8.19)

—1
provided 2K N;°*° _kN,’ffl < 1,V¥n > 0. Choosing k as in (8.4) and N large enough,
i.e. for ¢ small enough. By (8.17) and the bound (8.19) (P3),+1 holds.
Proof of (P2)n+1- Using (8.17), (8.18) and (P2),, (P3),, we get

—1_ -1
Wps1 < KNGO =PI, 4 KNYw2 < K N2OTP

+K N2 (Cuebtly =2N )2

—Bi ZC*Sb*H V_QN;];—I

and w41 < C*sb*”y_an_“ provided that

—1

4R Noore —Pve Nk < 2K Cugbtly TANSOEN 2 < 1 Vn > 0. (8.20)

The inequalities in (8.20) hold by (8.5), taking « as in (8.4), C1 > «g+« and g in (8.5)
small enough. By (8.17), the inequality Wpt1 < Cy Sb*+l _ZN_"‘ implies (P2),+1-
Proof of (P1)n+1. The bound (8.8) for ’Jl follows by (8.15), (8.10) (for s = so + u) and
IF(Uo) llsg+21 5m+2u *. The bound (8.8) for J,4+ follows by (8.2), (P2), and (8.4).
It remains to prove that (8.7) holds at the step n + 1. We have

n+l
Tnetllsprn < D IW3kllspen < Cue?y ™Y NS Cueloy ™! (8.21)
k=1 k>1

taking o as in (8.4) and Ny large enough, i.e. & small enough. Moreover, using (8.2),
(P2)n+1: (P3)n+1, (8.4) we get

IF UnsD syt < NEUF Ui llso + NETPUF Una) sy
S C*Sb*eriH—l o + C*Sb*N;ll,L+l ﬁ1+k 5 C*Eb*,

which is the second inequality in (8.7) at the step n+1. The bound |Z,+1 1Y < || F(Un+1) |I§/0
is a consequence of Lemma 6.1 in [39].

To conclude the proof of Theorem (8.1) it remains to show the bounds (8.9). This is
done in the next section. O
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8.1. Measure estimates. Let us define for 0 < n < J}./e,0 > landn € N

Rejk(n,0) := Ryji(in, 1, 0) :={w € Gy : |0 - £+d° —d”| <2n(0)"7},  (8.22)
Qej(n,0) := Quj(in.n,0) :={we Gy :|w- - L+mj| <2n{t)"}, (8.23)
Prj(n,0) i= Pej(in, n,0) :={w € Gy : |lo- L+d;°| <2n(()"7}. (8.24)

Recalling (8.6) we can write, setting n ~» y, for the sets Qg;(n,0) and Py;(n, o),
n ~ y, for the set Rejk(n,0),and o ~ 1,

G \Gn1 = U (Rfjk(im V:v ) U Qlj (in, Yn, ) U PEj (ins Yno T)) (8.25)
LeZV, j, keS¢

Since, by (5.7) and y > y3/2 (see (8.5)), Rejk(in) = 0 for j = k, in the sequel
we assume that j # k. We start with a preliminary lemma, which gives a first relation
between ¢, j, k which must be satisfied in order to have non empty resonant sets.

Lemma 8.3. Let n > 0. There is a constant C > 0 dependent of the tangential set and
independent of ¢, j, k, n, i,, ® such that the following holds:

o If Reji(in, 1, 0) # 0 then |€] = CIA(j) — 2(0)| = §1j —kl;
o If Quj(in,n,0) #V then |t] = C|j|;
o If Pyj(in,n,0) # 0 then |t] = Cjl.

Proof. If Ryjy(in) # ¥, then there exists @ such that
d5° (@, in(@)) — d° (@, in(@)] < 2n(€)"7 + |- £].

Moreover, using (7.95), (7.96), (7.2), (7.5), we get Id;’o(w, in(w)) — d*(w, in(®)]| >
%M(j) — A(k)|. Thus, for ¢ small enough
2n

_ 1 . 1 )
2|wlll] > |w - £] > (5 - m) A(j) — Ak)] > ZM(]) — Ak

and this proves the first claim on Ryjy. If Q(; # ¥ then we have |mj| < 2n(£)™° +|w-£|.
Hence, for ¢ small enough, we have
|w - £]

Im|

Following the same arguments and by using that |d;| > C|j| for some constant C > 0
we get the last statement. 0O

- Im|

.— m.

ljl <

1
= T|E|7
C

8.1.1. Measure of a resonant set The aim of this subsection is to prove the following
lemma.

Lemma 8.4. There is ro > 0 such that, for any 0 < r < rq, and any choice of
St € V(r) we have that

|Rejr(n, 0)] < K" V(o) (8.26)

for some K = K(S). The same holds for Q¢;j(n, o) and Pyj(n, s).
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The proof of the lemma above involves many arguments and we split it into several steps.
In several bounds we will evidence the dependence of the constants on the tangential
set S in order to highlight that the smallness of the amplitudes & depends on the choice
of the tangential sites.
Let us first consider the set Rgj, which is the most difficult case. We study the
sub-levels of the function w — ¢r(w) defined by (recall (4.5),(7.95))

Pr(0) i=iw - L+d° () — &% (©) = iw - L +im(@) (L(j) — 1(k))
+ iez(;cj — ki) (w) + (rj?o — r,fo)(a)). (8.27)
We recall that (see (7.2), (7.48))
m=1+6c)+rn), c@=70-&w), U:=02/3)A+T)i_ €R’,
kj(@) = W; - (o), (8.28)
where «; is defined in (7.5) (see also (7.40)) and
rn = ed(@) + 06y ), Jrml” STheh IVorml STie? + 0y ™). (8.29)

We first study some properties of the function ¢g () in (8.27).
The small divisor ¢ (w) as an affine function of w It will be useful to consider ¢ g (w)
in (8.27) as a small perturbation of an affine function in w

br(@) = aji +byjx -0 +qik@). €LV, jke S (8.30)

where
aje = i(0.0) = A1 = - A7'B]+ (i — i) - A7), (B31)
biji = i(Z + () — ARNA TS+ AT (i) — J)k)), (8.32)

and the remainder g j; (w) satisfies

g k(@)™ < 71t — k| +&*73,

14 jk @) < [em @A) = 2] +1r5° = Pl < 7187 — k| +e' 74
(8.33)

Lemma 8.5. Denoting pj = A(j)V + w;, we have the following bounds:
il ST 1w ST 1B = Bl ST K,
w; — wxl S TE = kI 72+ 1k,
2,52 )
Proof. The first bound follows by the fact that 3 + 712 +j2+ J2Ji =3+ % > 17 and
(1+ )0 +7HQ2+j2+75) <71 j* The others follow similarly. O

Fix o € (0, 1/2) and let
0<B<Q-a)o+D) (8.34)

We have the following estimates for sets Ryj; with [£] “large”.
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Lemma 8.6. Let |£] > &P, Then Rejr(n, o) satisfies (8.26).

Proof. In this proof we shall denote by C(S) a running positive constant depending on
the set S. Suppose that | j — k| < cg|€| with cp = co(S) small. By Lemmata 8.5 and 4.1
we have [A~T(p; — po)| 7117 — k| < [€]/2 for ¢ sufficiently small. This means that
|bejk] 2 1€]/2. Now suppose that | j — k| > ¢ol€|. Then

| L A T@; — )
‘ B o 1 . _ +
lajel 2 G) = 201 (11 = 473 - ) () — (k)] )

(A4)AT) 1 C©S)j—kl _ 1 - .
= k(5 - =) 2 i = k(5 — 26 €)= 1) — ki

2 colllljkl
for ¢ small enough. By (8.22), (8.33)

2|bgjrllw| > |bejk - | > lajk| — |pejx(@)] — |gjk (@)]

1 2n gh=3a 1 .
= (3- — ()" = ——)Ij =kl = 2l — K,

4 co(e)! lj — Kl

for ¢ small enoughand o > 1. Again we have shown that |bgji| > 6|€| with§ := c/2|@].
Split w = sb + b where b := b/|b| and b - b = 0. Let Wg(s) := ¢pr(sh + b'). For &
small enough, by (8.33), we get

[WR(s1) — Wr(P)| = (6] — Igkl"P)s1 — pl

1—4a 51
) i = Kllst = pl 2 SHj =kl st = pl.

> (a — () - =
j — k]

The lemma follows by Fubini’s theorem. O

We now prove that if the main term (in size) of ¢ g (w) is big enough and |£| is bounded
by some constant then the bad set Ryjr (1, 0) = ). We remark that

Pr(@) — qjx (@) = ajp +bgjx - © = - L+ A(j) — A(k).

Lemma 8.7. If |£| < ¢ P and |@ - £ + 1(j) — L(k)| = po()~7 , where yy = €%, then
Rejr(n, 0) = 0.

Proof. By definition
- €+d5° —d®) = y0(0) ™" — |byjille — @] — 2|qi ™.
By Lemma 8.3 (recall (8.27)) we have |j — k| < C|¢| and so
bejille — @] +2|q ™ < C(S)a*(|L] +1j — k) S C(S)E*|L] S C($)e*F

< gutofy < N 8.35
=& = 29 (8.35)

for some C(S) > 0, for ¢ small enough, by (8.34). O

Lemma 8.8. Let |£] < e P and |- €+A(j)—A(K)| < yo(€)~°. Then Ryjk(n, o) satisfies
(8.26).
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Proof. Letuscall p :=@-£+A(j)— A(k) and note that |p| < yo = &“. We also remark
that £ # O since for j # k one has [A(j) — A (k)| > 1/2. We substitute p in the definition
of bgjk (see (8.32))
lbejkl = €+ (=@ - €+ p)ATT+ AT (W — )| = 1€ — A Tow" ¢
+ATT (B — wy)| + %,
Then, using (A.5) in Lemma (A.1) we have |bgjr| > |£|§/2 for ¢ small enough. The

thesis follows reasoning as in Lemma (8.6). O

Proof of Lemma 8.4. For the sets Ryj the lemma follows by Lemmata 8.6, 8.7, 8.8.

The proof for the sets Q;; and Py; follows using the same arguments used for Ryjy.
Lemmata 8.6, 8.7 are identical, with the only difference that the non-resonance condition
now reads respectively @ - £ + j| > y(€) 7, |w - £+ A(j)| = (€))7 in the case of
Qy¢j and Py;. Regarding Lemma 8.8, it follows from (A.4) in the case of Q; and from
(A.6) in the case of Py;. O

8.1.2. Summability
Lemma 8.9. Forn > 1, |£| < Ny_1, one has Ryjx(in), Quj(in), P (in) = 0.

Proof. We first note that, by Lemma 8.3, if |A(j) — A(k)| > C1_1|£| (for some C; =
C1(8)) then Ryjr(in) = Rejk(in—1) = @, so that our claim is trivial. Otherwise, if

1L(j) — 2] < C7el < €7 Ny

By (7.101) (with i{" ~ i, and i{” ~+ i,_1, N ~ N,_1) and (8.8) we have for all
j ke S

(d5° = d®) (i) — (d5° = d°)(in-1)| < ¥ 7N, 3 Vo € Gy, (8.36)

where a := min{k, «} (recall « in (8.4) and « in (7.13)). Now for all j # k, [£] < Nj,—1,
o € G, by (8.36)

| €+d5°(in) — dP(in)| = |- £+d5(in1) — d°(in-1)]
- |(d}>o — d°) (i) — (dfo — d°) (in-1)|
> 2y ()T — &N = 2y ()T (8.37)
since 84_3“)/_3/2N,f_(2/3)a2"+1 < 1. Since by definition Ryjx (i,) S G, then Ry (in) =

@.
Now we prove that Qg (iy—1) € Qg;(in). We have

. . (748 ) ) 8.8 I
ImGn) —mGn-DIljl < C&llin —in—1llse2ljl < CeP*y~IN"j]
< CePPBy~IN ] (8.38)
and then

|w L +m(ln)J| = |w L +m(l’n71)]~| - |m(ln) - m(in71)||j|
> 2y 1 ()T — ey TN > 0y ()T (8.39)
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since [£] < N,_1.
As before, by (7.101), for all j, k € S¢

1d5° (i) = d5° (1) < 7N, %) Vo € G,. (8.40)
Forall j #k, |€| < Ny—1, w € G, by (8.36)

@ € +d¥ ()] = |- €+ dP(in-1)] — [d () — dP (i)

> 2Yu_1 ()T — TN 2 > 29, (0) 7T (8.41)
since g43ay ~I NI~ @Dl 1 g
We have proved that
G\ € | (Reein) U Qejin) U Py(i) ). ¥ = 1. (8.42)
Jj,keS¢
[€]>Np-1

Lemma 8.10. There exists C > 0 such that if | j|, |k| > C(€)"*?y=1/2 then (recall that
T=2v+6>v+2)

Reji(y>?,7) € Qo ji(y, v +2). (8.43)
Proof. We have that

- L+d° — | = |- L+ m(j— k)| = |m|[a() — j+k — A(K)] — &7 |wj — wi]

—1rl = I
2 c Ce?
L e
() [71kT " min(1j1. Tk}
~ o2
- 2y _ Cy _ Ce™\Jy
- <£>v+2 C(()Z(HZ)—I C(f)‘”’z
~ L2
- 1% <2_ C B Ce )
- (z)v+2 2C(Z)”+1 2\/7C
3/2
>_Y Y (8.44)

(g)v+2 )T
for C big enough and since (’32(\/%_1 <1 O
We are in position to prove (8.9). We have, by (8.42),

U Rextin)] < > | Reji (i)

Lely, jkese 11> No—1,1 71, lk|=C(€)+2y =1/

+ > | Reji (i)

[€]>Ny_1.] )] 1k|<2C(€)v+2y =(1/2)
On one hand we have that, using Lemmata 8.4 and 8.10,

> Rl S K Y 207 Dy

[€]>Nu—1,1 i1, [k|>C()r+2y—(1/2) J—k=h.|h|=<C|¢|
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S_, ng(v—l)y Z <Z>—(l)+1)
[€|=Np—1

< K€2<U71))/Nn__11.

On the other hand

> |Reji(in)| S Ky O/Pe?7D "

2\
[€]>Np—1,1j —kI=Cl{| il NG
il lkl<2c(e)Try =~/

e](e)v+2

5 Ky82(u71) Z (g)*(f*\)*:;)
[€]=Np—1

<Ky UL

The discussion above implies estimates (8.9).

8.2. Conclusion of the Proof of Theorem 5.4. Theorem 8.1 implies that the sequence

(T, &n) is well defined for w € Goo := Np>0Gn, J, is a Cauchy sequence in ||-||§/0’+gﬁO

(see (8.8)) and |¢,|” — 0. Therefore J,, converges to a limit Jo, in norm ||'||;/dg,i° and,
by (P2),, for all w € Geo, ino(¢) := (¢, 0, 0) + To () is a solution of

Fline,0) =0  with ||300||Z(;+g,3° < g072hy (8.45)

by (8.7), (8.5). Therefore ¢ > i (¢) is an invariant torus for the Hamiltonian vector
field X g, (recall (5.1)). By (8.9),

|2:\Gool < 1Q:\Gol + Y 1Gi\Gur1] < 2Ce Dy

n>0

+C*£2(V—l)y ZNn__ll 5 C*Ez(l)—l)y.

n>1

The set €2, in (5.2) has measure |22, = O(g2"). Hence |2:\Gool /|| — Oase — 0
because y = 0(g?), and therefore the measure of C; := Goo satisfies (5.12).

It remains to show the linear stability of the embedding i, (¢). By the discussion of
Sect. 6 (see also [4] for further details) and Sect. 7, since i, (¢) is isotropic and solves
the Eq. (8.45), it is possible to find a change of coordinates G, (of the form (6.6)),
so that in the linearized system of the Hamiltonian H; o G (¢, n, w) the equation
for the actions is given by 7 = 0. Moreover, by Sect. 7 the linear equation for the
normal variables w is conjugated, by setting w = Y o @, (z) to the diagonal system
Zj —id¥(w)zj = fij(wi), j € $¢, where f(w1) is a forcing term.

Since d;’o € R astandard argument shows that the Sobolev norms of w do not increase
in time. For further details see [2,4,40].
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Appendix A. Non-degeneracy conditions

Proof of Lemma 4.1. Recalling (4.6) we introduce a matrix K so that A =: (2/9) diag
(k(ji)(l + jiz))K. Now we show that the entries of K are bounded by some constant
independent of the J;. After some direct computations we have that

1+ 2
Ki=-—2 jes
Jji 2
1+kH Q2+ k2 + j2
K =3 ( +£7)( ) , jkeS*, j £k

G+k2+ j2+kj)B+k2+ j2 —kj)

Obviously |K ;| < 2; regarding the off-diagonal terms, we note that 0 < 2kj < K2+ j 2,
hence |K | < 12if j # k.
We consider the variables x, pa, ..., p, defined as

Ji1=:1/x, Ji=:pi/x, 0<p;i <1, (A1)

so that P(x, p;) = det(K) is a rational function. It is easily seen that K computed at
pi = 1 for all i, coincides with the matrix

(1+x) (I+2g(x) (U —D), g :=@Gx*+1)7 1,

where U is the matrix with components U;; = 1foranyi, j =1, ..., v. Its determinant
is
1+x2\"
e € T I I (A2)
1 +3x2

We note that the absolute value of (A.2)is > 1 at x = 0. We conclude that there exists
0 < rg < 1 such that

if 0<x<rg, |pi—1<r9 then |P(x,p;)|>1/2.
This implies the thesis. O

Lemma A.1. There exists 0 < ro < 1 such that, for any S* € V(r) with0 < r < rg
(see Definition 1.1), the following holds true:

f_zz,-|>§7&0, VeeZ', |0)=1,2,3,5; (A3)

v —
J

< 1)
o L+

. ‘det(I—A_Tﬁ(E)T)) > 1; (A4)

L
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-1
o |0— (1 — A‘Tﬁ(E)T) AT (@) —wp)| = 8lel, €eZ’ j keSS (AS)
-1
o |0— (1 — A‘Tﬁ(E)T) AT >80, €eZ', jese (A.6)
Here v and zf)j are defined in (8.28) (see also (7.5)), @ in (1.10) and § is some appro-
priately small pure constant.

Proof of (A.3). The case |£| = 1 is trivial. For || = 2 we use the fact that the 7; are all
distinct. For |[£| = 3, 5 we pass to the variables (A.1) and we get

11|Z

We notice that L(0,1) = | >, €¢;| > 1 (since ) ; ¢; has the same parity of [£]) so,
by continuity, there exists 0 < rg < 1 such that L(x, p) > 1/2forall 0 < x <
ro, |pi — 1| < ro. This implies the result. O

Proof of (A.4). We first note that (recall (8.28))

|Z 2p,p 4] =t L(x, p).

detI— ATy =1-A"T% . w. (A7)

Consider the change of variables (A.1). One can note that the matrix A in (4.6) at p; = 1,
i=2,...,v,is given by

A=d@)[l+eU], A= L[I— fu].

d(x)
C2(4xr+ DEBxt+2x7 + 1) . 2x? e

@) = 9x3(3x2 + 1) 2l v vy vy SRSl pravypn
(A.8)

By (A.8) at p; = 1 we have

. 204x2+1) - - 4x2+ DB3x2 + 1
A= 2D g -1y g Gx”+ DEx"+1) . (A9
3x Ax2+D)GBx* +2(1+v)x2 + 1)

We note that, for x = 0, one has |det(I — A‘lf)’aTﬂ = 3v — 1 > 2. Thus there is
0 <ro < lsothatforallO < x < rg, |p; — 1| < roone has |detd — A~ 'v@!)| > 1.
O

Proof of (A.5),(A.6). We systematically use the variables (A.1). We define 2 = diag (o),
V = diag (v;) and write A = QH V where

_x2+1[1+ U —-Dl+0( 1) = 1(1 20)+ 0(] 1], |x|)
3 Gx2+1) p B P A
Then 17)]- in (8.28) can be written as 17)]- = QVb; with

AT +577 +T7F+372)
AT(B+ D2+ 6+ )72 +TH

b.,--ei:—
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where e; is the i-th vector of the canonical basis of R". In the new coordinates (x, p) in
(A.1), and setting t = j(jl)_l, this reads as

bj-ei=:b(t,x,p) e = f(t,x)g(t, x, pi)+ tg(t,x, pi),
£t 1) 3tx2 ¢ ) (x2+ pl.z)(7)c4 + 5x2pi2 + p;‘ +3x212)
s X) = ———=, s X, = .
e S ) (Ga + D)2 + (62 + 1)l + ph)

We claim that

b(t, x, p) = T+0(p — 1], |x)) (A.10)

Y
where the term O (|p — 1], |x]|) is uniform in 7.
By direct computations we have

lg(t,x, p) — g(t,0, D] S C(Ix| +1p — 1)1+, |glt,x, p)l < CA+1H7,

with C independent of ¢, and for x, p in aneighborhood of (0, 1). Moreover sup, | f (¢, x)|
< 3|)c|2 /2. Thus, for x, p sufficiently close to (0, 1), we have that

[b(t, x, p) — b(t,0,1)] < |tllg(t, x, p) — g, 0, D]+ [, x)|lg, x, p)l
S O(p =11, 1xD),

which implies the claim (A.10). Hence, setting s = k(7 )=, we have
- \HT —U)TIQb(, x, p) — b(s, x, p))
=0-31+v) ", )1+ o(lp— 11, |x]),
where
ht,s) =t +2+ 1) —s*+s2+ DL
We note that |t (t4 +12+ 1)_1| < 0.41, hence each single component satisfies
31 +0) 7t 5)+ Op =11, IxD) - el 301 +v) (1 =8) = (1 = 8)

provided that | p — 1], |x| < ro small enough. Hence, if v > 2, one has |{; — (% T+

Oo(lp—1j, |x|)) - ej| > §|¢;]. This concludes the proof of (A.5). The proof of (A.6) is
the same just setting h(r) =1 (t* + >+ 1)~!. O

Proof of Lemma 5.1. Ttis well known that, thanks to the choice of 7 in (5.3), |Qg\g(§0) | <
Ce2=Dy for some C = C(S) > 0. Thus we focus on the estimate for the measure of
gg”. For indexes ¢ € Z\{0}, j, k € S satisfying

v
(| <3, and Zyiziﬂ':k, (A.11)
i=1

we define the sets Tyjx = {@ € Q; : [@-L+e2 A& L+A () —A(k)+e2 () =) k)| <

Cy}. Recalling (5.5) we have that Qg\g(()l) = |J Tyjx where the union is restricted to
£, j, k satisfying (A.11).
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Let us first study the ¢-independent part of our small divisor. By (1.8) and (A.11) we
have

_- . ]}_ —£+ .
lge3t o3 (Zl—u‘ Jitit]) S (A12)
1+7; L+ L+ iz 7i i + )

5~£+k(j)—k(k)=32
i=1

By Lemma A.1 (see (A.3))if | j| > 6(S), which is easily computed in terms of r, (A.12)
is bounded from below by r/4. By (A.11), |A(j) — A(k)| < C(S). Since 0 < |[£| <3
and substituting [; = c¢(w) + «;/A(j) (recall Lemma 7.10), where c(w), k; are defined
in (7.2), (7.5))

@ - €+ &AL - L+ (1+&%c(@) (M) — rk)) + &2 (kj — k)| = 1/8

for & small enough (depending on r) and by using the fact that k; — Ky is uniformly
bounded in j, k. This implies that Tyj; = ¥ for & small enough.

We are left to deal with the case |j| < 6(S). We write (A.12) as P(7;, j)/ Qi J)
where P, Q are polynomials with integer coefficients and Q has no real zeros. We remark
that 1 < Q < C(S) due to the condition |j| < C(S).If P # 0 then |P| > 1 and again
(A.12) is larger than some K (S). We conclude that Ty;x = @ by reasoning as in the
case j large. Now we study the case in which P = 0. Fixed ¢ in (A.12), then P has
degree four in j and so the condition P = 0 fixes at most four choices of j that we call
71> 72, J3, Ja. For P = 0 (which is (A.12)= 0) we have

@ L+ AE L+ (1+2) —A(k) (1 +€%l) = e2(AE L — @ 0)T-E+(w; —wg)-£),

(A.13)
where visin (8.28) and k; = w;-& withk in (7.5). These are a finite number (depending
only on v) of linear functions of £. We compute the derivative in & which is

(AT + 387 + (Wi — wy), (A.14)

where 7 € {71, 72, J3, Ja}. Now (A.5) implies that the quantity (A.14) is bounded from
below by a constant depending on S. This lower bound and Fubini Theorem imply that
[Tejk| < C(S)sz("_l)y for some C(S) > 0 depending on S. By the discussion above
we have

1 _
1\ < > Tyl = €)Yy,
[I=3,1j1,kI=K(S)

where K (S) > 0 and C(S) > 0 are constant depending on the set S. This implies the
thesis. 0O

Appendix B. Normal form identification

Proof of Theorem 7.9. The core of Theorem 7.9 is to show that the terms in the Lh.s.
of (7.78), which are obtained through a rather complicated sets of bounded changes of
coordinates, coincide with the ones obtained by a purely formal full Birkhoff Normal
Form procedure. In [32] it has been shown that, at purely formal level, the latter is
well-defined and not resonant, i.e. the resonant Hamiltonian is supported only on trivial
resonances as in (3.11). We procede as follows.
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Step 1 The first step is to show that resonant terms at order > of the Full Birkhoff
normal form coincide with the ones obtained by using the weak BNF procedure in
Sect. 3, passing to action-angle variables and finally using a formal linear BNF.

Step 2 In order to conclude we note that the bounded maps we applied in Sects. 7.1
and 7.2 are, as functions of &, C* with values in L(HS, H 5’3) . Therefore the Taylor
expansion of the Hamiltonian associated to the operators in (7.69) coincides with the Lie
series of the generator up to order &2 (see also (7.71)). Then we show that the Lie series
coincides (up to order £2) to the one obtained in step 1. Even though we taylor our proof
to the particular set of changes of variables that we use in Sect. 7, the argument is quite
general and is essentially that the linear BNF up to order &2 is coordinate independent.

Formal equivalence between weak + linear and full BNF procedure. One step of formal
BNF means that we apply the formal change of variables generated by

§9 :=ladye] 'HO (B.1)

which removes completely H® and conjugates H (using (2.5)) to H o D zoy-1 =
H? + 1§, HO}+ hot.

The scecond step of formal BNF removes all the non-resonant terms of degree four thus
we get

1
H(Z) + EHKCI'(H(Z)){S(S)’ H(3)} + hOt

In [32] it has been proved that (HKer( HOY — iy ) (§ 3 H®} = 0 (see the notation of
Definition 7.8) and hence

N Mger e Y, HY) = T4 M (39, HY). (B.2)
We claim that

i (§, HOY) = M (§3Y, HOD) = M (552, HEO)
= My {0, HE?) = 0. (B.3)

This implies that
HKer(H(Z))HdZ:2{3(3), H®))
= Htridezzz({S@'f”, H3 =Dy 4 (33=D, H(3,>1)})
+ ntrivndﬁz({g@,z), HGO) 4 (532 gD 44 (363 H(3,1)})

= M M2 ((FO=D, OG0} 4 (302, HO)). (B4)

Proof of the claim (B.3). Let us consider the term {3'(3’]), H (3’3)}, where

3, _ g1y (3,3) _ Co
§ = E : ClijpjsUjitjpUjs, H = ClijpjsUjitjpUjs,
J1,J2€S, j3€8¢ J1:2.J3€S¢
Ji+jo+j3=0 Ji+jo+j3=0
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for some coefficients Cj, j, j5, C i1z € C. Using (2.2) one gets

{3(3,1), H(3’3)} — Z P jkika U jy U jy Uiy Uy Pj ik, € C. (B.5)
J1,J2€S, k1,kp€S°
J1+ja+k1+ko=0
A monomial u j, u j,u, ug, is supported on trivial resonances (3.11) only if j1 = —j>
and k| = —kp, since j; € S, kj € S¢, i = 1,2. On the other hand, by the momentum
condition, we have that j; + j» = — (k| + k2), which is not possible since 0 ¢ S U S¢
(see (1.9)). Hence the (B.3) holds. The others equalities in (B.3) in follows in the same
way. O

Let us now perform the same Birkhoff procedure by first cancelling the terms of
degree < 1 in z (weak BNF) and then the terms of degree two (linear BNF).

By the discussion in Sect. 3, recall the notations of Proposition 3.6, we have that,
after two steps of weak Birkhoff normal form, the Hamiltonian of degree less or equal
than 4 is

N9=4(H o ®; 'y = H® + z{* + HP =Y + H{+7?. (B.6)

Here 73" is defined in (3.23),
H(3 2) H(3 2) H(3’2), H(4 >2) H(4 >2) (B.7)

where H](S), H1(4) are defined in (3.19). The monomials of degree greater than 4 will
be not involved in this computation, so we omit them. It is important to notice that, by
direct inspection, §3=D = FG3-=D defined in formula (3.21). By Proposition 3.6, we
know that the same change of variables puts one of the constants of motion (lets say K3
and drop the subindex 3) into normal form,

l—[d§4(K ° CD2_1) — K(Z) + W2(4,0) +K2(3.,Z2) +K§4’22)-

The step of formal linear BNF entails applying the formal change of variables generated
by
FG2 .= [adH(z)]_lH(3’2)- (B.8)

Again, by direct inspection, one can note that F' (.2 = ¥ (G:2) .— 1 :23 ), where T G
is given in (B.1). Thus obtaining the Hamiltonian

1
H® 4 40 L g3 S 1302, HP "2y + B hoout. (B.9)

Since (B.8) puts in normal form also K o ®, ! following the same reasoning as in [32]
and Proposition 3.6, we get that

= 1 3.2 4,52
ne 2HKer(H(2>)(§{g(3’2), H2( = )}+ H2( 'z ))

= 1 3,22 4,22
— 1% zntriv(§{3(3’2), HZ( > )} " H2( > ))
= 1 32, 1
_ Hdz_zntriv(§{3(3’2), Hz( ; )}+ 5{3(3,51)’ HG=Dy (3G gGIY)

(B.3) 1 1
21_Id 21—[ ({5(3,2)’ H2(3’2)}+ 5{3(3,51)’ H(3,51)})
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B4),B82 1 _,_
= Endé My (59, HO). (B.10)

‘We now want to pass to the action-angle variables introduced in (4.7). Since the rescaling
with the parameter ¢ is covariant under the change of variables that we use, we consider
instead of A, the symplectic change of variables A := Ag,_,- By recalling that

3,2 = 4,2
Hy := H? o A1|y:0, H; = Hz( ) o A”y:O’ Hd* 2(Hz + HRz) = Hz( ) o A1|y=0
O=¢ O=¢ O=¢

and setting
FGD .—x62, Ally:()’ (B.11)
O=¢

we have that (B.10) reads

_ I ~ -
=R er ) (5 (FO2, Hid + Ha + Hiy) = [Hdz_zntriv{gm’ H(3)}] ° Ally_q-

O=¢
(B.12)

N =

The rigorous procedure of subsections 7.1, 7.2 and the linear BNF. Since the r.h.s. of
(B.12) is the r.h.s. of (7.78) it remains to show that the £2-terms of the Hamiltonian
associated to the operator £7 in (7.69) coincides with the 1.h.s. in (B.12). We remark
that the operator £7 has been constructed through a rigorous procedure providing also
“tame” estimates of the remainder of higher order in €. As already explained the maps
B, Y;,i = 1,2, are, as functions of &, C3 with values in L(H*, H*~>) . Therefore the
Taylor expansion of the Hamiltonian associated to the operators in (7.69) coincides with
the Lie series of the generator up to order &2 (see also (7.71)).

Let us then Taylor expand the Hamiltonian K? = Ho B~' o Y[ o 15~ (see (7.56),
(7.57), (7.65) and (7.76)) up to order 2. It is sufficient to consider B the flow generated
by the Hamiltonian in (7.20) and Y the flow of the Hamiltonian Ha, (which has the
form (C.47) and satisfies (7.66)). We have that

HKer(Ho)<ZO + kD MkergipH o By o T+ 0(e?) (B.13)

(7.43),(7.65)

) (7.76),(1.77)

1
Ho + e Mkerco) (HS + 5{Ha. (Ha Holebe + (Hay. K1) ) + 0(e)

(7.30),(7.43),(7.22) 1 1
ST 0 + 6 Mo (HS + 5 iy (Hay . Holele

+{(Hay Hide + (Hay, (51 Holele ) + O (%),

7.23 1 1
U2V o + & Micerga (3 (51 151 Holele + (S1. Hile + 582 Hole + Ha + Hie,

1
+ E{HA1 s {HA1 P HO}e}e + {HA1 P Hl}e + {HA1 s {Sl, HO}e}e) + 0(83)~
(B.14)

Using the Jacobi identity we have

1 1
E{Sls {Slv HO}E}E + E{HAla {HAlv HO}E}E + {HAI ) {Slv HO}E}E
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1 1
= E{Sl + Hay, {S1+ Hay, Holele + E{HO’ {S1, S1 + Ha, Jle- (B.15)

Moreover, setting Fy := S| + Hp,, we note that

(7.22),(7.43),(7.66)
{F1,Ho}e = {Ha,, Ho}e + {S1, Ho}e = -

Since Mgerg){S2, Ho}e = 0, by (B.13), (B.15), and (B.16) we get

H;. (B.16)

_ _ 1
Hdw_ZHKer(HO) (Z() + Kél)) = Hdw_aner(Ho) <§{F1 ,Hi Je + Hy + H'R2> (B.17)

Since Ker(H @) is trivial on cubic monomials, we deduce that
Fi = —ady!(H) = F&? (B.18)

and this concludes the proof. O

Appendix C. Technical Lemmata

C.1 Flows of hyperbolic PDEs. In this subsection we study some properties of the flow
of (7.11). We start by studying the time-one flow map of the pseudo differential PDE

RV ()= o)W ), Wou=u, (C.1)

and how this differs from ®°. Proposition 3.1 in [33] guarantees that the flow of (C.1)
is the composition of the diffeomorphism of the torus

ATh(p, x) == (1 + B (9, x)h(p, x + TB(p, X)), peT’ xeT,
(A h(@, y) =1+ By(. 0. ) (@, y + B, 90, 7), ¢ €T’ yeT, (C2)
where ,3(1; x, &) is such that
x> y=x+18(p.x) & y>x=y+h(r,0,x), T[0,1],

with a pseudo differential operator of order —1 up to smoothing remainders belonging
to the class £, , (see Definition 2.8 in [33]) for any p € N, p > 3, p > 0. For
completeness we restate the definition of £, , in Appendix C.2 (see Definition C.5).
The class £, , has the property of being closed w.r.t. changes of variables as ®° (see
Lemma B.10 in [33]). Moreover, in Lemma C.8, we show that £, , is contained into
¢_1 which is another class of “tame” operators. Such class is introduced in Definition
C.6 and is included in —1-tame operators, see Lemma C.10.

We refer to Proposition 3.1, Corollary 3.2 and Appendix A in [33] for properties and
estimates of W™ and A" in (C.2).

Lemma C.1. Fix p > 3 and p > s¢. There exist § < 1, o1 := o1(p, p) such that if

||:3||S0+0'1 S 8 (C3)

then the following holds. Let VT be the flow of the system (C.1), then the flow of (7.11)
®7 is well defined for |t| < 1 and one has ®' = Hé‘\IJlI"Ié- o (I+R) where R is an
operator with the form (6.16). Moreover R belongs to £, ,(O) and satisfies

,O
M (s.0) S 1B1Xioy. Ma,r(P. D) Sp 1A12B]l pro - (C4)
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Proof. Proposition 3.1 in [33] provides 8, o1 such that if the smallness condition (C.3)
is satisfied with such parameters, then the flow W7 is well-defined for |t| < 1. Let us
define Y7 as the flow of the following Cauchy problem

#Yu=—(V2)Yu, Tu=u (C.5)
with

Zu = (J o b)[Tg[u] + Ms(J o g [ul = Y (g;(r). u) 2 X, (T)
Jjes
+> (30 u) 0 X (D),
jes
gj=Xj =€ xj=Jb@eV), g =21()glb(x)e/].
Equation (C.5) is well posed on H* since its vector field is finite rank. By the following
computations

0 W) (YTu) + WT (9, T 7u)
= (J o )T [WT (YTTu)] — Ms[(J 0 H)[T5 [WT (Y )]
= (Job)WT (YTu) — ((J o D)Tg[WT (YTu)] + Ms[(J o b)nﬁ[\yf(rfu)])

we have that 7 = Hi: oW o Y7 is well-defined on H® and solves (7.11).
Now we show that Y* — I is of the form (6.16). By Taylor expansion at T = 0 we get

Y'u—u= —r(\y;z(rfu))l . +/r(1 —)(3: Y (w)) dt. (C.6)
= 0
Note that
WIZ(TTu)=)  ((®7)*g;j(r). u) (W) i (0)+) (@) Ej(T), u) 2 (WH) ' %j(0)
jes jes

has already the form (6.16) and (\IJ:Z(TTM))
the flows of the adjoint PDEs

, = Zu. We denoted by (WT)*, (®7)*

le=

B (W) u = —bJ () *u),  8;(P)*u = —Tg b J Mg[(P7)*ul.

We have
/(; (1 =03 Y (u)ds = Z/(; (1— t)(gj(t), “)LZ £i(t)dt
jes
+Z/O (1—1)(g;(1),u),» E5(0)dt
Jjes
where

gj = (— (W2)*(@")* — (Y)*b J(¥*)")(g)),
£; 1= —(J o H)(¥*) Dy, + (¥ LI (5)eV),
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i = (= (WI2)*(@)* = (Y)*b T (W) (F)) + () A()HTgH ()],
Eji=—(Job)(¥) 5,
Thus by (C.6), for T = 1 we get

Y —u=Ru, Ru:=Ru+Rou, (C.7)

1
Riu:=—2u, Rou:= / (1 = 1), Y (u) dt, (C.8)
0

where R has the finite dimensional form (6.16) and R, has the form (6.16). Hence by
Lemma C.7 we have
O O, ,O ,O
M%] (s, b) Sy Z sup (|£;(015 g @I+ 1E; @l gy @I1),
jlsc TEl00

(C9)

z 0oy ~ ,O z ,Oop ~ ,O
MY (5,0) S Y sup (IE @8N, 157" + 1E @157 18, (0170,
jl<c TE01

(C.10)

By using the estimates in Proposition 3.1 and Corollary 3.2 in [33] we have

7,00
S+50+.

00 = 17-O O @ @ o
HE IS0 MGG IS0 S b7 5 5 +18eb@ILTS NEF I g 1570 Ss 1610t

s+1 S+s0+2°
In the same way, the bounds for the variation on the i-variable (the second in (C.4))
follows by the estimates on the derivatives of the coefficients g;, g, xj, X; whose
depend on the variation A, of the flows ®*, W* and their adjoints. We have proved that
Y!'u = u+Ru and hence ®'u = W' o (I+R)u. By (C.9), (C.10) and (C.11) we obtain
(C4). O

The system (7.11) is a Hyperbolic PDE, thus we shall use a version of Egorov
Theorem to study how pseudo differential operators change under the flow ®°. This is
the content of Theorem 3.4 in [33] which provides precise estimates for the transformed
pseudo differential operators.

The following proposition is the counter-part of Proposition 3.5 in [33]. It describes
the structure of an operator like £, conjugated by a flow of a system like (7.11).

Proposition C.2. (Conjugation). Let O be a subset of R". Fix p > 3, « € N, p > 59
and consider a linear operator

L= n§(w-a¢—fo(m+a(go,x))+g) (C.12)

wherem = m(w) is a real constant, a = a(w, i(w)) € C®(T"*1) is real valued, both are
Lipschitzinw € O and a is Lipschitzin the vartable i. Moreover Q = Op(q(ep, x, &)+ Q
with Q € £, p(O)andg=qw,i(w) €S Usatisfying

al”? o Sea ki Rl IS (C.13)
[Aal-1,p.¢ Spa K3UALRflpro + 1212 fllpta | fll pro)- (C.14)
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Here k1,k2,k3,0 > 0 are constants depending on q while f = f(w,i(w)) €
C®(TV*Yy, is Lipschitz in  and in the variable i . There exist & = &(p) > 0 and
84 1= 84(p) such that, if

18I + lallyes +kall I + ki + M (0, b) < 8 (C.15)

so+o so+o

the following holds for p + o < so + 6. Consider ® := ®! the flow at time one of the
system (7.11), where b is defined in (7.10). Then we have

Lyi= GLO™ = TI§(w- 8y — J o (m+as(p, X)) + Q) (C.16)
where

mta, (9, x) := — (-3, B) (9, x+B(p, X)) +(m+a(p, x+B(p, ) (1+B: (¢, x+ (9, X))

~ . (C.17)
with B the function such that x + B(@, x) is the inverse of the diffeomorphism of the torus
X+ x + B(@, x). The operator Q4 = Op(a; (@, x, &)) + Qy, with

o
|q+|y1 s Ssap Kl +k2||f||g+a +1B11:5 +lla IIW,
[Aai]l -1, pa Spap K3UWAR Ll pss + 1AL fllps 1 f 1l p+5)
+ 1A 2Bl p+s + | A12all pis (C.18)

and @+ € £, p(O) with, forsp < s < S,

MV L (s.0) SspMV (5. B) + BT + ki + ke | £S5 + llall; (C.19)

s+6 s+0 s+6

forany 0 <b < p —2and

AnQ (p.b) S YN A]ZQ(P’b)
+k3([A12f I prs + 1AL I pra 1 f llpes) + 1 A12B] prs + 1A 120l piss

(C.20)
forany 0 <b < p —3.
Proof. The strategy is the following.
e We conjugate
L0:=w-d, —Jo(m+alp,x)+Q (C.21)

by the flow WT in (C.1). In order to do this we use Proposition 3.5 in [33].

e The operator £ differs from £ by a infinitely regularizing operator of the form
(6.16). By using this fact and Lemma C.1 we estimate the difference between ®°
L(®7) "V and W LO(WT) L,

Let W7 be the flow in (C.1). The (C.13)-(C.14) imply that £y in (C.21) satisfies the
hypotheses of Proposition 3.5 in [33]. Hence, if y := x + B(¢, x), then we have

L0 = WL = - 8,h — J{(m +as(p, X)) h} + Op(as) + Ouh,
m+ay(@, x) = —w- 9B, y) + (m+alp, M1+ By(@, ).
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In particular g4 and @* satisfy bounds like (C.18)-(C.20). By Lemma C.1 we have (recall
(C.7), (C.9))

Q1= 0L — M3 LME = N3 wLOW g + Mw 0w + wire™!
+WLRY T+ WRLTW T —wolTgw ! — wigLrgw !

We define the remainder @+ = /Q\* + Q,,,,. To conclude the proof we show that @**
satisfies the bounds (C.19) and (C.20). We note that

MgwLOw " sh =Y (g5 2xf", g8 =i, x V= welwteli,

jes
stco\lj—lh — Z(h 852)) X(Z)’ g§2) = \Ijﬁ()\l]—leijx’ Xj(z) — eijx7
jes
VLT Z(h g;3)) x(3), (3> = (W 1y*elir, Xj(;) o= L0
jes
WLz W'h = Z(h g§4)) 2)((4), g;4) = (LT W )*elir, Xj('4) = Well¥,
jes

(C.22)

Thus by Lemma C.7, Corollary 3.2 in [33] (for the estimates on W) and (C.21) we get the
bounds (C.19) and (C.20) for the operators (C.22). The boundson W LI'W ~! W LR W
WRLTW~! follow by Proposition 3.1 in [33] and (C.4). O

Remark C.3. Assume that the symbols a, g and the smoothing operator Qin (C.12)
admits an expansion in & (actually in degree of homogeneity of v in (6.25)) of the form

3
= Zgla(z)+a(>4) q= Zgz (z>+q(z4>7 @: Zsi@(i) +@(z4), (C.23)

i=1

where a), g') have the form respectively (6.36), (6.34), and az? =9 satisfy esti-
mates like (7.42). The remainders Q(’) are almost-diagonal (see Def 6.4) and Q(>4)
satisfies estimates like (7.42). Assume also that 8 in (7.10) has an expansion as in (C.23).

Then the symbols a*, g* and the operator Q* in (C.16) admit the same expansion in &
as in (C.23). This fact can be deduced by following the proof of Proposition 3.5 in [33].

More precisely one reasons as follows. First of all, by linearity, the con]ugate of a sum
as in (C.23) is the sum of the conjugates. The conjugate of a QM in (C.23) under the
flow of (7.11) is a smoothing remainder by applying Lemma B.10 in [33]. Of course in
order to obtain homogeneous terms of degree < 3 in & we must Taylor expand the flow,
following Remark 7.2 this implies that the remainders are in £, 3, (of course since p
is arbitrary this is not a problem).

The conjugation of the pseudo differential operators J o a(¢, x) and Op(a(e, x, §))
is based on the Egorov Theorem 3.4 in [33]. This is a constructive perturbation scheme
so we can Taylor expand up to order three. In conclusion (C.18) holds for each term in
the homogeneity expansion, possibly with a larger 6. On the other hand expanding the
remainder Q% gives an estimate as (C.19) but with p ~» p — 3.

Remark C.4. We point out that the remainder in Proposition C.2 is of the order of 8,
i.e. of the generator of the torus diffeomorphism. This will create problems in fulfilling
the smallness conditions in the KAM reducibility scheme of Sect. 7.3, where a term is
perturbative if it is small w.r.t. y3/? (and y < &°).
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C.2 Classes of “smoothing” operators. In the first step of our reduction procedure
(see Theorem 7.1) we need to work with operators which are pseudo differential up to
a remainder in the class £, , defined as follows. This class of smoothing (in space)
operators has been introduced in [33].

Definition C.5. Fix 5o > (v+1)/2 and p, § € N with 59 < p < S with possibly
S = +00. Fix p € N, with p > 3 and consider any subset O of R". We denote by
Lp.p = £,,p(O) the set of the linear operators A = A(w): HS (T — HS (T,
w € O with the following properties:

e The operator A is Lipschitz in o,

o The operators 92 A, [02A, 3], forall b = (by, ....b,) € NY with0 < [b| < p—2
have the followmg propertles forany so <s < S, W1th possibly § = +oo:

(i) For any my, my € R,mi,my >0andmi+myr = p— |b| one has that the operator

(D)™ 8;’A(DX)’”2 is Lip-0O-tame according to Definition 2.3 and we set

Y
abA( ,0+|b| s) = sup zm( )’"labA (0 s); (C.24)
m+my=p—|b|
my,my>0

(ii) For any mi,my € R, mi,m, > 0and m; +my = p — |B| — 1 one has that
(D)™ [8£A, 0y ]{D,)™? is Lip-0-tame according to Definition 2.3 and we set

y _ z . y )
an[abA ol (—p+|bl+1,s): sup m(Dx)ml[ﬁbA,BX](Dx)mZ O, ).
mi+my=p—|b|—1 ¢
mi,m>0

(C.25)
We define for0 <b <p—2

M’ (s, b) := max max + b, ), M.
(s, ) omax < LGP Bl ), BEIA]

(—p+|f>|+1,s)).

(C.26)
Assume now that the set O and the operator A depend on i = i(w), and are well
defined for ® € Oy C Q, for all i satisfying (6.12). We consider i; = ij(w),
i» = ir(w) and for w € O(i1) N O(ir) we define

AppA = A(i) — A(ip). (C.27)

We require the following:
e The operators abAle [BbAle dc], for 0 < |B| < p — 3, have the following
properties, for any 50 <s < 8 with possibly S = +o0:
(iii) For any mip,my € R, my,m, > 0and m| + mpy = p — |b| — 1 one has that
(D)™ 8};A12A(D )2 is bounded on H? into itself. More precisely there is a

positive constant ‘JIBEAHA(—,O + |b| + 1, p) such that, for any 7 € H?, we have

sup (D)™ 05 ARA(DY)hllp < My x 1 (—p +1B1+ L Pl
m1+m2:p—|13| 1
mi,my=>0

(C.28)
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(iv) For any mip,my € R,mi,mpy > 0and my + my = p — |f3| — 2 one has that
(D)™ [8£A12A, 9x1{Dy)™? is bounded on H? into itself. More precisely there

is a positive constant 1 49 ](—p + |f3| +2, p) such that for any 4 € H? one

(02 A1
has
sup ||<Dx>m1[3$A12A, 3x1{Dx)"?h|p < Nioba,a ax](—,O+|13|+2, Plinllp.
my+my=p—|b|-2 ¢ ’
mi,m2=0

(C.29)
We definefor0 <b <p-—3

Ma,a(p,b) ;= max max<m85A12A( p+|b|+1 P, ‘ﬁ BlA, Aa]( p+|f)|+2,p)>.
7

0<|b|<b
(C.30)
By construction one has that MV (s, b)) < M 4(s, ) if by < by < p—2and
MA]zA(p’ by) < MA]zA(p9 b2) lfbl <b)y<p-— 3

We shall also deal with “tame” operators in the following class.

Definition C.6. Fix S € N with possibly S = +oo. Fix b = s¢ + 67 + 6 and con-
sider O € RY. We denote by €_; := €_{(O) the set of the linear operators A =
A(w): H (T — H*(T"*), w € O which satisfy the following for any 59 < s < S:

o (D,)'2A(D,)'2, (D)1 202 A(D)'2, (D)'2[08 A, 0,1(Dy)"/2, form = 1,
., v, 0 < Dby < bare Lip-0O-tame operators (see Definition 2.3) and we define

f y

m;)}l ( ) _m )1/2dbl ( 1/2(0 S)

Y
- 0 C31
ma‘]’?':’“"a‘]( = >1/23b' [A.0x (D )1/2( 5, (C31)
14 o v v
B (s) := On}}axb max (907 b (LI, L 9). (€32)
m=I1,..., v

Assume now that the set O and the operator A depend on i = i(w), and are well
defined forw € O C R foralli satisfying (6.12). We consideri; = ij(w), i = i2(w)
and for w € O(i1) N O(iz) let A2 A as in (C.27). We require the following:

o (D) /200 A A(D)' 2, (D) 2105 A A, 8 1(Dx) /2 form = 1,...,v,0 <
b1 < b are bounded operators on H* into itself. More precisely there are positive
constants ‘ﬁa ( 1, s09), and ‘ﬁ (—1, so) such that, for any h € H*°,

we have

«JmA 2A,0x]

(D) 200 A AD PRy < Ny 4 (=1 50) 1o,

(D) 2[00 A A, 0 (D) Phllsy < Mor 4y (=150l (C.33)
We define

Bapa(sn) ==  max max (ma;}lAnA(—l, 50 Mot (x4 g (— L 50)). (C34)
m=1,..., v

The next Lemma shows that the finite rank operators of the form (6.16) are in £, .
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Lemma C.7. Fix p > 3. Let R be an operator of the form (6.16), where the functions
gj(1), xj(v) belong to H® fort € [0, 1] and depend in a Lipschitz way on the parameter
w € O C R". Then there exists o1 = o1(p) > 0 such that R belongs to £, , and

,O ,O ,O ,O
My (s.0) S5 > sup (X (250, 187 150y + 12 (ko 185 (DlI6p).  (C.35)

ljl<c el

MapR(P D) =p D sup (181225l peon 18 pror + 1 (Dl pon | 8128 peer ).
|jl<C t€[0,1]

(C.36)

Proof. The Lemma follows by reasoning as in the proof of Lemma B.2 in [33] and using
the explicit formula (6.16). O

We conclude this section by showing the connection between the class £, , and the
class €_; in Definition C.6.

Lemma C.8. Consider b € N and p € N with p > b + 3. The following holds.
() If A € £, p (see Definition C.5) then A € €_y (see Definition C.6) with

BZ(Sv b) Sp,s MZ(S, p - 2)1 BAle(pv b) Sp,p MA]zA(p’ ,0 - 3) (C37)

(ii) Consider a symbola = a(w, i(w)) in S™ withm < —1 depending onw € Oy C R
in a Lipschitz way and on i in a Lipschitz way and let A := Op(a(x, €)). Then one
has that A € €_1 with

,O,
BZ(& b) < |a|,);1,sfb+2’0: Bapa(p,b) <s [A126lm, p+1+3,0- (C.38)
(iii) Let A, B € €_1. Then Ao B € €_1 with
B, 5(s, b) <, B! (s, b)B, (s0, b) + B, (s0, D)BY, (s, b) (C.39)
BA40B) (P2 D) <p,p Bana(p,b)Bp(p,b), +Ba,a(p, b)Ba(p,b). (C.40)

Proof. Let us check item (i). The fact that (D,)'/?A(D,)!/? is Lip-0-tame follows by
(C.24) since p > 1. Indeed (D,)~**! is bounded in x and for any h € H®

1 190 _ _1 1 .0
I{Dx)2 A(Dy)Zh|V™° < (D) ((Dx)? "2 A(Dy)2)R||1™°
O, O
<s MY (=p, ) |Allk; " + D (—p, so)|AIY .

By studying the tameness constant of the operators B}EA, [A, 0], [B(f;’A,Bx]

ApA, 8};A12A, [A2A, 0y], [8};A12A, dy ] for be NV, |}3| = b, following the same
reasoning as above, one gets the (C.37).

In order to prove item (ii) one can follow almost word by word the proof of Lemma
A.4in [33].

Let us check (C.39). Let b € N and consider 0 <bj <b,m =1,...,v. One has

(D)2 (Ao B)(D)E = Y. Cler, c)(Dy) 2 (35 B2 B)(Dy)?. (CAD

cj+cy=b;

We show that each summand in (C.41) is a Lip-0-tame operator. We have for h € H*

1 1
(D)2 (35! A)(BE2 BY(Dy)2h [}
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1 1 _ 1 ,O,
< [{Dx)2 (3, A)(Dx)2(Dy) H{D,)2 (852 BY(D:) 2|1

(pm
7,00

<, (B, (s. D)B% (s0. b) + B, (s0, )BY (5, D) 1[I o,

+ B, (s0, D)B (s0, ©) 1 21§
(C.42)

In (C.42) we used the fact that (D)2 (95! A)(Dy)? and (D)2 (32 B)(Dy)? are O-tame
by hypothesis (see Definition (C.6)). This proves (C.39) for the operators A o B and

8(?,2 (Ao B) forany 0 <b; <b,m =1, ..., v. One concludes the proof of (C.39) and
(C.40) followings the same ideas used above. For further details we refer to the proof of
Lemma B.1in [33]. O

Lemma C.9. Let X,Y € €_1 then ad1§([Y] e C_1 forany k > 1 (recall (7.68)). More-
over for any k > 1 we have

B 1y (®) S BBy 60)) T By () + By (0) By (9).  (C43)

Moreover if X, Y depend on some parameter i we have
BAlzad’;([Y](SO) ,S Z IBX(Q)(SO) BA]QX(SO) BX(”)(SO) BY(il)(SO)'*‘B];((Z'Z)BA]ZY(SO)'

Jitje=k—1
(C44)

Proof. 1t follows by using the formula
Apadi(Y]= )" ad} ada,xadl; [Y(iD]+ady,, [AnY]
Ji+jp=k—1
and applying iteratively the estimates of Lemma C.8. O

Lemma C.10. Let A € €_ then A is a Lip-—1-modulo tame operator according to
Definition 2.7. Moreover

2,32 gy
i@ <; Hiax m I [A,B ]( Ls), My (S bo) < rﬁ?ﬁ.,umawnfbom ER| =Ls),
(C.45)
I(Dx) 2 A1 ADD 2 230y 10Dx)2 A12(80)20 A(D) 2 £eprs0y < By, (50, bo)-
(C.46)

Proof. 1t follows arguing as in the proof of Lemma A.4 in Appendix A of [33] using
the definition of €_; in Definition C.6. 0O

C.3 Linear Birkhoff normal form. The next lemma regards almost diagonal vector fields
which belong to €_;.

Lemma C.11. Let X4 = JA € €_1 with A almost diagonal in the sense of Definition
6.4 . Then |AJ | < C{j, j"Y~2 for some constant C > 0.

Proof. The operator B := (D)'/2JA(D,)'/? belongs to L(H*) for any s. Then
|Bjj.,l’l | < Cforall j, j' € Z,1,I' € Z". The thesis follows by the fact that

i, . . i . .
IBL = 1AL 1RGN 1] 2 1AL 1 G YR

and |j| 2 (Y212 since A is almost diagonal. O
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We now study the flows generated by operators belonging to the class €_; given in
Definition C.6.
In Sect. 7.2 we look for symplectic changes of variable Y; : H, (T - H oL (TV+),
i = 1,2, 3, that are the time-1 flow of quadratic Hamiltonians

Hy () =2 Y (8)} (p)uyiij, (C.47)
Jj.J'ese
where 2; (@) is a self-adjoint operator Yo € T" and thus

,(JA)? 5 gk=3 '
Y; :=exp(e JA;) =IH§_+€ JA +¢ T+e R;, R;:= ZT (Ja;)". (C.48)
k>3 ’

Given linear operators B;, i = 1, 2, 3 define the matrices 2;,i = 1,2, 3 as

v ()] (=1
@)} = @)1 =1) = ——L——

)

81jj
Sy 0, [j—j1<2i7, I=1<i, i=12 (C.49)
i ’
il + (B3) i (l _l)
(Ba)jj = @a)j (I —1) = ——F——,
1ij'
8 0, 1j—Jj'1<6Ty, I1=1'<3, (C.50)

where, recall (1.8), (4.6),(5.6),
Sjjri=w - L+ A() — AN, 821., = 8gjj + sz(AS L +k(j’)[j/ —A(DI). (C51)

Lemma C.12. Let j, j' € S, j # jL If Y[ _ Jiti+j—Jj =00 < [£] 2,84 #0,
where §¢jj are given in (C.51), then there exists a constant C depending on the set S
such that |6fjj’| > C.

Proof. 1f |€] = 1 we have by the preservation of momentum
3ji'G = DB+ i+ G =)
(I+HA+ A +G =D

It is easy to verify that (recall that |j — j'| < 27;)

8. =2 = i) =) +A() =

G =13+ +G == 1§ A+ DA+ A+ =)D
<Klj j'I’73.

Which implies the thesis for |£| = 1. Now suppose [£| = 2 and consider ji, j» € S. We
can write dpj;» = A(j1) + A(j2) + A(j) — A(j") and by the conservation of momentum

A +AG2) +A() = AGD = G+ )G+ DG+ ) PG, jas ) (C.52)
and P is the rational function

3+x2+y2+z2+xy+xz+yz+xyz(x+y+z)
A+xH)(1+y) A+ + (x +y+2)2)

P(x,y,z):= (C.53)
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If |j| > N, where N = N(S) is a large constant to be fixed and which depends on the
set S, then

Gt + ) Gr + )G+ )| = Cy j2

for some constant C1 := C1(N) > 0 (possibly small), provided that N is large enough.
Moreover

|+ j1j2) 7%+ Giia+ )i +3+ i +j31 = G2 2,
|+ DA+ )1+ A+ (i + j2+ DD < C3 j*
for some small constant C, := C2(N) > 0, provided that N is large enough, and some

big constant C3 := C3(S) > 0. Thus [A(j1) +A(j2) + A(j) — A(j)| = C1C2C5 " > 0.
Now consider |j| < N. Then we have

G+ )G+ DG+ DA+ j1j2) > + Glia+ j1j3)j + 3+ ji +j51 = M
[+ DA+ DA+ DA+ i+ o+ )2 < My
for some constant M|, M, > 0 depending on S. Set C4 := M1/ M>.
Therefore |A(j1) + A(jo) + A(j) — A(j))| > C4 > 0. At the end we choose C >
max{Cy, C1C2/C3}. m}
Lemma C.13. Assume that B;, i = 1,2, 3 are such that JB; € €_1 and that they are

almost diagonal (see Definition 6.4). Then, for any o € g(g” (see (5.5)), the following
holds true:

(i) The linear vector fields Xa, := JA;, with A; defined as in (C.49),(C.50), belongs to
the class €_1, in particular it satisfies the following:

Bl ()=C®e i=12 B, ()=C®ey !, Vszs0. (C54)

e[XA3
Note that X, does not depend on i (w).
(ii) The transformation Y;: H*(T"*') — HS(T"*!), i = 1,2, 3 defined in (C.48) is
invertible and satisfies, for any u = u(w) € H® Lipschitz in w € Ogg,

0¥ _ RO~ oY .
IO = Dull ) S el Clso)llulll ™™ + &' C)lully ">, i=1,2,  (C.55)

O - 0¥ - 0¥
IOCE! = Dulll ™ < ey~ Ceollull ™ +&3y~ C)llully ™. (C.56)

Proof. First of all notice that, by Lemmata C.11, C.12 and the fact that w € gél) (see

(5.5)) we will have

i=12 @< Vi, jeS 1l e
(C.57)

j
@l <

(. J"? (. "%

for some constant C > 0 depending on the set S.
Proof of item (i). First we note that that B := (D, )'/2J2; (D,)'/? maps H* to itself for

all s > 0. Indeed it is sufficient to exploit the fact that the matrix entries B]’ /(l )
are uniformly bounded by a constant and B is almost diagonal. The matrix elements of
33;," Xa,s [Xa,, 0y, [Bi’m X, , 9] are respectively

(bn — €A @D (€ = £, (G — D@D (€~ 0,
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(bn = €,)°G = D@D (€ = ¢).
Note that by the definition of 21 in (C.49)
(m — )" 1 —J'1<C

for some constant C depending on the set S. Thus arguing as above one can easily prove
that 8¢ Xap, [Xa, 0kl [8b Xa,, 0x] are —1-Lip-tame operators. This concludes the
proof of the (C.54)

Proof of item (ii). By (C.48) we have

ikxk lk k
(n—nuzi:i?gi A == (=1 AM. (C.58)

k>1 : k>1

By using iteratively the property (iii) of Lemma C.8 and item (i) we have that
0 - 0 0
X5l < By ()BY, (o) Hlull™> + B, (s0)*lully

By using this relation to estimate the Lip-Sobolev norm of (C.58) and by noting that
e"C(sp)" is a summable sequence, for ¢ small enough, we prove the thesis. O
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