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H I G H L I G H T S  

• Renewable energy communities can properly contribute to a clean energy transition. 
• Model novelty is the inclusion of different relevant aspects in integrated approach. 
• Operational and investment optimization and Demand Side Management. 
• Fairness Index to evaluate how fairly business models allocate benefits. 
• Flexibility and composition impact on economic and environmental indicators.  
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A B S T R A C T   

Energy communities are becoming a key topic in the decarbonization process as they can simultaneously 
guarantee economic, environmental, and social benefits. In this paper, an integrated method for the imple
mentation of a linear bottom-up optimization model has been developed in order to address these aspects of an 
energy community: (i) definition of the dispatch and the best technology mix; (ii) assessment of the role of the 
Demand Side Management; (iii) definition of an original and fair method to allocate the benefit among the 
participants and of a Fairness Index to compare different business models. The developed method has been 
applied to an illustrative case study through the implementation of the Italian regulatory framework definitions 
and costs. The outcomes highlight how Demand Side Management and the energy community composition of the 
energy community impact on the overall investment: a case study, with heterogeneous composition and char
acterized by a 20% of flexible load, presents a reduction of 13% in photovoltaic and 93% in storage system 
capacity with respect to the case without Demand Side Management. The renewable source consumption with a 
more homogeneous case study decreases by around 20%–33% and bill savings by around 30%. These results 
impact also on each participant contribution, which underpins the introduced fair distribution method. Leading 
thus to a different and more proper distribution of the benefit, in order to guarantee everyone the fairest eco
nomic return. Moreover, a Fairness Index has been introduced to assess the consistency of other Business Models 
with respect to the fair distribution.   
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1. Introduction 

Renewable energy communities are becoming a relevant topic 
worldwide. For instance, in Beijing [1], Wuhan [2], Melbourne [3] there 
are examples of application of Energy Communities (ECs), also known as 
Prosumer Communities, where the notion of energy-sharing is central. 
In Europe with the EU RED II Directive in 2018 [4], ECs have become a 
key topic for distributed photovoltaic (PV) systems. When considering 
ECs, it dawns on all the opportunities (economic, environmental and 
social benefits) and the main challenges and issues regarding the applied 
schemes, the access to data, the technical limits, the communication to 
citizens and municipalities. Therefore, although the convenience of ECs 
might be clear, their introduction is not so rapid and, as it will be 
highlighted in this work, its best application is not necessarily granted. 

Energy Community benefits have been well categorized in [5] after 
their identification in literature. Seven categories are defined: economic 
benefit; education and acceptance; participation; climate protection and 
sustainability; community building and self-realization; renewable en
ergy (RE) generation targets; innovation. It is clear that ECs involve a 
wide variety of areas and they are seen as an opportunity to ease energy 
poverty, to increase social inclusion, to support for energy saving mea
sures, and to switch to a more sustainable and healthier lifestyle. Besides 
all these effects, the direct financial benefit is the catalyst of these 
changes and it is the focus of this work. 

Two main different Energy Community schemes can be identified 
when dealing with ECs. The first one aims at distinguishing the ‘jointly 
acting renewables self-consumers’ (JARSC) and the ‘renewable energy 
community’ (REC). JARSC are defined in [4] as ‘[…] a group of at least 
two cooperating renewables self-consumers […] who are located in the same 
building or multi-apartment block’, while the REC is defined as ‘[…] a legal 
entity […] effectively controlled by shareholders or members that are located 

in the proximity of the renewable energy projects […]’. Here we will be 
focusing on the second scheme which leads to the distinction between 
the “physical” and the “virtual” self-consumption scheme which are 
easily depicted, through a simplified approach - a housing building - in 
Fig. 1. The physical self-consumption scheme provides for a connection 
between the PV plant and both the private and the common utilities, 
with a single metering point or Point of Delivery (PoD). 

On the contrary, in the “virtual” scheme the public network is used 
for the exchange of energy between the generation plant and the private 
utilities. [6] 

There are many features involved in ECs: the evaluation of the 
impact of the regulatory schemes, the aspects regarding the optimal 
installation of systems for the production and storage of renewable en
ergy, the composition of the energy community are just some of them. 
The main challenge taken up in this work is therefore to provide a tool to 
assess and study all these aspects, their relative advantages and disad
vantages and thus also allow an effective and comprehensible commu
nication to citizens and municipalities as well. 

This tool should then have a twofold objective: (i) the modelling of 
the EC system which considers all the possible sectors, schemes, optimal 
technology-mixes, user characteristics and impacts and (ii) the identi
fication of the relationships which characterize these aspects and of the 
best business models. It must also be considered that these objectives can 
be addressed both together and separate in different areas of interest (e. 
g. district, housing building, single final user). 

Different studies present models which focus on the electricity 
sector, as [7], which includes also the modelling of reserve provision and 
distribution network constraints, or [8], which in addition applies the 
demand side management (DSM) strategies, or [2] which considers also 
aggregators agents, and [9], which, differently from the previous three, 
does not include a BESS. Some others assess sector coupling and also 

Nomenclature 

Indices 
d index of data points 
i, l indexes used for the energy community members 
k index of cluster 
mtot total number of members in the EC 
n index of node set N 
t time-step index of set T 
u generation unit index of set U 

Parameters and variables 
BCi benefit contribution of member i 
CAL avoided grid loss coefficient 
CAPEXu capital expenditure of investment variable u 
Ck centroid of cluster k 
Dcd,i contribution distribution percentage of benefits for 

member i 
Di distribution percentage of benefits for member i 
DSk total number of data points belonging to cluster k 
Dw,i worse distribution of benefits, according to the 

contribution distribution, for member i 
En,u,t electricity generation value of unit u of node n at time t 
Edischarge

n,u,t electricity provided by storage units 

Echarge
n,u,t electricity used for the storage charging 

Egridloss
n,t electricity lost in grid transmission. 

Eexcess
n,u,t electricity excess 

epcu equivalent periodical cost of investment variable u 
fi frequency of the composition a certain member i 
G Gini coefficient 

I set of the energy community members 
invu capacity of investment variable u 
K total number of clusters 
Ln,t electricity load of node n at time t 
lifetimeu life expectancy of investment variable u 
m number of members for which Di > 0 
NPflow nominal transmission value 
NS nominal storage capacity 
oemof Open Energy Modelling Framework 
OFEC objective function of the EC model 
OFkmeans objective function of the k-means clustering algorithm 
OPEXu operating expenditure of investment variable u 
OPT savings of the EC if all members are included 
OPT-i savings of the EC if member i is not included 
Pnom,u nominal capacity of the generator unit 
Pflow

u,t power flow exchanged through a powerline 

Pcharge
t power charging the storage at time t 

Pdischarge
t power discharging the storage at time t 

Pu,t power supplied by each generator unit 
St storage state at time t 
Su,t storage filling level 
vcn,u,t variable costs of the generation unit u of node n at time t 
wacc weighted average cost of capital 
xd

(k) data point d belonging to cluster k 
ZP Zonal Electricity Price 
ηself storage self-discharge efficiency 
ηcharge charging process efficiency 
ηdischarge discharging process efficiency  

V. Casalicchio et al.                                                                                                                                                                                                                            



Applied Energy 310 (2022) 118447

3

include the thermal sector as [10], or the transport sector as [3] or both 
[11]. Moreover, also the space resolution of interest can be different and 
it can vary from a multi-family housing building, as in [12,13], to 
several buildings, as in [14], and up to the scale of entire districts, as in 
[15]. Different areas can be assessed simultaneously, and the choice is 
clearly also linked to the regulation framework and the considered 
technical constraints. A further option emerging in EC existing models 
regards the simulation or optimization objective - there can be one or 
more objectives. Existing optimization objectives can be the minimiza
tion of energy from the grid [7]; the minimization of investments and 
cash flow [16]; the maximization of each user’s saving [8] the mini
mization of the environmental impact [17] and of the health impact [9]. 
However, in these models, a correlation between EC characteristics and 
the relative model outputs is still missing. 

It is worthwhile having a brief overview on the DSM, which has been 
mentioned above as it can be a further option to provide flexibility to the 
energy system in addition to the storage. The flexibility potential of the 
DSM , in buildings can be granted thanks to the several deferrable loads, 
e.g., laundry machines, dryers, or dish washers and, although it is well 
known and described in studies such as in [18], it is an option less 
commonly included in energy system modelling tools with respect to 
storage systems. 

An effective DSM definition was provided in [19] as “the planning 
and implementation of those electric utility activities designed to in
fluence customer uses of electricity in ways that will produce desired 
changes in the utility’s load shape”. In literature [19], the different DSM 
strategies, that are often used simultaneously, are defined and classified 
into Peak Clipping, Valley Filling, Load Shifting, Strategic Energy Con
servation, Strategic Load Growth, and Flexible Load Shape. 

Demand response programs are also used in microgrids to match 
energy generation and consumption and guaranteeing thermal comfort 
of the occupants as in [20] or to attain energy-efficiency in changing 
weather or occupancy conditions as in [21]. 

In this work the focus will be on Load Shifting, which involves 
shifting deferrable loads from on-peak to off-peak periods, as well as on 
Flexible Load Shape, when there is an advantageous option for the 
customer. Thanks to the activation of energy flexibility in buildings, the 
DSM is consequently recognized as effective for the integration and 
share of renewable energy sources (RES) and also for the reduction of 
the energy bill of the final user thanks to the adaptation of the energy 
demand to the PV intermittent production [22]. Price responsiveness is 
also emphasized, and the energy consumption costs are lowered by 
shifting the load profile to the time of low energy cost while keeping 

unchanged the overall energy consumption [23]. 
It is possible to go much more in the literature detail and compare the 

existing EC models outlined in Table 1. 
From the literature analysis results that none of the existing model 

assess simultaneously all the listed aspects. For instance in [16] are 
assessed both the DSM role and minimization of global costs, while the 
benefit return for each user is missing; in [33] are minimized both the 
global and individual costs, but the DSM role is missing; in [17] are 
minimized the global costs and a clustering algorithm is implemented, 
but both the individual costs and the DSM role are missing. The other 
listed aspects, not mentioned, but equally relevant are the sector 
coupling, the regulation framework and BM schemes, the composition, 
the energy efficiency, and the benefit distribution fairness as well as the 
emissions. 

The work presented in this paper aims to overcome the above gap 
and to innovatively contribute with a linear-programming, bottom-up 
optimization model, which addresses the mentioned aspects of an en
ergy community. The evaluation of flows dispatches and definition of 
the best investment mix (capacity of PV and BESS) is performed based on 
the characteristics of an energy community by minimizing the economic 
expenditures according to applied regulation frameworks. 

An open source model (OSM) has been used and the component of 
the DSM was also used. Additional features implemented and integrated 
are a clustering algorithm to reduce computational complexity and a 
function to assess the sharing of benefits. 

An original allocation method is suggested in order to distribute the 
global benefit among the participants: the assumption is that the par
ticipants of an EC system can have different load demands and can also 
offer different services and energy production, therefore a fair allocation 
of the profits is based on their own contribution to the system. Then, also 
a comparison of this allocation method and of a few more viable 
methods – for reasons of privacy and complexity of access to data – 
through a specific index, represents a novelty as it allows the modeler to 
find out whether the participation of the final users is convenient and 
whether the profit distribution is more or less fair, but above all it per
mits to identify a relationship between composition and profit 
allocation. 

Therefore, the work novelty consists in the implementation of the 
aspects above listed in the model: as mentioned, also the role of the 
Demand Side Management (DSM) is investigated and integrated as it 
provides flexibility to the household composition and impacts both the 
first optimization part which regards the technology mix, but it also 
affects the profits and, therefore, the allocation method. 

Fig. 1. Physical VS Virtual regulation schemes.  
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Table 1 
Literature overview on Energy Community system models.  

Reference 
/ 
case study 

Energy 
Sector  

RES ESS Implemented 
aspects 

Sector Time 
resolution / 
horizon 

Model 
features 

Objective Software/ 
Environment 

[7] 
102 customers 

Electric RPV BESS  • Reserve 
provision  

• Distribution 
network 

Residential 30 min 
/ 
1 year  

SOO  min. energy withdrawal AIMMS 
CPLEX 
(solver) 
OpenDSS 
CREST 

[8] 
20 smart homes 

Electric RPV BESS  • TOU tariffs  
• DSM strategy  
• ESP 

Residential 1 min 
/ 
1 day  

SOO  min. individual cost 
(Nash eq) 

JADE 
MATLAB 
TCP/IP ports 

[24] 
LMABs, SMABs, SFHs 
Austria 

Electric 
Thermal 

RPV 
FIPV  

BESS  • Clustering Residential 1 year 
/ 
20 years 

SOO  max. NPV (investment 
optimization) 

– 

[10] 
12 buildings 
University of Calabria 

Electric 
Thermal 

RPV BESS  • TOU tariffs  
• ESP 

University 
campus 

1 h 
/ 
1 month 

MOO  • min. energy 
withdrawal  

• max. individual profit 

Power Cloud 
model 

[9] 
DC 
Central Okanagan 
Regional 

Electric RPV 
BPP 

–  • LCA  
• criteria 

suitability rating 
index 

Residential 1 year 
/ 
25 years 

MOO  • min. global costs  
• min. emissions, healt 

impact  
• max. RE 

STELLA 
SimaPro 

[16] Electric 
Thermal 

RPV BESS  • TOU tariffs  
• DSM strategy 

Residential 15 min 
/ 
1 day  

MOO 
ABM  

• min. energy 
withdrawal  

• min. global costs 

Anylogic 

[25] 
50 domestic users 
London 

Electric RPV BESS  • TOU tariffs  
• DSM strategy 

Residential 5 min 
/ 
1 week 

SOO max. flexible loads Python 
Gurobi 
(solver) 

[3] 
50 prosumers 
Melbourne, Australia 

Electric 
Transport 

RPV BESS 
EV  

• TOU tariffs  
• DSM strategy  
• local en. market 

Residential 1 h 
/ 
1 day 

MOO  • min. individual cost  
• min. en. sharing risk 

(CVaR) 

MATLAB 

[11] 
San Francisco 

Electric 
Thermal 
Transport 

– BESS 
TES 
EV  

– 
Commercial 
EV station 

1 h 
/ 
1 day 

SOO 
MILP 

min. operational, 
collaboration cost 

GAMS 
ILOG CPLEX 
(solver) 

[26] 
9 households 
(3 hold RES) 
Helsinki 

Electric – –  • TOU tariffs Residential 1 h 
/ 
1 day 

SOO 
LP  

• 3 separated min.:  
• individual cost  
• coalitional cost for HH 

w. RES and ESS 
(Shapley eq.)  

• EC coalitional cost 

MATLAB 

[27] 
5–25 prosumers 
China Southern Grid 

Electric PV –  • ESP  
• DSM strategy  
• local en. market 

Residential 
Commercial 
Tertiary 

1 h 
/ 
1 day 

SOO min. individual cost MATLAB 

[17] 
Linz, Austria 

Electric 
Thermal 
Transport 

RPV 
STE 

BESS 
TES  

• GIS  
• EoS  
• EE  
• clustering 

Residential 1 h 
/ 
1 year 

MOO  • min. global costs  
• min. emissions 

2 OSM: 
“urbs” [28]  
“rivus” [29] 

[2] 
32 prosumers 
Wuhan, China 

Electric PV BESS  • ESP  
• EE 

Residential 1 h 
/ 
1 day 

two-phase 
SOO 
LP  

• min. global costs 
(deriving en.-sharing 
profiles)  

• min. individual cost 
(inducing en.-sharing 
prices) 

MATLAB 

[30] 
2 consumers, 
3 prosumers 

Electric 
Transport 

WT BESS  • DSM strategy Residenial 1 h 
/ 
1 day 

two-phase 
SOO  

• min. global costs  
• min. individual costs 

(Nash eq.) 

– 

[31] 
multi-family building 
Athens 

Electric 
Thermal 

PV 
SGS 

BESS 
TES  

• LCA Residential 1 yearly 
1 month 
/ 
10 years 

SOO investment optimization 
(min. en. transactions) 

– 

[1] 
3 households 
Beijing 

Electric PV BESS – Residential 1 h 
/ 
1 day 

SOO 
LP 

max. individual profit 
(Nash eq.) 

GAMS 
PATH (solver) 

[32] 
12 dwelling 
condominium; office 
building; supermarket; 
mall 
Turin, Italy  

Electric 
Thermal 

PV –  
– 

Residential 
Tertiary 
Commercial 

1 h 
/ 
1 year 

SOO investment optimization MATLAB 

[33] 
Chiou, Aosta 

Electric RPV 
HPP 

BESS  • GIS Residential 
Tertiary 

1 h 
/ 
1 year 

SOO  • max. global profit  
• savings redistribution 

(Shapley eq.) 

Pyomo, 
Python 
Gurobi 
(solver) 

(continued on next page) 
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Further scope of the paper is therefore to evaluate the relationship 
between the composition of the EC in terms of heterogeneity of demand 
profiles and this optimal distribution of the benefits. 

The paper is structured as follows. Section 2 details the methodology 
behind the creation of the EC model: the two macro-themes of the model 
structure and the profit distribution can be identified. Section 3 provides 
an overview of the regulation frameworks and of the input data specific 
to the tested case study. Section 4 presents the results and the discus
sions about the comparisons which have been performed and Section 5 
draws the wholesale conclusions. 

2. Methodology 

2.1. General model characteristics and structure 

The EC_model developed in this work is a Single-Objective optimi
zation model, based on a bottom-up approach and a linear programming 
technique, which implements a static approach focusing on a short-term 
target period of one year. The model is written in Python and mainly 
based on [34], which is a linear programming framework to model and 
analyse energy systems. Gurobi [35] was chosen as the solver for the 
linear optimization with a convex set of viable solutions. 

The oemof framework is used to perform the dispatch optimization 
and the operational optimization, identifying the optimal use of sources 
to satisfy the load and also to determine the investment capacity of 
generation and storage systems of the REC under study by minimizing 
the economic expenditures. 

The EC system is defined as a network made up of nodes (Compo
nents or Buses) and edges (Flows). A free number of nodes is allowed and 
consequently the space resolution can change depending on the appli
cation, therefore the model is flexible to implement any type of EC. 

By the oemof-solph module, based on the Pyomo library [36,37], it is 
possible to create and solve linear programming (LP) or mixed-integer 
linear programming (MILP) optimization models. 

The objective function (OFEC) formulation is reported in Equation (1) 
which is equal to the total cost of generation and investment. The model 
is completed by different constraints: Equation (2) reports the hourly 
power balance in each node. 

OFEC =
∑

n∊N

∑

u∊U

∑

t∊T
En,u,t∙vcn,u,t + invu∙epcu (1)  

Ln,t =
∑

u∊U
(En,u,t + Edischargen,u,t − Echargen,u,t − Egridlossn,t − Eexcessn,u,t ) (2) 

Where: 
OFEC = objective function of the EC model 
n = index of node set N 
u = index of generation unit set U 
t = time-step index of set T 
vcn,u,t = variable costs of the generation unit u of node n at time t 
En,u,t = electricity generation value of unit u of node n at time t 
invu = capacity of investment variable u 
epcu ¼ equivalent periodical cost of investment variable u 
Ln,t = electricity load of node n at time t 
Edischarge

n,u,t = electricity provided by storage units 

Echarge
n,u,t = electricity used for the storage charging 

Egridloss
n,t = electricity lost in grid transmission. 

Eexcess
n,u,t = electricity excess 

The storage balance constraints, reported in Equation (3) and (4), 
account for the charge, the discharge and the self-discharge and for the 
filling level of the storage Su,t . 
(

Pcharget ∙ηcharge −
Pdischarge

t

ηdischarge

)

∙Δt − (St − St− 1)∙ηself = St − St− 1 (3)  

Su,t ≤ NS (4) 

Where: 
Pcharge

t = power charging the storage at time t 
Pdischarge

t = power discharging the storage at time t 
ηcharge = charging process efficiency 
ηdischarge = discharging process efficiency 
St = storage state at time t 
ηself = storage self-discharge efficiency 
Su,t = storage filling level 
NS = nominal storage capacity 
Finally, the powerlines flow limit is expressed in Equation (5). 

Pflowu,t ≤ NPflow (5) 

Where: 
Pflow

u,t = power flow exchanged through a powerline, at time t 
NPflow = nominal transmission value 
Through the Investment mode, oemof performs the expansion ca

pacity optimization considering the PV and BESS costs as input to 
evaluate their optimal capacity. For this purpose, we used the 

Table 1 (continued ) 

Reference 
/ 
case study 

Energy 
Sector  

RES ESS Implemented 
aspects 

Sector Time 
resolution / 
horizon 

Model 
features 

Objective Software/ 
Environment 

[12] 
5 dwelling condominium 
Bolzano, Italy 

Electric RPV BESS  • regulation 
framework 
schemes  

• BM schemes 

Residential  1 h 
/ 
1 year 

Simulation Global, individual profit 
assessment 

Python 

[13] 
5 dwelling condominium 
Bolzano, Italy 

Electric RPV BESS  • EoS  
• BM schemes  
• criteria 

suitability index 

Residential  1 h 
/ 
1 year 

MOO  • min. global costs  
• min. fossil fuel 

consumption  
• max. fairness 

Python 

* 
REC 
Bolzano, Italy 

Electric RPV BESS  • regulation 
framework 
schemes  

• BM schemes  
• DSM strategy  
• TOU tariffs  
• Clustering  
• Composition 

analysis  
• criteria 

suitability index 

Residential  1 h 
/ 
1 year 

two-phase 
SOO  

• dispatch  
• investment 

optimization  
• max. global profit  
• savings distribution 

(contribution)  
• fairness evaluation 

OSM: “oemof” 
Pyomo Python 
Gurobi 
(solver) 

* this work. 
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investment mode applicable to Source and Generic Storage. 
The nominal PV generator capacity and the nominal storage capacity 

are therefore not inputs, but are the decision variables determined by 
the optimization problem. Therefore, all the parameters that usually 
refer to the nominal value or the capacity will now refer to the invest
ment variables and will be characterized by the equivalent periodical 
cost (epc) for the investment which is calculated as in Equation (6). 

epcu = CAPEXu∙
wacc∙(1 + wacc)lifetimeu

(1 + wacc)lifetimeu − 1
+OPEXu (6) 

Where: 
CAPEXu = capital expenditure of investment variable u 
lifetimeu = life expectancy of investment variable u 
wacc = weighted average cost of capital 
OPEXu = operating expenditure of investment variable u 
Then the oemof-network module is used: it contains the base classes 

as Source, Sink, SinkDSM, Generic Storage, to model generation sources, 
the electricity demand, the flexible electricity demand driven by De
mand Side Management (DSM) and the storage and the links between 
these components as schematically shown in Fig. 2. 

The variable costs considered are the ”energy price” (EP), the ”dis
patchment price” (DP), which are both part of the expenditure on en
ergy, the expenditure on system charges (SC), to cover costs for general 
activities of interest for the electricity system, the expenditure on elec
tricity transport and meter management (TC), the excise duty (ED), the 
Value Added Tax (VAT), but also the incentives or refunded quota 
related to the energy sharing (SH.I). Fig. 3 shows the scheme of how each 
cost is associated to energy flows or objects: they are the purchased 
energy price (PE) expressed in Equation (7), the shared energy price (SE) 
in Equation (8) and the price of sold energy (FE) in Equation (9). 

PE = EP+DP+ SC+TC+ED+VAT (7)  

FE = EP (8)  

SE = DP+ SC+ TC+ED − SHI +VAT (9) 

Another component used is the SinkDSM, one of the last imple
mented in oemof, which allows to simulate Demand Side Management 
(DSM) [38]. The global electricity demand remains unchanged over 
time, while some flexible load may be moved, for example, from periods 
with high power prices to periods with lower prices or from hours with 
low renewable generation to hours with higher renewable generation. 

Essentially, SinkDSM models the flexible demand, while Sink is used 
for fixed loads. There are two constraints, (capacity_up and capacity_
down) and the shifted demand can vary between them. If the demand is 
reduced in a certain instant, there will be an increase in demand in 
another time-step in order to have a constant overall load to satisfy. For 
a more realistic scenario, it is also possible to associate a cost to the load 
increase or reduction. 

Between the two implemented formulations available for the DSM, 
the “interval” mode where the demand can be shifted within the defined 
bounds of elasticity and not across days is adopted [39]. 

The depicted self-consumption model has a “physical” scheme for 
what regards each house or housing building: there is only one PoD with 
the network. Hence, the energy produced and self-consumed remains 
within the private building perimeter and would not be charged for the 
network system charges. While the energy shared in the REC – among 
buildings - uses the public distribution network. 

2.2. Household profile generation and evaluation of EC heterogeneity 

The load profiles of the residential users have been obtained through 
the LoadProfileGenerator (LPG) tool [40]. Then, each profile has been 
split into flexible and fixed load profiles, the former as input for the 
SinkDSM and the latter for the Sink. 

Basically, the tool returns both profiles of each household as an 
aggregated profile or provides the consumption of every individual 
appliance. This latter aspect is usually detailed more precisely in the 
research on DSM methodologies [41]. Thanks to this, it has been 
possible to distinguish loads of time-shiftable domestic devices which 
can provide flexibility and those which cannot, thus obtaining realistic 
load profiles to enter as input for the model. The time-shiftable appli
ances, which have been taken into consideration, are dishwashers, 
washing machines, dryers and other comparable devices. 

The different profiles have been generated by setting specific char
acteristics and compositions and by entering the examined city co
ordinates and temperatures for the selected year. Then, for each 
composition, more profiles have been generated in LPG by selecting a 
different number of members (which can vary from 0 to 6 + ). 

In EC composition it is possible to provide a scenario with an 
established energy community or to generate it randomly by setting the 
maximum number of involved buildings. 

The definition of the energy community is implemented through 
python functions and its methodology is briefly shown in Fig. 4. 

Fig. 2. Streamlined illustration of an energy community as an oemof-network.  
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As indicator of the notions of heterogeneity and homogeneity of the 
energy community under consideration we have introduced the 
normalized Gini coefficient. 

In [42] the Gini coefficient definition is provided (Equation (10)) and 
it is also reported how it can reply to the need of synthetic indexes, 
which are useful for the comparison of the socio-economic profiles (i.e. 
and in OECD to evaluate income inequality [43]). 

This heterogeneity index involves the frequencies of the different 
compositions in the EC and it can vary between 0 and 1. It is maximum if 
the frequencies are equally distributed among all the modalities, while it 
is minimum if there is maximum homogeneity and all the frequencies 
are concentrated in a single modality. 

G =

(

1 −
∑mtot

i=1
fi2
)

mtot

mtot − 1
(10) 

Where: 
G = Gini coefficient 
fi = frequency of the composition a certain member i 
mtot = total number of members in the EC 
2.4 K-means clustering 
One encountered drawback concerns the computational cost of the 

model as the number of buildings and members involved in the EC in
creases. To address this bottleneck, typical load profiles are recovered 
from data via the k-means clustering, one of the most effective clustering 
methods used in machine learning, belonging to the class of centroid- 
based clustering [44]. 

In these methods each cluster is represented by a centroid, which 
may not necessarily belong to the initial dataset. The algorithm takes the 
number of clusters (K) as input to partition the data points into K groups, 
so that the points contained in the same cluster are as similar as possible 
according to the Euclidian distance (Equation (11)). The K-means clus

Fig. 3. Scheme of the costs associated to each flow and objects.  

Fig. 4. Function scheme for the definition of EC.  
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tering algorithm, already implemented in python with scikit-learn, is the 
standard heuristic to tackle this optimization task. 

OFkmeans = min
∑K

k=1

∑DSk

d=1

(
xd (k) − ck

)2 (11) 

Where: 
OFkmeans = objective function of the k-means clustering algorithm 
k = index of cluster 
K = total number of clusters 
d = index of data points 
xd

(k) = data point d belonging to cluster k 
ck = centroid of cluster k 
However, in order to apply this method, it is necessary to select the 

desired number of clusters, denoted by K. A useful graphical tool to 
identify the right K for the dataset is the Elbow method [44]. 

Fig. 5 shows a graphical scheme of the K-means algorithm and the 
elbow method. 

2.3. Costs, incentives, and regulations 

If typical load profiles have to be identified by the K-means algorithm 
to lower the computational burden, also hourly cost profiles have to be 
reduced according to the same criteria. For clarification: the clustering 
algorithm is not applied twice, but the cost profile is adapted, keeping 
the exact same clusters that were identified for the demand profiles.. 

Another aspect concerns the modeling of the tax reduction taken into 
account in order to manage the investment costs given as input, which allow 
for a meaningful investment optimization. By setting the deduction value, (e. 
g 50% deduction for the expenses incurred for the installation of the PV 
system), the model input costs undergo a variation to consider the actual 
costs that will be paid by the final consumer after the deductible ones. 

2.4. Optimization model outputs 

Once the optimization has been carried out, the post-processing 

identifies how the overall demand of each building is met: how much 
electricity is purchased from the grid, how much it is self-produced and 
shared or self-consumed within the building. Furthermore, the overall 
benefit derived from the avoided electricity purchase and from the 
refunded amounts are assessed.The EC elements known before the 
optimization are the following:  

• Gini index  
• Overall electricity demand and profiles before applying DSM 
• Shared energy inside the renewable energy community (instanta

neous sharing, sharing taken from BSS)  
• Investment costs 

While, those known after the optimization are the following:  

• EC system characteristics (renewable generation and storage systems 
installed capacities - decision variables of the model)  

• Electricity demand profiles after applying DSM  
• Overall PV production and excess 
• Shared energy inside the renewable energy community (instanta

neous sharing, sharing taken from BSS)  
• Costs/savings (self-consumption savings, refunded costs)  
• Renewables overview (self-consumption rate, energy sharing rate, 

consumption rate of renewables) 

2.5. Benefit allocation scheme 

The question concerning the benefit distribution among the EC 
members comes up. To answer it, [12] has introduced business models 
to guarantee a fair distribution and to prevent penalizing someone. 

After these initial studies the focus shifted to the fairness of the 
benefit allocation. Fairness is indeed a relevant performance measure in 
allocation schemes and an appropriate quantitative measure is impor
tant. Therefore, a Fairness Index, which had already been introduced in 
[13], has been further developed. 

A key point is that fair does not necessarily imply an equal 

Fig. 5. K-means clustering (a) and elbow method (b) scheme.  
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distribution of the benefits. Sometimes, it is fair that a user is granted 
more benefits than another user; therefore, it is necessary to select the 
most appropriate allocation metric. 

In this work, it is suggested the adoption of the Allocation Metric, 
hereinafter referred to as ‘Contribution distribution’. The rationale 
behind this choice is that in an EC system, where members have unequal 
demand for resources and provide different services and production, the 
fairness may be based on the contribution of each member to the overall 
system. 

Therefore, it is identified how the user contribution to the commu
nity can be quantified. In this case, the contribution is considered in 
economic terms. This is calculated by running the optimization several 
times – in addition to the already performed one – according to the 
number of the members of the energy community, without considering 
the building which the members belong to. 

Each new optimization will evaluate the same EC system, excluding 
one member by member. 

For instance, in an optimization one user is excluded, and, if his 
participation provides a contribution to the overall community, the re
sults in terms of savings will be lower. The user contribution will be the 
difference in saving between the base case and the case without that 
user. This step will be performed for each member to assess every single 
contribution. Fig. 6 shows the above described procedure schematically, 
as well as Equations (12) and (13). 

BCi = OPT − OPT − i (12)  

Dcd,i =
Ci

∑
l∈ICl

(13) 

Where: 
I = set of the energy community members 
i, l = indexes used for the energy community members 
BCi = benefit contribution of member i 
OPT = savings of the EC if all members are included 
OPT-i = savings of the EC if member i is not included 
Dcd,i = contribution distribution percentage of benefits for member i 
After finding all the contributions, it is possible to determine the 

benefit distribution, where the distribution among the users is weighted 
by their respective contribution. This should ensure that the benefit 
percentage assigned to a user does not trigger discontent among other 
members, who would not have equally access to that amount without 
that member participation. Moreover, here, the distributed savings 
among members, are recorded as net of investment costs. 

Distribution may also have negative values if a member does not 
provide any benefit, thus showing further information regarding the 

optimality of the community composition. The best scenario is the one in 
which all members increase the overall common benefit. 

This approach to the design of the contribution distribution is 
inspired by the Vickrey–Clarke–Groves (VCG) mechanism in auction 
theory [45]. The aim is to optimize global contentment, namely, to 
maximize the total of the bids. 

The aspect considered in this work regards the assignment of bene
fits. In the future, when assessing the opportunity for new members to 
join the ECs, a truthful assessment could be extremely important. It 
would be even more useful if a personalized fee for community partic
ipation were applied. 

2.6. Business models and fairness index 

The distribution of benefits based on the contribution of each 
member has the limit of being unlikely applicable to reality. However, 
through the implemented model it is possible to evaluate what the 
optimal distribution for a CE with certain characteristics should be and 
to compare it, thanks to a specific Fairness Index, with business models 
(BMs) that identify further benefit distribution methods, which do not 
include any optimization and are more easily adopted in the real case. 

Table 2 shows the BMs schemes for the distribution of the benefits. As 
the distribution of the incentives is decided within the EC by taking as a 
reference the method considered more suitable, additional BMs, not 
listed here, can be further tested. The only requirement is to define a 
function which must return the actual savings of each member as well as 
the distribution ratios. 

The above mentioned Fairness Index (FI), additional output of the 
model for the evaluation of the fairness of BMs, has the following 
properties: 

Fig. 6. Scheme for the evaluation of each user contribution.  

Table 2 
defined business models.  

BUSINESS 
MODEL 

DISTRIBUTION CRITERIA  

BM A homogeneous distribution among EC members according to 
the investment  

BM B distribution among EC members according to their DSM 
exploitation  

BM C distribution among EC members according to their PV self- 
consumption  

BM D homogeneous distribution among members of the same 
housing building  

BM E distribution among EC members according to their loads   
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• It is applicable to any EC of any size.  
• Its value is between 0 and 1 if each individual member has a profit: 0 
≤ FI < 1. The closer the value is to zero the fairer and the more 
suitable is the applied BM  

• It is meaningful also for distributions that allow negative values  
• Its value corresponds to the number of members that would not be 

satisfied: FI = {1, 2, …, mtot } where mtot is the number of the 
members. E.g. FI = 4, 4 members have no economic advantage and 
will not partake. 

Equation (14) shows the fairness index for the global community. 

FI(m) =

⎧
⎪⎨

⎪⎩

∑m

i=1

⃒
⃒Di − Dcd,i

⃒
⃒

∑m

i=1

⃒
⃒Dw,i − Dcd,i

⃒
⃒

if m = mtot

mtot − m if m ∕= mtot

(14) 

Where: 
Di = distribution percentage of benefits for member i 
Dcd,i = contribution distribution percentage of benefits for member i 
Dw,i = worse distribution percentage of benefits, according to the 

contribution distribution, for member i 
m = number of members for which D > 0 
mtot = total number of members in the EC 
The denominator of the FI can be determined by a function which 

allows to identify the worst case, the one that would lead to a distri
bution of the benefits the farthest from the reference metric distribution, 
thereby maximizing the denominator. 

A simplified version of the model code is open source and available at 
[46]. 

3. Case study 

The EC_model previously described is general: it can be applied to any 
Energy Community within any regulatory framework and can include 
different generation sources. In this work, it is tested to RECs placed in 
Bolzano, a city in the North of Italy and only PV sources are considered 
(average yearly GHI = 1434 kWh/m2, average T = 12.4 ◦C, Lat/Lon: 
46.4936 / 11.3346; radiation database: CMSAF 2007–2016 [47]). The 
normalized PV profiles used are obtained from PV systems which 
orientation is south with an angle of a 30◦. 

Therefore, the variable costs of the model are calculated under the 
Italian regulations, however, the input values can readily be changed to 
suit different applications. 

3.1 The Italian regulatory framework 
The regulatory steps started with the adoption of the RED II directive 

[4], marking a European breakthrough in the EC as it introduced and 
distinguished the concepts of ‘jointly acting renewables self-consumers’ 
(JARSC) and ‘renewable energy community’ (REC). Later, IEM [48] 
promulgated further rules on the constitution of an EC. 

Focusing now on Italy, the experimental stage started with the 

conversion into law of the Milleproroghe decree-law (D.L. 162/19 [49]). 
It was followed by the documents published by ARERA [50] - [51] and 
by MiSE [52], which were in charge of defining the regulatory frame
work and the incentive schemes, and the document published by GSE 
[53], which defined the operative rules later approved by ARERA [54]. 
In Table 3 the refunded amounts established by Arera and MiSE are 
defined both in case of JARSC and of REC: those referring to REC are 
adopted in this work. 

In this work, the net metering mechanism will not be evaluated, in 
fact, it is not possible for ECs to access this mechanism and it is expected 
to be overcome in order to promote self-consumption. 

Despite being currently not allowed in Italy, the investigated self- 
consumption scheme, which considers only one PoD for each housing 
building, is adopted to ease the methodology illustration. To read more 
about the energy sharing inside a multi-family housing building, we 
refer to [12]. 

The references of this section are in Italian since the EC model is 
applied to the Italian regulatory framework. 

3.1. Investment costs 

Table 4 shows the costs and the relative sources of PV and BESS. 
These data were given as input to the model to perform the optimization. 
Moreover, we have also considered the tax deduction of 50% for the 
CAPEX of the photovoltaic and storage systems as one of the options 
given by the Italian legislative framework. 

The bill costs of this work take into account only the energy quota 
(€/kwh), while the fixed quota (€/year) and the power quota (€/kW/ 
year) are not included. As we are focusing more on identifying the ad
vantages of establishing an EC, the latter costs, which are still to be paid 
anyway, are not so relevant to this aim. 

The ‘energy price’ (EP) has been assumed to be the ‘National Single 
Price’ (PUN which stands for Prezzo Unico Nazionale in italian), defined 
as the average electricity wholesale price, for year 2019 available on 
GSE website, while the other electricity bill component costs are avail
able in [57]. 

3.2. ISTAT data on Bolzano residential building composition 

The EC composition is based on the data available on the ISTAT 
registers [58] and on the data of the city taken into consideration. Each 
building may be composed of a certain number of apartments - ranging 
from 1 for a single-family house to 16 + for a multi-family house - and 
each apartment may host a certain type of household of one or more 
members. Table 5, which refers to Bolzano, shows the type of possible 
residential nucleus and their relative frequency. As mentioned, based on 
these compositions, more residential user load profiles were generated 
by LPG, by entering the coordinates of Bolzano and its temperature 
profiles in 2019. 

4. Results and discussion 

In this section the final results of the model applied to two case 
studies are introduced and discussed. In particular, the results will focus 
on the impact of the DSM and on the Fairness Index for case study #1 
whose characteristics are depicted in Table 6. 

Table 3 
Refunded amount for shared energy both in case of ‘jointly acting renewables 
self-consumption’ (JARSC) and of ‘renewable energy community’ (REC).  

Model Refunded amount 
(defined in [51] by ARERA) 

Refunded 
amount 

(defined in [52] 
by MiSE) 

JARSC Variable transmission and 
distribution components (2019)  

7,61 + 0,61 €/MWh  

Avoided grid 
losses * 

CAL MV : 1,2% 
CAL LV: 2,6%   

100 €/MWh 

REC – 110 €/MWh 

* Zonal Electricity Price (ZP) times the avoided grid loss coefficient (CAL).

Table 4 
Rooftop PV and battery data.   

Rooftop PV Battery Source 

CAPEX 2020 1198 €/kW 587 €/kWh [55] 
OPEX 1.5 %CAPEX 5 %CAPEX [56] 
Discount rate 5% [56] 
Lifetime 30 years 15 years [56]  
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Successively, for the sake of comparison, a slightly different second 
case study is introduced to have a further focus on the EC heterogeneity 
impact. 

4.1. With DSM versus without DSM 

The comparison between the scenarios with and without DSM is now 
performed and also a reference scenario is introduced. Therefore, the 
scenarios we will be referring to are three:  

- RS: where the residents are not considered as belonging to an EC. 
Residents are independent and have to install their own PV and BESS 
system. The installation capacity is optimized (EC: false; DSM: false).  

- noDSM_S: where the DSM has not been applied and the optimization 
of the investment capacity has been performed (EC: true; DSM: false).  

- DSM_S: where the optimization of the investment capacity has been 
performed again and the DSM has been applied (EC: true; DSM: true). 

Fig. 7 shows the structure of the mentioned above system through 
network graphs: the EC consists of 6 housing buildings and 21 house
holds. The 2nd and 3rd subplots on the top - the EC network graphs - 
show the same system, but the size of PV and BESS changes. This is more 
evident in the bottom subplots, where PV and BESS capacities of all the 
REC members have been combined: the adoption of DSM for the same 
system means a lower investment both for PV (13%) and for BESS 
(93%). 

Fig. 8 shows how the flexible energy demand is managed: the cu
mulative demand of each housing building has been plotted for one 
week in winter and one in summer. 

Fig. 9 shows, for all the four scenarios a waterfall plot on the left, 
where costs and revenues are plotted and, on the right, there is the 
summary and the comparison of the net costs and the information about 
the Pay Back Period (PBP). On the contrary, Fig. 10 shows how the 
demand is satisfied and how the PV generation is used. It also shows the 
percentage of demand which is satisfied by renewable sources. 

Therefore, not only the investment reduction is a relevant conse
quence of the DSM, but also the percentage reduction of the lost 

renewable production, which is also significant and equal to 91% 
(Fig. 10). 

The first scenarios (RS selling at 0 and selling at PUN) are the ones 
with the highest overall expenditure. By comparing the other two, 
noDSM_S, and DSM_S, is noticeable that the DSM allows to increase 
savings by 8% and to decrease the investment costs by 40%. 

The investments of scenarios RS and noDSM_S are comparable; 
however, in the second one, there is a slight increase in RES consump
tion. Scenario DSM_S presents a slight reduction in RES consumption 
with respect to noDSM_S, equal to 9%, but not so significant if we 
consider that the investment changes are significant. 

In fact, observing the excess production from photovoltaics, we see 
that the share not used for self-consumption, or sharing is equal to 
24.12% in the case without DSM and equal to 20.94% in the case with 
DSM. 

4.2. Fairness 

Fig. 11 and Fig. 12 summarize the contribution of each user’s 
participation to the overall benefit of the EC system. They show who is 
providing a higher contribution to the community and consequently 
who should have a consistent result in savings. For instance, user B20 – 
represented by the green node which belongs to building E_cc - is 
contributing for almost the 13% of the overall benefit. Focusing on 
building D_cc, we see also that user B19 provides a lower contribution to 
the system (almost 6%) with respect to B20, but not as lower as e.g. B8, 
which provides less than a 1% contribution. However, it is a still positive 
contribution, which is not always granted, as it depends both on how 
much the demand profile matches with the PV production, with or 
without the DSM contribution, and affects the heterogeneity of the 
system. 

Fig. 12 reproduces Fig. 11, but without the DSM. Therefore, the 
contribution of the users changes. User B20 is not anymore the one 
providing the higher contribution, but as shown by the color scale on the 
right, also the maximum contribution is lower. Focusing on B8 and B19 
users, we see how their role is reversed: the one that in the first case 
contributed most to the benefit of the energy community does not 
maintain the same advantageous position in the second case. 

Fig. 13 gives some details about the fairness for each user on the 
adopted BM. According to the contribution distribution taken as refer
ence (in Fig. 11), each user should receive a consistent benefit. In case 
the benefit is lower than expected and the user is suffering a disadvan
tage, there will be a negative deviation from optimal distribution (rep
resented by a purple bar), while there will be a positive deviation from 
optimal distribution (blue bar) when the user is having an advantage. 

Table 5 
Household composition probability in Bolzano province (data elaborated from General population and housing census – 2011 [58]).  

Table 6 
Case study outline  

Housing buildings 6 
Households 21 
Gini index 0.83 
Flexible load 18.07%  
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Fig. 7. Comparison reference scenario and EC scenario w/wo DSM.  

Fig. 8. Dispatch (one week in winter and summer).  
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Fig. 13 shows that the same users of Fig. 10, who are guaranteeing 
the highest savings to the EC, would expect a greater return based on 
their contribution. E.g. user B20 is experiencing the highest negative 
deviation from the optimal distribution by applying BM B, even if there 
is an overall satisfaction (FI = 0.036). Applying BM C, the user is 
experiencing a positive deviation. For each BM introduced in Table 2, 
the standard deviation is reported, together with the FI, in Table 7 to 
estimate how much the distribution is far from the optimal one (which is 
visible in Fig. 13 in a more immediate way for BM B and BM C). The 

higher the deviation, the higher is the FI. FI could also state how many 
users do not get any benefit and therefore if the BM is unsuitable. 

4.3. Heterogeneity impact 

In this paragraph the case study considered so far is launched again 
but applying a variation to the composition. 

Few residents are substituted in order to decrease the Gini Index from 
0.83 to 0.71 as visible in Table 8. The rate of flexible load has not 

Fig. 9. Waterfall plot of investment costs and saving in base case selling at 0/selling at PUN and w/wo DSM (left) summary of net cash flow (right).  

Fig. 10. Scheme of energy flows. Answer how the demand is satisfied and how PV generation is used in three cases.  
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Fig. 11. Saving distribution according to each EC member’s contribution –with DSM.  
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changed significantly, and the heterogeneity impact of the system have 
been assessed. 

In Fig. 14 it is also possible to see how investments change showing 
an overall reduction, which is also partly due to a reduced electricity 
demand (-11%). Again, with the DSM, there is less need of storage and 
no BESS investment is made here. This scenario, characterized by a 
lower heterogeneity, highlights a decrease in RES consumption and an 
increase in excess as can be seen in Fig. 15. 

This second case study has a less heterogeneous composition, which 
affects the contribution of the DSM. The DSM leads again to a significant 

reduction in the BESS capacity. However, with this lower heterogeneity, 
Gini Index equal to 0.71 against the previous 0.83, the DSM impact is 
higher and there is an increase of the renewable energy covering the 
demand equal to 9.22% although the installed PV capacity remains the 
same and no BESS is installed. However, in general with this more ho
mogeneous case study, there is a decrease of the renewable source 
consumption by around 20%–33% and of the bill savings by around 30% 
compared to the one with higher Gini Index. 

Fig. 13. BM fairness from the single member’s point of view.  

Table 7 
Standard deviation and Fairness Index of applied business models  

BM A B C D E 

σ  0.026  0.04074  0.008  0.018  0.010 
FI  0.198  0.306  0.062  0.186  0.074  

Table 8 
outline of modified composition  

Housing buildings 6 
Households 21 
Gini index 0.71 
Flexible load 19.38%  
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5. Conclusions 

This work aimed at developing a methodology to assess the poten
tialities of the energy communities. A considerable diffusion of energy 
communities requires an increase of the awareness on their importance: 
clear messages and an effective communication of advantages and dis
advantages are imperative. This work moves towards this direction as it 
combines a dispatching and investment model with linear program
ming, which is coupled to a function for evaluating the contribution of 
each household to the overall benefit, and its subsequent distribution. 

The literature review has shown that several studies exist on the 
modelling of energy communities. However, the literature review has 
also highlighted the lack of a modelling approach for energy commu
nities including all the following relevant aspects: the expansion ca
pacity optimization taking into account both global and individual 

interests, the Demand Side Management, the community composition, 
the benefit distribution business models and their suitability and fairness 
as well as different regulation schemes (e.g. by changing the investment 
deductions, the bill components and the refunded amounts for energy 
sharing). The model presented in this work covers all the above aspects 
through an integrated approach. 

The model can also be easily used for different applications by setting 
the most appropriate input data for the case to be analyzed, but in this 
work is applied to different renewable energy community case studies 
placed in Bolzano, Italy. 

The Demand Side Management produces relevant consequences such 
as the investment reduction and the increase of RES share. The results of 
the case study with a 20% of flexible load show that applying Demand 
Side Management the investment is significantly lower especially for 
Battery Energy Storage System (-93%) and there is also a reduction in 

Fig. 14. Comparison reference scenario and EC scenario w/wo DSM (modified case study).  

Fig. 15. Scheme of energy flows. Answer how the demand is satisfied and how PV generation is used in three cases (modified case study).  
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the percentage of the lost renewable production (-91%). 
The results show also that the lower the heterogeneity of the 

composition, the higher the impact of the Demand Side Management. 
Two cases studies, with similar percentage of deferrable load, and a Gini 
Index equal to 0.83 and 0.71 respectively, show that by adopting the 
Demand Side Management strategy the renewable energy covering the 
demand of the first case decreases by 8.57%, while the one of the second 
case increases by 9.22%, although the installed PV capacity remains the 
same and no Battery Energy Storage System is installed. However, the 
renewable source consumption of the second case study with lower 
heterogeneity (Gini Index equal to 0.71) decreases by around 20%–33% 
and the bill savings by around 30% compared to the one with Gini Index 
equal to 0.83. 

By the introduction and adoption of a Fairness Index it was then 
possible to evaluate the fairness of the distribution with respect to a 
method which suggests distributing the benefit according to each user’s 
contribution. 

The main message is therefore that it is important not only to identify 
the technological mix of the energy community, but also the weight of 
the composition of users. In fact, the participation of a user does not 
always bring a benefit, but, on the contrary, a user can be more signif
icant than others. In order not to disadvantage anyone, especially 
because the participation is free and voluntary, it is essential to have an 
idea of the role of each energy community aspect and of each partici
pating user and consequently to identify the most suitable business 
model. 

It is possible to develop further the described method by focusing 
both on other technical details and by dedicating more space to envi
ronmental and emissions-related aspects. 

For example, an aspect, which should be further analyzed, concerns 
the integration of multiple sectors into the model, as this is important to 
achieve a sustainable development of an energy system. Specifically, we 
refer to the thermal and the transport sector electrification, with a 
particular focus on the role of the heat pumps [18] and the introduction 
of electric vehicles. Also the modeling of buildings included in the en
ergy community goes beyond the objective of this work, however it is a 
relevant aspect, which could be addressed in future studies to assess 
further technical limits. 
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