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An incremental input-to-state stability condition
for a class of recurrent neural networks

William D’Amico, Alessio La Bella, and Marcello Farina

Abstract— This paper proposes a novel sufficient con-
dition for the incremental input-to-state stability of a class
of recurrent neural networks (RNNs). The established con-
dition is compared with others available in the literature,
showing to be less conservative. Moreover, it can be ap-
plied for the design of incremental input-to-state stable
RNN-based control systems, resulting in a linear matrix
inequality constraint for some specific RNN architectures.
The formulation of nonlinear observers for the considered
system class, as well as the design of control schemes with
explicit integral action, are also investigated. The theoreti-
cal results are validated through simulation on a referenced
nonlinear system.

Index Terms— Neural networks, linear matrix inequali-
ties, nonlinear control systems, stability of nonlinear sys-
tems.

I. INTRODUCTION

Neural networks (NNs) have gained interest in many en-
gineering fields, given the ever-growing availability of large
amounts of data, e.g., collected measurements from plants, and
their significant ability to reproduce nonlinear dynamics [1],
[2]. In particular, NNs have shown to be particularly suited
for control applications [3]–[6], as they can be used not
only to identify unknown systems, but also to directly design
feedback controllers from data [7], [8]. Among existing NN
architectures, recurrent neural networks (RNNs) are typically
adopted for controlling dynamical systems, since they are
inherently characterized by the presence of state variables [9].

Despite the increasing popularity of RNNs, their theoretical
properties have been rarely analysed. As nonlinear dynamical
systems, it is in fact fundamental to characterize conditions
that guarantee the stability of their motions, especially when
RNNs are part of control systems [10], [11]. In this context
incremental input-to-state stability (δISS) [12], [13] plays a
crucial role. This property entails that, asymptotically, the state
trajectories are solely determined by the applied inputs and
not by their initial conditions [14]. Thus, the dynamics of a
δISS RNN is asymptotically independent of its initialization.
The δISS property also enables the design of trivial observers
for the RNN states: the latter, indeed, can be asymptotically
estimated just exploiting the knowledge of the applied inputs.
Finally, note that the δISS implies other common stability
properties, e.g., global asymptotic stability (GAS) of the
equilibria and input-to-state stability (ISS) [12], [14].
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Motivated by this, the paper presents a novel δISS sufficient
condition for a class of RNN architectures. The proposed
condition is applicable to control systems, and in particular for
the analysis and design of RNNs-based feedback controllers
and feedforward compensators.

A. State of the art and contribution

Despite the large popularity and potentialities of RNNs
in control applications, relatively few stability results have
been discussed in the literature. Sufficient conditions ensuring
stability-related properties for RNNs are presented in [15] and
in [16], the latter focusing on a specific class of RNNs, i.e.,
gated recurrent units (GRU). A stability condition for a class of
RNNs is discussed in [17], considering however the case with
constant inputs. Note that the above-mentioned contributions
address stability properties weaker than the δISS (e.g., the
GAS property), which do not consider the effect of inputs
[12]. This has motivated other research studies to focus on
conditions guaranteeing δISS. The latter, interestingly, can
be directly enforced in the data-based RNN training phase,
e.g., as discussed in [18], [19]. Also, sufficient conditions
guaranteeing alternative contraction properties are provided
in [20] for echo state networks (ESNs) and in [21], [22] for
more general RNNs. However, these works focus on open-
loop RNNs, and they do not address the design of stabilizing
RNN-based feedback controllers.
Regarding control systems, in [23] the stability is analysed
in case of FeedForward NN (FFNN) controllers and as-
suming a linear controlled system with uncertainties. Design
conditions for FFNN controllers are also provided in [24],
considering specific classes of second-order nonlinear systems
under control. Also model predictive control (MPC) has been
investigated as a method for the design of efficient controllers
applicable to systems described by specific classes of RNNs.
For instance, the ISS of a MPC-controlled neural nonlinear au-
toregressive exogenous (NNARX) system is discussed in [25].
Also, MPC regulation strategies for other RNN architectures
are presented in [26] and [27], ensuring closed-loop stability
if the RNN-based model of the controlled system enjoys the
δISS property.

In this work we first derive a novel δISS condition for
a class of discrete-time nonlinear systems, which includes
the one analysed in [28], as well as different common RNN
classes, e.g., ESNs and NNARXs. We prove that the proposed
condition is less conservative than existing ones established in
the past years for RNNs lying in the considered class (or in
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slightly more general classes), e.g., [17], [18], [20], [21]. The
established results turn out to be particularly suited for the
design of feedback controllers and feedforward compensators.
In particular, they allow us to enforce the δISS property on
control systems, also in case the controlled system does not
enjoy the same property. Moreover, we show that, if specific
RNN-based control architectures are considered, the design
problem translates to a linear matrix inequality (LMI) problem,
efficiently solvable by common solvers.

B. Paper outline
The paper is structured as follows. In Section II, the

equations of the considered class of RNNs are introduced. The
novel sufficient condition δISS is stated in Section III and it
is compared with other existing conditions in the literature. In
Section IV, the δISS properties of feedforward and feedback
interconnected RNNs are investigated, whereas Section V
discusses in details the controller design with δISS guarantees.
Section VI shows the application of the theoretical results in
this paper to a simulation example, whereas conclusions are
drawn in Section VII.

C. Notation and basic definitions
Given a matrix A, its transpose is AT , the transpose of its

inverse is A−T , its induced 2-norm is ∥A∥, and its largest
singular value is σ(A). The entry in the i-th row and j-
th column of a matrix A is denoted as aij . |A| denotes a
matrix whose entries are |aij |, for all i, j, where |aij | is the
absolute value of aij . The i-th entry of a vector v is indicated
as vi. Given a symmetric matrix P , we use P ⪰ 0, P ≻ 0,
P ⪯ 0, and P ≺ 0 to indicate that it is positive semidefinite,
positive definite, negative semidefinite, and negative definite,
respectively. λmin(P ) and λmax(P ) denote the minimum and
maximum eigenvalues of a symmetric matrix P , respectively.
0n,m denotes a zero matrix with n rows and m columns and
In is the identity matrix of dimension n. Given a sequence of
square matrices A1, A2, . . . , An, D = diag(A1, A2, . . . , An)
is a block diagonal matrix having A1, A2, . . . , An as sub-
matrices on the main-diagonal blocks. D denotes the set of
diagonal matrices. Also, ∥v∥=

√
vT v denotes the 2-norm

of a column vector v and ∥v∥Q=
√
vTQv denotes the

weighted Euclidean norm of v, where Q is a positive definite
matrix. Given a sequence u⃗ = u(0), u(1), . . . , we define its
infinity norm as ∥u⃗∥∞= supk∈N∥u(k)∥. Also, idn(·) denotes
a column vector of dimension n with all elements equal to the
identity function id(·). We introduce the following definition.

Definition 1 ([29]): A real function g : R → R is called
globally Lipschitz continuous if there exists a constant Lp ≥ 0
such that, for any x, y ∈ R, it holds that

|g(x)− g(y)|≤ Lp|x− y| .
The following property will be used later in the paper.

Property 1: Given two vectors a, b ∈ Rn, it holds that
∥a+ b∥2≤ (1 + τ2)∥a∥2+

(
1 + 1

τ2

)
∥b∥2 for any scalar τ ̸= 0.

We now consider a general discrete-time nonlinear system
expressed as

x(k + 1) = fo(x(k), u(k)) , (1)

where fo : X × U → X, X ⊆ Rn, U ⊆ Rm, 0n,1 ∈ X, and
0m,1 ∈ U. Moreover, fo(·) is such that fo(0n,1, 0m,1) = 0n,1,
k ∈ Z≥0 is the discrete-time index, x ∈ X is the state of
the system and u ∈ U is the exogenous variable. The set
of admissible input sequences u⃗ is denoted by U . We indicate
with x(k, x0, u⃗) the solution to the system (1) at time k starting
from the initial state x0 ∈ X with input sequence u⃗ ∈ U .
Now, we recall some useful notions for the following
(see [14]).

Definition 2 (K function [14]): A continuous function
α : R≥0 → R≥0 is a class K function if α(s) > 0 for all
s > 0, it is strictly increasing, and α(0) = 0.

Definition 3 (K∞ function [14]): A continuous function
α : R≥0 → R≥0 is a class K∞ function if it is a class K
function and α(s) → +∞ for s → +∞.

Definition 4 (KL function [14]): A continuous function
β : R≥0 × Z≥0 → R≥0 is a class KL function if β(s, k) is
a class K function with respect to s for all k, it is strictly
decreasing in k for all s > 0, and β(s, k) → 0 as k → +∞
for all s > 0.

Definition 5 (δISS [14]): System (1) is called incrementally
input-to-state stable if there exists a function β ∈ KL and a
function γ ∈ K∞ such that for any k ∈ Z≥0, any initial states
x01, x02 ∈ X, and any couple of input sequences u⃗1, u⃗2 ∈ U ,
it holds that

∥x(k, x01, u⃗1)− x(k, x02, u⃗2)∥≤ β(∥x01 − x02∥, k)+
+ γ(∥u⃗1 − u⃗2∥∞) .

Definition 6 (Dissipation-form δISS Lyapunov function [13]):
A function V : X× X → R≥0 is called a dissipation-form
δISS-Lyapunov function for (1), if there exist functions
ξ1, ξ2, ξ ∈ K∞ and σ ∈ K so that, for all x1, x2 ∈ X and
u1, u2 ∈ U, it holds that

ξ1(∥x1 − x2∥) ≤ V (x1, x2) ≤ ξ2(∥x1 − x2∥) , (2)

V (f(x1, u1), f(x2, u2))− V (x1, x2) ≤ − ξ(∥x1 − x2∥)+

+σ(∥u1 − u2∥) .
(3)

Theorem 1 ([13]): If system (1) admits a dissipation-form
δISS Lyapunov function, then it is δISS.

II. PROBLEM STATEMENT

We consider the following class of nonlinear discrete-time
systems:

x(k + 1) = f(Ax(k) +Bu(k)) , (4a)
y(k) = Cx(k) +Du(k) , (4b)

where u ∈ Rm is the exogenous variable, y ∈ Rl

is the output vector, x ∈ Rn is the state vector,
f(·) =

[
f1(·) . . . fn(·)

]T ∈ Rn is a vector of scalar func-
tions applied element-wise, A ∈ Rn×n, B ∈ Rn×m, C ∈
Rl×n, and D ∈ Rl×m. The exogenous variable u takes
different roles in the various setups considered in this paper.
Namely, u can be the manipulable input variable in case of
open-loop systems, whereas it can be the output reference
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or the exogenous disturbance in case of closed-loop control
systems. In this work, the function f(·) takes the particular
form specified in the following assumption.

Assumption 1: The functions fi(·), i = 1, . . . , n, are non-
linear globally Lipschitz continuous functions with Lipschitz
constant Lpi or the identity function id(·). □

Given a system in class (4), let us introduce the set

W := {i ∈ {1, . . . , n} | fi(·) ̸= id(·)} . (5)

Note that, under Assumption 1, system (4) is representative of
several RNN architectures. For instance, (4) includes the gen-
eral formulation of RNNs considered in [28], where D = 0l,m,
f1(·) = · · · = fn(·) = σf (·), and σf : R → R is a globally
Lipschitz function (e.g., rectified linear unit (ReLU), sigmoid,
or tanh). Also, as better clarified below, many other RNNs
considered in the literature can be written in form (4), possibly
under some simplifications and/or minor reformulations.

Example 1. Echo state networks (ESNs)
ESNs [30] are particular types of RNNs composed of a

dynamical reservoir (hidden layer) in which the connections
between neurons are sparse and random. If we consider the
formulation proposed in [26], with ν neurons χ ∈ Rν , input
u ∈ Rm, output y ∈ Rl, Lipschitz continuous internal units
output functions ζ(·) applied element-wise, and linear output
units output functions, the ESN equations are:

χ(k + 1) = ζ(Wxχ(k) +Wuu(k) +Wyy(k)) , (6a)
y(k) = Wout1χ(k) +Wout2u(k − 1) , (6b)

where Wx ∈ Rν×ν , Wu ∈ Rν×m, Wy ∈ Rν×l, Wout1 ∈ Rl×ν ,
and Wout2 ∈ Rl×m.
Note that model (6) can be reformulated as (4) by defining
x(k) =

[
χ(k)T z(k)T

]T
, where z(k) = u(k − 1), and by

setting

A =

[
W ∗

x WyWout2

0m,ν 0m,m

]
, (7)

B =
[
WT

u Im
]T

, C =
[
Wout1 Wout2

]
, D = 0l,m, and

f(·) =
[
ζ(·)T idm(·)T

]T
, where W ∗

x = Wx +WyWout1 . □

Example 2. Shallow neural nonlinear autoregressive ex-
ogenous (NNARX) models

NNARX is a class of nonlinear autoregressive exogenous
models where a FFNN is used as nonlinear regression function.
As shown in [18], a shallow (i.e., 1-layer) NNARX, with input
ũ ∈ Rm̃, output y ∈ Rl, and ν neurons, is a dynamical system
defined by the following equation

y(k + 1) = W0ζ(Wϕϕ(k) +Wuũ(k) + b) + b0 , (8)

where W0 ∈ Rl×ν , b0 ∈ Rl, the vector ϕ ∈ R(l+m̃)N is
defined as

ϕ(k) := [ũ(k−N)T, y(k−N + 1)T, ... , ũ(k−2)T, y(k−1)T,

ũ(k−1)T, y(k)T ]
T
, (9)

ζ(·) ∈ Rν is a vector of Lipschitz continuous activation
functions applied element-wise, Wu ∈ Rν×m̃, b ∈ Rν ,

Wϕ =
[
Wϕ1 Wϕ2 Wϕ3

]
∈ Rν×(m̃+l)N , Wϕ1

∈ Rν×(m̃+l),
Wϕ2 ∈ Rν×τ , τ = (l + m̃)N − 2l − m̃, and Wϕ3 ∈ Rν×l.

Note that model (8) can be reformulated as (4). To do that,
let us introduce the following vectors

ϕ̃(k) := [ũ(k −N)T , y(k −N + 1)T , ... , ũ(k − 2)T ,

y(k − 1)T , ũ(k − 1)T ]
T
,

υ(k) := ζ(Wϕϕ(k − 1) +Wuũ(k − 1) + b) .

It follows that

ϕ̃(k+1)=

=

 0τ,l+m̃ Iτ
0l,l+m̃ 0l,τ
0m̃,l+m̃ 0m̃,τ

ϕ̃(k)+
0τ,νW0

0m̃,ν

υ(k)+
0τ,m̃0l,m̃

Im̃

ũ(k)+
 0τ,1

b0
0m̃,1

,
and

υ(k + 1) =

= ζ(Wϕϕ(k) +Wuũ(k) + b) =

= ζ(
[
Wϕ1

Wϕ2

]
ϕ̃(k)+Wϕ3

y(k) +Wuũ(k) + b) =

= ζ(
[
Wϕ1

Wϕ2

]
ϕ̃(k)+Wϕ3W0υ(k)+Wϕ3b0+Wuũ(k)+b).

Consequently, by setting

x(k) = [ ϕ̃(k)T , υ(k)T ]
T
, u(k) =

[
ũ(k)T 1

]T
, (10)

and

A=


0τ,l+m̃ Iτ 0τ,ν
0l,l+m̃ 0l,τ W0

0m̃,l+m̃ 0m̃,τ 0m̃,ν

Wϕ1 Wϕ2 Wϕ3W0

, B=


0τ,m̃ 0τ,1
0l,m̃ b0
Im̃ 0m̃,1

Wu b+Wϕ3b0

,
C =

[
0l,n−ν W0

]
, D =

[
0l,m̃ b0

]
, (11)

f(·) =
[
idn−ν(·)T ζ(·)T

]T
, with n = ν + (l + m̃)N − l, it

is evident that model (8) belongs to the class (4). □

Example 3. Class of RNN systems in [17]
In [17] a slightly different RNN class is considered, i.e.,

x(k + 1) = Ex(k) + f(Ax(k) + s) , (12)

where A is a full matrix, E = diag(e1, . . . , en),
s =

[
s1 . . . sn

]T
is a vector of constant inputs, with

ei , si ∈ R, and |ei|< 1, ∀i = 1, . . . , n. Moreover,
f(·) =

[
f1(·) . . . fn(·)

]T
, where each fi(·) is a globally

Lipschitz continuous and monotone nondecreasing activation
function with Lipschitz constant Lpi. Although (12) is slightly
more general, to perform a comparison, we write system
(12) in class (4a) by setting E = 0n,n. It is worth noting
that the latter special case of system (12) matches the RNN
formulation addressed in [28] or the ESN formulation in [20],
in case of constant inputs. □

Example 4. Class of contracting implicit RNNs (ci-RNNs)
in [21]

In [21], a slightly more general RNN class is taken into
account. In particular, in the single layer case, the following
contracting implicit RNN (ci-RNN) is considered

Ex(k + 1) = Φ(Fx(k) + Bũ(k) + b) , (13a)
y(k) = Cx(k) +Dũ(k) . (13b)
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Also in this case, to perform a comparison, we write system
(13) in class (4) by setting E = In, A = F , B =

[
B b

]
,

C = C, D =
[
D 0l,1

]
, u(k) =

[
ũ(k)T 1

]T
, and f(·) =

Φ(·), where Φ(·) contains a nonlinear activation with Lipschitz
constant Lp = 1 (for simplicity, cf. [21, Section 2]). □

Given the class of systems (4) under Assumption 1, a
sufficient condition ensuring the δISS property is established
and described in the following section.

III. A NOVEL SUFFICIENT CONDITION FOR INCREMENTAL
INPUT-TO-STATE STABILITY OF RNNS

Let us consider a generic system (4) fulfilling Assump-
tion 1. The following theorem provides a sufficient condi-
tion which guarantees the δISS for nonlinear systems ly-
ing in the class (4a). We first define a diagonal matrix
W := diag(Lp1, . . . , Lpn) ∈ Rn×n, where Lpi = 1 for all
i /∈ W . We introduce the matrices Ã := WA and B̃ := WB.

Theorem 2: Let Assumption 1 hold. System (4a) is δISS
if ∃P = PT ≻ 0 such that pij = pji = 0 ∀i ∈ W , ∀j ∈
{1, . . . , n} with j ̸= i, and

ÃTPÃ− P ≺ 0 . (14)
Proof: In order to prove the δISS of system

(4a) we show the existence of a dissipation-form
δISS Lyapunov function. We consider, as candidate,
V (x1(k), x2(k)) = ∥x1(k)− x2(k)∥2P .

From now on, for notational simplicity, we drop the depen-
dence on k. If we consider the K∞ functions ξ1(∥x1−x2∥) =
λmin(P )∥x1−x2∥2 and ξ2(∥x1−x2∥) = λmax(P )∥x1−x2∥2,
condition (2) is easily verified. To prove that V (x1, x2) sat-
isfies also condition (3), we introduce the following notation:
v1 = Ax1+Bu1, x+

1 = f(v1), v2 = Ax2+Bu2, x+
2 = f(v2),

δx = x1 − x2, δx+ = x+
1 − x+

2 , and δu = u1 − u2. We can
write

δx+ = f(v1)− f(v2) =

= Wv1 −Wv2 + f(v1)−Wv1 − f(v2) +Wv2 =

= Ãδx+ B̃δu +∆ , (15)

where ∆ = f(v1) − Wv1 − f(v2) + Wv2. From (15), we
obtain that

V (x+
1 , x

+
2 )− V (x1, x2) = (δx+)TPδx+ − δxTPδx =

= (Ãδx+ B̃δu)TP (Ãδx+ B̃δu) + 2(Ãδx+ B̃δu)TP∆+

+∆TP∆− δxTPδx . (16)

Now, we can observe that

2(Ãδx+ B̃δu)TP∆+∆TP∆ =

= 2(W (v1 − v2))
TP∆+∆TP∆ =

= (2Wv1 − 2Wv2 +∆)TP∆ =

= qTPr , (17)

where q, r ∈ Rn, with q = Wv1 + f(v1)−Wv2 − f(v2) and
r = f(v1)−Wv1−f(v2)+Wv2. The elements of the vectors
q and r are

qi =

{
fi(v1i)− fi(v2i) + Lpi(v1i − v2i) if i ∈ W ,

2v1i − 2v2i if i /∈ W ,

ri =

{
fi(v1i)− fi(v2i)− Lpi(v1i − v2i) if i ∈ W ,

0 if i /∈ W .

Therefore, by setting pij = pji = 0 ∀i ∈ W and ∀j ∈
{1, . . . , n} with j ̸= i, we can compute from (17) that

qTPr =
∑
i∈W

pii
(
(fi(v1i)− fi(v2i))

2 −L2
pi(v1i − v2i)

2
)
≤ 0 .

(18)

Inequality (18) holds since, in view of Assumption 1, fi(·)
are globally Lipschitz continuous functions, for all i ∈ W ,
and pii > 0 ∀i since P = PT ≻ 0.

As a result, by exploiting (18) and in view of Property 1,
for any τ ̸= 0, we can write that

V (x+
1 , x

+
2 )− V (x1, x2) ≤

≤ (Ãδx+ B̃δu)TP (Ãδx+ B̃δu)− δxTPδx ≤

≤ (1 + τ2)(Ãδx)TPÃδx+

(
1 +

1

τ2

)
(B̃δu)TPB̃δu +

− δxTPδx ≤
≤ −λmin(A

∗)∥x1 − x2∥2+λu∥u1 − u2∥2 ,

for any λu > λmax(B
∗), where A∗ :=P−(1+τ2)ÃTPÃ ≻ 0

by selecting a τ such that 0 < τ2 < λmin(P−ÃTPÃ)

λmax(ÃTPÃ)
,

with λmin(P − ÃTPÃ) > 0 in view of (14), and B∗ :=(
1 + 1

τ2

)
B̃TPB̃ ⪰ 0.

Finally, note that σ(∥u1 − u2∥) = λu∥u1 − u2∥2 is a K
function, whereas ξ(∥x1 − x2∥) = λmin(A

∗)∥x1 − x2∥2 is a
K∞ function. This concludes the proof.

In short, Theorem 2 ensures that system (4a) is δISS if Ã is
Schur stable and if there exists a matrix P with a specific
structure fulfilling the Lyapunov inequality (14). In particular,
P must have zero elements along all the rows and columns
(except for the diagonal element) corresponding to the rows
of (4a) whose activation function is nonlinear.

The δISS condition in Theorem 2 is now compared with
other existing conditions for the RNN systems introduced in
Section II.

A. Comparison with the condition in [20] for ESNs

In [20], [26], [30] stability-related properties of ESN are
analysed. First of all, in [30] the echo state property (ESP) is
defined. Let us consider (6a), where u and y are accounted
for as exogenous signals. In few words, system (6a) enjoys
the ESP if and only if limk→+∞∥χ(k) − χ̃(k)∥= 0 for all
χ(0), χ̃(0) ∈ Rν , where χ(k) and χ̃(k) are the trajectories
obtained by feeding (6a) with the same input sequences u(k)
and y(k), k = 0, 1, . . . and using different initial conditions
χ(0) and χ̃(0), respectively. In [30] it is shown that (6a)
enjoys ESP if σ(Wx) < 1. The latter condition, interestingly,
is equivalent to the one required for δISS provided in [26,
Proposition 2], which is more conservative than the δISS
condition proposed in this work (cf. [31, Section II.A]).
Furthermore, in [20] the authors provide the following less
conservative condition for ESP of (6a), applied to the case
where Lpi = 1, ∀i = 1, . . . , ν.
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Proposition 1 ([20]): Let ζi(·) be such that Lpi = 1, ∀i =
1, . . . , ν. If

inf
Dδ∈D

σ(DδWxD
−1
δ ) < 1,

then (6a) enjoys the ESP.
In the following proposition we show that the assumption of
Proposition 1 is equivalent to the assumption of Theorem 2
if applied to the same class of systems, i.e., (6a) with W =
{1, . . . , ν} (defined in (5)) and Lpi = 1, ∀i = 1, . . . , ν.

Proposition 2: Let W = {1, . . . , ν} and ζi(·) in (6a) have
Lpi = 1, ∀i = 1, . . . , ν. The condition of Proposition 1 holds
if and only if there exists a matrix P fulfilling the assumptions
of Theorem 2.

Proof: See the Appendix.

Note that the condition in Theorem 2 applies to a more general
class of models since we can have W ̸= {1, . . . , ν} and Lpi ̸=
1 for some i ∈ {1, . . . , ν}.

B. Comparison with the stability condition in [18] for
shallow NNARX models

In case of shallow NNARXs, the assumptions of Theo-
rem 2 requires the existence of a symmetric positive def-
inite matrix P fulfilling (14) such that pij = pji = 0,
∀i ∈ W = {n− ν + 1, . . . , n} and ∀j ∈ {1, . . . , n} with j ̸=
i.

In [18, Theorem 8] a sufficient condition for δISS of a deep
(i.e., M -layered) NNARX is proposed. For comparison pur-
poses, we recall here the condition for a 1-layer NNARX (8),
as this belongs to the class (4), where ζ(·) has activation
functions with Lipschitz constant Lp. Note also that, in [18],
a slightly different state-space formulation with respect to the
one in this paper is considered.

Proposition 3 ([18]): If ∥W0∥∥Wϕ∥< 1
Lp

√
N

, system (8)
in the state-space form in [18] is δISS.
Below we show that the assumptions of Theorem 2 are less
conservative than the one of Proposition 3 for a shallow
NNARX.

Proposition 4: Let ζ(·) in system (8) be a vector of non-
linear Lipschitz continuous functions with Lipschitz constant
Lp. If the condition of Proposition 3 holds, then there exists
a matrix P fulfilling the assumptions of Theorem 2.

Proof: See the Appendix.
Here we show an example in which the assumption of

Proposition 3 is not fulfilled whereas the assumptions of
Theorem 2 hold. Let l = 1, m̃ = 1, N = 2, ν = 1, Lp = 1,
Wϕ =

[
−0.2130 −0.8657 −1.0431 −0.2701

]
and

W0 = 0.6293. Then, ∥W0∥∥Wϕ∥= 0.8801 > 0.7071 = 1√
N

.
With the choice

P =


0.8278 0.0095 0.1847 0
0.0095 1.2258 0.7531 0
0.1847 0.7531 2.5870 0

0 0 0 0.8723

 ,

we have that the maximum eigenvalue of ÃTPÃ−P is equal
to −0.239 and, thus, ÃTPÃ− P ≺ 0.

C. Comparison with the stability condition in [17] for a
class of RNN systems

The work in [17] analyses the stability properties of a
slightly different RNN class represented by (12). In [17,
Corollary 1] some sufficient conditions for global exponential
stability are proposed. Among them, the following condition
has a similar structure to the one of Theorem 2, and it is thus
compared.

Proposition 5 ([17]): System (12) is globally exponentially
stable for any input s if there exists a matrix P =PT ≻0 such
that

M̂TPM̂ − P ≺ 0 , (19)

where M̂ = |E|+W |A|, and W = diag(Lp1, . . . , Lpn).
For the sake of comparison, we now show that the as-

sumptions of Theorem 2 are less conservative than the one
of Proposition 5 for the simplified class of RNN systems (12)
with E = 0n,n. Therefore, the following proposition is stated.

Proposition 6: Let E = 0n,n in system (12). If the con-
dition of Proposition 5 holds, then there exists a matrix P
fulfilling the assumptions of Theorem 2.

Proof: See the Appendix.
Here we show an example in which the assumption of Propo-
sition 5 is not fulfilled whereas the ones of Theorem 2 hold.
Let n = 2, E = 02,2, W = I2, W = {1, 2},

A =

[
0.4178 −0.8544
0.8199 0.3573

]
.

Hence, the spectral radius of M̂ is equal to 1.225 and so (19)
is never fulfilled. With the choice

P =

[
1.2122 0

0 1.2657

]
,

we have that the maximum eigenvalue of ÃTPÃ−P is equal
to −0.1135 and, thus, ÃTPÃ− P ≺ 0.

D. Comparison with the contraction condition in [21] for
shallow ci-RNNs

In [21, Eq. (10)] the following sufficient condition for the
contraction property (i.e., guaranteeing that, for any input sig-
nal, initial conditions are forgotten exponentially) is proposed.

Proposition 7 ([21]): System (13), with E = In, is con-
tracting if there exists a diagonal matrix P = PT ≻ 0 such
that [

2In − P FT

F P

]
≻ 0 . (20)

The following result shows that the assumptions of Theorem
2 are less conservative than the condition in Proposition 7.

Proposition 8: If the condition of Proposition 7 holds for
system (13), with E = In and Lipschitz constant Lp = 1,
then there exists a matrix P fulfilling the assumptions of
Theorem 2.

Proof: See the Appendix.
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Here we show an example in which the assumption of Propo-
sition 7 is not fulfilled whereas the ones of Theorem 2 hold.
Let n = 2 and W = I2. By choosing

A = F =

[
0.0264 −2.1459
0.1210 −0.2080

]
, P =

[
0.2919 0

0 1.8481

]
,

we have that the maximum eigenvalue of ÃTPÃ−P is equal
to −0.2427 and, thus, ÃTPÃ−P ≺ 0. On the other hand, no
diagonal matrix P ≻ 0 such that (20) holds is found by the
solver.1

IV. δISS OF INTERCONNECTED RNNS

In this section we consider the case where more systems
in the class defined by (4) are connected through different
interconnection schemes (i.e., in series and in feedback). As
a result, we will show that the overall model of the com-
posite system lies itself in the class defined by (4), implying
that its stability properties can be established by resorting
to Theorem 2. This has the important implication that a
system in the class defined by (4) can be controlled through
suitable feedback controllers and feedforward compensators
in class (4), and one can use Theorem 2 to establish stability
properties of the control scheme. This will pave the way to
the control design conditions discussed in Section V.

A. Feedforward interconnection

In this section we investigate the δISS conditions of the
series of Ms systems lying in the class (4). Specifically, each
system is numbered in increasing order with respect to i and
defined by

xi(k + 1) = fsi(Aixi(k) +Biui(k)) , (21a)
yi(k) = Cixi(k) +Diui(k) , (21b)

where ui ∈ Rmi , yi ∈ Rli , and xi ∈ Rni . Because of the
series interconnection, it holds that ui(k) = yi−1(k), for all
i = 2, ...,Ms, where mi = li−1. We can state the following
result.

Proposition 9: The series of Ms systems in the class (4)
lies in the class (4).

Proof: Firstly, note that the input of the first subsys-
tem is the input of the overall series interconnection, i.e.,
u(k) = u1(k), whereas the output of the last subsystem of
the series is the overall output, i.e., y(k) = yMs(k). Since
yi(k) = ui−1(k), for all i = 2, ...,Ms, due to the series
interconnection, the second subsystem can be written as

x2(k + 1) = fs2(A2x2(k) +B2C1x1(k) +B2D1u(k)) ,

y2(k) = C2x2(k) +D2C1x1(k) +D2D1u(k) .
(22)

1YALMIP [32] and MOSEK [33].

SC
+

−

r e ysus

Fig. 1. Feedback control scheme: C is the controller, S is the system to
be controlled, r is the reference signal, e is the tracking error, us is the
manipulated variable, and ys is the output of the system.

Following the same reasoning, for i = 3, ...,Ms, it holds that

xi(k + 1) = fsi(Bi(

i−2∑
h=1

(

i−h−2∏
j=0

Di−1−j)Chxh(k))+

+BiCi−1xi−1(k)+Aixi(k)+Bi(

i−2∏
j=0

Di−1−j)u(k)) , (23a)

yi(k) =

i−1∑
h=1

(

i−h−1∏
j=0

Di−j)Chxh(k) + Cixi(k)+

+ (

i−1∏
j=0

Di−j)u(k) . (23b)

From (21)-(22)-(23), by introducing the extended state
vector x(k) =

[
x1(k)

T . . . xMs
(k)T

]T
, it is possi-

ble to construct the matrices A, B, C, D and the vector
f(·) =

[
fs1(·)T . . . fsMs

(·)T
]T

of the overall system in
the form (4). This concludes the proof.

To guarantee the δISS of the series of Ms systems in
the form (4), one way is to write the overall series system
as (4), and then to impose the sufficient condition for δISS
in Theorem 2 to the overall system. Alternatively, we can
impose the sufficient condition for δISS in Theorem 2 to
each subsystem. In [12, Proposition 4.7], a theoretical result
proves that the series interconnection of two δISS continuous-
time systems is δISS. The same property can be extended
to discrete-time systems. In the following Proposition 10 we
show that, given a series of discrete-time systems each one
satisfying the assumptions of Theorem 2 for δISS, their series
interconnection satisfies the same assumptions.

Proposition 10: Let us consider a series of systems in the
class (4), each one fulfilling the assumptions of Theorem 2.
The series of these systems satisfies the assumptions of The-
orem 2.

Proof: See the Appendix.

B. Feedback interconnection

In this section we investigate the δISS conditions of the
feedback of two systems lying in the class (4). The baseline
feedback control scheme is depicted in Figure 1, where r is
the reference signal, and e is the tracking error. We define the
equations of the controller C as

xc(k + 1) = fc(Acxc(k) +Bcuc(k)) , (24a)
yc(k) = Ccxc(k) +Dcuc(k) , (24b)
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where uc ∈ Rmc , yc ∈ Rlc , and xc ∈ Rnc . We consider
the case in which the system is strictly proper to avoid
algebraic loops. Thus, we define the equations of the (possibly
identified) controlled system S as

xs(k + 1) = fs(Asxs(k) +Bsus(k)) , (25a)
ys(k) = Csxs(k) , (25b)

where us ∈ Rms , ys ∈ Rls , and xs ∈ Rns . Let also ms = lc,
and mc = ls. We can state the following result.

Proposition 11: The feedback interconnection in Figure 1
of the systems (24)-(25) in the class (4) lies in the class (4).

Proof: Firstly, note from Figure 1 that r is overall input
to the feedback interconnection, i.e., u(k) = r(k), whereas ys
is the overall output, i.e., y(k) = ys(k). Since uc(k) = e(k) =
r(k)−ys(k) = r(k)−Csxs(k) due to the negative feedback in-
terconnection, and us(k) = yc(k) = Ccxc(k) +Dcuc(k), we
can write the equations of the overall closed-loop system in
the formulation (4) through the following definitions:

A =

[
Ac −BcCs

BsCc As −BsDcCs

]
, B =

[
Bc

BsDc

]
,

C =
[
0ls,nc

Cs

]
, D = 0ls,ls ,

(26)

x(k) =
[
xc(k)

T xs(k)
T
]T

, and f(·) =
[
fc(·)T fs(·)T

]T
.

It is possible to show that the previous result holds also for the
case in which the controller is strictly proper and the system is
not (i.e., yc(k) = Ccxc(k) and ys(k) = Csxs(k) +Dsus(k))
by defining

A =

[
Ac −BcDsCc −BcCs

BsCc As

]
, B =

[
Bc

0ns,ls

]
,

C =
[
DsCc Cs

]
, D = 0ls,ls , x(k) =

[
xc(k)

T xs(k)
T
]T

,
and f(·) =

[
fc(·)T fs(·)T

]T
.

In view of Proposition 11 and Theorem 2, it is possible to
analyse or enforce (through the tuning of the parameters of C)
the δISS property to the feedback control scheme in Figure 1,
where both the controller and the system are in the class (4).

V. CONTROLLER DESIGN WITH δISS GUARANTEES

This section discusses the design of controllers that confer
δISS guarantees to the control system. In this paper, we will
not focus on the performances of the control system, which
will be a matter of future research [34].

In general, the δISS condition (14) in Theorem 2 corre-
sponds to a nonlinear constraint in control design, due to the
product between A in (26) and P , both containing decision
variables. However, it can be handled by common nonlinear
solvers.2 On the other hand, there are some particular cases
in which it can be reformulated as a linear matrix inequality
(LMI) constraint, as shown in the following section.

2It can be enforced by the MATLAB® function fmincon or, in Python,
by adding in the loss function a term which penalizes the violation of the
constraint as done in [19, Section 5.2].

A. LMI-based control design
We consider a control system whose overall equations are in

the class (4). In this section we show that, in some particular
cases, the matrix A of the closed-loop system can be written
as A = F+GJ , or as A = F+JG, where F and G are known
matrices depending on the system to be controlled, and J is
a matrix to be tuned taking the role of the control gain. The
objective is to tune J so that the closed-loop system enjoys
the δISS property. The following results hold (potentially
applicable to both closed-loop or open-loop systems).

Proposition 12: Let us consider a system with equations
in the class (4), where A = F + GJ . Let F̃ := WF and
G̃ := WG, where W = diag(Lp1, . . . , Lpn) is the diagonal
matrix defined in Section III. If ∃P = PT , having the structure
required by Theorem 2, and ∃H such that[

P (F̃P + G̃H)T

F̃P + G̃H P

]
≻ 0 , (27)

then, if we set J = HP−1, the system (4) is δISS.
Proof: Firstly, note that from (27) it follows that P ≻ 0

and P−1 ≻ 0. Secondly, by resorting to the Schur comple-
ment, it holds that

P − (F̃P + G̃H)TP−1(F̃P + G̃H) ≻ 0 ,

Since H = JP , then we can write

P (F̃ + G̃J)TP−1(F̃ + G̃J)P − PP−1P ≺ 0 ,

P ((F̃ + G̃J)TP−1(F̃ + G̃J)− P−1)P ≺ 0 ,

ÃTP−1Ã− P−1 ≺ 0 , (28)

where Ã = F̃ + G̃J . Note that P−1 = P−T ≻ 0 is a matrix
with the same structure of P . From (28), the assumptions of
Theorem 2 hold, concluding the proof.

Proposition 13: Let us consider a system with equations in
the class (4), where A = F + JG. Let F̃ = WF , where
W = diag(Lp1, . . . , Lpn) is the diagonal matrix defined in
Section III and Lpi > 0 ∀i. If ∃P = PT , having the structure
required by Theorem 2, and ∃H such that[

P − F̃TPF̃ −GTHT F̃ − F̃THG GTHT

HG P

]
≻ 0 , (29)

then, if we set J = W−1P−1H , the system (4) is δISS.
Proof: Firstly, note that from (29) it follows that P ≻ 0.

Secondly, by resorting to the Schur complement, it holds that

P − F̃TPF̃ −GTHT F̃ − F̃THG−GTHTP−1HG ≻ 0 ,

Since H = P J̃ , where J̃ := WJ , then we can write

F̃TPF̃ +GT J̃TPF̃ + F̃TP J̃G+GT J̃TP J̃G− P ≺ 0 ,

ÃTPÃ− P ≺ 0 , (30)

where Ã = F̃+J̃G. From (30), the assumptions of Theorem 2
hold, concluding the proof.
Note that the feasibility problem consisting of finding P with
the required structure and H such that (27) (or (29)) is fulfilled
can be easily solved, e.g., via YALMIP [32] and MOSEK [33].
Now, we will show some examples of control design problems
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S

K

+

+

u0

xs

us

uK

ys

Fig. 2. State-feedback control scheme: K is the state-feedback gain
matrix, S is the system to be controlled, ys is the output of the system,
xs is the state of the system, u0 is the feedforward term, uK = Kxs,
and us is the manipulated variable.

which can be solved using the results in Propositions 12
and 13. Note that, if J is a full matrix whose elements are
the controller parameters, then H is a full matrix as well.
However, if J is a block matrix containing some zero blocks,
then further constraints on the structure of the matrices H and
P must be considered, as we will see in some of the following
examples.

Example 5. Static linear state-feedback controller
We consider the problem of designing a state-feedback gain

matrix K such that the control system in Figure 2 enjoys δISS.
The equations of the system are defined as in (25). In this
example the equation of the controller is

us(k) = Kxs(k) + u0(k) , (31)

where K ∈ Rms×ns , u0 ∈ Rms is a suitable feedforward term
possibly depending upon the reference signal, and the state
xs ∈ Rns is measurable or can be estimated by a suitable
observer. Note that the state is certainly known in case it
depends only on current and past input and output samples,
e.g., a shallow NNARX where W0 and b0 are a priori selected
and W0 is square and invertible. In [26], in case of ESNs, a
possible observer is proposed. More generally, some insights
about the design of suitable observers for generic systems in
class (4) are provided in Section V-B.

Hence, the closed-loop system has equations in the class (4),
where A = As +BsK has the structure required by Proposi-
tion 12 with F = As, G = Bs, and J = K. □

Example 6. Echo state dynamic output-feedback controller
We consider the problem of designing an output-feedback

controller for the control scheme in Figure 1, where the system
lies in the class (25) and the controller is described by an ESN.
We define the equations of the controller as

xc(k + 1) = ζc(Wxcxc(k) +Wee(k) +Wycyc(k)) , (32a)
yc(k) = Wout1c

xc(k) , (32b)

where the direct dependence of the input in the output
equation is omitted, i.e., Wout2c

= 0lc,mc
. By recalling that

us(k) = yc(k) and e(k) = r(k) − ys(k), the equations of
the overall closed-loop system are in the class (4), where
x(k) =

[
xc(k)

T xs(k)
T
]T

, f(·) =
[
ζc(·)T fs(·)T

]T
, C =

[
0ls,nc

Cs

]
, D = 0ls,ls ,

A =

[
Wxc

+Wyc
Wout1c

−WeCs

BsWout1c
As

]
, B =

[
We

0ns,ls

]
,

y(k) = ys(k) is the overall output, and u(k) = r(k) is the
overall input. Since the system matrices are known and the
matrices of the controller in the state equation are randomly
generated, the only unknown matrix is Wout1c . Hence, it is
possible to write A = F +GJ , where J =

[
Wout1c

0lc,ns

]
,

F =

[
Wxc

−WeCs

0ns,nc
As

]
, G =

[
Wyc

Bs

]
.

Therefore, it is possible to apply the result in Proposition 12.
However, in order to obtain a J with the required structure,
it is necessary to further constrain (i) the structure of the
matrix H , i.e., H =

[
H̃ 0lc,ns

]
, where H̃ ∈ Rlc×nc is a

free variable, and (ii) the structure of the matrix P , i.e., P =
PT = diag(P1, P2), where P1 ∈ Rnc×nc and P2 ∈ Rns×ns

have the structure required by Theorem 2. □

Example 7. Shallow NNARX dynamic output-feedback
controller

We consider the problem of designing an output-feedback
controller for the control scheme in Figure 1, where the system
lies in the class (25) and the controller is described by a
shallow NNARX (8). We use the subscript c to denote the
matrices and dimensions of the controller. For simplicity, we
set bc = 0νc,1 and b0c = 0lc,1, which is reasonable in case
normalized data are considered. We also assume that W0c is
a priori selected, whereas Wϕc =

[
Wϕ1c

Wϕ2c
Wϕ3c

]
and

Wuc
are the controller unknown matrices to be tuned. Note that

the controller can be written in the state-space representation
(24), where xc(k) is defined as in (10), Ac as in (11), Bc =[
0Tτc,mc

0Tlc,mc
Imc

WT
uc

]T
, Cc =

[
0lc,nc−νc W0c

]
,

Dc = 0lc,mc , fc(·) =
[
idnc−νc

(·)T ζc(·)T
]T

, and
uc(k) = e(k) = r(k) − ys(k). By recalling that
us(k) = yc(k), the equations of the overall closed-loop system
are in the class (4), where x(k) =

[
xs(k)

T xc(k)
T
]T

,
f(·) =

[
fs(·)T fc(·)T

]T
, C =

[
Cs 0ls,nc

]
, D = 0ls,ls ,

A =

[
As BsCc

−BcCs Ac

]
, B =

[
0ns,ls

Bc

]
,

y(k) = ys(k) is the overall output, and u(k) = r(k) is the
overall input. Hence, it is possible to write A = F + JG,

where J =

[
0nj1 ,nj2[

Wuc
Wϕc

]] ,

F =


As BsCc

0τc,ns

0lc,ns

−Cs

0νc,ns



0τc,lc+mc

Iτc 0τc,νc

0lc,lc+mc
0lc,τc W0c

0ls,lc+mc 0ls,τc 0ls,νc

0νc,lc+mc 0νc,τc 0νc,νc


 ,

G =

 −Cs 0ls,nc

0nj2
−ls,ns

[
Inc−νc

0nc−νc,νc

0lc,nc−νc W0c

] ,

nj1 = ns+nc−νc, and nj2 = (mc+lc)Nc+mc. Therefore, it
is possible to apply the result in Proposition 13. However, in
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order to obtain a J with the required structure, it is necessary
to further constrain (i) the structure of the matrix H , i.e., H =[
0Tnj1 ,nj2

H̃T
]T

, where H̃ ∈ Rνc×nj2 is a free variable, and
(ii) the structure of the matrix P , i.e., P = PT = diag(P1, P2),
where, in turn, P1 ∈ Rnj1

×nj1 and P2 ∈ Rνc×νc are matrices
with the structure required by Theorem 2. □

B. Observer design
In general, if the state is not measurable, the application

of state-feedback control schemes (e.g., the one in Figure 2)
requires the availability of a state estimate. For a system in
class (4), the following observer is proposed to provide a
reliable estimate x̂ of the state x, based on the input-output
measures u and y:

x̂(k + 1) = f(Ax̂(k) +Bu(k) + L(y(k)− ŷ(k))) (33a)
ŷ(k) = Cx̂(k) +Du(k) (33b)

where L is the observer gain to be designed according to the
following result.

Proposition 14: Let us consider a system with equa-
tions in the class (4). Let us define the diagonal matrix
W = diag(Lp1, . . . , Lpn) as specified in Section III. If the
observer (33) is employed, with L such that[ 1

λmax(W )2 In (A− LC)T

A− LC In

]
≻ 0 , (34)

then x̂(k) → x(k) as k → +∞.
Proof: Firstly, note that the dynamics of the estimation

error is defined as ê(k) := x(k)− x̂(k). By jointly considering
(4) and (33), the 2-norm of the estimation error at time instant
k + 1 can be written as

∥ê(k + 1)∥ = ∥f(Ax(k) +Bu(k))− f(Ax̂(k) +Bu(k)+

+ L(Cx(k) +Du(k)− (Cx̂(k) +Du(k))) ∥.

According to Assumption 1 and to the definition of W , we
can write

∥ê(k + 1)∥ ≤ λmax(W )∥Ax(k) +Bu(k)− (Ax̂(k)+

+Bu(k) + L(Cx(k)− Cx̂(k))∥=
= λmax(W )∥(A− LC)(x(k)− x̂(k))∥≤
≤ λmax(W )∥A− LC∥∥ê(k)∥ .

Thus, the condition

λmax(W )∥A− LC∥< 1 , (35)

guarantees that the estimation error converges to 0, i.e.,
∥ê(k)∥→ 0 and x̂(k) → x(k) as k → +∞. Note that (35)
is equivalent to the following condition

1

λmax(W )2
In − (A− LC)T In(A− LC) ≻ 0 ,

which can be recast as (34) in view of the Schur complement.

The study of the convergence rate of the observer as well as
the analysis of the case in which a non-measurable disturbance
acts on the system state and/or output will be matter of future
research.

S
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r ysus

uK

xs

(a)

S
∫+

−

e ysv
C

us
r

(b)

S
∫

+−

e ysv

C

r us

yc

+ +

(c)

Fig. 3. Closed-loop control schemes with explicit integral action, where∫
is the discrete-time integrator, and S the system to be controlled. (a)

Static state-feedback controller with gain K. (b) Integrator in series to
the controller C. (c) Integrator in parallel to the controller C.

C. Control schemes with zero steady-state error
In this section the possibility to guarantee zero steady-

state error in case of tracking of piecewise constant reference
signals for systems in the class (4) is investigated. This can
be guaranteed, e.g., using the control schemes in Figure 3,
where the system S is in the class (25), the controller C is
in the class (24), and the block “

∫
” denotes a discrete-time

integrator with equation

η(k + 1) = η(k) + e(k) , (36a)
v(k) = M(η(k) + e(k)) , (36b)

where η ∈ Rls is the state of the integrator, and M ∈ Rls×ls

is its gain matrix. In the following proposition we will prove
that all the control schemes depicted in Figure 3 lead to a
common general model of type

χ(k + 1) = fχ(Aχχ(k) +Aηη(k) +Bχr(k)) , (37a)
η(k + 1) = −Cχχ(k) + η(k) + r(k) , (37b)

ys(k) = Cχχ(k) , (37c)

where r ∈ Rls is the reference input, ys ∈ Rls is the output
of the system, χ ∈ Rnχ is a vector of states, fχ(·) ∈ Rnχ is
a vector of scalar functions, Aχ ∈ Rnχ×nχ , Aη ∈ Rnχ×ls ,
Bχ ∈ Rnχ×ls , and Cχ ∈ Rls×nχ . We can state the following
result.

Proposition 15: Let the controller C be in the class (24)
and the system S be in the class (25). The equations of the
closed-loop systems in Figure 3 lie in the class (37). Moreover,
the set of systems in the class (37) is a subset of the set of
systems in the class (4).

Proof: See the Appendix.
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Given an equilibrium point, provided that the control schemes
in Figure 3 are δISS, the zero steady-state error is ensured
by the explicit integral action, since such an equilibrium
is globally asymptotically stable according to Definition 5.
However, there are some cases in which the δISS property
cannot be enforced to the control schemes in Figure 3, e.g.,
if the output ys of the system is bounded. This is the case of
some RNN architectures where all the activation functions are
bounded, e.g., the hyperbolic tangent or the sigmoid function.
Some examples are ESNs where Wout2 = 0ls,ms

and ζ(·) =
tanh(·) [8] or shallow NNARXs where ζ(·) = tanh(·). In this
regard, the following result holds.

Proposition 16: Let us consider a control system with equa-
tions in the class (37). Let at least one output of the system
be bounded, i.e., ysi(k) ≥ ymin and/or ysi(k) ≤ ymax for all
k, and for at least one i = 1, ..., ls, where ymax, ymin ∈ R.
Then, the control system (37) cannot enjoy the δISS property.

Proof: See the Appendix.
Hence, if we consider the system (37), where fχ(·) is com-
posed of bounded nonlinear globally Lipschitz continuous
functions, we have that the assumptions of Theorem 2 can
never be fulfilled, as a consequence of the result in Proposi-
tion 16. Nevertheless, if we consider a system structure where
at least a state equation in (37a) is linear, and the latter state
directly affects the output in (37c), then ys may be unbounded,
and the condition in Theorem 2, as well as δISS, can be
enforced. The following example corroborates the statement
in Proposition 16 and our remark.

Example 8. State-feedback control with explicit integrator
We consider a SISO system in the class (25) with two

states, where fs(·) =
[
tanh(·) f2(·)

]T
. Let us consider a

state-feedback control law and an explicit integral action (36)
as in Figure 3(a), i.e., us(k) = Kxs(k) + M(η(k) + e(k)),
where e(k) = r(k)−Csxs(k). As stated in Proposition 15, the
closed-loop system is in the class (37), and by extension also
in the class (4). The matrix A of the closed-loop system is

A =

[
As +BsK −BsMCs BsM

−Cs 1

]
,

and can be rewritten as A = F +GJ , where

F =

[
As 02,1
−Cs 1

]
, G =

[
Bs

0

]
,

and J =
[
K −MCs M

]
takes the role of the control gain.

Note that
[
K M

]
= JE−1, where E =

[
I2 02,1

−Cs 1

]
.

Let us choose As=

[
−0.4686 1.0984

0 1.15

]
, Bs=

[
0.7015
−2.0518

]
,

Cs =
[
−0.3538 −0.8236

]
, and f2(·) = id(·).

According to Theorem 2, matrix P must have the fol-
lowing structure: P = diag(p1, P2), where p1 ∈ R and
P2 ∈ R2×2. A feasible solution is returned by solving (27)
(where W = I3) with YALMIP and MOSEK, ensuring that
the closed-loop system enjoys the δISS property according
to Proposition 12. The following matrices and parameters

are obtained: P =

2.1317 0 0
0 0.588 −0.5283
0 −0.5283 1.3569

, H =

0 5 10 15 20

Time [s]

-20

-10

0

10

20

30

O
u

tp
u

t

y
s

r

Fig. 4. Output trajectory of the closed-loop discrete-time system with
state-feedback and explicit integral action. Black dashed line: reference
signal trajectory; blue line: output signal trajectory.

[
0.1694 0.2875 −0.1088

]
, K =

[
0.0196 0.5016

]
, and

M = 0.1694. In Figure 4 the reference tracking results of
the closed-loop system are depicted, where we can see that
the closed-loop system enjoys δISS and its equilibria are
asymptotically stable even if the open-loop system displays
unstable dynamics, as we can see from the second (linear)
state equation of the open-loop system. Furthermore, due to the
explicit integral action, a zero steady-state error is achieved.

On the other hand, if we take f2(·) = tanh(·), matrix P
is constrained to have the following structure, on the basis
of Theorem 2: P = diag(p1, p2, p3), where p1, p2, p3 ∈ R.
An unfeasible solution is returned by solving (27) (where
W = I3), corroborating the statement in Proposition 16. □

If the control schemes in Figure 3 cannot be used to achieve
zero steady-state error while ensuring δISS for the closed-loop
system, a possible solution to improve the static performance
could be the use of a δISS feedforward compensator in the
class (4). Since it is dynamic, this compensator can be used
to enhance both static and dynamic performances. Moreover,
provided that the closed-loop system is δISS, the addition
of a δISS feedforward compensator preserves the δISS of
the overall control system. This fact follows straightforwardly
from the result in Proposition 10, since such a component is
placed in series to the closed-loop system. Future research will
address methods for the design of feedforward compensators,
as well as the analysis of the dynamic performances of the
control system.

VI. SIMULATION RESULTS

In order to validate the theoretical results in the previous
sections we propose here a simulation example. The case study
consists of the control of the following ESN-based nonlinear
SISO system with ns = 8 states

xs(k + 1)=ζs(Wxs
xs(k) +Wus

us(k) +Wys
ys(k)) , (38a)

ys(k)=Wout1s
xs(k) , (38b)

where the direct dependence of the input in the output equation
is absent, i.e., Wout2s

= 0, and ζsi(·) = id(·) for i = 1, . . . , 5,
whereas ζsi(·) = tanh(·) for i = 6, 7, 8. The structure of
the state equations, both nonlinear and linear, is such that
the output can take unbounded values, paving the way to the
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Fig. 5. Control scheme with explicit integral action and ESN in series:
∫

is the discrete-time integrator, ESN the echo state dynamic controller,
and S the system to be controlled.

possible inclusion of an explicit integral action (according to
Proposition 16), and to more freedom in the control design
(e.g., see Theorem 2).

The model (38) is identified using a noiseless dataset
containing 1400 normalized input-output data collected with a
sampling time Ts = 25 s from a simulated pH neutralization
process (see [26], [35], [36] for a detailed description of
the system model). The pH process is a nonlinear SISO
dynamical system where the input is the alkaline flowrate, and
the output is the pH concentration. The training input data
consist of a multilevel pseudo-random signal (MPRS) [35],
whose amplitude is in the range [12, 16] mL/s. The training
is carried out according to the “ESN training algorithm” (see
[26] for an accurate description). Basically, Wxs

, Wus
, and

Wys are randomly generated, whereas Wout1s is obtained by
solving a least squares problem based on the available dataset,
where the initial 100 data points are discarded to accommodate
the effect of the initial transient. To test the identification
performance, the following fitting index is calculated over a
validation dataset composed of 600 new normalized input-
output data

FIT% = 100 ·
(
1− ∥y⃗ − y⃗s∥

∥y⃗ − ȳ∥

)
∈ (−∞, 100] , (39)

where y⃗ is the real system output sequence, y⃗s is the output
sequence obtained with (38) and ȳ is a vector with all the
elements equal to the mean value of the real output sequence
y⃗. A satisfactory fitting FIT% = 90.2995% is achieved.

The control objective in this example is the achievement
of perfect asymptotic tracking of constant reference signals.
To this aim, the control architecture in Figure 5 is taken into
account, where an explicit integral action is also embedded. In
particular, S is the system (38) to be controlled, whose state
is assumed measurable, “

∫
” is defined as in (36) by setting

M = 1, and “ESN” is a non-strictly proper ESN controller
with nc = 5 states, whose input vector contains the integrator
output v jointly to the system state vector xs. Overall, the
controller equations are the following

xc(k + 1) = ζc(Wxc
xc(k) +Wuc

uc(k) +Wyc
yc(k)), (40a)

η(k + 1) = η(k) + e(k) , (40b)
yc(k) = Wout1c

xc(k) +Wout2c
uc(k) , (40c)

where ζci(·) = tanh(·) for all i = 1, . . . , 5,
uc(k) =

[
v(k) xs(k)

T
]T

, and v(k) = η(k) + e(k).
Let us define Wuc

=
[
Wucv

Wucx

]
, and Wout2c

=[
Wout2cv

Wout2cx

]
, where Wucv

∈ Rnc , Wucx
∈ Rnc×ns ,

Wout2cv
∈ R, and Wout2cx

∈ R1×ns . Also, let us in-
troduce x(k) =

[
xc(k)

T η(k) xs(k)
T
]T

, and f(·) =

[
ζc(·)T id(·) ζs(·)T

]T
. By recalling that us(k) = yc(k)

and e(k) = r(k)−ys(k), we can write the closed-loop system
equations in the class (4), where the matrix A is defined as

A=

Wxc
+Wyc

Wout1c
Wucv

+Wyc
Wout2cv

A13

01,nc 1 −Wout1s
WusWout1c

WusWout2cv
A33

,
where A13 = Wucx − WucvWout1s

+ Wyc(Wout2cx
−

Wout2cvWout1s ), and A33 = Wxs + WysWout1s
+

Wus(Wout2cx
−Wout2cv

Wout1s
). Since Wxc , Wuc , and Wyc

are known randomly generated matrices, we can rewrite A as
F +GJ , where

F =

 Wxc Wucv Wucx −WucvWout1s
01,nc 1 −Wout1s
0ns,nc

0ns,1 Wxs
+Wys

Wout1s

 , G=

Wyc

0
Wus

 ,

and J=
[
Wout1c

Wout2cv
Wout2cx

−Wout2cv
Wout1s

]
takes

the role of the control gain. Note that the unknown controller
parameters can be computed as

[
Wout1c

Wout2c

]
= JE−1,

where

E =

 Inc
0nc,1 0nc,ns

01,nc
1 −Wout1s

0ns,nc
0ns,1 Ins

 .

According to Proposition 12, the matrix P must have the
following structure: P = diag(PD1

, PF , PD2
), where PD1

∈
R5×5 and PD2 ∈ R3×3 are diagonal matrices, whereas PF ∈
R6×6 is a full matrix. A feasible solution is returned by solving
(27) (where W = Inc+ns+1) with YALMIP and MOSEK,
ensuring that the closed-loop system enjoys the δISS property
due to Proposition 12.

In Figure 6 the reference tracking results of the closed-loop
system starting from 20 different random initial conditions are
depicted, where we can see that the equilibria are asymptoti-
cally stable and the output trajectories converge to each other
in view of the δISS property. Moreover, due to the explicit
integral action, a zero steady-state error is achieved. In Figure
7 the corresponding control input trajectories are shown.

The previously tuned controller is also tested on the pH
process physics-based simulator. To this aim, some remarks
are due. Firstly, in the control scheme, a denormalization of
the control variable us and a normalization of the output
ys are performed upstream and downstream of the process,
respectively. A normalization of the reference signal is also
carried out. The same normalization parameters applied in the
identification are employed.

The second issue to be considered concerns the fact that
the state measurements of the system (38), necessary for the
state-feedback, are not available in this second case. Hence,
a suitable observer is required. As suggested in Section V-B,
the following observer is tuned:

x̂s(k + 1) = ζs((Wxs
+Wys

Wout1s
)x̂s(k) +Wus

us(k)+

+ L(ys(k)− ŷs(k))) , (41a)
ŷs(k) = Wout1s

x̂s(k) , (41b)

where the observer gain L is designed using the result in
Proposition 14.
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Fig. 6. Denormalized output trajectories of the closed-loop discrete-
time system starting from different initial conditions, with zoom of the
initial transient. Black dashed line: reference trajectory; colored lines:
output trajectories for 20 different initial conditions.
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Fig. 7. Denormalized control input trajectories of the closed-loop
discrete-time system starting from different initial conditions, with zoom
of the initial transient. Colored lines: input trajectories for 20 different
initial conditions.

In Figure 8 the reference tracking results of the closed-
loop system using the simulated pH process and starting from
20 different random initial conditions are represented, where
we can see that the equilibria are asymptotically stable and,
due to the explicit integral action, a zero steady-state error
is also achieved. In Figure 9 the corresponding control input
trajectories are depicted.

VII. CONCLUSIONS

In this paper, we have proposed a novel LMI-based condi-
tion that guarantees δISS for a class of RNNs. The reduced
conservativeness of this condition with respect to other con-
ditions in the literature has been proven. Since this condition
is based on linear matrix inequalities, it is computationally
lightweight and can be used for both analysis and control
system design. More specifically, we have shown that it is
efficiently applicable for the design of dedicated control sys-
tems including feedback regulators (in the form, e.g., of static
state-feedback controllers, echo state-based or neural NARX-
based output feedback dynamic controllers). The design of
observers and the possible inclusion of integrators in the
control scheme have been also investigated. Simulation results
have corroborated the effectiveness of the theoretical results.
Future work will tackle a number of issues remained open
in this work. Firstly, we will address a possible extension
to alternative conditions in order to include other classes of
RNNs (e.g., multi-layers NNARX or long short-term memory
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Fig. 8. Output trajectories of the closed-loop system using the simulated
pH process and starting from different initial conditions, with zoom of the
initial transient. Black dashed line: reference trajectory; colored lines:
output trajectories for 20 different initial conditions.
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Fig. 9. Control input trajectories of the closed-loop system using the
simulated pH process and starting from different initial conditions, with
zoom of the initial transient. Colored lines: input trajectories for 20
different initial conditions.

networks), as well as a deeper comparison and the extension to
control design of the contraction conditions in [22]. Secondly,
the development of a (possibly data-based) cost function which
takes into account the desired dynamic performances of the
control system will be investigated [34]. Then, we will address
the design of a suitable δISS feedforward compensator to be
used to achieve static precision in case an explicit integral ac-
tion cannot be embedded in the control scheme. Furthermore,
the convergence rate of the observer together with the analysis
of the case in which a non-measurable disturbance acts on
the system will be studied. Finally, the application of the
theoretical results in this paper to an experimental apparatus
will be carried out.

APPENDIX

Proof of Proposition 2

Firstly, note that Dδ must be invertible in view of Propo-
sition 1. Also, the condition infDδ∈D σ(DδWxD

−1
δ ) < 1 is

equivalent to require the existence of Dδ ∈ D such that
σ(DδWxD

−1
δ ) = ∥DδWxD

−1
δ ∥< 1, or equivalently,

D−T
δ WT

x DT
δ DδWxD

−1
δ − Iν ≺ 0 ,

WT
x DT

δ DδWx −DT
δ Dδ ≺ 0 . (42)

Now, let us define P = DT
δ Dδ . Note that P ≻ 0 diagonal if

and only if there exists Dδ diagonal and invertible such that
P = DT

δ Dδ . Thus, condition (42) (and, in turn, the condition

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327937

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 13

in Proposition 1) is equivalent to require the existence of a
diagonal matrix P ≻ 0 such that

WT
x PWx − P ≺ 0 , (43)

which coincides with the condition in Theorem 2 for system
(6a) in case all the activation functions are strictly nonlinear,
i.e., W = {1, . . . , ν}, and the Lipschitz constants are Lpi = 1,
∀i = 1, . . . , ν. This concludes the proof. ■

Proof of Proposition 4

The objective is to prove that the fulfilment of the assump-
tion of Proposition 3 implies the fulfilment of the assumptions
of Theorem 2. The latter, for a 1-layer NNARX, require the
existence of a matrix P = PT ≻ 0 such that

ÃTPÃ− P ≺ 0 ,

where Ã = WA, A =


0τ,l+m̃ Iτ 0τ,ν
0l,l+m̃ 0l,τ W0

0m̃,l+m̃ 0m̃,τ 0m̃,ν

Wϕ1 Wϕ2 Wϕ3W0

,

W =

[
In−ν 0n−ν,ν

0ν,n−ν LpIν

]
, P =

[
P̃ 0n−ν,ν

0ν,n−ν PD

]
,

P̃ ∈ Rn−ν×n−ν , and PD ∈ Rν×ν is a diagonal matrix. For
notational clarity, we recall that n−ν = τ + l+ m̃. Moreover,
we can write A = AϕW̃0, by defining

Aϕ =


0τ,l+m̃ Iτ 0τ,l
0l,l+m̃ 0l,τ Il
0m̃,l+m̃ 0m̃,τ 0m̃,l

Wϕ1
Wϕ2

Wϕ3

 ,

and

W̃0 =

 Il+m̃ 0l+m̃,τ 0l+m̃,ν

0τ,l+m̃ Iτ 0τ,ν
0l,l+m̃ 0l,τ W0

 .

Furthermore, we can define Ãϕ = WAϕ =

[
Q

LpWϕ

]
, where

Wϕ =
[
Wϕ1 Wϕ2 Wϕ3

]
,

and

Q =

 0τ,l+m̃ Iτ 0τ,l
0l,l+m̃ 0l,τ Il
0m̃,l+m̃ 0m̃,τ 0m̃,l

 .

Therefore, the assumptions of Theorem 2 can be rewritten as
follows

W̃T
0 ÃT

ϕPÃϕW̃0 − P ≺ 0 ,

W̃T
0 (QT P̃Q+ L2

pW
T
ϕ PDWϕ)W̃0 − P ≺ 0 ,

W̃T
0 QT P̃QW̃0 − P + L2

pW̃
T
0 WT

ϕ PDWϕW̃0 ≺ 0 . (44)

Now, let us choose a block diagonal P̃ , i.e., P̃ = P̃T =
diag(P̃1, P̃2, P̃3), where P̃1 ∈ Rτ×τ , P̃2 ∈ Rl×l, and
P̃3 ∈ Rm̃×m̃. With this choice, we can compute

W̃T
0 QT P̃QW̃0 = W̃T

0

0l+m̃,l+m̃ 0l+m̃,τ 0l+m̃,l

0τ,l+m̃ P̃1 0τ,l
0l,l+m̃ 0l,τ P̃2

 W̃0 =

=

[
P̃0 0n−ν,ν

0ν,n−ν WT
0 P̃2W0

]
,

where P̃0 =

[
0l+m̃,l+m̃ 0l+m̃,τ

0τ,l+m̃ P̃1

]
. Thus, we have that

W̃T
0 QT P̃QW̃0 − P =

[
P̃0 − P̃ 0n−ν,ν

0ν,n−ν WT
0 P̃2W0 − PD

]
.

Then, let us choose

P̃1 = α · diag(Il+m̃, 2Il+m̃, . . . , (N − 2)Il+m̃, (N − 1)Im̃) ,

P̃2 = α(N − 1)Il, P̃3 = αNIm̃, for any scalar α > 0, and
PD = βIν , for any scalar β > 0. Hence, according to the
previous choices, we can rewrite (44) as[
−αIn−ν 0n−ν,ν

0ν,n−ν α(N − 1)WT
0 W0 − βIν

]
+

+βL2
pW̃

T
0 WT

ϕ WϕW̃0 ≺ 0 .

By adding and subtracting γW̃T
0 W̃0, for any scalar γ > 0, the

condition (44) becomes[
−αIn−ν 0n−ν,ν

0ν,n−ν α(N − 1)WT
0 W0 − βIν

]
+ γW̃T

0 W̃0+

+W̃T
0 (βL2

pW
T
ϕ Wϕ − γI(l+m̃)N )W̃0 ≺ 0 . (45)

Now, note that if both[
(γ − α)In−ν 0n−ν,ν

0ν,n−ν (α(N − 1) + γ)WT
0 W0 − βIν

]
≺ 0 (46)

βL2
pW

T
ϕ Wϕ − γI(l+m̃)N ≺ 0 (47)

are fulfilled, then (45) certainly holds. Therefore, we want to
prove that there exist α > 0, β > 0, and γ > 0 such that (46)
and (47) hold provided that the assumption of Proposition 3
is fulfilled. Firstly, note that (46) holds if and only if

γ < α , (48)

∥W0∥2= λmax(W
T
0 W0) <

β

α(N − 1) + γ
. (49)

Secondly, (46) holds if and only if

∥Wϕ∥2= λmax(W
T
ϕ Wϕ) <

γ

βL2
p

. (50)

Furthermore, if (48) holds, we have that (49) is certainly
fulfilled if

∥W0∥2 <
β

αN
(51)

holds. Hence, if conditions (48), (50), and (51) are satisfied,
we have that (45) holds, implying the fulfilment of the
assumptions of Theorem 2. Finally, to have (48), (50), and
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(51) fulfilled, we have to prove the existence of positive α, β,
and γ such that

∥Wϕ∥2L2
p <

γ

β
<

α

β
<

1

∥W0∥2N
. (52)

In particular, in view of the assumption of Proposition 3, i.e.,
∥W0∥∥Wϕ∥< 1

Lp

√
N

, it follows that ∥Wϕ∥2L2
p < 1

∥W0∥2N .
Thus, it is always possible to find positive real numbers α, β,
and γ such that (52) holds thanks to the completeness axiom
of real numbers. This concludes the proof. ■

Proof of Proposition 6
Firstly, if E = 0n,n, we have that M̂ = W |A|. Accordingly,

the assumption of Proposition 5 requires the existence of a
matrix P = PT ≻ 0 such that

|A|T WTP W |A| −P ≺ 0 . (53)

This condition represents also the stability condition for

x̃(k + 1) = W |A| x̃(k) , (54)

which is a discrete-time linear positive system. Hence, as
stated in [37, Theorem 15], system (54) is asymptotically
stable if and only if there exists a diagonal P ≻ 0 fulfilling
condition (53).

Therefore, let us consider a matrix P = diag(p1, . . . , pn) ∈
Rn×n, with pi > 0. For any generic vector v ∈ Rn, v ̸= 0n,1,
condition (53) implies that

vT (|A|T WTP W |A| −P ) v < 0 ,

which becomes

(i)

n∑
j=1

pjL
2
pj

( n∑
i=1

|aji|vi
)2

−
n∑

j=1

pjv
2
j < 0 .

On the other hand, following the same reasoning, for all
ṽ ∈ Rn, ṽ ̸= 0n,1, condition (14) in Theorem 2 with a diagonal
P is equivalent to

(ii)

n∑
j=1

pjL
2
pj

( n∑
i=1

ajiṽi

)2

−
n∑

j=1

pj ṽ
2
j < 0 .

We want to show now that, if (i) holds for any v ∈ Rn,
v ̸= 0n,1, it follows that (ii) holds for any ṽ ∈ Rn, ṽ ̸= 0n,1.

Let us consider a generic ṽ ∈ Rn, ṽ ̸= 0n,1. It follows that
v = |ṽ| satisfies (i) by assumption. Also, note that∣∣∣∣ n∑

i=1

aji ṽi

∣∣∣∣ ≤ n∑
i=1

∣∣∣aji ṽi∣∣∣ = n∑
i=1

|aji| |ṽi|=
n∑

i=1

|aji| vi ,

which implies that
n∑

j=1

pjL
2
pj

( n∑
i=1

aji ṽi

)2

≤
n∑

j=1

pjL
2
pj

( n∑
i=1

|aji| vi
)2

.

(55)

Moreover, note that
n∑

j=1

pj ṽ
2
j =

n∑
j=1

pj |ṽj |2 =
n∑

j=1

pjv
2
j . (56)

Equations (55) and (56) imply that, since v = |ṽ| verifies (i),
then ṽ will satisfy (ii). This means that (i) =⇒ (ii), which
concludes the proof. ■

Proof of Proposition 8

If (20) holds, then we can multiply it on the left by[
P 0n,n
0n,n In

]
and on the right by its transpose, so as to obtain[

2P2 − P3 (FP)T

FP P

]
≻ 0 . (57)

Hence, we can rewrite (57) as[
2P2 − P3 − P 0n,n

0n,n 0n,n

]
︸ ︷︷ ︸

Pα

+

[
P (FP)T

FP P

]
︸ ︷︷ ︸

Pβ

≻ 0 . (58)

Note that 2P2 −P3 −P = P2(I −P)−P(I −P) = (P2 −
P)(I −P) = −(I −P)TP(I −P) ⪯ 0. It follows that Pα ⪯
0, and so it must hold Pβ ≻ 0. By applying very similar
steps to the ones in the proof of Proposition 12 to Pβ ≻ 0,
we get ÃTPÃ − P ≺ 0, where Ã = WF , W = In, and
P = P−1 ≻ 0 is a diagonal matrix. So, the assumptions of
Theorem 2 are fulfilled. This concludes the proof. ■

Proof of Proposition 10

The proof is carried out with reference to the series of two
systems (4), since the generalization to a generic number of
systems follows straightforwardly by iterating the procedure.

Let us consider two systems in the class (4), using the
subscripts 1 (system upstream) and 2 (system downstream) to
denote the corresponding matrices, respectively. According to
Proposition 9, the series of the two systems is in the class (4),
where

A=

[
A1 0n1,n2

B2C1 A2

]
, x(k)=

[
x1(k)
x2(k)

]
, f(·)=

[
fs1(·)
fs2(·)

]
,

for the overall series system. Accordingly, we have that

Ã = WA =

[
W1 0n1,n2

0n2,n1 W2

] [
A1 0n1,n2

B2C1 A2

]
=

=

[
W1A1 0n1,n2

W2B2C1 W2A2

]
=

[
Ã1 0n1,n2

Ã21 Ã2

]
.

By assumption, the two systems fulfill the assumptions of
Theorem 2, i.e., ∃P1 = PT

1 ≻ 0 and ∃P2 = PT
2 ≻ 0 with the

required structures such that

ÃT
1 P1Ã1 − P1 ≺ 0 , (59)

ÃT
2 P2Ã2 − P2 ≺ 0 . (60)

Now, we want to prove that ∃P = PT ≻ 0 with the required
structure such that ÃTPÃ− P ≺ 0. Firstly, we take

P = PT =

[
ρP1 0n1,n2

0n2,n1
P2

]
≻ 0 ,

which has the structure required by Theorem 2 on the basis
of system nonlinearities, where ρ > 0. Then,

ÃTPÃ− P =

=

[
ÃT

1 ρP1Ã1 + ÃT
21P2Ã21 − ρP1 ÃT

21P2Ã2

ÃT
2 P2Ã21 ÃT

2 P2Ã2 − P2

]
.
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We define a generic vector v =
[
vT1 vT2

]T
, where v1 ∈ Rn1

and v2 ∈ Rn2 . Therefore, we want to prove that ∃ρ > 0
such that vT (ÃTPÃ− P )v < 0 for any v ̸= 0n1+n2,1, with
P = diag(ρP1, P2). Hence,

vT (ÃTPÃ− P )v = vT1 (Ã
T
1 ρP1Ã1 + ÃT

21P2Ã21 − ρP1)v1+

+ vT2 (Ã
T
2 P2Ã2 − P2)v2 + 2vT2 Ã

T
2 P2Ã21v1 .

In view of Property 1, for any τ ̸= 0, we have that

vT (ÃTPÃ− P )v ≤ vT1 (Ã
T
1 ρP1Ã1 − ρP1+

+ (1 +
1

τ2
)ÃT

21P2Ã21)v1 + vT2 ((1 + τ2)ÃT
2 P2Ã2 − P2)v2 .

Note that, in view of (60), by selecting a τ such that 0 <

τ2 <
λmin(P2−ÃT

2 P2Ã2)

λmax(ÃT
2 P2Ã2)

, where λmin(P2 − ÃT
2 P2Ã2) > 0, it

follows that (1 + τ2)ÃT
2 P2Ã2 − P2 ≺ 0. Moreover, A∗

τ =
(1 + 1

τ2 )Ã
T
21P2Ã21 ⪯ λmax(A

∗
τ )In1

, where λmax(A
∗
τ ) ≥ 0.

Furthermore, ÃT
1 ρP1Ã1−ρP1 ⪯ ρλmax(A

∗
1)In1

, where A∗
1 =

ÃT
1 P1Ã1−P1 and λmax(A

∗
1) < 0 from (59). Hence, by setting

ρ > −λmax(A
∗
τ )

λmax(A∗
1)

, it holds that

vT (ÃTPÃ− P )v ≤vT1 (λmax(A
∗
τ ) + ρλmax(A

∗
1))In1

v1+

+ vT2 ((1 + τ2)ÃT
2 P2Ã2 − P2)v2 < 0

for any v ̸= 0n1+n2,1, since λmax(A
∗
τ ) + ρλmax(A

∗
1) < 0.

This concludes the proof. ■

Proof of Proposition 15
From Figure 3(a), by jointly considering (25), (36), e(k) =

r(k)−Csxs(k), and us(k) = Kxs(k) + v(k), we obtain that
the equations of the control system are in the class (37), where
χ(k) = xs(k), fχ(·) = fs(·), Aχ = As + BsK − BsMCs,
Aη = BsM , Bχ = Aη , and Cχ = Cs.

From Figure 3(b), by jointly considering (24), (25), (36),
e(k) = r(k) − Csxs(k), uc(k) = v(k), and us(k) =
yc(k), we obtain that the equations of the control system
are in the class (37), where χ(k) =

[
xc(k)

T xs(k)
T
]T

,
fχ(·) =

[
fc(·)T fs(·)T

]T
, Bχ = Aη , Cχ =

[
0ls,nc

Cs

]
,

Aχ =

[
Ac −BcMCs

BsCc As −BsDcMCs

]
, and Aη =

[
BcM

BsDcM

]
.

From Figure 3(c), by jointly considering (24), (25), (36),
e(k) = r(k) − Csxs(k), uc(k) = e(k), and us(k) = v(k) +
yc(k), we obtain that the equations of the control system
are in the class (37), where χ(k) =

[
xc(k)

T xs(k)
T
]T

,
fχ(·) =

[
fc(·)T fs(·)T

]T
, Cχ =

[
0ls,nc

Cs

]
,

Aχ =

[
Ac −BcCs

BsCc As −BsMCs −BsDcCs

]
, Aη =

[
0nc,ls

BsM

]
,

and Bχ =
[
BT

c (BsM +BsDc)
T
]T

.
Finally, we can easily see that all the systems (37) are in

the class (4), where x(k) =
[
χ(k)T η(k)T

]T
, y(k) = ys(k),

u(k) = r(k), f(·) =
[
fχ(·)T idls(·)T

]T
, C =

[
Cχ 0ls,ls

]
,

A =

[
Aχ Aη

−Cχ Ils

]
, B =

[
Bχ

Ils

]
,

and D = 0ls,ls . This concludes the proof. ■

Proof of Proposition 16

Recall that δISS implies ISS (see [14]), and that ISS
implies the bounded-input bounded-state property (see [38]).
In case ysi(k) ≤ ymax for all k, if we take a constant
ri(k) = r̄ > ymax for all k, we have from (37b) that the state
ηi(k) → +∞ for k → +∞, since ysi(k) = Cχiχ(k) ≤ ymax

for all k, where Cχi is the i-th row of Cχ. It follows that the
bounded-input bounded-state property does not hold, which
is necessary for δISS. The same result holds for the case in
which ysi(k) ≥ ymin ∀k, since ηi(k) → −∞ for k → +∞
by setting ri(k)= r̄<ymin ∀k. This concludes the proof. ■
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