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GLOBAL GAUSSIAN ESTIMATES FOR THE HEAT KERNEL

OF HOMOGENEOUS SUMS OF SQUARES.

STEFANO BIAGI AND MARCO BRAMANTI

Abstract. Let H =
∑m

j=1
X2

j − ∂t be a heat-type operator in Rn+1, where X = {X1, . . . , Xm}

is a system of smooth Hörmander’s vector fields in Rn, and every Xj is homogeneous of degree 1
with respect to a family of non-isotropic dilations in Rn, while no underlying group structure is
assumed. In this paper we prove global (in space and time) upper and lower Gaussian estimates
for the heat kernel Γ(t, x; s, y) of H, in terms of the Carnot-Carathéodory distance induced by X

on Rn, as well as global upper Gaussian estimates for the t- or X-derivatives of any order of Γ.
From the Gaussian bounds we derive the unique solvability of the Cauchy problem for a possibly
unbounded continuous initial datum satisfying exponential growth at infinity. Also, we study the
solvability of the H-Dirichlet problem on an arbitrary bounded domain. Finally, we establish a
global scale-invariant Harnack inequality for non-negative solutions of Hu = 0.

1. Introduction

Let us consider a family X = {X1, . . . , Xm} of smooth Hörmander’s vector fields in Rn (precise
definitions will be given later). The study of the corresponding heat-type operator

H :=

m∑

j=1

X2
j − ∂t on R

n+1

and its fundamental solution (heat kernel) has a long history and, by now, a vast literature. The
study of operators of the kind ‘sum of squares of Hörmander’s vector fields’, L =

∑m
j=1 X

2
j , as well

as their evolutive counterpart, H = L− ∂t, is usually characterized by the following dichotomy:

- local properties of Hörmander operators of the kind L or H have been established for general
families of Hörmander’s vector fields X1, . . . , Xm (some cornerstones in this context are [17], [30],
[28], [32], [18], [19]), while

- global properties of L or H have been established almost exclusively when the vector fields
X1, . . . , Xm are left invariant on some Lie group.

In particular, starting with the famous paper [14] by Folland, a rich theory exists under the as-
sumption that X1, . . . , Xm be both left invariant with respect to some group of translations, and
homogeneous with respect to some family of dilations (hence, X1, . . . , Xm are the generators of a
Carnot group G in Rn). In that context, the heat kernel has the form

(1.1) Γ(t, x; s, y) = γ(y−1 ∗ x, t− s)

with γ satisfying a two-sided Gaussian bound:

1

CtQ/2
exp

(
−C ‖x‖2

t

)
≤ γ (x, t) ≤ C

tQ/2
· exp

(
−‖x‖2

Ct

)

for every x ∈ G, t > 0. Here Q is the homogeneous dimension of the group, and ‖·‖ is a homogeneous
norm in G. Analogous upper bounds hold for the derivatives of every order:

|∂m
t XIγ (x, t)| ≤

C

t(Q+|I|+2m)/2
· exp

(
−‖x‖2

Ct

)
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2 S.BIAGI AND M.BRAMANTI

where XI = Xi1Xi2 ...Xik with i1, ..., ik ∈ {1, 2, ...,m}, and |I| = k. The above Gaussian bounds on
Carnot groups are a special case of the more general results proved for heat kernels corresponding
to left invariant, but not necessarily homogeneous, Hörmander’s vector fields, by Varopoulos, Saloff-
Coste, Coulhon in [37]. They proved that for heat kernels on nilpotent Lie groups, a context where
one still has (1.1), the function γ satisfies a two sided bound

1

C
∣∣BX(0,

√
t)
∣∣ exp

(
− Cd2X(x, 0)

t

)
≤ γ(x, t)

≤ C∣∣BX(0,
√
t)
∣∣ exp

(
− d2X(x, 0)

Ct

)
,

(1.2)

and an upper bound on derivatives of every order:

(1.3) |∂m
t XIγ(x, t)| ≤

C∣∣BX(0,
√
t)
∣∣ t(|I|+2m)/2

exp

(
− d2X(x, 0)

Ct

)
,

where dX is the control distance induced by X1, ..., Xm and BX(0, r) the corresponding balls (see
[37, Thm. IV.4.2, Thm. IV.4.3]). Also, they proved that on unimodular Lie groups with polynomial
volume growth, that is satisfying

c1t
D ≤ |BX(0,

√
t)| ≤ c2t

D for t ≥ 1

and some D > 0, the above results (1.2) and (1.3) still hold (see [37, Thm. VIII.2.7, Thm. 8.2.9]).
For a different approach to Gaussian estimates in the context of Lie groups with polynomial growth,
see also the monograph [13] by Dungey, ter Elst, Robinson. For the special case of Gaussian estimates
on Carnot groups, that we will explicitly exploit in this paper, we refer to the more recent paper [9]
by Bonfiglioli, Lanconelli, Uguzzoni.

For a general system of Hörmander’s vector fields, i.e., with no underlying group structure,
Gaussian bounds for the heat kernel

Γ(t, x; s, y) = γ(t− s, x, y)

have been proved by Jerison-Sanchez Calle [19, Thms. 2, 3, 4] in the form:

1

C
∣∣BX(x,

√
t)
∣∣ exp

(
− Cd2X(x, y)

t

)
≤ γ(t, x, y) ≤ C

|BX(x,
√
t)
∣∣ exp

(
− d2X(x, y)

Ct

)
(1.4)

|∂m
t Xx

I X
y
Jγ(t, x, y)| ≤

C∣∣BX

(
x,

√
t
)∣∣ t(|I|+|J|+2m)/2

exp

(
−dX (x, y)

2

Ct

)
(1.5)

for every multiindices I, J , with x, y ranging in a compact set and t ∈ (0, T ). Using probabilistic
techniques, Kusuoka-Stroock have extended the above results to x, y in RN and t ∈ (0, T ), in [21],
and later to x, y in RN and t > 0 in [22]. However, Kusuoka-Stroock require that the coefficients
of the vector fields belong to C∞

b

(
RN
)
. For instance, vector fields with polynomial coefficients are

not covered by their theory (at least as far as global results are concerned). Related results (under
the same C∞

b

(
RN
)

assumptions on the vector fields) have been proved by Léandre in [25], [26].
Davies in [12] has improved the constant in the exponent of the upper bound in (1.4), for a system
of Hörmander’s vector fields on a compact manifold.

On the other hand, a general setting which allows to develop an interesting global theory, with-
out assuming the existence of a group of translations, and allowing unboundedness of the coefficients
of X1, ..., Xm and their derivatives, is that of Hörmander vector fields which are only assumed to be
1-homogeneous with respect to a family of non-isotropic dilations of the form

δλ(x) := (λσ1x1, . . . , λ
σnxn),

where 1 = σ1 ≤ . . . ≤ σn are positive integers. In other words,

Xj(u ◦ δλ) = (Xju) ◦ δλ
for every j = 1, . . . ,m, every u ∈ C∞(Rn) and every λ > 0. Under this assumption (without any
underlying group structure), Biagi-Bonfiglioli in [2] have built a global homogeneous fundamental
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solution for L =
∑m

j=1 X
2
j and have studied some of its properties. The idea of this construction is

that, according to a procedure originally devised by Folland in [15] and adapted in [2], a system of
1-homogeneous Hörmander’s vector fields can always be lifted to a higher dimensional Carnot group
where the corresponding sum of squares is known to possess a global, left invariant, homogeneous
fundamental solution. Saturating this fundamental solution with respect to the added variables, in
[2] a homogeneous fundamental solution for the original operator is produced. More explicit estima-
tes for this kernel have been established in [5], in terms of the distance induced by the vector fields.
The general strategy of [2] has been later implemented in [4] for heat operators corresponding to
1-homogeneous vector fields, showing the existence of a global, homogeneous, heat kernel, obtained
by saturating the heat kernel of a higher dimensional operator living on a Carnot group.

The aim of this paper is to prove sharp global explicit Gaussian estimates for this heat kernel,
in terms of the intrinsic distance induced by the vector fields. More precisely, we will prove Gaussian
estimates (1.4)-(1.5) for every x, y ∈ Rn and t > 0, for heat operators corresponding to 1-homoge-
neous (but not left invariant) Hörmander’s vector fields (see Theorem 2.4).

Our global Gaussian bounds in particular allow to improve known results about the Cauchy
problem for this heat operator. In [4, Thm. 4.1] it is proved that for every bounded continuous
initial datum f there exists one and only one bounded solution to the Cauchy problem. We will
prove that a solution to the Cauchy problem actually exists, at least for small times, as soon as the
initial datum f satisfies a growth condition of the kind

∫

Rn

|f(y)| exp
(
− µ d2X(y, 0)

)
dy < +∞

for some constant µ > 0. The solution is unique in the class of functions satisfying a condition
∫ τ

0

∫

Rn

exp
(
− δd2X(x, 0)

)
|u(t, x)| dt dx < +∞

for some δ > 0. Moreover, if f satisfies a stronger bound of the kind
∫

Rn

|f(y)| exp
(
− µdαX(y, 0)

)
dy < +∞ for some α ∈ (0, 2),

then the solution exists for all t > 0 (see Theorem 6.2 and Proposition 6.5). In Section 7 we shall
present an application of our global Gaussian estimates to the study of the H-Dirichlet problem. In
fact, by crucially exploiting these estimates, we shall show that it is possible to apply to our operators
H the axiomatic approach developed in the series of papers [20, 23, 24, 35]; this will lead to some
necessary and sufficient conditions for the regularity of boundary points of any bounded open set Ω.
Finally, in the last part of the paper we will prove a scale-invariant parabolic Harnack inequality for
non-negative solutions of Hu = 0 (see Theorem 8.1 in Section 8).

We close this introduction with a few remarks about some related fields of research. Gaus-
sian bounds for heat kernels have been studied, besides the Euclidean setting, in the context of
Riemannian manifolds. We can quote under this respect the well-known paper [27] by Li-Yau where
Gaussian bounds are proved on manifolds with nonnegative curvature (see also the monograph
[16] by Grigor’yan and the references therein). Some extensions of these geometric techniques to
sub-Riemannian manifolds have been done, see e.g. the paper [6] by Baudoin, Bonnefont, Garofalo.
Gaussian bounds have been studied also in the abstract context of Dirichlet forms, see e.g. the papers
[33], [34] by Sturm. These researches have made apparent a general relation existing between the
validity of Gaussian bounds for the heat kernel, the validiy of global forms of Poincaré’s inequality
and doubling condition, and the validity of a parabolic Harnack inequality. For a discussion of
these general relations see also the monograph [31] by Saloff-Coste. In the context of homogeneous
Hörmander vector fields studied in the present paper, global forms of Poincaré’s inequality and
doubling condition are known, after [5]. Therefore, our results about Gaussian bounds and Harnack
inequality are not unexpected. Nevertheless, we have not been able to find in the literature a precise
theorem, directly applicable to our context, implying our results. As far as we know, this is the first
case of global (in space and time) Gaussian estimates explicitly proved, for both the heat kernel and
its derivatives of every order, in the context of Hörmander’s vector fields (with possibly unbounded
coefficients) in absense of an underlying group structure.
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2. Assumptions and statements of Gaussian bounds

We denote by X(Rn) the Lie algebra of the smooth vector fields on Rn (with n ≥ 2). Given a
set X ⊆ X(Rn), we indicate by Lie(X) the smallest Lie sub-algebra of X(Rn) containing X . Finally,
if Z ∈ X(Rn) is a smooth vector field of the form

Z =

n∑

j=1

aj(x)
∂

∂xj
for some a1, . . . , an ∈ C∞(Rn)

and if x ∈ R
n, we denote by Z(x) the vector (a1(x), . . . , an(x)) ∈ R

n.

Assumptions 2.1. Let X = {X1, . . . , Xm} (with m ≥ 2) be a fixed family of linearly independent
smooth vector fields in Euclidean space Rn satisfying the following structural assumptions:

(H1): there exists a family {δλ}λ>0 of non-isotropic dilations of the form

(2.1) δλ(x) := (λσ1x1, . . . , λ
σnxn),

where 1 = σ1 ≤ . . . ≤ σn are positive integers, with respect to which X1, . . . , Xm are
homogeneous of degree 1. This means that

(2.2) Xj(u ◦ δλ) = (Xju) ◦ δλ
for every j = 1, . . . ,m, every u ∈ C∞ (Rn) and every λ > 0. We define the δλ-homogeneous
dimension of Rn as

(2.3) q :=

m∑

j=1

σj .

Note that q ≥ n.
(H2): X1, . . . , Xm satisfy Hörmander’s rank condition at x = 0, that is,

(2.4) dim
{
Y (0) : Y ∈ Lie(X)

}
= n.

Remark 2.2. By combining assumptions (H1) and (H2), it is not difficult to recognize that Hör-
mander’s rank condition is actually satisfied at every point x ∈ Rn, that is,

dim
{
Y (x) : Y ∈ Lie(X)

}
= n for all x ∈ R

n

(this is proved in [5, Remark 3.2]). Thus, by Hörmander’s Hypoellipticity Theorem (see [17]), both
the operators L and H are C∞-hypoelliptic in every open subset of Rn.

In order to state our result, we first recall the following standard

Definition 2.3 (Carnot-Carathéodory distance). Let Y = {Y1, . . . , Yh} be a family of smooth vector
fields defined on some space Rk. We assume that the Yj ’s satisfy Hörmander’s rank condition at
every point of Rk. The Carnot-Carathéodory (CC, shortly) distance associated with Y is defined as

dY (x, y) = inf
{
r > 0 : there exists γ ∈ C(r) with γ(0) = x and γ(1) =y

}
,

where C(r) is the set of the absolutely continuous curves γ : [0, 1] → Rk satisfying (a.e. on [0, 1])

γ′(t) =

h∑

j=1

aj(t)Yj(γ(t)), with |aj(t)| ≤ r for all j = 1, . . . , h.

We will denote by BY (x, ρ) the metric ball
{
y ∈ Rk : dY (x, y) < ρ

}
.

Well-known results assure that under the above assumptions dY (x, y) is finite for every couple
of points in Rk and that (Rk, dY ) is a metric space; moreover, dY is topologically, but not metrically,
equivalent to the Euclidean distance.

We can now state our main result:
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Theorem 2.4. Let X = {X1, . . . , Xm} be a family of smooth vector fields in Rn satisfying Assump-
tions 2.1, and let H the heat-type operator

(2.5) H := L− ∂t =

m∑

j=1

X2
j − ∂t on R

1+n = Rt × R
n
x .

Moreover, let Γ(t, x; s, y) := γ(t− s, x, y) be the global heat kernel of H, that will be precisely defined
in (3.10). Then, the following facts hold.

(i) There exists a constant ̺ > 1 such that

1

̺ |BX(x,
√
t)|

exp

(
− ̺ d2X(x, y)

t

)
≤ γ(t, x, y)

≤ ̺

|BX(x,
√
t)|

exp

(
− d2X(x, y)

̺ t

)
,

(2.6)

for every x, y ∈ Rn and every t > 0.
(ii) For any nonnegative integers k, r there exists C = Ck,r > 0 such that

(2.7)

∣∣∣∣
(

∂

∂t

)k

Y1 · · ·Yrγ(t, x, y)

∣∣∣∣ ≤ C
t−(k+r/2)

|BX(x,
√
t)|

exp

(
− d2X(x, y)

Ct

)
,

for every choice of vector fields Y1, . . . , Yr ∈ {Xx
1 , . . . , X

x
m, Xy

1 , . . . , X
y
m}, and every choice of

x, y ∈ Rn, t > 0.

The results about the Cauchy problem for H will be stated and proved in Section 6, while our
scale-invariant Harnack inequality will be stated and proved in Section 8.

3. Preliminaries and known results

3.1. Carnot groups, lifting and construction of the heat kernel for H. We begin by recalling
the definition of homogeneous Carnot group and some related notions (see, e.g., [8] for an exhaustive
treatment of this topic).

We say that G = (RN , ∗, Dλ) is a homogeneous group if (RN , ∗) is a Lie group (with group
identity e = 0) and if there exists a one-parameter family of group automorphisms {Dλ}λ>0 acting
as in (H1). We shall call the Lie group operation ∗ ‘translation’ and the automorphisms Dλ ‘dilations’.

We say that a smooth vector field X is left invariant if, for every f ∈ C∞(RN ), we have

X
(
x 7→ f(y ∗ x)

)
= (Xf)(y ∗ x) for all x, y ∈ G.

For i = 1, 2, . . . , n, let Xi be the only left invariant vector field which agrees at the origin with ∂xi
.

Assume that for some positive integer m < N we have that X1, ..., Xm are 1-homogeneous (in the
sense of (2.2)) and that X1, . . . , Xm satisfy Hörmander’s condition as in (H2) (at the origin and
then, by left invariance, at every point). Then we say that

G is a Carnot group and X1, ..., Xm are its generators .

A continuous function ‖ · ‖ : G → [0,+∞) is called a homogeneous norm on G if there exists c > 0
such that, for every u, v ∈ G, the following hold:

(i) ‖u‖ = 0 if and only if u = 0;
(ii) ‖Dλ(u)‖ = λ‖u‖ for every λ > 0;
(iii) ‖u ∗ v‖ ≤ c

(
‖u‖+ ‖v‖

)
;

(iv) ‖u−1‖ ≤ c‖u‖.
If X = {X1, . . . , Xm} are the generators of a Carnot group G and dX the Carnot-Carathéodory
distance associated with X , then ‖u‖ = dX(u, 0) is a homogeneous norm on G, further satisfying
properties (iii)-(iv) with c = 1.

A key information for the study of the operator H (and of its associated heat kernel) is the
dimension of the Lie algebra a := Lie(X). Under our assumptions (H1)-(H2), it is easy to see that
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a has finite dimension: in fact, using [3, Theorem A.11] and [8, Proposition 1.3.10]), one has

a =

σn⊕

k=1

ak

where a1 := span{X} = span
{
X1, . . . , Xm

}
and

ak := span{[Y, Z] : Y ∈ a1, Z ∈ ak−1} (for k ≥ 2).

In particular, we obtain

(3.1) N = dim(a) ≥ dim
{
Y (0) : Y a

}
= n.

As a consequence of (3.1), only the following two cases can occur.

(i) N = n. In this case, by taking into account the δλ-homogeneity of X1, . . . , Xm, we can apply
some results in [7], ensuring the existence of an operation ∗ on Rn such that

F = (Rn, ∗, δλ) is a homogeneous Carnot group with Lie(F) = a.

Hence, the vector fields X1, . . . , Xm are left invariant on F, and the operator H becomes the
canonical heat operator on R× F. This is a well-studied scenario, in which all the results of
this paper are well-known (see, for example, [9]).

(ii) N > n. In this case, instead, we derive from [1, Theorem 1.4] that there cannot exist any
Lie-group structure in R

n with respect to which X1, . . . , Xm are left invariant. In particular,
the operator H is not a canonical heat operator on some Carnot group.

In view of the above discussion, throughout the sequel, in the proof of our results, we also make
the following ‘dimensional’ assumption.

(H3): Using the notation a = Lie(X) and N = dim(a), we assume that

(3.2) p := N − n ≥ 1.

Remark 3.1. Note that condition (H3) is not a further assumption that we require in order for
our results to be true. It is a further condition that is not restrictive to assume within the proofs,
because if our Assumptions 2.1 hold and (H3) is not true, then our Theorem 2.4 is already known.

Even if assumption (H3) implies that X1, . . . , Xm cannot be left invariant with respect to any
Lie-group structure in Rn, it is proved in [2] that the Xj ’s can be lifted (in a suitable sense) to vector
fields Z1, . . . , Zm which are left invariant on a higher-dimensional Carnot group:

Theorem 3.2 (Lifting, see [2, Theorem 3.1]). Let us suppose that assumptions (H1)-to-(H3) are
satisfied. Then, it is possible to construct a homogeneous Carnot group G = (RN , ∗, Dλ) satisfying
the following properties:

(1) G has m generators;
(2) denoting the points of RN as u = (x, ξ) ∈ Rn × Rp, the family of dilations {Dλ}λ>0 takes

the following ‘lifted’ form:

(3.3) Dλ(u) = Dλ(x, ξ) = (δλ(x), δ
∗
λ(ξ)) ,

where δ∗λ(ξ) = (λτ1ξ1, . . . , λ
τpξp) for some integers 1 ≤ τ1 ≤ . . . ≤ τp;

(3) there exists a system of Lie-generators Z = {Z1, . . . , Zm} of Lie(G) s.t.

(3.4) Zj(x, ξ) = Xj(x) +Rj(x, ξ),

where the Ri’s are smooth vector fields operating only in the variables ξ ∈ Rp, but with
coefficient possibly depending on (x, ξ). In particular, R1, . . . , Rm are Dλ-homogeneous of
degree 1.

Notation 3.3. Throughout the paper, we will handle points in the ‘original’ space Rn, and points
in the ‘lifted’ space RN , according to Theorem 3.2. To this end, we shall use the notation

• x, y, z, . . . for points in Rn;
• u = (x, ξ), v = (y, η), . . . for points in RN ≡ Rn × Rp,
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denoting by Greek letters the added variables in the lifting procedure. The scalar time variables will
be denoted by letters t, s, τ . Moreover, we shall indicate by dX and dZ the Carnot-Carathéodory
distances associated with X and Z, respectively, and with BX(x, ρ), BZ(u, ρ) the dX -ball, dZ-ball,
respectively, with centre x ∈ R

n, u ∈ R
N , and radius ρ > 0.

Since the lifted vector fields Z1, . . . , Zm in Theorem 3.2 are left invariant on G, many properties
of HG and its associated heat kernel are well-known. In fact, the following theorem holds.

Theorem 3.4 ([9, Theorems 2.1, 2.5]). There exists a function

γG : R1+N → R,

smooth away from the origin, such that

(3.5) ΓG(t, u; s, v) := γG
(
t− s, v−1 ∗ u

)

is the global heat kernel of HG = LG − ∂t; this means, precisely, that
• for every fixed (t, z) ∈ R1+N , one has ΓG(t, z; ·) ∈ L1

loc(R
1+N );

• for every ϕ ∈ C∞
0 (R1+N ) and every (t, u) ∈ R1+N , one has

HG

(∫

R1+N

ΓG(t, u; s, v)ϕ(s, v) ds dv

)

=

∫

R1+N

ΓG(t, u; s, v)HGϕ(s, v) ds dv = −ϕ(t, u).

Furthermore, γG satisfies the following properties:
(i) γG ≥ 0 and γG(t, u) = 0 if and only if t ≤ 0;
(ii) γG(t, u) = γG(t, u

−1) for every (t, u) ∈ R1+N ;
(iii) for every λ > 0 and every (t, u), we have

γG(λ
2t,Dλ(u)) = λ−Q γG(t, u),

where Q is the homogeneous dimension of the group G, that is,

(3.6) Q := q + q∗, with q as in (2.3) and q∗ :=
∑p

k=1 τk;

(iv) γG vanishes at infinity, that is, γG(t, u) → 0 as |(t, u)| → +∞;
(v) for every t > 0, we have ∫

RN

γG(t, u) du = 1.

Finally, the following Gaussian estimates for γG hold:
(a) there exists a constant c ≥ 1, only depending on G and Z, s.t.

(3.7) c
−1 t−Q/2 exp

(
− c ‖u‖2)

t

)
≤ γG(t, u) ≤ c t−Q/2 exp

(
− ‖u‖2

c t

)
,

for every u ∈ RN and every t > 0.
(b) for every nonnegative integers h, k there exists a constant ĉ > 0 s.t.

(3.8)

∣∣∣∣Zi1 ...Zih

(
∂

∂t

)k

γG(t, u)

∣∣∣∣ ≤ ĉ t−(Q+h+2k)/2 exp

(
− ‖u‖2

ĉ t

)

for any u ∈ RN , any t > 0 and every choice of i1, . . . , ih ∈ {1, . . . ,m}.
Now, the ‘lifting property’ (3.4) contained in Theorem 3.2 easily implies that

(3.9) HG

(
(t, x) 7→ u(t, π(x))

)
= (Hu)(t, π(x)), for all u ∈ C2(Rn)

where π is the projection of RN = Rn×Rp on Rn. By combining (3.9) with Theorem 3.4, it is proved
in [4] the following result.

Theorem 3.5 ([4, Theorem 1.4]). Let X = {X1, . . . , Xm} be a set of smooth vector fields on Rn

satisfying axioms (H1)-to-(H3), and let H be the heat-type operator defined in (2.5). Moreover, let
G = (RN , ∗, Dλ) and Z = {Z1, . . . , Zm} be as in Theorem 3.2.

Then, if γG is as in Theorem 3.4, the following facts hold.
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(i) The function Γ defined by

(3.10) Γ(t, x; s, y) := γ(t− s, x, y) :=

∫

Rp

γG
(
t− s, (y, 0)−1 ∗ (x, η)

)
dη,

is the global heat kernel of H. This means, precisely, that
(i)1 for any fixed (t, x) ∈ R1+n, we have Γ(t, x; ·) ∈ L1

loc(R
1+n);

(i)2 for every ϕ ∈ C∞
0 (R1+n) and every (t, x) ∈ R1+n, we have

H

(∫

R1+n

γ(t− s, x, y)ϕ(s, y) ds dy

)

=

∫

R1+n

γ(t− s, x, y)Hϕ(s, y) ds dy = −ϕ(t, x).

(ii) There exists a constant c ≥ 1 such that

c
−1 t−Q/2

∫

Rp

exp

(
− c ‖(y, 0)−1 ∗ (x, η)‖2

t

)
dη ≤ γ(t, x, y)

≤ c t−Q/2

∫

Rp

exp

(
− ‖(y, 0)−1 ∗ (x, η)‖2

c t

)
dη,

(3.11)

for every x, y ∈ Rn and every t > 0.
(iii) γ ≥ 0 and

γ(t, x, y) = 0 if and only if t ≤ 0.

(iv) γ is symmetric in the space variables, i.e.

γ(t, x, y) = γ(t, y, x) for every x, y ∈ R
n and every t > 0.

(v) Γ is smooth out of the diagonal of R1+n × R1+n.
(vi) For every fixed (t, x) ∈ R1+n, with t > 0, we have

∫

Rn

γ(t, x, y) dy = 1.

(vii) If ϕ ∈ C0
b (R

n), then the function

u(t, x) :=

∫

Rn

γ(t, x, y)ϕ(y) dy

defined for (t, x) ∈ Ω = (0,+∞)× Rn is the unique bounded classical solution of the homo-
geneous Cauchy problem for H, that is,

{
Hu = 0 in Ω

u(0, x) = ϕ(x) for x ∈ Rn.

(viii) The function Γ∗(t, u; s, v) = Γ(s, v; t, u) is the global heat kernel of the (formal) adjoint
operator H∗ := L+ ∂t, and satisfies dual statements with respect to (i).

In the above theorem, ‖ · ‖ is any homogeneous norm on G.

Remark 3.6. Points (ii) and (iv) in the above theorem also imply that, with the same constant
c ≥ 1 as in (ii), for all x, y ∈ Rn and any t > 0 one has

c
−1 t−Q/2

∫

Rp

exp

(
− c ‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≤ γ(t, x, y)

≤ c t−Q/2

∫

Rp

exp

(
− ‖(x, 0)−1 ∗ (y, η)‖2

c t

)
dη,

(3.12)

(with the switched roles of x, y in the Gaussians). It will be sometimes convenient to use (3.11) in
this alternative form.
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3.2. Review of known results on the CC distance. Throughout the sequel, we will handle two
distinct families of Hörmander’s vector fields, each one inducing a Carnot-Carathéodory distance:

• the original family of vector fields X1, ..., Xm, defined in Rn, and satisfying (H1)-to-(H3);
• the lifted vector fields Z1, ..., Zm, defined on the higher dimensional Carnot group G in R

N .

Both the Xi’s and the Zi’s are 1-homogeneous with respect to suitable dilations, which implies some
properties of the distances and the corresponding balls. The Zi’s are also left invariant, which implies
more properties for the corresponding distance. Finally, the Zi’s are a lifting of the Xi’s. The next
proposition collects the basic properties which follow from these facts.

Proposition 3.7. With the previous notation and assumptions about the systems of vector fields X
and Z, the following properties hold.

(i) Homogeneity:

dX(δλ(x), δλ(y)) = λdX(x, y) for all x, y ∈ Rn and λ > 0

dZ(Dλ(u), Dλ(v)) = λdZ(u, v) for all u, v ∈ RN and λ > 0

δλ
(
BX(x, ρ)

)
= BX

(
δλ(x), λρ

)
for all x ∈ Rn and λ, ρ > 0

Dλ

(
BZ(u, ρ)

)
= BZ

(
Dλ(u), λρ

)
for all u ∈ RN and λ, ρ > 0

(ii) Left invariance:

dZ(u, v) = dZ(u ∗ w, v ∗ w) for all u, v, w ∈ RN

u ∗BZ(v, ρ) = BZ(u ∗ v, ρ) for all u, v ∈ R
N and ρ > 0

(iii) Projection:

dX(x, y) ≤ dZ((x, ξ), (y, η)) for all (x, ξ), (y, η) ∈ RN = Rn × Rp

π
(
BZ((x, ξ), ρ)

)
= BX(x, ρ) for all (x, ξ) ∈ RN and ρ > 0

where π is the projection from RN = Rn × Rp into Rn. In particular, since π is surjective, the last
equality in (iii) means that

(3.13) ∀ y ∈ BX(x, ρ), ξ ∈ R
p ∃ η ∈ R

p s.t. (y, η) ∈ BZ(x, ξ), ρ).

(iv) Volume of Z-balls: setting ωQ = |BZ(0, 1)|, we have

(3.14) |BZ(u, ρ)| = |BZ(0, ρ)| = ωQ ρQ for all u ∈ RN and ρ > 0.

(v) Homogeneous norm: if we let

‖u‖ = dZ(u, 0) for every u ∈ R
N ,

then ‖ · ‖ is a homogeneous norm, and we also have

dZ(u, v) = ‖v−1 ∗ u‖ = ‖u−1 ∗ v‖ for every u, v ∈ R
N .

Throughout the following, the symbol ‖ · ‖ in RN will always denote this special norm.

The proof of Proposition 3.7 can be found in [2], or is immediate.

A much deeper result describes the volume of X-balls. The following theorem specializes a
celebrated result by Nagel, Stein and Wainger [28] to the case of our 1-homogeneous vector fields X
(for a proof see [5, Theorem B]):

Theorem 3.8. Let X = {X1, . . . , Xm}, n and q be as before. Then, there exist constants γ1, γ2 > 0
such that, for every x ∈ Rn and every ρ > 0, one has the estimates

(3.15) γ1

q∑

j=n

fj(x) ρ
j ≤ |BX(x, ρ)| ≤ γ2

q∑

j=n

fj(x) ρ
j .

Here, the functions fk, . . . , fq : R
n → R satisfy the following properties:

(1) fk, . . . , fq are continuous and non-negative on Rn;
(2) for every j ∈ {n, . . . , q}, the function fj is δλ-homogeneous of degree q − j.

In particular, fq(x) is constant in x and strictly positive.
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Remark 3.9. From estimate (3.15) it can be easily derived the following notable fact: for any
x ∈ Rn and any 0 < r < ρ, one has

(3.16) γ1

(
ρ

r

)n

≤ |BX(x, ρ)|
|BX(x, r)| ≤ γ2

(
ρ

r

)q

,

In particular, the following global doubling property holds:

(3.17) |BX(x, 2ρ)| ≤ 2qγ2 |BX(x, ρ)| for all x ∈ R
n and ρ > 0.

The above facts easily imply that the function

1

|BX(x,
√
t)|

exp

(
− d2X(x, y)

t

)

(which plays a key role in our estimates) is not so asymmetric in x, y as could seem. More precisely,
we have the following proposition.

Proposition 3.10. For every θ > 0 there exists a constant C1 > 0 such that

(3.18)
1

|BX(y,
√
t)|

exp

(
− d2X(x, y)

θt

)
≤ C1

|BX(x,
√
t)|

exp

(
− d2X(x, y)

C1θt

)
,

for every x, y ∈ Rn and every t > 0.

Proof. To prove this, let us distinguish two cases.

• If dX(x, y) ≤
√
t, we infer from (3.17) that |BX(y,

√
t)| and |BX(x,

√
t)| are equivalent, and

thus the above inequality holds.
• If dX(x, y) >

√
t, then by (3.16) and (3.17) we have

1

|BX(y,
√
t)|

≤ γ2
|BX(y, dX(x, y))| ·

(
dX(x, y)√

t

)q

≤ 2q (γ2)
2

∣∣BX

(
x, dX(x, y)

)∣∣ ·
(
dX(x, y)√

t

)q

≤ 2q (γ2)
2

γ1
· 1

|BX(x,
√
t)|

·
(
dX(x, y)√

t

)q−n

.

From this, we readily obtain (3.18) (see, e.g., (4.2)).

This ends the proof. �

Another deep known result that will play a key role in our estimates is the following ‘global’
version of a well-known result by Sanchéz-Calle [32] (see also [28, Lemma 3.2] and [18]), which
compares the volumes of BX(x, ρ) and BZ((x, ξ), ρ). For a proof of this result see [5, Theorem C].

Theorem 3.11. Under the previous assumptions and notation, there exist constants κ ∈ (0, 1) and
c1, c2 > 0 such that, for every x ∈ Rn, every ξ ∈ Rp and every ρ > 0 one has the estimates:

∣∣{η ∈ R
p : (y, η) ∈ BZ((x, ξ), ρ)}

∣∣ ≤ c1
|BZ((x, ξ), ρ)|
|BX(x, ρ)| , for all y ∈ R

n,(3.19)

∣∣{η ∈ R
p : (y, η) ∈ BZ((x, ξ), ρ)}

∣∣ ≥ c2
|BZ((x, ξ), ρ)|
|BX(x, ρ)| , for all y ∈ BX(x, κρ).(3.20)

We wish to stress that Theorems 3.8 and 3.11 contain global results, adapted to our context of
homogeneous vector fields. In contrast with this, the original versions of these results, contained in
[28], [32], and related to general systems of Hörmander’s vector fields, express local results.
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4. Gaussian estimates for Γ

The aim of this section is to prove upper/lower Gaussian estimates for the global heat kernel
Γ(t, x; s, y) of H (or, equivalently, for γ(t, x, y)) as defined in (3.10)). Broadly put, our approach is
the following: on account of (3.12), we already know that Γ satisfies the ‘quasi-Gaussian’ estimates

γ(t, x, y) ≈ t−Q/2

∫

Rp

exp

(
− ‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη,

where Q is as in (3.6); we then derive ‘pure’ Gaussian estimates for Γ by showing that, for any
x, y ∈ Rn and any t > 0, one has

(4.1) t−Q/2

∫

Rp

exp

(
− ‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≈ 1

|BX(x,
√
t)|

· exp
(
− d2X(x, y)

t

)
.

To begin with, for a future reference, we state the following lemma.

Lemma 4.1. The following estimates hold true:

(i) for every ν > 0 and δ ∈ (0, 1) there exists c > 0 such that

(4.2) τνe−τ2 ≤ c e−δτ2

for every τ ≥ 0;

(ii) for every positive ν, θ there exists c > 0 such that

(4.3) τ−ν ≥ c e−θτ2

for every τ > 0.

We then proceed by proving (4.1), and we start with the upper estimate.

Proposition 4.2. There exists a constant κ > 1 such that

(4.4) t−Q/2

∫

Rp

exp

(
− ‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≤ κ

|BX(x,
√
t)|

exp

(
−d2X(x, y)

2t

)
,

for every x, y ∈ Rn and every t > 0.

Proof. Let x, y ∈ Rn be arbitrarily fixed, and let t > 0.

Case I: dX(x, y) >
√
t. In this case, for every n = 0, 1, 2, ..., we define

(4.5) An :=
{
η ∈ R

p : 2ndX(x, y) ≤ ‖(x, 0)−1 ∗ (y, η)‖ < 2n+1dX(x, y)
}
,

and we observe that, by Proposition 3.7-(iii), it holds Rp = ∪n≥0An. Hence,

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη =

+∞∑

n=0

∫

An

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη

≤
+∞∑

n=0

exp

(
−22nd2X(x, y)

t

)
· |An|

≤
+∞∑

n=0

exp

(
−22nd2X(x, y)

t

)
·
∣∣{η ∈ R

p : (y, η) ∈ BZ

(
(x, 0), 2n+1dX(x, y)

)}∣∣

=: (⋆).

Next, by combining Theorem 3.11 and (3.14), for every n ≥ 0 we have

∣∣{η ∈ R
p : (y, η) ∈ BZ((x, 0), 2

n+1dX(x, y))
}∣∣ ≤ c1

∣∣BZ

(
(x, 0), 2n+1dX(x, y)

)∣∣
∣∣BX

(
x, 2n+1dX(x, y)

)∣∣

= c1ωQ
2Q(n+1)dQX(x, y)∣∣BX

(
x, 2n+1dX(x, y)

)∣∣ ≤ c1ωQ
2Q(n+1)dQX(x, y)

|BX(x, dX(x, y))|

≤ c1ωQ
2Q(n+1)dQX(x, y)

|BX(x,
√
t)|

,
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since dX(x, y) >
√
t. As a consequence, we obtain

(⋆) ≤ c1ωQ

+∞∑

n=0

exp

(
−22nd2X(x, y)

t

)
· 2

Q(n+1)dQX(x, y)

|BX(x,
√
t)|

= 2Q c1ωQ
tQ/2

|BX(x,
√
t)|

+∞∑

n=0

(
2ndX(x, y)√

t

)Q

exp

(
−22nd2X(x, y)

t

)

(by estimate (4.2), with ν = Q and, e.g., δ = 1/2)

≤ αQ tQ/2

|BX(x,
√
t)|

+∞∑

n=0

exp

(
−22nd2X(x, y)

2t

)
=: (⋆⋆),

for some constant αQ depending on Q. On the other hand, since we are assuming that dX(x, y) >
√
t,

for any n ≥ 0 we have

exp

(
−22nd2X(x, y)

2t

)
= exp

(
−d2X(x, y)

2t

)
· exp

(
−d2X(x, y)

2t
·
(
22n − 1

))

≤ exp

(
−d2X(x, y)

2t

)
· exp

(
−22n − 1

2

)
,

from which we derive that

(⋆⋆) ≤ αQ sQ/2

|BX(x,
√
t)|

exp

(
−d2X(x, y)

2t

)
·
+∞∑

n=0

exp

(
−22n − 1

2

)

=
α′
Q tQ/2

|BX(x,
√
t)|

exp

(
−d2X(x, y)

2t

)
.

Finally, using this last estimate, we obtain

t−Q/2

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≤

α′
Q

|BX(x,
√
t)|

exp

(
−d2X(x, y)

2t

)
(4.6)

which is precisely (4.4) (with κ = α′
Q).

Case II: dX(x, y) ≤
√
t. First of all, for every non-negative integer n we consider the set

(4.7) Bn :=
{
η ∈ R

p : 2n
√
t ≤ ‖(x, 0)−1 ∗ (y, η)‖ < 2n+1

√
t
}
;

moreover, we define

(4.8) B :=
{
η ∈ R

p : ‖(x, 0)−1 ∗ (y, η)‖ <
√
t
}
.

Then we have:

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη =

∫

B

{
. . .
}
dη +

+∞∑

n=0

∫

Bn

{
. . .
}
dη

≤ |B|+
+∞∑

n=0

exp
(
−22n

)
· |Bn|

≤
∣∣{η ∈ R

p : (y, η) ∈ BZ

(
(x, 0),

√
t
)}∣∣

+
+∞∑

n=0

exp
(
−22n

)
·
∣∣{η ∈ R

p : (y, η) ∈ BZ

(
(x, 0), 2n+1

√
t
)}∣∣ =: (⋆).
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Now, again by Theorem 3.11 and (3.14), for every n ≥ 0 we have

∣∣{η ∈ R
p : (y, η) ∈ BZ

(
(x, 0), 2n

√
t
)}∣∣ ≤ c1

∣∣BZ

(
(x, 0), 2n

√
t
)∣∣

∣∣BX

(
x, 2n

√
t
)∣∣

= c1ωQ
2nQtQ/2

|BX(x, 2n
√
t)|

≤ c1ωQ
2nQ tQ/2

|BX(x,
√
t)|

.

As a consequence, we obtain

(⋆) ≤ c1ωQ
tQ/2

|BX(x,
√
t)|

+ c1ωQ ·
+∞∑

n=0

exp
(
−22n

) 2(n+1)QtQ/2

|BX(x,
√
t)|

= c1ωQ
tQ/2

|BX(x,
√
t)|

·
(
1 +

+∞∑

n=0

exp
(
−22n

)
2Q(n+1)

)

=
βQ tQ/2

|BX(x,
√
t)|

= (⋆⋆).

On the other hand, since we are assuming that dX(x, y) ≤
√
t, we have

exp

(
−d2X(x, y)

2t

)
≥ e−1/2,

from which we derive that

(⋆⋆) ≤ β′
Q

tQ/2

|BX(x,
√
t)|

· exp
(
−d2X(x, y)

2t

)
.

Finally, using this last estimate, we obtain

t−Q/2

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≤

β′
Q

|BX(x,
√
t)|

· exp
(
−d2X(x, y)

2t

)
,(4.9)

and this is again (4.4). Gathering (4.6) and (4.9), we conclude that estimate (4.4) holds for every
x, y ∈ Rn and every t > 0 by choosing

κ := max{α′
1, β

′
Q} > 1.

This ends the proof. �

In order to prove lower estimate of Γ, we need the following property.

Lemma 4.3. With the above notation and assumption, let b > a > 0 be fixed real numbers, and let
x, y ∈ Rn satisfying

(4.10) dX(x, y) < a.

Then, for every ξ ∈ Rp there exists η = ηx,y,ξ ∈ Rp \ {0} such that
{
η ∈ R

p : a ≤ dZ
(
(x, ξ), (y, η)

)
< b
}
⊇
{
η ∈ R

p : (y, η) ∈ BZ

(
(y, η), 1

2 (b − a)
)}

.(4.11)

Proof. Since y ∈ BX(x, a), if ξ ∈ Rp is arbitrarily fixed, by (3.13) there exists

(4.12) η0 ∈
{
η ∈ R

p : (y, η) ∈ BZ

(
(x, ξ), a

)}
.

In particular, since the set in the right-hand side of (4.12) is open, we can assume that η0 6= 0. We

then consider the function g : [1,+∞) → R defined as follows:

g(λ) := dZ
(
(x, ξ), (y, δ∗λ(η0))

)
,

where δ∗λ(η) = (λτ1η1, . . . , λ
τpηp) is as in (3.3). Clearly, we have that g is continuous on the whole

of [1,+∞); moreover, from (4.12) we infer that

(4.13) g(1) < a.
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We now claim that

(4.14) lim
λ→+∞

g(λ) = +∞.

To prove (4.14) we first notice that, by triangle’s inequality, we have

(4.15) g(λ) ≥ dZ
(
(0, 0), (y, δ∗λ(η0))

)
− dZ

(
(0, 0), (x, ξ)

)
(for all λ ≥ 1);

moreover, since the vector fields Z1, . . . , Zm are Dλ-homogeneous of degree 1, by Proposition 3.7-(i)
we deduce that

dZ
(
(0, 0), (y, δ∗λ(η0))

)
= dZ

(
(0, 0), (δλ(δ1/λ(y), δ

∗
λ(η0))

)

(setting yλ = δ1/λ(y))

= dZ
(
(0, 0), Dλ(yλ, η0))

)

= λdZ
(
(0, 0), (yλ, η0)

)
.

(4.16)

Since yλ = δ1/λ(y) → 0 ∈ Rn as λ → +∞, and since η0 6= 0, we have

lim
λ→+∞

dZ
(
(0, 0), (yλ, η0)

)
= dZ

(
(0, 0), (0, η0)

)
> 0;

as a consequence, taking the limit as λ → +∞ in (4.16) we obtain

(4.17) lim
λ→+∞

dZ
(
(0, 0), (y, δ∗λ(η0))

)
= +∞.

Gathering (4.17) and (4.15), we obtain the claimed (4.14).

Next, using the continuity of g, together with (4.13) and (4.14), we infer the existence of a
suitable λ ∈ (1,+∞) such that

(4.18) g(λ) = dZ
(
(x, ξ), (y, δ∗

λ
(η0))

)
=

b + a

2
.

Setting η := δ∗
λ
(η0), we prove (4.11) by showing the stronger inclusion

(4.19)
{
z ∈ R

N : a ≤ dZ((x, ξ), z) < b
}
⊇ BZ

(
(x, η), 1

2 (b − a)
)
.

To this end, let u ∈ BZ

(
(y, η), 1

2 (b − a)
)

be fixed. On the one hand, we have

dZ
(
(x, ξ), u

)
≤ dZ

(
(x, ξ), (y, η)

)
+ dZ

(
(y, η), u

)
<

b+ a

2
+

b− a

2
= b;

on the other hand, since we also have

dZ
(
(x, ξ), u

)
≥ dZ

(
(x, ξ), (y, η)

)
− dZ

(
u, (y, η)

)
>

b+ a

2
− b − a

2
= a,

we conclude that (4.19) holds. This ends the proof. �

We can now prove the estimate from below in (4.1).

Proposition 4.4. There exists a constant ϑ > 1 such that

t−Q/2

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≥ 1

ϑ |BX(x,
√
t)|

exp

(
−ϑ d2X(x, y)

t

)
,(4.20)

for every x, y ∈ R
n and every t > 0.

Proof. Let x, y ∈ R
n be arbitrarily fixed, and let t > 0.

Case I: dX(x, y) >
√
t. In this case, we consider the set

A :=
{
η ∈ R

p : 2dX(x, y) ≤ ‖(x, 0)−1 ∗ (y, η)‖ < 4dX(x, y)
}
.

By applying Lemma 4.3 (with a := 2dX(x, y) > dX(x, y) and b := 2a), one has

(4.21) A ⊇
{
η ∈ R

p : (y, η) ∈ BZ

(
(y, η), dX(x, y)

)}
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(for a suitable η = ηx,y ∈ Rp \ {0}); as a consequence, we obtain

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≥

∫

A

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη

(since ‖(x, 0)−1 ∗ (y, η)‖2 ≤ 16 d2X(x, y) for η ∈ A)

≥ exp

(
−16 d2X(x, y)

t

)
· |A|

≥ exp

(
−16 d2X(x, y)

t

)
·
∣∣{η ∈ R

p : (y, η) ∈ BZ

(
(y, η), dX(x, y)

)}∣∣ =: (⋆).

On the other hand, by using Theorem 3.11 (with the choice (x, ξ) = (y, η)) and (3.14), we get

∣∣{η ∈ R
p : (y, η) ∈ BZ

(
(y, η), dX(x, y)

)}∣∣ ≥ c2

∣∣BZ

(
(y, η), dX(x, y)

)∣∣
∣∣BX

(
y, dX(x, y)

)∣∣

= c2ωQ
dQX(x, y)∣∣BX

(
y, dX(x, y)

)∣∣

(since we are assuming that dX(x, y) >
√
t)

> c2ωQ
tQ/2

∣∣BX

(
y, dX(x, y)

)∣∣ ,

from which we derive the estimate

(⋆) ≥ c2ωQ
tQ/2

∣∣BX

(
y, dX(x, y)

)∣∣ · exp
(
−16 d2X(x, y)

t

)

(since BX (y, dX(x, y)) ⊆ BX (x, 2dX(x, y)))

≥ c2ωQ
tQ/2

∣∣BX

(
x, 2dX(x, y)

)∣∣ · exp
(
−16 d2X(x, y)

t

)
=: (⋆⋆).

We now observe that, since X1, . . . , Xm are δλ-homogeneous of degree 1, and since we are assuming
that dX(x, y) >

√
t, we can apply (3.16), getting

∣∣BX

(
x, 2dX(x, y)

)∣∣ ≤ γ2 |BX(x,
√
t)| ·

(
2dX(x, y)√

t

)q

,

where q is as in (2.3). As a consequence, we deduce that

(⋆⋆) ≥ c2ωQ

2qγ2

tQ/2

|BX(x,
√
t)|

·
(
dX(x, y)√

t

)−q

exp

(
−16 d2X(x, y)

t

)

(by estimate (4.3), with ν = q and, e.g., θ = 4)

≥ tQ/2

αq,Q |BX(x,
√
t)|

exp

(
−20 d2X(x, y)

t

)
,
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for some constant αq,Q depending on q,Q. Finally, by exploiting this last estimate, we obtain

t−Q/2

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη

≥ t−Q/2 ·
[

tQ/2

αq,Q |BX(x,
√
t)|

exp

(
−20 d2X(x, y)

t

)]

(setting ϑ1 = max{αq,Q, 20})

≥ 1

ϑ1 |BX(x,
√
t)|

exp

(
−ϑ1 d

2
X(x, y)

t

)
,

(4.22)

which exactly the desired (4.20) (with ϑ = ϑ1 > 1).

Case II: dX(x, y) ≤
√
t. The proof is similar to that of Case I, letting now

A =
{
η ∈ R

p : 2
√
t ≤ ‖(x, 0)−1 ∗ (y, η)‖ < 4

√
t
}
.

Applying Lemma 4.3 (with a := 2
√
t > dX(x, y) and b := 2a), we get

A ⊇
{
η ∈ R

p : (y, η) ∈ BZ((y, η),
√
t)
}
6= ∅

(for a suitable η = ηx,y ∈ Rp \ {0}); as a consequence, we obtain

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη ≥

∫

A

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη

≥ e−16 · |A| ≥ e−16 ·
∣∣{η ∈ R

p : (y, η) ∈ BZ((y, η),
√
t)
}∣∣ =: (⋆).

On the other hand, by using Theorem 3.11 (with the choice (x, ξ) = (y, η)) and (3.14), we get

∣∣{η ∈ R
p : (y, η) ∈ BZ((y, η),

√
t)
}∣∣ ≥ c2

∣∣BZ((y, η),
√
t)
∣∣

|BX(y,
√
t)|

= c2ωQ
tQ/2

|BX(y,
√
t)|

,

from which we derive the estimate (remind that we are assuming dX(x, y) ≤
√
t)

(⋆) ≥ c2ωQ

e16
tQ/2

|BX(y,
√
t)|

(
since BX(y,

√
t) ⊆ BX(x, dX(x, y) +

√
t) ⊆ BX(x, 2

√
t)
)

≥ c2ωQ

e16
tQ/2

|BX(x, 2
√
t)|

=: (⋆⋆).

By (3.17), we have

|BX(x, 2
√
t)| ≤ γ22

q |BX(x,
√
t)| (where q is as in (2.3));

as a consequence, we deduce that

(⋆⋆) ≥ c2ωQ

2qe16
tQ/2

|BX(x,
√
t)|

≥ tQ/2

βq,Q |BX(x,
√
t)|

· exp
(
−d2X(x, y)

t

)
,
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for some constant βq,Q depending on q,Q. Using this last estimate, we get

t−Q/2

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη

≥ t−Q/2 ·
[

tQ/2

βq,Q |BX(x,
√
t)|

· exp
(
−d2X(x, y)

t

)]

(setting ϑ2 := max{βq,Q, 1})

≥ 1

ϑ2 |BX(x,
√
t)|

exp

(
−ϑ2 d

2
X(x, y)

t

)
,

(4.23)

and this is again the desired (4.20) (this time with ϑ = ϑ2 ≥ 1). Gathering (4.22) and (4.23), we
conclude that estimate (4.20) holds for every x, y ∈ Rn and every t > 0 by choosing

ϑ := max{ϑ1, ϑ2} > 1.

This ends the proof. �

Thanks to Propositions 4.2 and 4.4, we can now (2.6) in Theorem 2.4.

Proof of Theorem 2.4-(i). For every x, y ∈ Rn and every t > 0, we set

H(x, y, t) := t−Q/2

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

t

)
dη.

On account of (3.12), we know that there exists a constant c ≥ 1, only depending on G and on Z

(which, in their turn, only depend on the set X), such that

(4.24) c
−1−Q/2 H

(
x, y, c−1t

)
≤ γ(t, x, y) ≤ c

−1−Q/2 H (x, y, ct)

for every x, y ∈ Rn and every t > 0. These bounds, together with the preceding Propositions 4.2
and 4.4, immediately give (2.6). �

5. Estimates for the derivatives of Γ

The aim of this section is to establish (upper) Gaussian estimates for the space derivatives
along X1, . . . , Xm and for the ‘time derivatives’ of arbitrary order of γ, that is Theorem 2.4-(ii).
To begin with, we state the following theorem proved in [4], which provides integral representations
(analogous to formula (3.10)) for any space/time derivative of γ.

Theorem 5.1 (See [4, Theorem 3]). Under the previous assumption, and keeping the notation of
Theorem 3.5, for any nonnegative integers α, h, k and any choice of indexes i1, . . . , ih, j1, . . . , jk in
{1, . . . ,m}, we have the following representation formulas

(
∂

∂t

)α

Xx
i1 · · ·X

x
ihγ(t, x, y)(5.1)

=

∫

Rp

((
∂

∂t

)α

Zi1 · · ·ZihγG

)(
t, (y, 0)−1 ∗ (x, η)

)
dη;

(
∂

∂t

)α

Xy
j1
· · ·Xy

jk
γ(t, x, y)(5.2)

=

∫

Rp

((
∂

∂t

)α

Zj1 · · ·ZjkγG

)(
t, (x, 0)−1 ∗ (y, η)

)
dη;

(
∂

∂t

)α

Xy
j1
· · ·Xy

jk
Xx

i1 · · ·X
x
ih
γ(t, x, y)(5.3)

=

∫

Rp

((
∂

∂t

)α

Zj1 · · ·Zjk

(
(Zi1 · · ·ZihγG) ◦ ι̃

)) (
t, (x, 0)−1 ∗ (y, η)

)
dη ,
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holding true for every (t, x) 6= (0, y) in R1+n. Here ι̃ : R1+N → R1+N is the map defined by

ι̃(t, u) = (t, u−1)

and u−1 is the inverse of u in G = (RN , ∗).

While the proof of our Gaussian estimates for the derivatives appearing in (5.2) and (5.1) is,
by now, quite straightforward, for the mixed case in (5.3) it will require some extra work. We start
establishing the following proposition, which will be useful for the case of mixed derivatives.

Proposition 5.2. With the above notation, for any nonnegative integers α, h, k and any choice of
indexes i1, . . . , ih, j1, . . . , jk ∈ {1, . . . ,m}, there exists c1, c2 > 0 such that

∣∣∣∣
(

∂

∂t

)α

Zj1 · · ·Zjk

(
(Zi1 · · ·ZihγG) ◦ ι̃

)
(t, u)

∣∣∣∣ ≤ c1 t
−(Q+2α+h+k)/2 exp

(
−‖u‖2

c2 t

)
,

for every u ∈ G and every t > 0.

In turn, Proposition 5.2 follows from two facts which are stated separately in the next two
lemmas, since they may be of independent interest.

Lemma 5.3. Let Y be a 1-homogeneous (but not necessarily left invariant) smooth vector field on
G. Then, it is possible to find another 1-homogeneous smooth vector field Ỹ such that

Y (f ◦ ι) = (Ỹ f) ◦ ι for every f ∈ C∞(RN ),

where ι(u) = u−1 is the inversion map on G.

Proof. First of all, let us write the dilations on G as:

Dλ(u1, ..., uN) = (λα1u1, ..., λ
αNuN ) (for any λ > 0 and u ∈ G).

We can write

Y =

N∑

j=1

bj(u)
∂

∂uj

where bj(u) is a (αj − 1)-homogeneous polynomial function. Moreover, using the structure of the
inversion map on homogeneous groups (see, e.g., [8, Corollary 1.3.16]), we know that the k-th com-
ponent of ι(u) is a αk-homogeneous polynomial function. Therefore

Y (f ◦ ι)(u) =
N∑

j=1

bj(u)
N∑

k=1

∂f

∂uk

(
ι(u)

) ∂ιk
∂uj

(u)

=

N∑

k=1




N∑

j=1

bj(u)
∂ιk
∂uj

(u)


 ∂f

∂uk

(
ι(u)

)
≡

N∑

k=1

ck(u)
∂f

∂uk

(
ι(u)

)
,

and ck is a homogeneous polynomial function of degree

(αj − 1) + (αk − αj) = αk − 1.

Next, we define c̃k = ck ◦ ι. Since the dilations Dλ are group automorphisms, we have

(i) Dλ

(
ι(u)

)
= ι
(
Dλ(u)

)
;

(ii) c̃k
(
Dλ(u)

)
= ck

(
Dλ

(
ι(u)

))
= λαk−1ck

(
ι(u)

)
= λαk−1c̃k(u).

Hence, c̃k is (αk − 1)-homogeneous as well, and

Y (f ◦ ι)(u) =
N∑

k=1

c̃k
(
ι(u)

) ∂f
∂uk

(
ι(u)

)
≡ (Ỹ f)

(
ι(u)

)
,

where Ỹ :=
∑N

k=1 c̃k(u) ∂uk
is a 1-homogeneous vector field (in view of (ii)). �

Next, let us prove the following:
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Proposition 5.4. Let α, r be nonnegative integers, and let Y1, ..., Yr be 1-homogeneous (but not
necessarily left invariant) smooth vector fields on G. Then, there exist constants c1, c2 > 0 such
that, for every u ∈ G and every t > 0, the following Gaussian bound holds

∣∣∣∣
(

∂

∂t

)α

Y1 · · ·YrγG(t, u)

∣∣∣∣ ≤ c1 t
−(Q/2+α+r/2) exp

(
−‖u‖2

c2 t

)
.

Proof. If Y1, ..., Yr are 1-homogeneous and left invariant vector fields on G, this result is proved by
[9, Theorem. 2.5] (see also (3.8) in Theorem 3.4). We are going to show that the result for left
invariant 1-homogeneous vector fields easily implies our more general statement.

In fact, let X1, ..., XN be the canonical basis of G, i.e., Xi is the unique left invariant vector
field on G such that Xi(0) = ∂ui

. Up to possibly reordering the Xi’s, we can assume that Xi is
αi-homogeneous, with 1 = α1 = ... = αm < αm+1 ≤ αm+2.... ≤ αN = s, and s is the step of G (that
is, Lie(G) is nilpotent of step s). Then, for homogeneity reasons, we have

Xi = ∂ui
+

N∑

k=1
αk>αi

bik(u)∂uk
(for i = 1, 2, ..., N),

where bik(u) is a (αk − αi)-homogeneous polynomial function. In particular, since XN = ∂uN
, we

can solve the above system in ∂u1 , ..., ∂uN
using backward substitution, thus writing

(5.4) ∂ui
= Xi +

N∑

k=1
αk>αi

cik(u)Xk (for i = 1, 2, ..., N),

where cik(u) is a (αk − αi)-homogeneous polynomial function.
Let now Y be a 1-homogeneous vector field. Owing to (5.4), we have

Y =

N∑

i=1

βi(u) ∂ui
=

N∑

i=1

βi(u)


Xi +

N∑

k=1
αk>αi

cik(u)Xk


 ≡

N∑

i=1

γi(u)Xi,

where γi(u) is a (αi − 1)-homogeneous polynomial function. Notice that, since X1, ..., Xm are gen-
erators of Lie(G), every Xi with i > m can be written as a linear combination (with constant
coefficients) of commutators of X1, ..., Xm, of length αi. Thus, since the Gaussian bound holds for
left invariant vector fields (see (3.8) in Theorem 3.4), we obtain

|Y γG(t, u)| ≤
N∑

i=1

|γi(u)| · |XiγG(t, u)| ≤ ĉ

N∑

i=1

|γi(u)| · t−(Q+αi)/2 exp

(
−‖u‖2

ĉ t

)

≤ κ

N∑

i=1

‖u‖αi−1 · t−(Q+αi)/2 exp

(
−‖u‖2

ĉ t

)

= κ t−(Q+1)/2
N∑

i=1

(‖u‖√
t

)αi−1

· exp
(
−‖u‖2

ĉ t

)

≤ c1 t
−(Q+1)/2 exp

(
−‖u‖2

c2 t

)

where the last inequality follows from (4.2). The general case then follows by iteration. �

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. By repeatedly applying Lemma 5.3, we can rewrite
(

∂

∂t

)α

Zj1 · · ·Zjk

(
(Zi1 · · ·ZihγG) ◦ ι̃

)
=

{(
∂

∂t

)α

Z̃j1 · · · Z̃jk

(
Zi1 · · ·ZihγG

)}
◦ ι̃

with ι̃(t, u) = (t, u−1). Here the Zi’s are 1-homogeneous and left invariant, whereas the Z̃i’s are just
1-homogeneous. Anyhow, we can apply Proposition 5.4 and get the desired result. �
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With Proposition 5.2 in hand, we can prove the Gaussian estimates on the derivatives.

Proof of Theorem 2.4-(ii). We distinguish three different cases.

Case 1. Y1, . . . , Yr = Xx
i1 · · ·Xx

ir . Then, by (5.1), (3.8) and Proposition 4.2 we have
∣∣∣∣
(

∂

∂t

)α

Xx
i1 · · ·X

x
irγ(t, x, y)

∣∣∣∣

≤ ĉ t−(Q/2+α+r/2)

∫

Rp

exp

(
−‖(y, 0)−1 ∗ (x, η)‖

ĉ t

)
dη

≤ c t−(α+r/2) 1

|BX(y,
√
t)|

exp

(
−d2X(x, y)

C t

)
.

The assertion then follows by Remark 3.10.

Case 2. Y1, . . . , Yr = Xy
j1
· · ·Xy

jr
. Then, by (5.2), (3.8) and Proposition 4.2, we have

∣∣∣∣
(

∂

∂t

)α

Xy
j1
· · ·Xy

jr
γ(t, x, y)

∣∣∣∣

≤ ĉ t−(Q/2+α+r/2)

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖

ĉ t

)
dη

≤ c t−(α+r/2) 1

|BX(x,
√
t)|

exp

(
−d2X(x, y)

C t

)
.

Case 3. Y1, . . . , Yr = Xy
j1
· · ·Xy

jk
Xx

i1
· · ·Xx

ih
(with k + h = r). In this last case, by exploiting

(5.3), Proposition 5.2 and again Proposition 4.2, we obtain
∣∣∣∣
(

∂

∂t

)α

Xy
j1
· · ·Xy

jk
Xx

i1 · · ·X
x
ihγ(t, x, y)

∣∣∣∣

≤ c1 t
−(Q/2+α+r/2)

∫

Rp

exp

(
−‖(x, 0)−1 ∗ (y, η)‖2

c2 t

)
dη

≤ c t−(α+r/2) 1

|BX(x,
√
t)|

exp

(
−d2X(x, y)

C t

)
.

This ends the proof. �

6. An application to the Cauchy problem for H

As anticipated in the Introduction, in this section we exploit the global Gaussian bounds of Γ
to study the unique solvability of the Cauchy problem for H. More precisely, we extend the result
proved in [4, Thm. 4.1], where the Cauchy problem is studied for bounded continuous initial data,
to possibly unbounded continuous initial data, fastly growing at infinity.

As for the proof of Gaussian estimates, we will make Assumptions 2.1 and will also assume
(H3) (see Section 3). As noted before, condition (H3) amounts to assuming that we are not in a
Carnot group (see also Remark 6.4 after the proof of our result for some explanation on this point).

We start with the following

Definition 6.1. Let Sτ := (0, τ)× Rn, for some fixed τ ∈ (0,+∞]. Given any function f ∈ C(Rn),
we say that u : Sτ → R is a classical solution of the Cauchy problem

(6.1)

{
Hu = 0 in Sτ ,

u(0, x) = f(x) for x ∈ Rn

if it satisfies the following properties:

(1) u ∈ C2(Sτ ) and Hu = 0 pointwise on Sτ ;
(2) limt→0+ u(t, x) = f(x) for every fixed x ∈ Rn.
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Using the upper Gaussian estimates of Γ, we are able to prove that (6.1)) admits (at least) one
classical solution when the initial datum f grows at most exponentially. In what follows, we set

ρX(x) := dX(0, x) (x ∈ R
n).

Theorem 6.2. There exists T > 0 such that, if f ∈ C(Rn) satisfies the growth condition

(6.2)

∫

Rn

|f(y)| exp
(
− µρ2X(y)

)
dy < +∞

for some constant µ > 0, then the function

(6.3) u(t, x) :=

∫

Rn

Γ(t, x; 0, y) f(y) dy =

∫

Rn

γ(t, x, y) f(y) dy

is a classical solution of (6.1) on the strip ST/µ.
Furthermore, it is possible to find constants τ, δ > 0 (depending on µ) such that

(6.4)

∫

Sτ

exp
(
−δρ2X(x)

)
|u(t, x)| dt dx < +∞.

Finally, if u1, u2 are two classical solutions of (6.1) with the same continuous initial datum f , and
if u1, u2 satisfy condition (6.4) in two strips Sτ1 , Sτ2 , respectively, then

u1 ≡ u2 in Sτ , for τ = min{τ1, τ2}.
Before proving Theorem 6.2 we establish, for a future reference, the following easy lemma.

Lemma 6.3. For every fixed θ > 0, we have

(6.5) φ(y) := exp
(
−θρ2X(y)

)
∈ L1(Rn).

Proof. Since φ is bounded, it suffices to show that φ is integrable at infinity. To this end, if σ1, . . . , σn

are as in (2.1), we consider the homogeneous norm

N(y) :=
n∑

j=1

|yj |1/σj (y ∈ R
n),

and we prove that φ is integrable on the set O := {N ≥ 1}. Now, using Lemma 4.1, and taking into
account that both N and ρX are δλ-homogeneous of degree 1, we have

∫

O

φ(y) dy ≤ c

∫

O

1

ρ2qX (y)
dy = c

+∞∑

k=0

∫

{2k≤N<2k+1}

1

ρ2qX (y)
dy

(performing the change of variable y = δ2k(u))

= c

(∫

{1≤N<2}

1

ρ2qX (u)
du

)
·
+∞∑

k=0

1

2qk
< +∞.

This ends the proof. �

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Assume that f ∈ C(Rn) satisfies (6.2), and let u be as in (6.3).

Step I. Let us show that u is well defined and solves (6.1) in some ST . To this end, let R > 0
be arbitrarily fixed, and let φR ∈ C0

0 (R
n) satisfy the following properties

• φR ≡ 1 on {ρX < R};
• φR ≡ 0 on {ρX > 2R};
• 0 ≤ φR ≤ 1 on R

n.

Then, we can write

u(t, x) =

∫

Rn

γ(t, x, y) f(y)φR(y) dy +

∫

Rn

γ(t, x, y) f(y)
(
1− φR(y)

)
dy ≡ u1(t, x) + u2(t, x).
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Since fφR is bounded continuous, by [4, Theorem 4.1] we know that u1 is well defined for every
t > 0, and it solves (6.1) with initial datum fφR on the whole of on (0,+∞) × R

n. In particular,
since φR ≡ 1 on the set {ρX < R}, for every x ∈ R

n with ρX(x) < R we have

lim
t→0+

u1(t, x) = (fφR)(x) = f(x).

We now prove that there exists a suitable T > 0, independent of the chosen R, such that the following
facts hold on the bounded stripe ST/µ,R := (0, T/µ)× {ρX < R}:

(i) u2 is well defined; (ii) u2 it solves the equation Hu = 0; (iii) u2(t, x) → 0 as t → 0+.

As for (i)-(ii) we observe that, by the Gaussian estimate (2.6), we have

|u2(t, x)| ≤
̺

|B(x,
√
t)|

∫

{ρX (y)>2R}

exp

(
−d2X(x, y)

̺t

)
|f(y)| dy

=
̺

|B(x,
√
t)|

∫

{ρX (y)>2R}

exp

(
−d2X(x, y)

̺t
+ µρ2X(y)

)
|f(y)| exp

(
− µρ2X(y)

)
dy.

(6.6)

On the other hand, for every x, y ∈ R
n satisfying ρX(x) < R and ρX(y) > 2R, one has

dX(x, y) ≥ ρX(y)− ρX(x) ≥ ρX(y)

2
;

as a consequence, we get

(6.7) exp

(
−d2X(x, y)

̺t
+ µρ2X(y)

)
≤ exp

(
−ρ2X(y)

( 1

4̺t
− µ

))
≤ 1,

as soon as x ∈ {ρX < R} and 1
4̺t − µ > 0, that is (setting T1 := 1/(4̺))

t <
T1

µ
.

Gathering together all these facts, for fixed (t, x) ∈ ST1/µ,R we obtain

|u2(t, x)| ≤ ct,x

∫

Rn

|f(y)| exp
(
− µρ2X(y)

)
dy < +∞.

Now, using the Gaussian estimates (2.7) for the derivatives of γ, and arguing exactly as above, one
can easily prove that u2 ∈ C2(ST/µ,R) and Hu2 = 0 on ST/µ,R, where

(6.8) T := min

{
T1,

1

4C

}
and C is as in (2.7).

Next, we show that for t → 0+ we have u2(t, x) → 0 if x ∈ R
n satisfies ρX(x) < R. To this end we

first observe that, by (3.15), for every t > 0 and x ∈ Rn we have

(6.9) |BX(x,
√
t)| ≥ γ1

q∑

h=n

fh(y) t
h/2 ≥ γ1 fq t

q/2 = κq t
q/2,

with κq := γ1 fq (remind that fn, . . . , fq ≥ 0 and fq is a positive constant). As a consequence, by
combining (6.9), (6.6) and (6.7), for every (t, x) ∈ ST/µ,R we obtain the estimate

|u2(t, x)| ≤ c

∫

{ρX (y)>2R}

e−ρ2
X(y)

(
1

4̺t−µ
)

tq/2
· |f(y)| exp

(
− µρ2X(y)

)
dy.

We are going to show that, by Lebesgue’s theorem, the last integral goes to zero as t → 0+. On the
one hand, for every fixed y ∈ R

n with ρX(y) > 2R, we have

lim
t→0+

(
e−ρ2

X (y)
(

1
4̺t−µ

)

tq/2
· |f(y)| e−µρ2

X (y)

)
≤ cy · lim

t→0+

e−4R2
(

1
4̺t−µ

)

tq/2
= 0.
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On the other hand, for every t > 0 and every y ∈ R
n satisfying ρX(y) > 2R, one has

e−ρ2
X(y)

(
1

4̺t−µ
)

tq/2
· |f(y)| e−µρ2

X (y) ≤ e−4R2
(

1
4̺t−µ

)

tq/2
· |f(y)| e−µρ2

X(y)

= sup
t>0

(
e−4R2

(
1

4̺t−µ
)

tq/2

)
· |f(y)| e−µρ2

X (y) ≡ c |f(y)| e−µρ2
X(y) ∈ L1(Rn),

and thus, by Lebesgue’s theorem, we conclude that

lim
t→0+

u2(t, x) = 0 for every x ∈ R
n with ρX(x) < R.

Summing up, we have proved that u2 satisfies (i)-to-(iii) on ST/µ,R, as desired.

Finally, due to the arbitrariness of R > 0, we then conclude that u is a classical solution of
problem (6.1) on the stripe ST/µ (with T as in (6.8)).

Step II. Let us show that u satisfies a bound (6.4) for some δ, τ > 0. Since u is a continuous
function on the stripe ST/µ, the integral

∫ τ

0

∫

{ρX (x)≤R}

|u(t, x)| exp
(
− δρ2X(x)

)
dt dx

is finite for every choice of δ, R > 0 and every 0 < τ < T/µ. So, it is enough to show that there exist
suitable δ ∈ (0,+∞) and 0 < τ < T/µ such that

∫ τ

0

∫

{ρX (x)>1}

|u(t, x)| exp
(
− δρ2X(x)

)
dt dx < +∞.

By the very definition of u in (6.3), we have
∫ τ

0

∫

{ρX (x)>1}

|u(t, x)| exp
(
− δρ2X(x)

)
dt dx

≤
∫ τ

0

∫

{ρX (x)>1}

(∫

Rn

γ(t, x, y) |f(y)| dy
)
exp

(
− δρ2X(x)

)
dt dx.

We then split the space integral as follows
∫

{ρX (x)>1}

(∫

Rn

γ(t, x, y) |f(y)| dy
)
exp

(
− δρ2X(x)

)
dx

=

∫

{ρX (x)>1}

(∫

{ρX (y)≥2ρX (x)}

γ(t, x, y) |f(y)| dy
)
exp

(
− δρ2X(x)

)
dx

+

∫

{ρX (x)>1}

(∫

{ρX (y)<2ρX (x)}

γ(t, x, y) |f(y)| dy
)
exp

(
− δρ2X(x)

)
dx

≡ A(t) +B(t).

As for A(t), by combining the Gaussian estimate (2.6) with (6.9), we get

A(t) ≤ c̺

tq/2

∫

{ρX (x)>1}

(∫

{ρX (y)≥2ρX (x)}

e−
d2
X

(x,y)

̺t
+µρ2

X (y) · e−µρ2
X(y) |f(y)| dy

)
· e−δρ2

X (x) dx;

moreover, using the fact that dX(x, y) ≥ ρX(y)− ρX(x) for every x, y ∈ R
n, one has

exp

(
− d2X(x, y)

̺t
+ µρ2X(y)

)
≤ exp

(
ρ2X(x)

̺t

)
· exp

(
− ρ2X(y)

( 1

2̺t
− µ

))
= (⋆).

As a consequence, since in A(t) we have ρX(y) ≥ 2ρX(x) and ρX(x) > 1, we obtain

(⋆) ≤ exp

(
ρ2X(x)

̺t
− 4ρ2X(x)

( 1

2̺t
− µ

))
= exp

(
− ρ2X(x)

( 1

̺t
− 4µ

))

≤ exp

(
−
( 1

̺t
− 4µ

))
,
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provided that t ∈ (0, T/µ), see (6.8). Using this last estimate, we get

A(t) ≤ c̺

tq/2
e−
(

1
̺t

−4µ
) (∫

Rn

|f(y)| exp
(
− µρ2X(y)

)
dy

)(∫

Rn

exp
(
− δρ2X(x)

)
dx

)

=
c′

tq/2
e−
(

1
̺t

−4µ
)

where we have exploited Lemma 6.3. From this, we finally obtain
∫ τ

0

A(t) dt ≤
∫ τ

0

c1
tq/2

e−
(

1
̺t

−4µ
)
dt < +∞, for any τ ∈ (0, T/µ) and any δ > 0.

As for B(t), since ρX(y) < 2ρX(x), we have

B(t) =

∫

{ρX (x)>1}

(∫

{ρX (y)<2ρX (x)}

γ(t, x, y) eµρ
2
X(y) · |f(y)| e−µρ2

X (y) dy

)
e−δρ2

X (x) dx

≤
∫

Rn

|f(y)| exp
(
− µρ2X(y)

) (∫

Rn

γ(t, x, y) e(4µ−δ)ρ2
X (x) dx

)
dy.

Thus, if we choose δ ≥ 4µ, from Theorem 3.4-(iv) and (vi) we obtain
∫

Rn

γ(t, x, y) e−(δ−4µ)ρ2
X (x) dx ≤

∫

Rn

γ(t, x, y) dx = 1.

As a consequence, we get

B(t) ≤
∫

Rn

|f(y)| e−µρ2
X(y) dy =: c < +∞,

from which we derive that
∫ τ

0

B(t) dt < +∞ for any τ ∈ (0, T/µ) and any δ ≥ 4µ.

Summing up, we conclude that u satisfies (6.4) for every δ ≥ 4µ and every τ ∈ (0, T/µ).

Step III. Let us prove the uniqueness result. By linearity, it is enough to show that if for some
τ > 0 the function u ∈ C2(Sτ ) is a classical solution of

(6.10)

{
Hu = 0 in Sτ ,

u(0, x) = 0 for x ∈ Rn

and satisfies (6.4), then u ≡ 0 on Sτ . Denoting again by πn the projection of RN onto Rn, we set

û : Ŝτ := (0, τ)× R
N → R, û(t, z) := u

(
t, πn(z)

)
.

Obviously, û ∈ C2(Ŝτ ); moreover, since u solves (6.10) and HG =
∑m

j=1 Z
2
j − ∂t is a lifting of H (see

(3.9)), it is easy to check that û is a classical solution of

(6.11)

{
HGû = 0 in Ŝτ ,

û(0, z) = 0 for z ∈ RN .

We claim that there exists δ̂ > 0 such that

(6.12)

∫

Ŝτ

exp
(
− δ̂ ‖z‖2

)
|û(t, z)| dt dz < +∞.

Once this is proved, by [9, Theorem 6.5] we derive that û ≡ 0 on Ŝτ , and thus u ≡ 0 on Sτ .
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To prove (6.12), let ν̂ > 0 to be fixed in a moment. By using Proposition 4.2 (with x = 0 and

t = δ̂−1 > 0), we obtain the following computation
∫

Ŝτ

exp
(
− δ̂ ‖z‖2

)
|û(t, z)| dt dz =

∫

Ŝτ

exp
(
− δ̂ ‖(x, ξ)‖2

)
|û(t, (x, ξ))| dt dxdξ

=

∫

Sτ

(∫

Rp

exp
(
− δ̂ ‖(x, ξ)‖2

)
dξ

)
|u(t, x)| dt dx

≤ κ

δ̂Q/2 |BX(0, δ̂−1/2)|

∫

Sτ

exp

(
− δ̂ ρ2X(x)

κ

)
|u(t, x)| dt dx,

(6.13)

for a suitable constant κ > 1 . As a consequence, if we choose δ̂ := δ · κ, with δ as in (6.4), from
(6.13) we immediately deduce the claimed (6.12). This ends the proof. �

Remark 6.4. In the special case of Carnot groups, the uniqueness part of our result was already
known, after [9, Thm. 6.5], and in our proof (Step III) we have explicitly exploited that result, relying
on the assumption (H3) and the lifting technique. On the other hand, in the proof of our existence
result (Steps I-II) we have never exploited assumption (H3) and the lifing technique. Actually, our
proof in Steps I-II works also in Carnot groups, and our existence result extends the one proved in
[9, Corollary 6.2], where a stronger pointwise (instead of integral) bound was assumed on f .

If the initial datum satisfies a slightly stronger assumption than (6.2), we can refine the previous
results getting existence and uniqueness of the solution for every t > 0:

Proposition 6.5. Let f ∈ C(Rn) satisfy the growth assumption (6.2) in the following stronger form:
there exist α ∈ (0, 2) and µ > 0 such that

(6.14)

∫

Rn

|f(y)| exp
(
− µραX(y)

)
dy < +∞.

Then, the function u defined by (6.3) is a classical solution of (6.1) on S∞ := (0,+∞)× Rn.

Proof. Using assumption (6.14), it is easy to see that for every fixed θ > 0 one has

(6.15)

∫

Rn

|f(y)| exp
(
− θρ2X(y)

)
dy < +∞.

As a consequence, from Theorem 6.2 we derive that the function u in (6.3) is a classical solution of
(6.1) on ST/θ for every θ > 0, hence on the whole of S∞. �

7. An application to the Dirichlet problem for H

The aim of this section is to show how our global Gaussian estimates for Γ can be used to study
the solvability of the H-Dirichlet problem on an arbitrary bounded domain Ω ⊆ R1+n. All the results
we are going to present basically follow by combining the results of the previous sections with the
investigations carried out (in an abstract framework) in [20, 23, 24, 35].

To begin with, we need to establish the following proposition.

Proposition 7.1. The CC distance dX associated with our system X = {X1, . . . , Xm} of homoge-
neous Hörmander’s vector fields satisfies the so-called segment property: for every fixed x, y ∈ Rn

there exists a continuous path γ : [0, 1] → Rn such that γ(0) = x, γ(1) = y and

dX(x, y) = dX
(
x, γ(t)

)
+ dX

(
γ(t), y

)
for all 0 ≤ t ≤ 1.

Proof. This fact has been proved in [8, Corollary 5.15.6] in the context of Carnot groups. Actually,
the same proof can be repeated in our setting; the only nontrivial point that must be checked is that
the dX -balls BX(x, ρ) are bounded in the Euclidean sense (for all x ∈ R

n and ρ > 0).

To prove this fact, we argue as follows. First of all, since the distance dX is topologically
equivalent to the Euclidean distance, there exists some r > 0 such that the Euclidean ball BE(0, 1)
contains the dX -ball BX(0, r). On the other hand, for every R > 0 we have

δr/R
(
BX(0, R)

)
= BX (0, r) ⊆ BE(0, 1);
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hence, δr/R(BX(0, R)) is bounded in the Euclidean sense and, by the explicit form of δr/R, the same
is true for BX(0, R). From this, since for any x ∈ R

n and ρ > 0 we have BX(x, ρ) ⊆ BX(0, R), with
R = ρ+ dX(x, 0), we conclude that every dX -ball is bounded in the Euclidean sense. �

Using the segment property of dX , jointly with the properties of Γ listed in Theorem 3.5 and
the global Gaussian estimates (2.6) in Theorem 2.4, we can apply the axiomatic approach developed
in [23]: denoting by H the sheaf of functions defined as

Ω 7→ H(Ω) :=
{
u ∈ C∞(Ω) : Hu = 0 in Ω

}
,

we have that (Rn, H) is a β-harmonic space satisfying the Doob convergence property. In this
context, given a fixed open set Ω ⊆ R

1+n, we say that

• a function u : Ω → R is H-harmonic in Ω if u ∈ H(Ω);
• a function u : Ω → (−∞,+∞] is H-superharmonic in Ω if

(a) u is lower semi-continuous (l.s.c., for short) in Ω;
(b) the set {x ∈ Ω : u(x) < +∞} is dense in Ω;
(c) for every v ∈ C(Ω) such that v

∣∣
Ω
∈ H(Ω) and v ≤ u on ∂Ω one has v ≤ u on Ω.

• a function u : Ω → [−∞,+∞) is H-subharmonic in Ω if −u is H-superharmonic in Ω.

We denote by H(Ω) (resp.H(Ω)) the (convex) cone of the H-superharmonic (resp.H-subharmonic)
functions in Ω. Obviously, we have H(Ω) = −H(Ω) and H(Ω) ∩H(Ω) = H(Ω).

Let now Ω ⊆ R
1+n be a fixed open set, and let ϕ ∈ C(∂Ω). We say that a function u : Ω → R

is a classical solution of the H-Dirichlet problem

(7.1)

{
Hu = 0 in Ω,

u
∣∣
∂Ω

= ϕ

if it satisfies the following properties:

• u ∈ C(Ω) and u
∣∣
Ω
∈ C2(Ω);

• Hu = 0 in Ω and u
∣∣
∂Ω

= ϕ.

Since H = L− ∂t satisfies the Weak Maximum Principle on every open subset of R1+n (see, e.g., [3,
Example 8.20]), there exists at most one classical solution of the Dirichlet problem (7.1); however,
the existence of such a solution for a general ϕ ∈ C(∂Ω) is not guaranteed. For this reason, we
introduce the so-called PerronâĂŞWienerâĂŞBrelotâĂŞBauer (PWBB, in short) solution of (7.1).

Following [23], we first consider the functions

H
Ω

ϕ(x) := inf
{
u(x) : u ∈ H(Ω) and lim inf

ω→ω0

u(ω) ≥ ϕ(ω0) for all ω0 ∈ ∂Ω
}

and

HΩ
ϕ(x) := sup

{
u(x) : u ∈ H(Ω) and lim sup

ω→ω0

u(ω) ≤ ϕ(ω0) for all ω0 ∈ ∂Ω
}
.

Then, since (R1+n, H) satisfies Doob’sconvergence property, it can be proved that

H
Ω

ϕ ≡ HΩ
ϕ =: HΩ

ϕ ∈ H(Ω).

We shall call this function the PWBB solution of (7.1). Obviously, if u is the classical solution of
(7.1), one has u ≡ HΩ

ϕ on Ω; on the other hand, even if HΩ
ϕ can be constructed for an arbitrary

ϕ ∈ C(∂Ω) and it is always H-harmonic in Ω, one cannot expect (in general) that

lim
ω→ω0

HΩ
ϕ (ω) = ϕ(ω0) for ω0 ∈ ∂Ω.

The following definition is thus plainly justified.

Definition 7.2. A point ω0 ∈ ∂Ω is called H-regular if

(7.2) lim
ω→ω0

HΩ
ϕ (ω) = ϕ(ω0) for all ϕ ∈ C(∂Ω).

Due to the validity of the segment property for dX , the ‘good’ behavior of Γ in Theorem 3.5, and
the validity of global Gaussian estimates for Γ, we are entitled to apply to our context all the abstract
results established in [20, 23, 24, 35]. As a consequence, we obtain several necessary/sufficient
conditions for a point ω0 ∈ ∂Ω to be H-regular (in the sense of Definition 7.2).
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Throughout the sequel, given any compact set K ⊆ R
1+n, we define

VK(ω) = lim inf
z→ω

(
WK(z)

)
, where

WK(z) := inf
{
v(z) : v ∈ H(Rn), v ≥ 0 on R

1+n and v ≥ 1 on K
}
.

(7.3)

The function VK is usually referred to as the H-balayage of u0 ≡ 1 on K.

Theorem 7.3. [23, Thm.s 4.6 and 4.11] Let Ω ⊆ R
1+n be a bounded open set, and let ω0 = (t0, x0)

be a fixed point of ∂Ω. For any r > 0, we define

Ω′
r(ω0) :=

{
ω = (t, x) ∈ R

1+n \ Ω : t ≤ t0,
(
dX(x, x0)

4 + |t− t0|2
)1/4 ≤ r

}
,

and we denote by Vr the so-called H-balayage of u0 ≡ 1 on Ω′
r(ω0), that is,

(7.4) Vr := VΩ′

r(ω0).

Then, following assertions are equivalent:
• ω0 is not H-regular;
• there exists r > 0 such that Vr(ω0) < 1;
• Vr(ω) → 0 as r → 0+.

On the other hand, if there exist real constants M,ρ, θ > 0 such that
∣∣{x ∈ BX(x0,Mρ) : (t0 − ρ2, x) /∈ Ω

}∣∣ ≥ θ |BX(x0,Mρ)|,
then ω0 is H-regular.

Another sufficient condition for H-regularity is the following.

Theorem 7.4. [20, Theorem 5.1] Let Ω ⊆ R
1+n be an open set, and let ω0 = (t0, x0) ∈ ∂Ω be fixed.

Moreover, let {Bλ}0<λ<1 be a basis of closed neighborhoods of x0 in R
n such that

Bλ ⊆ Bµ if 0 < λ < µ ≤ 1.

For every λ ∈ (0, 1), we define

Ωc
λ(ω0) :=

(
[t0 − λ, t0]×Bλ

)
\ Ω and Tλ(ω0) :=

{
x ∈ R

n : (t0 − λ, x) ∈ Ωc
λ(ω0)

}
.

Then the point ω0 is H-regular if

lim sup
λց 0+

∫

Tλ(ω0)

γ(λ, x0, ξ) dξ > 0.

By making use of the so-called H-Wiener function (associated with the open set Ω and the
point ω0 ∈ ∂Ω), it is possible to derive a necessary and sufficient condition for ω0 to be regular.

Theorem 7.5. [23, Theorem 5.4] Let Ω ⊆ R
1+n be a bounded open set, and let ω0 = (t0, x0) ∈ ∂Ω

be fixed. Moreover, given a number p > 0 and a sequence {rk}k∈N converging to 0 as k → +∞, we
define the H-Wiener function (associated with Ω and ω0) as

(7.5) W(ω) :=

+∞∑

k=1

1− Vk(ω)

pk
,

where Vk = Vrk and, for every r > 0, the function Vr is as in (7.4). Then

ω0 is H-regular if and only if W(ω) → 0 as ω → ω0.

Finally, by making explicit use of our global Gaussian estimates for Γ, we can obtain criteria
for H-regularity which are resemblant to the classical results proved by Wiener and Landis for the
heat operator ∆− ∂t. In order to clearly state these criteria, we first fix some notation.

Given a compact set K ⊆ R
1+n, let VK be the H-balayage of u0 ≡ 1 on K defined in (7.3).

By classical results of Potential Theory, it is known that VK is H-superharmonic on R
1+n; as a

consequence, there exists a unique positive Radon measure µ = µK on R
1+n such that

HVk = −µK in D
′(R1+n) and supp(µK) = K.

(see, e.g., [29]). We then define the H-capacity of K as follows

CH(K) := µK(K).
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Moreover, if M+(K) denotes the set of non-negative Radon measures on R
1+n with support contained

in K, we also define the a-Gaussian capacity of K as follows

Ca(K) := sup

{
ν(K) : ν ∈ M

+(K) and

∫

K

Ga(t, x; s, y) dµ(s, y) ≤ 1 for all (t, x) ∈ R1+n

}
,

where for every a > 0 we have used the notation

(7.6) Ga(t, x; s, y) :=





0, if t ≤ s,

1

|BX(x,
√
t− s)| exp

(
− a

d2X(x, y)

t− s

)
, if t > s.

Notice that, using (7.6), our Gaussian estimates (2.6) reads as

1

̺
G̺(t, x; s, y) ≤ Γ(t, x; s, y) ≤ ̺G1/̺(t, x; s, y) (for all (t, x), (s, y) ∈ R

1+n).

Here is a ‘Wiener-type’ test for H-regularity.

Theorem 7.6. [24, Theorem 1.1] Let Ω ⊆ R
1+n be a bounded open set, and let ω0 = (t0, x0) ∈ ∂Ω.

For every fixed λ ∈ (0, 1) and every h, k ∈ N, we define

Ωh
k(ω0, λ) :=

{
ω = (t, x) ∈ R

1+n \ Ω : λk+1 ≤ t0 − t ≤ λk,

1

λh−1
≤ exp

(
d2X(x0, x)

t0 − t

)
≤ 1

λh
,
(
dX(x, x0)

4 + |t− t0|2
)1/4 ≤

√
λ

}
.

Then, if ̺ > 0 is as in (2.6), the following facts hold.

• if there exist 0 < a ≤ 1/̺ and b > ̺ such that

+∞∑

h,k=1

Ca

(
Ωh

k(ω0, λ)
)

∣∣BX(x0, λk/2)
∣∣ λ

bh = +∞,

then the point ω0 is H-regular.
• If the point ω0 is H-regular, then

+∞∑

h,k=1

Cb

(
Ωh

k(ω0, λ)
)

∣∣BX(x0, λk/2)
∣∣ λ

ah = +∞,

for every 0 < a ≤ 1/̺ and b ≥ ̺.

Finally, a ‘Landis-type’ condition for H-regularity is given by the following theorem.

Theorem 7.7. [35, Theorem 1.3] Let Ω ⊆ R
1+n be a bounded open set, and let ω0 = (t0, x0) ∈ ∂Ω.

For every fixed λ ∈ (0, 1) and every k ∈ N, we consider the set

Ωc
k(ω0) :=

{
ω = (t, x) ∈ R

1+n \ Ω :
1

λk log(k)
≤ Γ(t0, x0; t, x) ≤

1

λ(k+1) log(k+1)

}
∪ {(t0, x0)},

where Γ is the global heat kernel of H. Then ω0 is H-regular if and only if

+∞∑

k=1

VΩc
k
(ω0)(ω0) = +∞,

where VΩc
k
(ω0) is the H-balayage of u0 ≡ 1 on Ωc

k(ω0), see (7.3).
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8. Scale-invariant Harnack inequality for H

In this last section we prove a scale-invariant Harnack inequality for non-negative solutions of
Hu = 0. This fact easily follows, via the lifting procedure, from the analogous result proved on
Carnot groups in [9, Corollary 4.5]. It is however a result which is worthwhile to be pointed out.

Given any point ω0 = (t0, x0) ∈ (0,+∞)× R
n, any number r > 0, we define

C(ω0, r) :=
{
(t, x) ∈ R

1+n : dX(x, x0) < r, |t− t0| < r2
}
.

Furthermore, for every λ ∈ (0, 1/2), we set

Sλ(ω0, r) :=
{
(t, x) ∈ R

1+n : dX(x, x0) < (1− λ)r, λr2 < t0 − t < (1− λ)r2
}
.

We are ready to state our result.

Theorem 8.1. For every h, k = 0, 1, 2, ... and every fixed λ ∈ (0, 1/2), it is possible to find a positive
constant ν = νh,k,λ > 0 such that, for every ω0 = (t0, x0) ∈ (0,+∞) × Rn, every r > 0, and every
nonnegative function u ∈ C2(C(ω0, r)) satisfying Hu = 0 on C(ω0, r),

(8.1) sup
Sλ(ω0,r)

∣∣Xi1 · · ·Xih(∂t)
ku
∣∣ ≤ ν r−(h+2k) u(ω0),

for every i1, . . . , ih ∈ {1, . . . ,m}.
Proof. Letting v0 := (x0, 0) ∈ RN and ω̂0 := (t0, v0) ∈ R1+N , we define

Ĉ(ω̂0, r) :=
{
(t, v) ∈ R

1+N : dZ(v, v0) < r, |t− t0| < r2
}

and

Ŝλ(ω̂0, r) :=
{
(t, v) ∈ R

1+N : dZ(v, v0) < (1− λ)r, λr2 < t0 − t < (1− λ)r2
}
.

Let then u ∈ C2(C(ω0, r)) be any non-negative function satisfying of Hu = 0 on C(ω0, r). Denoting
by πn : RN → R

n the canonical projection of RN onto R
n, we set

û(t, v) := u
(
t, πn(v)

)
(v ∈ R

N ).

Since BZ(v0, r) ⊆ π−1
n

(
BX(x0, r)

)
(see Proposition 3.7-(iii)), we have

û ∈ C2
(
Ĉ(ω̂0, r)

)
.

Moreover, since u ≥ 0 and Hu = 0 on C(ω0, r), from the lifting property (3.9) we derive that

û ≥ 0 and HGû = 0 on Ĉ(ω̂0, r).

Putting together these facts, we are entitled to apply [9, Corollary 4.5], obtaining

(8.2) sup
Ŝλ(ω̂0,r)

∣∣Zi1 · · ·Zih(∂t)
kû
∣∣ ≤ ν r−(h+2k) û(t0, v0),

where ν > 0 is an absolute constant only depending on h, k and λ. We now claim that the above
(8.2) is precisely the desired (8.1). In fact, by the very definition of û, we have

(8.3) û(t0, v0) = u(t0, x0) = u(ω0);

moreover, by repeatedly exploiting (3.4), we get

Zi1 · · ·Zih(∂t)
kû(t, v) = (∂t)

k
(
Zi1 · · ·Zih

(
v 7→ u(t, πn(v))

))

= (∂t)
k
(
Zi1 · · ·Zih−1

(
v 7→ (Xihu)(t, πn(v))

))

= . . . =
(
(∂t)

kXi1 · · ·Xihu
)
(t, πn(v)) for all (t, v) ∈ Ĉ(ω̂0, r).

From this, taking into account that πn (BZ(v0, (1− λ)r)) = BX(x0, (1− λ)r), we readily obtain

(8.4) sup
Ŝλ(ω̂0,r)

∣∣Zi1 · · ·Zih(∂t)
kû
∣∣ = sup

Sλ(ω0,r)

∣∣Xi1 · · ·Xih(∂t)
ku
∣∣.

By combining (8.2), (8.3) and (8.4), we finally derive (8.1), with an absolute constant ν > 0 which
depends on the chosen h, k and λ (but not on ω0, r nor u). This ends the proof. �
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